
Scalable	 Pla)orms	 for	 Graph	 Analy5cs	 and	
Collabora5ve	 Data	 Science	

Amol	 Deshpande	
	
Department	 of	 Computer	 Science	 and	 UMIACS	
University	 of	 Maryland	 at	 College	 Park	

Joint work with many students and
collaborators These slides at: http://go.umd.edu/w.pdf

Outline	
l  DataHub:	 A	 pla)orm	 for	 collabora5ve	 data	 science	

	

l  GraphGen:	 Graph	 Analy5cs	 on	 Rela5onal	 Databases	

l  Mo5va5on	

l  System	 Overview	 	

l  Condensed	 Representa5ons	 for	 Large	 Graphs	

l  Experiments	

	

	

	
These slides at: http://go.umd.edu/w.pdf

Collabora5ve	 Data	 Science	
l  Widespread	 use	 of	 “data	 science”	 in	 many	 many	 domains	

A typical data analysis workflow

1000s of
datasets

Many steps across many users

Collabora5ve	 Data	 Science	
l  Widespread	 use	 of	 “data	 science”	 in	 many	 many	 domains	

l  Increasingly	 the	 “pain	 point”	 is	 managing	 the	 process,	
especially	 during	 collabora5ve	 analysis	
l  Many	 private	 copies	 of	 the	 datasets	 è	 Massive	 redundancy	 	
l  No	 easy	 way	 to	 keep	 track	 of	 dependencies	 between	 datasets	
l  Manual	 interven5on	 needed	 for	 resolving	 conflicts	
l  No	 efficient	 organiza5on	 or	 management	 of	 datasets	
l  No	 easy	 way	 to	 do	 “provenance”,	 i.e.,	 find	 reasons	 for	 an	 ac5on	
l  No	 way	 to	 analyze/compare/query	 versions	 of	 a	 dataset	

l  Ad	 hoc	 data	 management	 systems	 (e.g.,	 Dropbox)	 used	
l  Much	 of	 the	 data	 is	 unstructured	 so	 typically	 can’t	 use	 DBs	
l  Scien5sts/researchers/analysts	 are	 preYy	 much	 on	 their	 own	

Model	 Lifecycle	 Management	

l  “Models”	 are	 an	 integral	 part	 of	 data	 science	
l  Tradi5onal	 simple	 models	 à	 today’s	 complex	 BIG	 models	

Often packaged together with results

Challenges	

l  What	 parameter	 did	 we	 use	 to	 get	 the	 precision?	
l  How	 do	 I	 know	 which	 data	 corresponds	 to	 which	 model?	

l  e.g.,	 IPython	 notebooks	 don’t	 usually	 keep	 the	 “data”	
l  How	 to	 compare	 different	 “pipelines”,	 iden5fy	 bugs	
l  Issues	 during	 deployment	

l  Monitor	 model	 performance,	 detect	 problems	 or	 anomalies,	 etc.	

l  Focus	 of	 most	 current	 work	 on	 scalability,	 training,	 etc.	
l  Cri5cal	 history	 is	 transient	 and	 not	 captured	

ModelHub: Lifecycle Management for Deep Learning

Hui Miao, Ang Li, Larry S. Davis, Amol Deshpande
University of Maryland, College Park, MD, USA

{hui, angli, lsd, amol}@cs.umd.edu

ABSTRACT
Deep learning has improved state-of-the-art results in many impor-
tant fields, and has been the subject of much research in recent
years, leading to the development of several systems for facili-
tating deep learning. Current systems, however, mainly focus on
model building and training phases, while the issues of data man-
agement, model sharing, and lifecycle management are largely ig-
nored. Deep learning modeling lifecycle contains a rich set of arti-
facts, such as learned parameters and training logs, and frequently
conducted tasks, e.g., to understand the model behaviors and to try
out new models. Dealing with such artifacts and tasks is cumber-
some and left to the users. To address these issues in a comprehen-
sive manner, we propose ModelHub, which includes a novel model
versioning system (dlv); a domain specific language for searching
through model space (DQL); and a hosted service (ModelHub) to
store developed models, explore existing models, enumerate new
models and share models with others.

This paper presents the design of such a lifecycle management
system. First, we generalize model exploration and model enumer-
ation queries from commonly conducted tasks by computer vision
community modelers, and propose a high-level domain specific
language (DSL) to raise the abstraction level aiming at accelerating
the modeling process. To help modeler understand models better,
we also propose two novel model-comparison schemes and related
algorithms. Second, to manage the lifecycle artifacts, especially the
large amount of checkpointed float learned parameters, we exploit
the workloads and design a read-optimized parameter archival stor-
age system (PAS) that minimizes storage footprint and accelerates
query workloads without losing accuracy. PAS archives versioned
models using deltas and our design is featured with chunked bit-
block floating number and a novel progressive model evaluation
query implementation. We further show archiving versioned mod-
els using deltas is a new type of dataset versioning problem and
develop e�cient algorithms for solving it. We conduct extensive
experiments to show the e�ciency of proposed techniques.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 43rd International Conference on Very Large Data Bases,
August 2017, Munich, Germany.
Proceedings of the VLDB Endowment, Vol. 10, No. X
Copyright 2017 VLDB Endowment 2150-8097/11/11... $ 10.00.

Create
/Update
Model

Reference
Models

Train
/Test

Model

Evaluate
Model

Data &
Labels

if accuracy is unsatisfactory, repeat

Serve
Model

Figure 1: Deep Learning Modeling Lifecycle

Deep learning models (also called deep neural networks) have
dramatically improved state-of-the-art results for many important
reasoning and learning tasks including speech recognition, object
recognition, and natural language processing in recent years [29].
Learned using massive amounts of training data, DNN models have
superior generalization capabilities, and the intermediate layers in
many deep learning models have been proven useful in providing
e↵ective semantic features that can be used with other learning
techniques and are applicable to other problems. However, there
are many critical large-scale data management issues in learning,
storing, sharing, and using deep learning models, which are largely
ignored by researchers today, but are coming to the forefront with
the increased use of deep learning in a variety of domains. In this
paper, we discuss some of those challenges in the context of the
modeling lifecycle, and propose a comprehensive system to address
them. Given the large scale of data involved (both training data and
the learned models themselves) and the increasing need for high-
level declarative abstractions, we argue that database researchers
should play a much larger role in this area. Although this paper
primarily focuses on deep neural networks, similar data manage-
ment challenges are seen in lifecycle management of others types
of ML models like logistic regression, XXX, etc.
DNN Modeling Lifecycle and Challenges: Compared with the tra-
ditional approach of feature engineering followed by model learn-
ing [39], deep learning is an end-to-end learning approach, i.e., the
features are not given by a human but learned in an automatic man-
ner from the input data. Moreover, the features are complex and
have a hierarchy along with the network representation. This re-
quires less domain expertise and experience from the modeler, but
understanding and explaining the learned models is di�cult; why
even well-studied models work so well is still a mystery and un-
der active research. Thus, when developing new models, chang-
ing the learned model (especially its network structure and hyper-
parameters) becomes an empirical search task.

