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Collabora5ve	
  Data	
  Science	
  
l  Widespread	
  use	
  of	
  “data	
  science”	
  in	
  many	
  many	
  domains	
  

A typical data analysis workflow 

1000s of  
datasets 

Many steps across many users 



Collabora5ve	
  Data	
  Science	
  
l  Widespread	
  use	
  of	
  “data	
  science”	
  in	
  many	
  many	
  domains	
  

l  Increasingly	
  the	
  “pain	
  point”	
  is	
  managing	
  the	
  process,	
  
especially	
  during	
  collabora5ve	
  analysis	
  
l  Many	
  private	
  copies	
  of	
  the	
  datasets	
  è	
  Massive	
  redundancy	
  	
  
l  No	
  easy	
  way	
  to	
  keep	
  track	
  of	
  dependencies	
  between	
  datasets	
  
l  Manual	
  interven5on	
  needed	
  for	
  resolving	
  conflicts	
  
l  No	
  efficient	
  organiza5on	
  or	
  management	
  of	
  datasets	
  
l  No	
  easy	
  way	
  to	
  do	
  “provenance”,	
  i.e.,	
  find	
  reasons	
  for	
  an	
  ac5on	
  
l  No	
  way	
  to	
  analyze/compare/query	
  versions	
  of	
  a	
  dataset	
  

l  Ad	
  hoc	
  data	
  management	
  systems	
  (e.g.,	
  Dropbox)	
  used	
  
l  Much	
  of	
  the	
  data	
  is	
  unstructured	
  so	
  typically	
  can’t	
  use	
  DBs	
  
l  Scien5sts/researchers/analysts	
  are	
  preYy	
  much	
  on	
  their	
  own	
  



Model	
  Lifecycle	
  Management	
  

l  “Models”	
  are	
  an	
  integral	
  part	
  of	
  data	
  science	
  
l  Tradi5onal	
  simple	
  models	
  à	
  today’s	
  complex	
  BIG	
  models	
  

Often packaged together with results 



Challenges	
  

l  What	
  parameter	
  did	
  we	
  use	
  to	
  get	
  the	
  precision?	
  
l  How	
  do	
  I	
  know	
  which	
  data	
  corresponds	
  to	
  which	
  model?	
  

l  e.g.,	
  IPython	
  notebooks	
  don’t	
  usually	
  keep	
  the	
  “data”	
  
l  How	
  to	
  compare	
  different	
  “pipelines”,	
  iden5fy	
  bugs	
  
l  Issues	
  during	
  deployment	
  

l  Monitor	
  model	
  performance,	
  detect	
  problems	
  or	
  anomalies,	
  etc.	
  

l  Focus	
  of	
  most	
  current	
  work	
  on	
  scalability,	
  training,	
  etc.	
  
l  Cri5cal	
  history	
  is	
  transient	
  and	
  not	
  captured	
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ABSTRACT
Deep learning has improved state-of-the-art results in many impor-
tant fields, and has been the subject of much research in recent
years, leading to the development of several systems for facili-
tating deep learning. Current systems, however, mainly focus on
model building and training phases, while the issues of data man-
agement, model sharing, and lifecycle management are largely ig-
nored. Deep learning modeling lifecycle contains a rich set of arti-
facts, such as learned parameters and training logs, and frequently
conducted tasks, e.g., to understand the model behaviors and to try
out new models. Dealing with such artifacts and tasks is cumber-
some and left to the users. To address these issues in a comprehen-
sive manner, we propose ModelHub, which includes a novel model
versioning system (dlv); a domain specific language for searching
through model space (DQL); and a hosted service (ModelHub) to
store developed models, explore existing models, enumerate new
models and share models with others.

This paper presents the design of such a lifecycle management
system. First, we generalize model exploration and model enumer-
ation queries from commonly conducted tasks by computer vision
community modelers, and propose a high-level domain specific
language (DSL) to raise the abstraction level aiming at accelerating
the modeling process. To help modeler understand models better,
we also propose two novel model-comparison schemes and related
algorithms. Second, to manage the lifecycle artifacts, especially the
large amount of checkpointed float learned parameters, we exploit
the workloads and design a read-optimized parameter archival stor-
age system (PAS) that minimizes storage footprint and accelerates
query workloads without losing accuracy. PAS archives versioned
models using deltas and our design is featured with chunked bit-
block floating number and a novel progressive model evaluation
query implementation. We further show archiving versioned mod-
els using deltas is a new type of dataset versioning problem and
develop e�cient algorithms for solving it. We conduct extensive
experiments to show the e�ciency of proposed techniques.

1. INTRODUCTION
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Figure 1: Deep Learning Modeling Lifecycle

Deep learning models (also called deep neural networks) have
dramatically improved state-of-the-art results for many important
reasoning and learning tasks including speech recognition, object
recognition, and natural language processing in recent years [29].
Learned using massive amounts of training data, DNN models have
superior generalization capabilities, and the intermediate layers in
many deep learning models have been proven useful in providing
e↵ective semantic features that can be used with other learning
techniques and are applicable to other problems. However, there
are many critical large-scale data management issues in learning,
storing, sharing, and using deep learning models, which are largely
ignored by researchers today, but are coming to the forefront with
the increased use of deep learning in a variety of domains. In this
paper, we discuss some of those challenges in the context of the
modeling lifecycle, and propose a comprehensive system to address
them. Given the large scale of data involved (both training data and
the learned models themselves) and the increasing need for high-
level declarative abstractions, we argue that database researchers
should play a much larger role in this area. Although this paper
primarily focuses on deep neural networks, similar data manage-
ment challenges are seen in lifecycle management of others types
of ML models like logistic regression, XXX, etc.
DNN Modeling Lifecycle and Challenges: Compared with the tra-
ditional approach of feature engineering followed by model learn-
ing [39], deep learning is an end-to-end learning approach, i.e., the
features are not given by a human but learned in an automatic man-
ner from the input data. Moreover, the features are complex and
have a hierarchy along with the network representation. This re-
quires less domain expertise and experience from the modeler, but
understanding and explaining the learned models is di�cult; why
even well-studied models work so well is still a mystery and un-
der active research. Thus, when developing new models, chang-
ing the learned model (especially its network structure and hyper-
parameters) becomes an empirical search task.

In Fig. 1, we show a typical deep learning modeling lifecycle
(we present an overview of deep neural networks in the next sec-
tion). Given a prediction task, a modeler often starts from well-
known models which have been successful in similar task domains;
she then specifies input training data and output loss functions,
and repeatedly adjusts the DNN on operators and connections like
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DataHub:	
  A	
  Collabora5ve	
  Data	
  Science	
  Pla)orm	
  

• 	
  a	
  dataset	
  management	
  system	
  –	
  
import,	
  search,	
  query,	
  analyze	
  a	
  large	
  
number	
  of	
  (public)	
  datasets	
  

• 	
  a	
  dataset	
  version	
  control	
  system	
  –
branch,	
  update,	
  merge,	
  transform	
  large	
  
structured	
  or	
  unstructured	
  datasets	
  

• 	
  a	
  provenance	
  database	
  system	
  –	
  
capture	
  provenance	
  &	
  other	
  metadata,	
  
and	
  support	
  analysis/introspec5on	
  

• 	
  an	
  app	
  ecosystem	
  and	
  hooks	
  for	
  
external	
  applica5ons	
  (Matlab,	
  R,	
  
iPython	
  Notebook,	
  etc)	
   DataHub	
  Architecture	
  

Versioned Datasets,
Version Graphs, 

Indexes, Provenance

Dataset Versioning Manager

I: Versioning API and Version Browser

ingest vizualize etc. 
Client 

Applications 
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II: Native App Ecosystem

query 
builder

III: Language Agnostic Hooks

DataHub 
Notebook 
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  No, because they typically use fairly simple algorithms 

and are optimized to work for code-like data 
 

100 versions 

LF Dataset (Real World) 
#Versions = 100 
Avg. version size = 423 MB 

gzip	
  =	
  10.2	
  GB	
  

svn	
  =	
  8.5	
  GB	
  

git	
  =	
  202	
  MB	
  

*this	
  =	
  159	
  MB	
  

Can	
  we	
  use	
  Version	
  Control	
  Systems	
  (e.g.,	
  Git)?	
  



 
 
 
  No, because they typically use fairly simple algorithms 

and are optimized to work for code-like data 
Git ends up using large amounts of  RAM for large files 

 

DON’T!  

Use extensions* 

Can	
  we	
  use	
  Version	
  Control	
  Systems	
  (e.g.,	
  Git)?	
  



 
 
 
  No support for capturing rich metadata about the 

datasets and/or provenance information 
 
  Primitive querying and retrieval functionalities 

 
  No way to specify queries like: 

•  identify all predecessor versions of version A that differ from it 
by a large number of records 

•  rank a set of versions according to a scoring function 
•  find the version where the result of an aggregate query is 

above a threshold 
•  explain why the results of two similar pipelines are different 
•  identify the source of an error 

Can	
  we	
  use	
  Version	
  Control	
  Systems	
  (e.g.,	
  Git)?	
  

Version	
  
Control	
  	
  

Provenance	
  
Management	
  

Collabora5ve	
  
Data	
  Science	
  



o  Temporal	
  databases	
  are	
  restricted	
  to	
  managing	
  a	
  linear	
  
chain	
  of	
  versions	
  of	
  rela5onal	
  data	
  

o  Recent	
  work	
  in	
  scien5fic	
  databases	
  	
  
o  Op5mized	
  for	
  array-­‐like	
  data	
  
o  Also	
  largely	
  a	
  linear	
  chain	
  of	
  versions	
  

o  “Deduplica5on”	
  strategies	
  in	
  storage	
  systems	
  
o  Chunk	
  files	
  into	
  blocks	
  and	
  store	
  unique	
  blocks	
  
o  Works	
  well	
  if	
  changes	
  are	
  localized	
  
o  Focus	
  primarily	
  on	
  archival	
  storage	
  minimiza5on,	
  ignore	
  

recrea5on	
  costs	
  
o  Metadata/Provenance	
  management	
  systems	
  

o  Much	
  work,	
  but	
  insufficient	
  adop5on	
  as	
  yet	
  

Other	
  Related	
  Work	
  



Summary	
  of	
  Ongoing	
  Work	
  

l  Exploit	
  overlap	
  to	
  reduce	
  storage	
  [VLDB’15,VLDB’16,*,*]	
  
l  …	
  while	
  keeping	
  retrieval	
  costs	
  low	
  
l  …	
  for	
  different	
  types	
  of	
  data	
  (unstructured	
  files,	
  rela5onal	
  data,	
  
documents,	
  and	
  large	
  NN	
  models)	
  

l  System	
  for	
  managing	
  and	
  querying	
  versioning	
  and	
  
provenance	
  informa5on	
  [TaPP’15,	
  *]	
  
l  …	
  along	
  with	
  mechanisms	
  to	
  easily	
  capture	
  provenance	
  
l  Prototype	
  command-­‐line-­‐based	
  provenance	
  inges5on	
  system,	
  
built	
  on	
  top	
  of	
  “git”	
  and	
  “Neo4j”	
  

l  A	
  ver5cal	
  for	
  lifecycle	
  management	
  of	
  deep	
  learning	
  
models	
  [*]	
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l  Increasing	
  interest	
  in	
  querying	
  and	
  reasoning	
  about	
  the	
  underlying	
  
graph	
  (network)	
  structure	
  in	
  a	
  variety	
  of	
  disciplines	
  

Graph	
  Data	
  

A protein-protein interaction 
network 

Social networks 

Financial transaction 
networks  

Stock Trading Networks 

Federal funds networks 

GSCC

GWCC

Tendril
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Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.
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Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j )Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily
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Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.
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Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j )Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