In Fig. 1, we show a typical deep learning modeling lifecycle
(we present an overview of deep neural networks in the next sec-
tion). Given a prediction task, a modeler often starts from well-
known models which have been successful in similar task domains;
she then specifies input training data and output loss functions,
and repeatedly adjusts the DNN on operators and connections like

1

DataHub:	 A	 Collabora5ve	 Data	 Science	 Pla)orm	

• 	 a	 dataset	 management	 system	 –	
import,	 search,	 query,	 analyze	 a	 large	
number	 of	 (public)	 datasets	

• 	 a	 dataset	 version	 control	 system	 –
branch,	 update,	 merge,	 transform	 large	
structured	 or	 unstructured	 datasets	

• 	 a	 provenance	 database	 system	 –	
capture	 provenance	 &	 other	 metadata,	
and	 support	 analysis/introspec5on	

• 	 an	 app	 ecosystem	 and	 hooks	 for	
external	 applica5ons	 (Matlab,	 R,	
iPython	 Notebook,	 etc)	 DataHub	 Architecture	

Versioned Datasets,
Version Graphs,

Indexes, Provenance

Dataset Versioning Manager

I: Versioning API and Version Browser

ingest vizualize etc.
Client

Applications

DataHub: A Collaborative Data Analytics Platform

II: Native App Ecosystem

query
builder

III: Language Agnostic Hooks

DataHub
Notebook

Joint work with:
 Sam Madden (MIT)
 Aditya Parameswaran (UIUC)

  No, because they typically use fairly simple algorithms

and are optimized to work for code-like data

100 versions

LF Dataset (Real World)
#Versions = 100
Avg. version size = 423 MB

gzip	 =	 10.2	 GB	

svn	 =	 8.5	 GB	

git	 =	 202	 MB	

*this	 =	 159	 MB	

Can	 we	 use	 Version	 Control	 Systems	 (e.g.,	 Git)?	

  No, because they typically use fairly simple algorithms

and are optimized to work for code-like data
Git ends up using large amounts of RAM for large files

DON’T!

Use extensions*

Can	 we	 use	 Version	 Control	 Systems	 (e.g.,	 Git)?	

  No support for capturing rich metadata about the

datasets and/or provenance information

  Primitive querying and retrieval functionalities

  No way to specify queries like:

•  identify all predecessor versions of version A that differ from it
by a large number of records

•  rank a set of versions according to a scoring function
•  find the version where the result of an aggregate query is

above a threshold
•  explain why the results of two similar pipelines are different
•  identify the source of an error

Can	 we	 use	 Version	 Control	 Systems	 (e.g.,	 Git)?	

Version	
Control	 	

Provenance	
Management	

Collabora5ve	
Data	 Science	

o  Temporal	 databases	 are	 restricted	 to	 managing	 a	 linear	
chain	 of	 versions	 of	 rela5onal	 data	

o  Recent	 work	 in	 scien5fic	 databases	 	
o  Op5mized	 for	 array-‐like	 data	
o  Also	 largely	 a	 linear	 chain	 of	 versions	

o  “Deduplica5on”	 strategies	 in	 storage	 systems	
o  Chunk	 files	 into	 blocks	 and	 store	 unique	 blocks	
o  Works	 well	 if	 changes	 are	 localized	
o  Focus	 primarily	 on	 archival	 storage	 minimiza5on,	 ignore	

recrea5on	 costs	
o  Metadata/Provenance	 management	 systems	

o  Much	 work,	 but	 insufficient	 adop5on	 as	 yet	

Other	 Related	 Work	

Summary	 of	 Ongoing	 Work	

l  Exploit	 overlap	 to	 reduce	 storage	 [VLDB’15,VLDB’16,*,*]	
l  …	 while	 keeping	 retrieval	 costs	 low	
l  …	 for	 different	 types	 of	 data	 (unstructured	 files,	 rela5onal	 data,	
documents,	 and	 large	 NN	 models)	

l  System	 for	 managing	 and	 querying	 versioning	 and	
provenance	 informa5on	 [TaPP’15,	 *]	
l  …	 along	 with	 mechanisms	 to	 easily	 capture	 provenance	
l  Prototype	 command-‐line-‐based	 provenance	 inges5on	 system,	
built	 on	 top	 of	 “git”	 and	 “Neo4j”	

l  A	 ver5cal	 for	 lifecycle	 management	 of	 deep	 learning	
models	 [*]	
	

Outline	
l  DataHub:	 A	 pla)orm	 for	 collabora5ve	 data	 science	

	

l  GraphGen:	 Graph	 Analy5cs	 on	 Rela5onal	 Databases	

l  Mo5va5on	

l  System	 Overview	 	

l  Condensed	 Representa5ons	 for	 Large	 Graphs	

l  Experiments	

	

	
These slides at: http://go.umd.edu/w.pdf

l  Increasing	 interest	 in	 querying	 and	 reasoning	 about	 the	 underlying	
graph	 (network)	 structure	 in	 a	 variety	 of	 disciplines	

Graph	 Data	

A protein-protein interaction
network

Social networks

Financial transaction
networks

Stock Trading Networks

Federal funds networks

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;
HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8

*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;
SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-

X/$6&.Y ,%15 <CD /1 <FGH;

17
ECB

Working Paper Series No 986
December 2008

Communication networks

Disease transmission
networks

World Wide Web

Knowledge Graph

Citation networks

526 The European Physical Journal B

Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.

10
0

10
1

10
2

10
−2

10
−1

10
0

k

P
(>

k)

cumulative degree distributions

(a)

daily
monthly
yearly

10
0

10
1

10
2

10
−2

10
−1

10
0

k

c(
k)

clustering coefficients as functions of degree

(b)

daily
monthly
yearly

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

k

k nn
(k

)

average nearest neighbour degree

(c)

daily
monthly
yearly

Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j)Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

Wide	 Variety	 in	 Graph	 Queries/Analy5cs	

A protein-protein interaction
network

Social networks

Financial transaction
networks

Federal funds
networks

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;
HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8

*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;
SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-

X/$6&.Y ,%15 <CD /1 <FGH;

17
ECB

Working Paper Series No 986
December 2008

Communication networks

Disease transmission
networks

Knowledge Graph

Citation networks

526 The European Physical Journal B

Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.

10
0

10
1

10
2

10
−2

10
−1

10
0

k

P(
>k

)

cumulative degree distributions

(a)

daily
monthly
yearly

10
0

10
1

10
2

10
−2

10
−1

10
0

k

c(
k)

clustering coefficients as functions of degree

(b)

daily
monthly
yearly

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

k

k nn
(k

)

average nearest neighbour degree

(c)

daily
monthly
yearly

Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j)Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

Stock Trading Networks

World Wide Web

Different types of “queries”
Subgraph pattern matching;
Reachability; Shortest path;
Keyword search; Historical or
Temporal queries…

Continuous “queries” and Real-
time analytics
Online prediction; Monitoring;
Anomaly/Event detection

Batch analysis tasks
Centrality analysis; Community
detection; Network evolution;
Network measurements; Graph
cleaning/inference

Machine learning tasks
Many algorithms can be seen
as message passing in
specially constructed graphs

l  Graph	 analy5cs/network	 science	 tasks	 too	 varied	

l  Hard	 to	 build	 general	 systems	 like	 RDBs/Hadoop/Spark	
l  What	 is	 a	 good	 abstrac5on	 to	 provide?	 	

l  MapReduce?	 Vertex-‐centric	 frameworks?	 BSP?	
l  Popular	 graph	 languages	 (SPARQL,	 Cypher)	 equivalent	 to	 SQL	

l  No	 clear	 winners	 or	 widely	 used	 systems	
l  Applica5on	 developers	 largely	 doing	 their	 own	 thing	

l  Fragmented	 research	 topic	 with	 liYle	 consensus	
l  Specialized	 graph	 databases	 (Neo4j),	 RDF	 Databases	 	
l  Distributed	 batch	 systems	 (GraphX,	 Giraph),	 HPC	 Single-‐
memory	 Engines	 (Ligra,	 GreenMarl,	 X-‐Stream)	

l  Many	 specialized	 indexes,	 prototypes…	

Graph	 Data	 Management:	 State	 of	 the	 Art	

l  Goal:	 A	 complete,	 func5on-‐rich	 system	 with	 unified	
declara5ve	 abstrac5ons	 for	 graph	 queries	 and	 analy5cs	
l  Declara5ve	 cleaning	 of	 noisy	 and	 imperfect	 graphs	 through	 link	
predic5on	 and	 en5ty	 resolu5on	 [GDM’11,	 SIGMOD	 Demo’13]	

l  Real-‐5me	 con5nuous	 queries	 and	 anomaly	 detec5on	 over	
dynamic	 graphs	 [SIGMOD’12,	 ESNAM’14,	 SIGMOD’14,	 DEB’16]	

l  Historical	 graph	 data	 management	 and	 temporal	 analy5cs	
[ICDE’13,	 SIGMOD	 Demo’13,EDBT’16]	

l  Subgraph	 paYern	 matching	 and	 coun5ng	 [ICDE’12,	 ICDE’14]	
l  GraphGen:	 graph	 analy5cs	 over	 rela5onal	 data	 [VLDB	 Demo’15,	

SIGMOD’17]	

l  NScale:	 a	 distributed	 analysis	 framework	 [VLDB	 Demo’14,	
VLDBJ’15,NDA’16]	

What	 we	 are	 doing 	 	

l  Graph	 data	 management	 systems	 expect	 and	 manage	
graph-‐structured	 data,	 i.e.,	 lists	 of	 nodes	 and	 edges	 	

l  Most	 data	 sits	 in	 RDBMSs	 and	 (increasingly)	 NoSQL	 stores	
l  Graphs	 must	 be	 extracted	 by	 iden5fying	 and	 connec5ng	
en55es	 across	 the	 database	

1.	 Where’s	 the	 Data?	

1.	 Example:	 TPC-‐H	

order_key	 customer_key	

Orders	

o1	 c1	

o2	 c2	

o3	 c3	

order_key	 part_key	

LineItem	

o1	 p1	

o1	 p2	

o2	 p1	 c_key	 p_key	

c1	 p1	

c1	 p2	

c3	 p2	

c4	 p1	

c6	 p1	

Orders	 	 	 	 	 LineItem	

o2	 p3	

o3	 p1	

o3	 p2	

o3	 p2	

c_key	 name	

Customer	

On order_key

Which customer bought
which product?

On p_key

Which customers
bought the same item?

c1	 c4	

cust1	 cust2	

c1	 c6	

c1	 c3	

c1

c4	 c6	

c4

c3 c6

1.	 Example:	 TPC-‐H	

order_key	 customer_key	

Orders	

o1	 c1	

o2	 c2	

o3	 c3	

order_key	 part_key	

LineItem	

o1	 p1	

o1	 p2	

o2	 p1	 c_key	 p_key	

c1	 p1	

c1	 p2	

c3	 p2	

c4	 p1	

c6	 p1	

Orders	 	 	 	 	 LineItem	

o2	 p3	

o3	 p1	

o3	 p2	

o3	 p2	

c_key	 name	

Customer	

On order_key
On p_key

Which customers
bought the same item?

c1	 c4	

cust1	 cust2	

c1	 c6	

c1	 c3	

c1

c4	 c6	

c4

c3 c6

Edge weights based on
geographical distance

l  Graph	 data	 management	 systems	 expect	 and	 manage	
graph-‐structured	 data,	 i.e.,	 lists	 of	 nodes	 and	 edges	 	

l  Most	 data	 sits	 in	 RDBMSs	 and	 (increasingly)	 NoSQL	 stores	
l  Graphs	 must	 be	 extracted	 by	 iden5fying	 and	 connec5ng	
en55es	 across	 the	 database	

l  Must	 be	 done	 repeatedly	 as	 the	 underlying	 data	 changes	
l  Tedious	 and	 5me-‐consuming	

l  Also	 desirable	 to	 avoid	 having	 to	 use	 another	 data	
management	 system	

1.	 Where’s	 the	 Data?	

l  Efficiency	 challenge:	 Extracted	 graphs	 can	 oqen	 be	
orders-‐of-‐magnitude	 larger	 than	 original	 database	
l  Homogeneous	 graphs	 (over	 the	 same	 set	 of	 en55es)	 invariably	
require	 at	 least	 one	 self-‐join	 on	 a	 non-‐key	

l  DBLP	 Dataset:	 8.6M	 author-‐publica5on	 table	 à	 43M	 edges	 in	
the	 co-‐authorship	 graph	

l  Connec5ng	 authors	 with	 papers	 at	 the	 same	 conference	 =	 1.8	 B	 edges	

l  Even	 if	 the	 final	 graph	 is	 small,	 database	 query	 op5mizers	
unable	 to	 op5mize	 these	 queries	 well	
l  High	 selec5vity	 errors	