Stock Trading Networks 

World Wide Web 

Different types of “queries” 
Subgraph pattern matching; 
Reachability; Shortest path; 
Keyword search; Historical or 
Temporal queries… 
 

Continuous “queries” and Real-
time analytics 
Online prediction; Monitoring; 
Anomaly/Event detection 

Batch analysis tasks 
Centrality analysis; Community 
detection; Network evolution; 
Network measurements; Graph 
cleaning/inference 

Machine learning tasks 
Many algorithms can be seen 
as message passing in 
specially constructed graphs 



l  Graph	
  analy5cs/network	
  science	
  tasks	
  too	
  varied	
  

l  Hard	
  to	
  build	
  general	
  systems	
  like	
  RDBs/Hadoop/Spark	
  
l  What	
  is	
  a	
  good	
  abstrac5on	
  to	
  provide?	
  	
  

l  MapReduce?	
  Vertex-­‐centric	
  frameworks?	
  BSP?	
  
l  Popular	
  graph	
  languages	
  (SPARQL,	
  Cypher)	
  equivalent	
  to	
  SQL	
  

l  No	
  clear	
  winners	
  or	
  widely	
  used	
  systems	
  
l  Applica5on	
  developers	
  largely	
  doing	
  their	
  own	
  thing	
  

l  Fragmented	
  research	
  topic	
  with	
  liYle	
  consensus	
  
l  Specialized	
  graph	
  databases	
  (Neo4j),	
  RDF	
  Databases	
  	
  
l  Distributed	
  batch	
  systems	
  (GraphX,	
  Giraph),	
  HPC	
  Single-­‐
memory	
  Engines	
  (Ligra,	
  GreenMarl,	
  X-­‐Stream)	
  

l  Many	
  specialized	
  indexes,	
  prototypes…	
  

Graph	
  Data	
  Management:	
  State	
  of	
  the	
  Art	
  



l  Goal:	
  A	
  complete,	
  func5on-­‐rich	
  system	
  with	
  unified	
  
declara5ve	
  abstrac5ons	
  for	
  graph	
  queries	
  and	
  analy5cs	
  
l  Declara5ve	
  cleaning	
  of	
  noisy	
  and	
  imperfect	
  graphs	
  through	
  link	
  
predic5on	
  and	
  en5ty	
  resolu5on	
  [GDM’11,	
  SIGMOD	
  Demo’13]	
  

l  Real-­‐5me	
  con5nuous	
  queries	
  and	
  anomaly	
  detec5on	
  over	
  
dynamic	
  graphs	
  [SIGMOD’12,	
  ESNAM’14,	
  SIGMOD’14,	
  DEB’16]	
  

l  Historical	
  graph	
  data	
  management	
  and	
  temporal	
  analy5cs	
  
[ICDE’13,	
  SIGMOD	
  Demo’13,EDBT’16]	
  

l  Subgraph	
  paYern	
  matching	
  and	
  coun5ng	
  [ICDE’12,	
  ICDE’14]	
  
l  GraphGen:	
  graph	
  analy5cs	
  over	
  rela5onal	
  data	
  [VLDB	
  Demo’15,	
  

SIGMOD’17]	
  

l  NScale:	
  a	
  distributed	
  analysis	
  framework	
  [VLDB	
  Demo’14,	
  
VLDBJ’15,NDA’16]	
  

What	
  we	
  are	
  doing 	
  	
  



l  Graph	
  data	
  management	
  systems	
  expect	
  and	
  manage	
  
graph-­‐structured	
  data,	
  i.e.,	
  lists	
  of	
  nodes	
  and	
  edges	
  	
  

l  Most	
  data	
  sits	
  in	
  RDBMSs	
  and	
  (increasingly)	
  NoSQL	
  stores	
  
l  Graphs	
  must	
  be	
  extracted	
  by	
  iden5fying	
  and	
  connec5ng	
  
en55es	
  across	
  the	
  database	
  

1.	
  Where’s	
  the	
  Data?	
  



1.	
  Example:	
  TPC-­‐H	
  

order_key	
   customer_key	
  

Orders	
  

o1	
   c1	
  

o2	
   c2	
  

o3	
   c3	
  

order_key	
   part_key	
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   p2	
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c_key	
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Customer	
  

On order_key 

Which customer bought 
which product? 

On p_key 

Which customers 
bought the same item? 
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   c4	
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   cust2	
  

c1	
   c6	
  

c1	
   c3	
  

c1 

c4	
   c6	
  

c4 

c3 c6 
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Edge weights based on 
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l  Graph	
  data	
  management	
  systems	
  expect	
  and	
  manage	
  
graph-­‐structured	
  data,	
  i.e.,	
  lists	
  of	
  nodes	
  and	
  edges	
  	
  

l  Most	
  data	
  sits	
  in	
  RDBMSs	
  and	
  (increasingly)	
  NoSQL	
  stores	
  
l  Graphs	
  must	
  be	
  extracted	
  by	
  iden5fying	
  and	
  connec5ng	
  
en55es	
  across	
  the	
  database	
  

l  Must	
  be	
  done	
  repeatedly	
  as	
  the	
  underlying	
  data	
  changes	
  