1.	 Where’s	 the	 Data?	

l  Efficiency	 challenge:	 Extracted	 graphs	 can	 oqen	 be	
orders-‐of-‐magnitude	 larger	 than	 original	 database	
l  Homogeneous	 graphs	 (over	 the	 same	 set	 of	 en55es)	 invariably	
require	 at	 least	 one	 self-‐join	 on	 a	 non-‐key	

l  DBLP	 Dataset:	 8.6M	 author-‐publica5on	 table	 à	 43M	 edges	 in	
the	 co-‐authorship	 graph	

l  Connec5ng	 authors	 with	 papers	 at	 the	 same	 conference	 =	 1.8	 B	 edges	

l  Even	 if	 the	 final	 graph	 is	 small,	 database	 query	 op5mizers	
unable	 to	 op5mize	 these	 queries	 well	
l  High	 selec5vity	 errors	

1.	 Where’s	 the	 Data?	

Graph Representation Edges Extraction Latency (s)
DBLP Condensed 17,147,302 105.552

Full Graph 86,190,578 > 1200.000
IMDB Condensed 8,437,792 108.647

Full Graph 33,066,098 687.223
TPCH Condensed 52,850 15.520

Full Graph 99,990,000 > 1200.000
UNIV Condensed 60,000 0.033

Full Graph 3,592,176 82.042
Table 1: Extracting graphs in HIGRAPH using our condensed rep-
resentation vs extracting the full graph. IMDB: Co-actors graph (on
a subset of data), DBLP: Co-authors graph, TPCH: Connect cus-
tomers who buy the same product, UNIV: Connect students who
have taken the same course (synthetic, from http://db-book.com)

graphs from a relational database1, and execute graph analysis tasks
or algorithms over them in memory. HIGRAPH supports an expres-
sive Domain Specific Language (DSL), based on Datalog [3], al-
lowing users to specify a single graph or a collection of graphs to be
extracted from the relational database (in essence, as views on the
database tables). HIGRAPH uses a translation layer to generate the
appropriate SQL queries to be issued to the database, and creates
an efficient in-memory representation of the graph that is handed
off to the user program or analytics task. HIGRAPH supports a
general-purpose Java Graph API as well as the standard vertex-
centric API for specifying analysis tasks like PageRank. Figure 1
shows a toy DBLP-like dataset, and the query that specifies a “co-
authors” graph to be constructed on that dataset. Figure 1c shows
the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in ana-
lyzing may be too large to extract and represent in memory, even
if the underlying relational data is small. There is a space explo-
sion because of the types of high-output2 joins that are often needed
when constructing these graphs. Table 1 shows several examples of
this phenomenon. On the DBLP dataset restricted to journals and
conferences, there are approximately 1.6 million authors, 3 million
publications, and 8.6 million author-publication relationships; the
co-authors graph on that dataset contained 86 million edges, and re-
quired more than half an hour to extract on a laptop. The condensed
representation that we advocate in this paper is much more efficient
both in terms of the memory requirements and the extraction times.
The DBLP dataset is, in some sense, a best-case scenario since
the average number of authors per publication is relatively small.
Constructing the co-actors graph from the IMDB dataset results in
a similar space explosion. Constructing a graph connecting pairs
of customers who bought the same item in a small TPCH dataset
results in much larger graph than the input dataset. Even on the
DBLP dataset, a graph that connects authors who have papers at
the same conference contains 1.8B edges, compared to 15M edges
in the condensed representation.

In this paper, we address the problem of analyzing such large
graphs by storing and operating upon them using a novel condensed
representation. The relational model already provides a natural
such condensed representation, obtained by omitting some of the
high-output joins from the query required for graph extraction. Fig-
ure 1(d) shows an example of such a condensed representation for
the co-authors graph, where we create explicit nodes for the pubs,
in addition to the nodes for the authors; for two authors, u and v,
there is an edge u ! v, iff there is a directed path from u to v in

1Although HIGRAPH (name anonymized for submission) currently only
supports PostgreSQL, it requires only basic SQL support from the underly-
ing storage engine, and could simply scan the tables if needed.
2We use this term instead of “selectivity" terms to avoid confusion.

Figure 1: Key concepts of HIGRAPH. (Note: the author nodes here
are being shown twice for the sake of simplicity, they are not being
stored twice)
this representation. This representation generalizes the idea of us-
ing cliques and bicliques for graph compression [6, 16]; however,
the key challenge for us is not generating the representation, but
rather dealing with duplicate paths between two nodes.

In Figure 1, we can see such a duplication for the edge a1 ! a4
since they are connected through both p1 and p2 . Such dupli-
cation prevents us from operating on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• A general framework for extracting a condensed representa-

tion (with duplicates) for a large class of extraction queries
over arbitrary relational schemas.

• A suite of in-memory representations to handle the duplication
in the condensed representation.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• The first end-to-end system for enabling analytics on graphs

that exist within purely relational datasets, efficiently, and with-
out requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of HIGRAPH, briefly
describe the graph extraction DSL, and discuss how HIGRAPH de-
cides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

l  En55es	 can	 be	 connected	 in	 a	 variety	 of	 different	 ways	
l  Add	 an	 edge	 if	 customers	 bought	 the	 same	 item,	 or	 at	 least	 5	
same	 items,	 or	 bought	 items	 on	 the	 same	 day	 in	 the	 same	 store	

l  Create	 a	 part-‐supplier	 bipar5te	 graph	 by	 connec5ng	 suppliers	
who	 apply	 a	 part	 in	 sufficient	 quan5ty	

2.	 Which	 “Graphs”	 to	 Analyze?	

Identifying interesting
connections itself
a difficult question

l  En55es	 can	 be	 connected	 in	 a	 variety	 of	 different	 ways	
l  Add	 an	 edge	 if	 customers	 bought	 the	 same	 item,	 or	 at	 least	 5	
same	 items,	 or	 bought	 items	 on	 the	 same	 day	 in	 the	 same	 store	

l  Create	 a	 part-‐supplier	 bipar5te	 graph	 by	 connec5ng	 suppliers	
who	 apply	 a	 part	 in	 sufficient	 quan5ty	

l  Oqen	 need	 to	 simultaneously	 analyze	 mul5ple	 graphs	
l  Compare	 a	 graph	 on	 products	 today	 vs	 yesterday	

l  Plot	 how	 supplier	 centrality	 (e.g.,	 PageRank)	 evolved	 over	 5me	

l  Must	 exploit	 overlap,	 and	 reduce	 redundant	 computa5on	

2.	 Which	 “Graphs”	 to	 Analyze?	

l  “Vertex-‐centric	 framework”	 the	 most	 popular	 today	
l  GraphLab,	 Apache	 Giraph,	 GraphX,	 X-‐Stream,	 Grail,	 Vertexica,	 …	
l  Most	 of	 the	 research,	 especially	 in	 databases,	 focuses	 on	 it	

l  “Think	 like	 a	 vertex”	 paradigm	
l  User	 provides	 a	 compute()	 func5on	 that	 operates	 on	 a	 vertex	
l  Executed	 in	 parallel	 on	 all	 ver5ces	 in	 an	 itera5ve	 fashion	
l  Exchange	 informa5on	 at	 a	 barrier	 through	 message	 passing	