l  Tedious	
  and	
  5me-­‐consuming	
  

l  Also	
  desirable	
  to	
  avoid	
  having	
  to	
  use	
  another	
  data	
  
management	
  system	
  

1.	
  Where’s	
  the	
  Data?	
  



l  Efficiency	
  challenge:	
  Extracted	
  graphs	
  can	
  oqen	
  be	
  
orders-­‐of-­‐magnitude	
  larger	
  than	
  original	
  database	
  
l  Homogeneous	
  graphs	
  (over	
  the	
  same	
  set	
  of	
  en55es)	
  invariably	
  
require	
  at	
  least	
  one	
  self-­‐join	
  on	
  a	
  non-­‐key	
  

l  DBLP	
  Dataset:	
  8.6M	
  author-­‐publica5on	
  table	
  à	
  43M	
  edges	
  in	
  
the	
  co-­‐authorship	
  graph	
  

l  Connec5ng	
  authors	
  with	
  papers	
  at	
  the	
  same	
  conference	
  =	
  1.8	
  B	
  edges	
  

l  Even	
  if	
  the	
  final	
  graph	
  is	
  small,	
  database	
  query	
  op5mizers	
  
unable	
  to	
  op5mize	
  these	
  queries	
  well	
  
l  High	
  selec5vity	
  errors	
  

1.	
  Where’s	
  the	
  Data?	
  



l  Efficiency	
  challenge:	
  Extracted	
  graphs	
  can	
  oqen	
  be	
  
orders-­‐of-­‐magnitude	
  larger	
  than	
  original	
  database	
  
l  Homogeneous	
  graphs	
  (over	
  the	
  same	
  set	
  of	
  en55es)	
  invariably	
  
require	
  at	
  least	
  one	
  self-­‐join	
  on	
  a	
  non-­‐key	
  

l  DBLP	
  Dataset:	
  8.6M	
  author-­‐publica5on	
  table	
  à	
  43M	
  edges	
  in	
  
the	
  co-­‐authorship	
  graph	
  

l  Connec5ng	
  authors	
  with	
  papers	
  at	
  the	
  same	
  conference	
  =	
  1.8	
  B	
  edges	
  

l  Even	
  if	
  the	
  final	
  graph	
  is	
  small,	
  database	
  query	
  op5mizers	
  
unable	
  to	
  op5mize	
  these	
  queries	
  well	
  
l  High	
  selec5vity	
  errors	
  

1.	
  Where’s	
  the	
  Data?	
  

Graph Representation Edges Extraction Latency (s)
DBLP Condensed 17,147,302 105.552

Full Graph 86,190,578 > 1200.000
IMDB Condensed 8,437,792 108.647

Full Graph 33,066,098 687.223
TPCH Condensed 52,850 15.520

Full Graph 99,990,000 > 1200.000
UNIV Condensed 60,000 0.033

Full Graph 3,592,176 82.042
Table 1: Extracting graphs in HIGRAPH using our condensed rep-
resentation vs extracting the full graph. IMDB: Co-actors graph (on
a subset of data), DBLP: Co-authors graph, TPCH: Connect cus-
tomers who buy the same product, UNIV: Connect students who
have taken the same course (synthetic, from http://db-book.com)

graphs from a relational database1, and execute graph analysis tasks
or algorithms over them in memory. HIGRAPH supports an expres-
sive Domain Specific Language (DSL), based on Datalog [3], al-
lowing users to specify a single graph or a collection of graphs to be
extracted from the relational database (in essence, as views on the
database tables). HIGRAPH uses a translation layer to generate the
appropriate SQL queries to be issued to the database, and creates
an efficient in-memory representation of the graph that is handed
off to the user program or analytics task. HIGRAPH supports a
general-purpose Java Graph API as well as the standard vertex-
centric API for specifying analysis tasks like PageRank. Figure 1
shows a toy DBLP-like dataset, and the query that specifies a “co-
authors” graph to be constructed on that dataset. Figure 1c shows
the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in ana-
lyzing may be too large to extract and represent in memory, even
if the underlying relational data is small. There is a space explo-
sion because of the types of high-output2 joins that are often needed
when constructing these graphs. Table 1 shows several examples of
this phenomenon. On the DBLP dataset restricted to journals and
conferences, there are approximately 1.6 million authors, 3 million
publications, and 8.6 million author-publication relationships; the
co-authors graph on that dataset contained 86 million edges, and re-
quired more than half an hour to extract on a laptop. The condensed
representation that we advocate in this paper is much more efficient
both in terms of the memory requirements and the extraction times.
The DBLP dataset is, in some sense, a best-case scenario since
the average number of authors per publication is relatively small.
Constructing the co-actors graph from the IMDB dataset results in
a similar space explosion. Constructing a graph connecting pairs
of customers who bought the same item in a small TPCH dataset
results in much larger graph than the input dataset. Even on the
DBLP dataset, a graph that connects authors who have papers at
the same conference contains 1.8B edges, compared to 15M edges
in the condensed representation.

In this paper, we address the problem of analyzing such large
graphs by storing and operating upon them using a novel condensed
representation. The relational model already provides a natural
such condensed representation, obtained by omitting some of the
high-output joins from the query required for graph extraction. Fig-
ure 1(d) shows an example of such a condensed representation for
the co-authors graph, where we create explicit nodes for the pubs,
in addition to the nodes for the authors; for two authors, u and v,
there is an edge u ! v, iff there is a directed path from u to v in

1Although HIGRAPH (name anonymized for submission) currently only
supports PostgreSQL, it requires only basic SQL support from the underly-
ing storage engine, and could simply scan the tables if needed.
2We use this term instead of “selectivity" terms to avoid confusion.