3.	 Graph	 Programming	 Frameworks	

l  Limita5ons	 of	 the	 vertex-‐centric	 frameworks	
l  Works	 well	 for	 some	 applica5ons	

l  Pagerank,	 Connected	 Components,	 Some	 ML	 algorithms,	 …	
l  However,	 the	 framework	 is	 very	 restric5ve	

l  Simple	 tasks	 like	 coun5ng	 neighborhood	 stats	 infeasible	
l  Fundamentally:	 Not	 easy	 to	 decompose	 analysis	 tasks	 into	
vertex-‐level,	 independent	 local	 computa5ons	

l  Alterna5ves?	
l  Galois,	 Ligra,	 GreenMarl:	 Low-‐level	 APIs,	 and	 hard	 to	 parallelize	
l  Some	 others	 (e.g.,	 Socialite)	 restric5ve	 for	 different	 reasons	

3.	 Graph	 Programming	 Frameworks	

3.	 Example:	 Local	 Clustering	 Coefficient	

1

2

4

3

Measures density around a node
Compute() at Node n:

Need to count the no. of edges between
But does not have access to that information
Option 1: Each node transmits its list of
neighbors to its neighbors
 Huge memory consumption
Option 2: Allow access to neighbors’ state

Neighbors may not be local
What about computations that require 2-
hop information?

neighbors

3.	 Aside:	 NScale	 Distributed	 Framework	

Local Clustering Coefficient
Dataset NScale Giraph GraphLab GraphX

CE (Node-
Secs)

Cluster
Mem
(GB)

CE (Node-
Secs)

Cluster
Mem (GB)

CE (Node-
Secs)

Cluster
Mem (GB)

CE (Node-
Secs)

Cluster
Mem (GB)

WikiTalk 726 24.16 DNC OOM 1125 37.22 1860 32.00

LiveJournal 1800 50.00 DNC OOM 5500 128.62 4515 84.00

Orkut 2000 62.00 DNC OOM DNC OOM 20175 125.00

•  An	 end-‐to-‐end,	 subgraph-‐centric	 distributed	
graph	 analy5cs	 framework	 (built	 on	 Spark)	

•  Users/applica5on	 programs	 specify:	 	
•  Neighborhoods	 or	 subgraphs	 of	 interest	
•  A	 kernel	 compute()	 to	 operate	 on	 those	 subgraphs	

•  Framework:	
•  Extracts	 the	 relevant	 subgraphs	 from	 underlying	

data	 and	 loads	 in	 memory	
•  Execu5on	 engine:	 Executes	 user	 computa5on	 on	

materialized	 subgraphs	

Outline	
l  DataHub:	 A	 pla)orm	 for	 collabora5ve	 data	 science	

	

l  GraphGen:	 Graph	 Analy5cs	 on	 Rela5onal	 Databases	

l  Mo5va5on	

l  System	 Overview	 	

l  Condensed	 Representa5ons	 for	 Large	 Graphs	

l  Experiments	

	

	
These slides at: http://go.umd.edu/w.pdf

GraphGen	 Architecture	

Vertexica/GRAIL/SQLGraph	 vs	 GraphGen	
Fundamentally different goals

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Nodes Edges

A relational database

Graph analytics/query

SQL Translation
Layer

Ingest/Shredding

Props, ..

We aim to push computation into RDBMS
if possible, but expressive programming
framework is a higher priority

Results

A relational database

Graph Definition
+

Graph Analytics/query

In-memory Graph
Execution Engine

Graph Object
+

Execution results

Extraction
Queries Results

GraphGen	 Graph	 Extrac5on	 DSL	
l  Based	 on	 non-‐recursive	 Datalog	

l  Extended	 with	 Aggrega5on	 and	 Looping	 constructs	
l  User	 needs	 to	 specify:	

l  How	 the	 nodes	 and	 edges	 are	 defined	
l  Both	 effec5vely	 “views”	 over	 the	 rela5onal	 data	

l  Allows	 for	 homogeneous	 and	 heterogeneous	 graphs	

1.  Construct customer-customer graph if they bought the same
product (TPC-H)

Nodes(ID,	 Name)	 :-‐	 Customer(ID,	 Name).	
Edges(ID1,	 ID2)	 :-‐	 	
Orders(o_key1,	 ID1),	 LineItem(o_key1,	 part_key),	
Orders(o_key2,	 ID2),	 LineItem(o_key2,	 part_key).	
	

GraphGen	 Graph	 Extrac5on	 DSL	

2. Construct one neighborhood graph for each author (DBLP)
 	 For	 Author(X,	 _).	
	 	 	 	 	 	 	 	 	 	 Nodes(ID,	 Name)	 :-‐	 Author(ID,	 Name),	 ID	 =	 X.	
	 	 	 	 	 	 	 	 	 	 Nodes(ID,	 Name)	 :-‐	 AuthorPub(X,P),	 AuthorPub(ID,P),	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Author(ID,	 Name).	
	 	 	 	 	 	 	 	 	 	 Edges(ID1,	 ID2)	 :-‐	 Nodes(ID1,	 _),	 Nodes(ID2,	 _),	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 AuthorPub(ID1,	 P),	 AuthorPub(ID2,	 P).

3. A Simple Bipartite Graph over Parts and Suppliers
 Nodes(ID,	 Name,	 Label	 =	 “P”)	 :-‐	 Part(p_key,	 Name)	
	 	 	 	 	 Nodes(ID,	 Name,	 Label	 =	 “S”)	 :-‐	 Supplier(s_key,	 Name)	
	 	 	 	 	 Edges(ID1,	 ID2)	 :-‐	 	 PartSupp(ID1,	 ID2)	
	
	
Additional	 constructs	 for	 aggregates	 and	 node	 or	
edge	 “properties”	 and	 “weights”	

GraphGen	 in	 Java:	 Vertex-‐Centric	 API	

2. Can directly manipulate the graph using a simple API:
-  getVertices(): returns an iterator over all vertices
-  getNeighbors(v): returns an iterator over v’s neighbors
-  existsEdge(v, u), addEdge(v, u), deleteEdge(v, u),

addVertex(v), deleteVertex(v)

3. Working on supporting a more general neighborhood-
centric API from NScale

 - Allows parallelism and other optimizations

GraphGen	 Graph	 Explora5on	 Frontend	

User can visually explore
1-hop neighborhoods

View simple statistics
about the graph

User explores schema
and specifies graphs
to be extracted

GraphGen	 Enumera5on	 Framework	
•  Complex	 rela5onal	 schemas	 contain	 many	 tables/constraints	

•  Hard	 to	 iden5fy	 interes5ng	 graphs	 through	 just	 inspec5on	
•  Idea:	 Inspect	 the	 database	 schema,	 and	 propose	 a	 set	 of	 possible	

graphs	 by	 enumera5ng	 paths	 or	 loops	 in	 the	 schema	 graph	
•  User	 provides	 feedback	 to	 drive	 and	 fine-‐tune	

Outline	
l  DataHub:	 A	 pla)orm	 for	 collabora5ve	 data	 science	

	

l  GraphGen:	 Graph	 Analy5cs	 on	 Rela5onal	 Databases	

l  Mo5va5on	

l  System	 Overview	 	

l  Condensed	 Representa5ons	 for	 Large	 Graphs	

l  Experiments	

	

	
These slides at: http://go.umd.edu/w.pdf

l  The	 extracted	 graph	 may	 be	 much	 larger	 even	 than	 the	
input	 dataset	
l  Expensive	 to	 extract:	 intermediate/final	 results	 too	 large	
l  Query	 op5mizers	 not	 able	 to	 op5mize	 well	
l  Possibly	 infeasible	 to	 hold	 in	 memory	

l  Instead:	 we	 extract	 a	 condensed	 representa5on	 	
l  At	 most	 the	 size	 of	 the	 base	 tables	 –	 usually	 much	 smaller	
l  All	 Graph	 APIs	 supported	 on	 top	 of	 this	 representa5on	
l  Need	 to	 handle	 duplicaCon	

Key	 Challenge	

Condensed	 Representa5on	

(a) Relational Tables

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Nodes(ID, Name):-Author(ID, Name).
Edges(ID1, ID2):-AuthorPub(ID1,
PubID), AuthorPub(ID2, PubID).

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Query to construct a co-authors graph

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Expanded Graph Condensed Graph

A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6

 a1,a2,a4
a1 001
a2 101
a3 101
a6 101

Virtual nodes

Construc5ng	 Condensed	 Graphs	

x
1

x
2

y
1

y
2

a
1

a
2

a
3

a
1

a
2

a
3

x
1

x
2

Orders

Lineitem

Lineitem

Orders

[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1

4

1. Query statistics tables to identify less selective joins
2. Break up the overall query to avoid those joins and

load intermediate results
3. Create a multi-layered representation with “real” and

“virtual” nodes (roughly one layer per postponed join)

Edge from a_i to a_j
 ==
There is a directed path
from a_i to a_j

vertices:315,130 edges:599,902 VS vertices: 15,000 edges: 99,990,000

Construc5ng	 Condensed	 Graphs	

x
1

x
2

y
1

y
2

a
1

a
2

a
3

a
1

a
2

a
3

x
1

x
2

Orders

Lineitem

Lineitem

Orders

[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1

4

4. Expand low-
degree virtual
nodes

y
1

y
2

a
1

a
2

a
3

a
1

a
2

a
3

1. Query statistics tables to identify less selective joins
2. Break up the overall query to avoid those joins and

load intermediate results
3. Create a multi-layered representation with “real” and

“virtual” nodes (roughly one layer per postponed join)

Duplica5on	 	

y1

y2

a1

a2

a3

a1

a2

a3

l  There	 are	 duplicate	 paths	 between	 pairs	 of	 nodes	
l  Most	 graph	 algorithms	 cannot	 handle	 those	

l  Some	 (e.g.,	 connected	 components)	 are	 tolerant	 	

l  Developed	 several	 techniques	 to	 handle	 such	 duplica5on	
l  Different	 pre-‐processing,	 memory,	 and	 computa5on	 trade-‐offs	

1.	 CDUP:	 On-‐the-‐fly	 De-‐duplica5on	 	
l  Keep	 the	 graph	 in	 condensed	 representa5on	
l  For	 every	 getNeighbors():	 	

l  Do	 a	 DFS	 from	 the	 node	 to	 find	 neighbors	
l  Cache	 the	 neighbor-‐list	 (if	 memory	 available)	

l  Overall	 most	 memory-‐efficient	
l  No	 pre-‐processing	 overhead,	 but	 high	 execu5on	 overhead	
l  Good	 for	 graph	 algorithms	 that	 touch	 a	 small	 frac5on	 of	 the	 graph	

y1

y2

a1

a2

a3

a1

a2

a3

a3: {}

y1

y2

a1

a2

a3

a1

a2

a3

a3: {a1,a2,a3}

2.	 DEDUP-‐1:	 De-‐duplicate	 the	 graph	
l  Pre-‐process	 the	 graph	 to	 remove	 duplica5on,	 but	 keep	 in	

condensed	 form	
l  i.e.,	 guarantee	 that	 there	 is	 only	 one	 path	 from	 a	 node	 to	 each	 neighbor	

l  Specialized	 iterators	 that	 return	 the	 neighbors	 one-‐by-‐one	

p1

p2

p3

a1

a2

a3

a4

a5

a6

a1

a2

a3

a4

a5

a6p4

p1

p2

a1

a2

a3

a4

a5

a6

a1

a2

a3

a4

a5

a6p4

A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6

2.	 DEDUP-‐1:	 De-‐duplicate	 the	 graph	
l  Pre-‐process	 the	 graph	 to	 remove	 duplica5on,	 but	 keep	 in	

condensed	 form	
l  i.e.,	 guarantee	 that	 there	 is	 only	 one	 path	 from	 a	 node	 to	 each	 neighbor	

l  Specialized	 iterators	 that	 return	 the	 neighbors	 one-‐by-‐one	
l  Most	 “portable”	 representa5on	 (outside	 of	 expanded)	

l  Easy	 to	 modify	 other	 graph	 libraries	 to	 support	 this	
l  Pre-‐processing:	 is	 it	 possible	 to	 do	 this	 op5mally?	