Figure 1: Key concepts of HIGRAPH. (Note: the author nodes here
are being shown twice for the sake of simplicity, they are not being
stored twice)
this representation. This representation generalizes the idea of us-
ing cliques and bicliques for graph compression [6, 16]; however,
the key challenge for us is not generating the representation, but
rather dealing with duplicate paths between two nodes.

In Figure 1, we can see such a duplication for the edge a1 ! a4
since they are connected through both p1 and p2 . Such dupli-
cation prevents us from operating on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• A general framework for extracting a condensed representa-

tion (with duplicates) for a large class of extraction queries
over arbitrary relational schemas.

• A suite of in-memory representations to handle the duplication
in the condensed representation.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• The first end-to-end system for enabling analytics on graphs

that exist within purely relational datasets, efficiently, and with-
out requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of HIGRAPH, briefly
describe the graph extraction DSL, and discuss how HIGRAPH de-
cides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).



l  En55es	
  can	
  be	
  connected	
  in	
  a	
  variety	
  of	
  different	
  ways	
  
l  Add	
  an	
  edge	
  if	
  customers	
  bought	
  the	
  same	
  item,	
  or	
  at	
  least	
  5	
  
same	
  items,	
  or	
  bought	
  items	
  on	
  the	
  same	
  day	
  in	
  the	
  same	
  store	
  

l  Create	
  a	
  part-­‐supplier	
  bipar5te	
  graph	
  by	
  connec5ng	
  suppliers	
  
who	
  apply	
  a	
  part	
  in	
  sufficient	
  quan5ty	
  

2.	
  Which	
  “Graphs”	
  to	
  Analyze?	
  

Identifying interesting 
connections itself 
a difficult question 



l  En55es	
  can	
  be	
  connected	
  in	
  a	
  variety	
  of	
  different	
  ways	
  
l  Add	
  an	
  edge	
  if	
  customers	
  bought	
  the	
  same	
  item,	
  or	
  at	
  least	
  5	
  
same	
  items,	
  or	
  bought	
  items	
  on	
  the	
  same	
  day	
  in	
  the	
  same	
  store	
  

l  Create	
  a	
  part-­‐supplier	
  bipar5te	
  graph	
  by	
  connec5ng	
  suppliers	
  
who	
  apply	
  a	
  part	
  in	
  sufficient	
  quan5ty	
  

l  Oqen	
  need	
  to	
  simultaneously	
  analyze	
  mul5ple	
  graphs	
  
l  Compare	
  a	
  graph	
  on	
  products	
  today	
  vs	
  yesterday	
  

l  Plot	
  how	
  supplier	
  centrality	
  (e.g.,	
  PageRank)	
  evolved	
  over	
  5me	
  

l  Must	
  exploit	
  overlap,	
  and	
  reduce	
  redundant	
  computa5on	
  

2.	
  Which	
  “Graphs”	
  to	
  Analyze?	
  



l  “Vertex-­‐centric	
  framework”	
  the	
  most	
  popular	
  today	
  
l  GraphLab,	
  Apache	
  Giraph,	
  GraphX,	
  X-­‐Stream,	
  Grail,	
  Vertexica,	
  …	
  
l  Most	
  of	
  the	
  research,	
  especially	
  in	
  databases,	
  focuses	
  on	
  it	
  

l  “Think	
  like	
  a	
  vertex”	
  paradigm	
  
l  User	
  provides	
  a	
  compute()	
  func5on	
  that	
  operates	
  on	
  a	
  vertex	
  
l  Executed	
  in	
  parallel	
  on	
  all	
  ver5ces	
  in	
  an	
  itera5ve	
  fashion	
  
l  Exchange	
  informa5on	
  at	
  a	
  barrier	
  through	
  message	
  passing	
  

3.	
  Graph	
  Programming	
  Frameworks	
  



l  Limita5ons	
  of	
  the	
  vertex-­‐centric	
  frameworks	
  
l  Works	
  well	
  for	
  some	
  applica5ons	
  

l  Pagerank,	
  Connected	
  Components,	
  Some	
  ML	
  algorithms,	
  …	
  
l  However,	
  the	
  framework	
  is	
  very	
  restric5ve	
  

l  Simple	
  tasks	
  like	
  coun5ng	
  neighborhood	
  stats	
  infeasible	
  
l  Fundamentally:	
  Not	
  easy	
  to	
  decompose	
  analysis	
  tasks	
  into	
  
vertex-­‐level,	
  independent	
  local	
  computa5ons	
  

l  Alterna5ves?	
  
l  Galois,	
  Ligra,	
  GreenMarl:	
  Low-­‐level	
  APIs,	
  and	
  hard	
  to	
  parallelize	
  
l  Some	
  others	
  (e.g.,	
  Socialite)	
  restric5ve	
  for	
  different	
  reasons	
  

3.	
  Graph	
  Programming	
  Frameworks	
  



3.	
  Example:	
  Local	
  Clustering	
  Coefficient	
  

1
 

2
 

4

3

Measures density around a node 
Compute() at Node n:  

Need to count the no. of edges between 
But does not have access to that information 
Option 1: Each node transmits its list of 
neighbors to its neighbors 
      Huge memory consumption 
Option 2: Allow access to neighbors’ state  

Neighbors may not be local 
What about computations that require 2-
hop information? 