l  No:	 same	 complexity	 as	 compressing	 a	 graph	 by	 finding	 cliques	 or	 bicliques	
l  Prior	 work	 in	 graph	 compression	 literature	
l  Those	 algorithms	 not	 useful	 –	 take	 expanded	 graph	 as	 input	

l  We	 proposed	 and	 evaluated	 5	 algorithms	 for	 doing	 this	 efficiently	
l  Greedily	 resolve	 the	 duplica5on	 real	 node	 at	 a	 5me,	 or	 virtual	 node	 at	 a	 5me	
l  Adapta5on	 of	 a	 frequent	 paYern	 mining	 algorithm	

3.	 DEDUP-‐2:	 Undirected	 Virtual	 Edges	

l  Allow	 "undirected"	 edges	 between	 virtual	 nodes	
l  More	 complicated	 seman5cs	 than	 "directed"	 edges	

l  Can	 have	 tremendous	 benefits	 for	 dense	 graphs	
l  Limited	 applicability	
l  Difficult	 to	 work	 with,	 and	 guarantee	 correctness	

4.	 Deduplica5on	 using	 Bitmaps	
l  Use	 "bitmaps"	 at	 virtual	 nodes	 to	 remove	 duplicate	 paths	

l  Iterators	 use	 this	 bitmaps	 to	 return	 neighbors	 without	 duplica5on	
l  Typically	 uses	 less	 memory	 than	 DEDUP-‐1	

l  At	 the	 expense	 of	 higher	 itera5on	 overhead	 and	 lower	 portability	

p1

p2

p3

p4

p1

p2

p4

A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6

p1

p2

p3

p4

 a1,a2,a4
a1 001
a2 101
a3 101
a6 101

4.	 Deduplica5on	 using	 Bitmaps	
l  Use	 "bitmaps"	 at	 virtual	 nodes	 to	 remove	 duplicate	 paths	

l  Iterators	 use	 this	 bitmaps	 to	 return	 neighbors	 without	 duplica5on	
l  Typically	 uses	 less	 memory	 than	 DEDUP-‐1	

l  At	 the	 expense	 of	 higher	 itera5on	 overhead	 and	 lower	 portability	
l  Works	 with	 mul5-‐layered	 representa5ons	 too	

x1

x2

y1

y2

a1

a2

a3

a1

a2

a3

x1

x2

a1 1
y1

a1 1 1
y1

a2

y2

1 1

a1 1 1
x1

a2

a3

x2

1 1
1 1

a1 0
a2

a3

x2

0
0

a1 1
a1

a2

a3
1
1

a1 1 1
a2

a3

a2 a3

1 1
1 1

4.	 Deduplica5on	 using	 Bitmaps	
l  Use	 "bitmaps"	 at	 virtual	 nodes	 to	 remove	 duplicate	 paths	

l  Iterators	 use	 this	 bitmaps	 to	 return	 neighbors	 without	 duplica5on	
l  Typically	 uses	 less	 memory	 than	 DEDUP-‐1	

l  At	 the	 expense	 of	 higher	 itera5on	 overhead	 and	 lower	 portability	
l  Works	 with	 mul5-‐layered	 representa5ons	 too	

l  Some	 tricks	 required	 to	 keep	 memory	 footprint	 low	

l  Preprocessing	 step	 to	 set	 the	 bitmaps	
l  Turns	 out	 to	 be	 NP-‐Hard	 to	 do	 op5mally,	 even	 for	 single-‐layer	 graphs	
l  Non-‐trivial	 to	 parallelize	 to	 exploit	 mul5ple	 cores	

Outline	
l  DataHub:	 A	 pla)orm	 for	 collabora5ve	 data	 science	

	

l  GraphGen:	 Graph	 Analy5cs	 on	 Rela5onal	 Databases	

l  Mo5va5on	

l  System	 Overview	 	

l  Condensed	 Representa5ons	 for	 Large	 Graphs	

l  Experiments	

	

	
These slides at: http://go.umd.edu/w.pdf

In-‐memory	 Graph	 Sizes	

Start to see significant differences even with small datasets
Both DEDUP1 or Bitmaps-based approaches work well

Figure 10: Comparing the in-memory graph sizes for different
datasets; the bottom (lighter) bars show the number of nodes.

in Section 6.2.
Figure 10 shows how the different algorithms fare against each

other. For each algorithm and each dataset, we report the total
number of nodes and edges, and also show the breakdown between
them; the algorithm used for DEDUP-1 was Greedy Virtual Nodes
First, described in Section 5.2.1. When the average degree of vir-
tual nodes is small and there is a large number of virtual nodes (as
is the case with DBLP and Synthetic_1), we observe that there is
a relatively small difference in the size of the condensed and ex-
panded graphs, and deduplication (DEDUP1 and DEDUP2) actu-
ally results in an even smaller footprint graph.

On the other hand, the IMDB dataset shows a 8-fold difference
in size between EXP and C-DUP and over a 5-fold difference with
all other representations. Synthetic_2 portrays the amount of com-
pression possible in graphs with very large, overlapping cliques.
The BMP representations prevail here as well; however this dataset
also shows how the DEDUP2 representation can be significantly
more compact than DEDUP1, while maintaining its natural, more
portable structure compared to the BMP representations. As we
can see, VMiner not only requires expanding the graph first, but
also generally finds a much worse representation than DEDUP-1.
This corroborates our hypothesis that working directly with the im-
plicit representation of the graph results in better compression.

We also measured actual memory footprints for the same datasets,
which largely track the relative performance shown here, with one
major difference being that BMP representations perform a little
worse because of the extra space required for storing the bitmaps.
Those results can be found in the extended version of the paper. We
report memory footprints for larger datasets in Section 6.2.

6.1.2 Graph Algorithms Performance
Figure 11 shows the results of running 3 different graph algo-

rithms on the different in-memory representations. We compared

(a) DBLP (b) Synthetic_1
Figure 11: Performance of Graph Algorithms on Each Representa-
tion for two datasets (vertical red line represents EXP)

the performance of Degree calculation, Breadth First Search (BFS)
starting from a single node, as well as PageRank on the entire
graph. Again, the results shown are normalized to the values for
the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API.
Again, the BFS results are the mean of runs on a specific set of 50
randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs.

We also ran a comprehensive set of microbenchmarks comparing
the performance of the basic graph operations against the different
representations. Those results can be found in Appendix C, and as
can be seen there, BFS and PageRank both follow the trends of the
micro-benchmarks in terms of differences between representations.