    

neighbors 



3.	
  Aside:	
  NScale	
  Distributed	
  Framework	
  

Local Clustering Coefficient 
Dataset NScale Giraph GraphLab GraphX 

CE (Node-
Secs) 

Cluster 
Mem 
(GB) 

CE (Node-
Secs) 

Cluster 
Mem (GB) 

CE (Node-
Secs) 

Cluster 
Mem (GB) 

CE (Node-
Secs) 

Cluster 
Mem (GB) 

WikiTalk 726 24.16 DNC OOM 1125 37.22 1860 32.00 

LiveJournal 1800 50.00 DNC OOM 5500 128.62 4515 84.00 

Orkut 2000 62.00 DNC OOM DNC OOM 20175 125.00 

•  An	
  end-­‐to-­‐end,	
  subgraph-­‐centric	
  distributed	
  
graph	
  analy5cs	
  framework	
  (built	
  on	
  Spark)	
  

•  Users/applica5on	
  programs	
  specify:	
  	
  
•  Neighborhoods	
  or	
  subgraphs	
  of	
  interest	
  
•  A	
  kernel	
  compute()	
  to	
  operate	
  on	
  those	
  subgraphs	
  

•  Framework:	
  
•  Extracts	
  the	
  relevant	
  subgraphs	
  from	
  underlying	
  

data	
  and	
  loads	
  in	
  memory	
  
•  Execu5on	
  engine:	
  Executes	
  user	
  computa5on	
  on	
  

materialized	
  subgraphs	
  



Outline	
  
l  DataHub:	
  A	
  pla)orm	
  for	
  collabora5ve	
  data	
  science	
  

	
  

l  GraphGen:	
  Graph	
  Analy5cs	
  on	
  Rela5onal	
  Databases	
  

l  Mo5va5on	
  

l  System	
  Overview	
  	
  

l  Condensed	
  Representa5ons	
  for	
  Large	
  Graphs	
  

l  Experiments	
  

	
  

	
  
These slides at: http://go.umd.edu/w.pdf 



GraphGen	
  Architecture	
  



Vertexica/GRAIL/SQLGraph	
  vs	
  GraphGen	
  
Fundamentally different goals 

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows
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Nodes Edges 

A relational database 

Graph analytics/query 

SQL Translation 
Layer 

Ingest/Shredding 

Props, .. 

We aim to push computation into RDBMS 
if possible, but expressive programming 
framework is a higher priority 

Results 

A relational database 

Graph Definition 
+  

Graph Analytics/query 

In-memory Graph  
Execution Engine 

Graph Object 
+  

Execution results 

Extraction 
Queries Results 



GraphGen	
  Graph	
  Extrac5on	
  DSL	
  
l  Based	
  on	
  non-­‐recursive	
  Datalog	
  

l  Extended	
  with	
  Aggrega5on	
  and	
  Looping	
  constructs	
  
l  User	
  needs	
  to	
  specify:	
  

l  How	
  the	
  nodes	
  and	
  edges	
  are	
  defined	
  
l  Both	
  effec5vely	
  “views”	
  over	
  the	
  rela5onal	
  data	
  

l  Allows	
  for	
  homogeneous	
  and	
  heterogeneous	
  graphs	
  

1.  Construct customer-customer graph if they bought the same 
product (TPC-H) 

 
Nodes(ID,	
  Name)	
  :-­‐	
  Customer(ID,	
  Name).	
  
Edges(ID1,	
  ID2)	
  :-­‐	
  	
  
Orders(o_key1,	
  ID1),	
  LineItem(o_key1,	
  part_key),	
  
Orders(o_key2,	
  ID2),	
  LineItem(o_key2,	
  part_key).	
  
	
  
 



GraphGen	
  Graph	
  Extrac5on	
  DSL	
  

2. Construct one neighborhood graph for each author (DBLP) 
   	
  For	
  Author(X,	
  _).	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Nodes(ID,	
  Name)	
  :-­‐	
  Author(ID,	
  Name),	
  ID	
  =	
  X.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Nodes(ID,	
  Name)	
  :-­‐	
  AuthorPub(X,P),	
  AuthorPub(ID,P),	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Author(ID,	
  Name).	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Edges(ID1,	
  ID2)	
  :-­‐	
  Nodes(ID1,	
  _),	
  Nodes(ID2,	
  _),	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
   	
   	
  	
  	
  	
  	
  	
  AuthorPub(ID1,	
  P),	
  AuthorPub(ID2,	
  P). 
 
3. A Simple Bipartite Graph over Parts and Suppliers  
        Nodes(ID,	
  Name,	
  Label	
  =	
  “P”)	
  :-­‐	
  Part(p_key,	
  Name)	
  
	
  	
  	
  	
  	
  Nodes(ID,	
  Name,	
  Label	
  =	
  “S”)	
  :-­‐	
  Supplier(s_key,	
  Name)	
  
	
  	
  	
  	
  	
  Edges(ID1,	
  ID2)	
  :-­‐	
  	
  PartSupp(ID1,	
  ID2)	
  
	
  
	
  
Additional	
  constructs	
  for	
  aggregates	
  and	
  node	
  or	
  
edge	
  “properties”	
  and	
  “weights”	
  



GraphGen	
  in	
  Java:	
  Vertex-­‐Centric	
  API	
  

2. Can directly manipulate the graph using a simple API: 
-  getVertices(): returns an iterator over all vertices 
-  getNeighbors(v): returns an iterator over v’s neighbors 
-  existsEdge(v, u), addEdge(v, u), deleteEdge(v, u), 

addVertex(v), deleteVertex(v) 
 

3. Working on supporting a more general neighborhood-
centric API from NScale 

 - Allows parallelism and other optimizations 



GraphGen	
  Graph	
  Explora5on	
  Frontend	
  

User can visually explore 
1-hop neighborhoods 

View simple statistics 
about the graph 

User explores schema 
and specifies graphs 
to be extracted 



GraphGen	
  Enumera5on	
  Framework	
  
•  Complex	
  rela5onal	
  schemas	
  contain	
  many	
  tables/constraints	
  

•  Hard	
  to	
  iden5fy	
  interes5ng	
  graphs	
  through	
  just	
  inspec5on	
  
•  Idea:	
  Inspect	
  the	
  database	
  schema,	
  and	
  propose	
  a	
  set	
  of	
  possible	
  

graphs	
  by	
  enumera5ng	
  paths	
  or	
  loops	
  in	
  the	
  schema	
  graph	
  
•  User	
  provides	
  feedback	
  to	
  drive	
  and	
  fine-­‐tune	
  



Outline	
  
l  DataHub:	
  A	
  pla)orm	
  for	
  collabora5ve	
  data	
  science	
  

	
  

l  GraphGen:	
  Graph	
  Analy5cs	
  on	
  Rela5onal	
  Databases	
  

l  Mo5va5on	
  

l  System	
  Overview	
  	
  

l  Condensed	
  Representa5ons	
  for	
  Large	
  Graphs	
  

l  Experiments	
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l  The	
  extracted	
  graph	
  may	
  be	
  much	
  larger	
  even	
  than	
  the	
  
input	
  dataset	
  
l  Expensive	
  to	
  extract:	
  intermediate/final	
  results	
  too	
  large	
  
l  Query	
  op5mizers	
  not	
  able	
  to	
  op5mize	
  well	
  
l  Possibly	
  infeasible	
  to	
  hold	
  in	
  memory	
  

l  Instead:	
  we	
  extract	
  a	
  condensed	
  representa5on	
  	
  
l  At	
  most	
  the	
  size	
  of	
  the	
  base	
  tables	
  –	
  usually	
  much	
  smaller	
  
l  All	
  Graph	
  APIs	
  supported	
  on	
  top	
  of	
  this	
  representa5on	
  
l  Need	
  to	
  handle	
  duplicaCon	
  

Key	
  Challenge	
  



Condensed	
  Representa5on	
  

(a) Relational Tables

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows
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Nodes(ID, Name):-Author(ID, Name).
Edges(ID1, ID2):-AuthorPub(ID1, 
PubID), AuthorPub(ID2, PubID).

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows
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Query to construct a co-authors graph 

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows
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A3: a1, a2, a4
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      a1,a2,a4
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[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1
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1. Query statistics tables to identify less selective joins 
2. Break up the overall query to avoid those joins and 

load intermediate results 
3. Create a multi-layered representation with “real” and 

“virtual” nodes (roughly one layer per postponed join) 

Edge from a_i to a_j 
              == 
There is a directed path 
from a_i to a_j 

vertices:315,130 edges:599,902     VS     vertices: 15,000 edges: 99,990,000 
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[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1
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Start to see significant differences even with small datasets 
Both DEDUP1 or Bitmaps-based approaches work well 

Figure 10: Comparing the in-memory graph sizes for different
datasets; the bottom (lighter) bars show the number of nodes.

in Section 6.2.
Figure 10 shows how the different algorithms fare against each

other. For each algorithm and each dataset, we report the total
number of nodes and edges, and also show the breakdown between
them; the algorithm used for DEDUP-1 was Greedy Virtual Nodes
First, described in Section 5.2.1. When the average degree of vir-
tual nodes is small and there is a large number of virtual nodes (as
is the case with DBLP and Synthetic_1), we observe that there is
a relatively small difference in the size of the condensed and ex-
panded graphs, and deduplication (DEDUP1 and DEDUP2) actu-
ally results in an even smaller footprint graph.

On the other hand, the IMDB dataset shows a 8-fold difference
in size between EXP and C-DUP and over a 5-fold difference with
all other representations. Synthetic_2 portrays the amount of com-
pression possible in graphs with very large, overlapping cliques.
The BMP representations prevail here as well; however this dataset
also shows how the DEDUP2 representation can be significantly
more compact than DEDUP1, while maintaining its natural, more
portable structure compared to the BMP representations. As we
can see, VMiner not only requires expanding the graph first, but
also generally finds a much worse representation than DEDUP-1.
This corroborates our hypothesis that working directly with the im-
plicit representation of the graph results in better compression.

We also measured actual memory footprints for the same datasets,
which largely track the relative performance shown here, with one
major difference being that BMP representations perform a little
worse because of the extra space required for storing the bitmaps.
Those results can be found in the extended version of the paper. We
report memory footprints for larger datasets in Section 6.2.

6.1.2 Graph Algorithms Performance
Figure 11 shows the results of running 3 different graph algo-

rithms on the different in-memory representations. We compared

(a) DBLP (b) Synthetic_1
Figure 11: Performance of Graph Algorithms on Each Representa-
tion for two datasets (vertical red line represents EXP)

the performance of Degree calculation, Breadth First Search (BFS)
starting from a single node, as well as PageRank on the entire
graph. Again, the results shown are normalized to the values for
the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API.
Again, the BFS results are the mean of runs on a specific set of 50
randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs.

We also ran a comprehensive set of microbenchmarks comparing
the performance of the basic graph operations against the different
representations. Those results can be found in Appendix C, and as
can be seen there, BFS and PageRank both follow the trends of the
micro-benchmarks in terms of differences between representations.

For IMDB and Synthetic_2, both of which yield very large ex-
panded graphs, we observed little to no overhead in real world
performance compared to EXP when actually running algorithms
on top of these representations, especially when it comes to the
BITMAP and DEDUP1 representations (we omit these graphs).
DBLP and Synthetic_1 datasets portray a large gap in performance
compared to EXP; this is because these datasets consist of a large
number of small virtual nodes, thus increasing the average number
of virtual nodes that need to be iterated over for a single calculation.
This is also the reason why DEDUP1 and BITMAP2 typically per-
form better; they feature a smaller number of virtual neighbors per
real node than representations like C-DUP and BMP1, and some-
times DEDUP2 as well.

(a) (b)
Figure 12: Deduplication Performance Results (a) Deduplication
time comparison between algorithms. Random (RAND) vertex or-
dering was used where applicable, (b) Small variations caused by
node ordering in deduplication

6.1.3 Comparing Deduplication Algorithms
Figure 12a shows the running times for the different deduplica-

tion algorithms (on a log-scale). As expected, BITMAP-1 is the
fastest of the algorithms, whereas the DEDUP-1 and DEDUP-2 al-
gorithms take significantly more time. We note however that dedu-
plication is a one-time cost, and the overhead of doing so may be
acceptable in many cases, especially if the extracted graph is serial-
ized and repeatedly analyzed over a period of time. Finally, Figure
12b shows how the performance of the various algorithms varies
depending on the processing order. We did not observe any no-
ticeable differences or patterns in this performance across various
datasets, and recommend using the random ordering for robustness.

6.2 Large Datasets
To reason about the practicality and scalability of HIGRAPH, we

evaluated its performance on a series of datasets that yielded larger
and denser graphs (Table 3). Datasets Layered_1 and Layered_2
are synthetically generated multi-layer condensed graphs, while

VMiner: Graph 
compression 
using Bi-Cliques 



Impact	
  on	
  Performance	
  (a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 12: Microbenchmarks for each representation

(a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 13: Performance of Graph Algorithms on Each Representation

extra hop is required for obtaining all real neighbors of a vertex.
DEDUP1 is typically more performant than the BITMAP represen-
tations in datasets where there is a large amount of small cliques.

In terms of the EXISTSEDGE() operation, we have included aux-
iliary indices in both virtual and real vertices, which allow for rapid
checks on whether a logical edge exists between two real nodes.
Latency in this operation is relative to the total number of vir-
tual nodes, the indexes of which need to be checked. The RE-
MOVEVERTEX() operation is actually more efficient on the CDUP,
DEDUP1 and DEDUP2 representations than EXP. In order for a
vertex to be removed from the graph, explicit removal of all of its
edges is required. In representations like DEDUP1 and DEDUP2,
that employ virtual nodes, we need to remove a smaller number of
edges on average in the removal process. DEDUP2 is most interest-
ing here because a real node is always connected to only 1 virtual
node, therefore the removal cost is constant.

Graph Algorithms Performance: While micro-benchmarks are
definitely informative, the end performance of running actual algo-
rithms on top of these representations is also something that needs
to be explored. Figure 12 shows the results of running 3 differ-
ent graph algorithms on the different in-memory representations.
We compared the performance of Degree calculation, Breadth First
Search starting from a single node, as well as PageRank on the en-
tire graph. Again, the results shown are normalized to the values
for the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API
to operate directly on top of each of the representations. Again, the
Breadth first search results are the mean of runs on a specific set of
50 randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs. As we can see, BFS and
PageRank both follow the trends of the micro-benchmarks in terms
of differences in performance between representations.

For datasets like IMDB and Synthetic 2 that yield very large ex-
panded graphs, we observe that there is little to no overhead in real
world performance compared to EXP when actually running algo-
rithms on top of these representations, especially when it comes
to the BITMAP and DEDUP1 representations. On the flip side,

the DBLP and Synthetic 1 datasets portray a large gap in perfor-
mance compared to EXP. The reason for this gap is the fact that
these datasets consist of a large number of small virtual nodes, thus
increasing the average number of virtual nodes that need to be it-
erated over for a single calculation. This is also the reason why
DEDUP1 and BITMAP2 typically perform better; they feature a
smaller number of virtual neighbors per real node than representa-
tions like C-DUP and BMP1, and sometimes DEDUP2 as well.

6.3 Comparing De-duplication Algorithms
Finally, we compare the various de-duplication algorithms pre-

sented in Section 5. Figure 13a compares the number of edges
in the resulting graph after running the different de-duplication al-
gorithms. As we can see, the differences between the different
DEDUP-1 algorithms are largely minor, with the Virtual Nodes
First Greedy algorithm having a slight edge on most datasets. The
comparisons across different representations mirror the relative mem-
ory footprint performance (Figure 10), with the main difference be-
ing the overheads associating with bitmaps in BITMAP represen-
tations that are not counted here.

Figure 13b shows the running times for the different algorithms
(on a log-scale). As expected, BITMAP-1 is the fastest of the al-
gorithms, whereas the DEDUP-1 and DEDUP-2 algorithms take
significantly more time. We note however that de-duplication is a
one-time cost, and the overhead of doing so may be acceptable in
many cases, especially if the extracted graph is serialized and re-
peatedly analyzed over a period of time. Finally, Figure 13c shows
how the performance of the various algorithms varies depending on
the processing order. We did not observe any noticeable differences
or patterns in this performance, and recommend using the random
ordering for robustness.

7. CONCLUSION
In this paper, we presented GRAPHGEN, a system that enables

users to analyze the implicit interconnection structures between en-
tities in normalized relational databases, without the need to ex-
tract the graph structure and load it into specialized graph engines.
GRAPHGEN can interoperate with a variety of graph analysis li-
braries and supports a standard graph API, breaking down the barri-
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Generally acceptable performance hit, with DEDUP1 doing the best  
(at a significantly higher preprocessing cost) 



Large	
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CDUP BMP-DEDUP EXP 
Syn-1 1.421  2.737 >64 
Syn-2 1.613 2.258 19.798 
Syn-3 1.276 1.493 1.2 
Syn-4 9.9 13.042 >64 
TPC-H .023 .049 7.398 

CDUP BMP-DEDUP EXP 
Syn-1 382 284 DNF 
Syn-2 129 111 85 
Syn-3 0.01 0.02 0.01 
Syn-4 1.3 0.12 DNF 
TPC-H 86 8.5 16 

Memory Footprint (GB) 

Time to run Breadth First Search (seconds) 
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