For IMDB and Synthetic_2, both of which yield very large ex-
panded graphs, we observed little to no overhead in real world
performance compared to EXP when actually running algorithms
on top of these representations, especially when it comes to the
BITMAP and DEDUP1 representations (we omit these graphs).
DBLP and Synthetic_1 datasets portray a large gap in performance
compared to EXP; this is because these datasets consist of a large
number of small virtual nodes, thus increasing the average number
of virtual nodes that need to be iterated over for a single calculation.
This is also the reason why DEDUP1 and BITMAP2 typically per-
form better; they feature a smaller number of virtual neighbors per
real node than representations like C-DUP and BMP1, and some-
times DEDUP2 as well.

(a) (b)
Figure 12: Deduplication Performance Results (a) Deduplication
time comparison between algorithms. Random (RAND) vertex or-
dering was used where applicable, (b) Small variations caused by
node ordering in deduplication

6.1.3 Comparing Deduplication Algorithms
Figure 12a shows the running times for the different deduplica-

tion algorithms (on a log-scale). As expected, BITMAP-1 is the
fastest of the algorithms, whereas the DEDUP-1 and DEDUP-2 al-
gorithms take significantly more time. We note however that dedu-
plication is a one-time cost, and the overhead of doing so may be
acceptable in many cases, especially if the extracted graph is serial-
ized and repeatedly analyzed over a period of time. Finally, Figure
12b shows how the performance of the various algorithms varies
depending on the processing order. We did not observe any no-
ticeable differences or patterns in this performance across various
datasets, and recommend using the random ordering for robustness.

6.2 Large Datasets
To reason about the practicality and scalability of HIGRAPH, we

evaluated its performance on a series of datasets that yielded larger
and denser graphs (Table 3). Datasets Layered_1 and Layered_2
are synthetically generated multi-layer condensed graphs, while

VMiner: Graph
compression
using Bi-Cliques

Impact	 on	 Performance	 (a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 12: Microbenchmarks for each representation

(a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 13: Performance of Graph Algorithms on Each Representation

extra hop is required for obtaining all real neighbors of a vertex.
DEDUP1 is typically more performant than the BITMAP represen-
tations in datasets where there is a large amount of small cliques.

In terms of the EXISTSEDGE() operation, we have included aux-
iliary indices in both virtual and real vertices, which allow for rapid
checks on whether a logical edge exists between two real nodes.
Latency in this operation is relative to the total number of vir-
tual nodes, the indexes of which need to be checked. The RE-
MOVEVERTEX() operation is actually more efficient on the CDUP,
DEDUP1 and DEDUP2 representations than EXP. In order for a
vertex to be removed from the graph, explicit removal of all of its
edges is required. In representations like DEDUP1 and DEDUP2,
that employ virtual nodes, we need to remove a smaller number of
edges on average in the removal process. DEDUP2 is most interest-
ing here because a real node is always connected to only 1 virtual
node, therefore the removal cost is constant.

Graph Algorithms Performance: While micro-benchmarks are
definitely informative, the end performance of running actual algo-
rithms on top of these representations is also something that needs
to be explored. Figure 12 shows the results of running 3 differ-
ent graph algorithms on the different in-memory representations.
We compared the performance of Degree calculation, Breadth First
Search starting from a single node, as well as PageRank on the en-
tire graph. Again, the results shown are normalized to the values
for the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API
to operate directly on top of each of the representations. Again, the
Breadth first search results are the mean of runs on a specific set of
50 randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs. As we can see, BFS and
PageRank both follow the trends of the micro-benchmarks in terms
of differences in performance between representations.

For datasets like IMDB and Synthetic 2 that yield very large ex-
panded graphs, we observe that there is little to no overhead in real
world performance compared to EXP when actually running algo-
rithms on top of these representations, especially when it comes
to the BITMAP and DEDUP1 representations. On the flip side,

the DBLP and Synthetic 1 datasets portray a large gap in perfor-
mance compared to EXP. The reason for this gap is the fact that
these datasets consist of a large number of small virtual nodes, thus
increasing the average number of virtual nodes that need to be it-
erated over for a single calculation. This is also the reason why
DEDUP1 and BITMAP2 typically perform better; they feature a
smaller number of virtual neighbors per real node than representa-
tions like C-DUP and BMP1, and sometimes DEDUP2 as well.

6.3 Comparing De-duplication Algorithms
Finally, we compare the various de-duplication algorithms pre-

sented in Section 5. Figure 13a compares the number of edges
in the resulting graph after running the different de-duplication al-
gorithms. As we can see, the differences between the different
DEDUP-1 algorithms are largely minor, with the Virtual Nodes
First Greedy algorithm having a slight edge on most datasets. The
comparisons across different representations mirror the relative mem-
ory footprint performance (Figure 10), with the main difference be-
ing the overheads associating with bitmaps in BITMAP represen-
tations that are not counted here.

Figure 13b shows the running times for the different algorithms
(on a log-scale). As expected, BITMAP-1 is the fastest of the al-
gorithms, whereas the DEDUP-1 and DEDUP-2 algorithms take
significantly more time. We note however that de-duplication is a
one-time cost, and the overhead of doing so may be acceptable in
many cases, especially if the extracted graph is serialized and re-
peatedly analyzed over a period of time. Finally, Figure 13c shows
how the performance of the various algorithms varies depending on
the processing order. We did not observe any noticeable differences
or patterns in this performance, and recommend using the random
ordering for robustness.

7. CONCLUSION
In this paper, we presented GRAPHGEN, a system that enables

users to analyze the implicit interconnection structures between en-
tities in normalized relational databases, without the need to ex-
tract the graph structure and load it into specialized graph engines.
GRAPHGEN can interoperate with a variety of graph analysis li-
braries and supports a standard graph API, breaking down the barri-

12

IMDB Subset A Synthetic Graph

Generally acceptable performance hit, with DEDUP1 doing the best
(at a significantly higher preprocessing cost)

Large	 Datasets	

CDUP BMP-DEDUP EXP
Syn-1 1.421 2.737 >64
Syn-2 1.613 2.258 19.798
Syn-3 1.276 1.493 1.2
Syn-4 9.9 13.042 >64
TPC-H .023 .049 7.398

CDUP BMP-DEDUP EXP
Syn-1 382 284 DNF
Syn-2 129 111 85
Syn-3 0.01 0.02 0.01
Syn-4 1.3 0.12 DNF
TPC-H 86 8.5 16

Memory Footprint (GB)

Time to run Breadth First Search (seconds)

l  Need	 to	 support	 graph	 analy5cs	 on	 RDBMSs	 in	 situ	
l  GraphGen	 provides	 a	 declara5ve	 DSL	 and	 a	 suite	 of	
op5miza5ons	 for	 achieving	 this	

l  Many	 computa5onal	 challenges	 that	 we	 are	 just	
beginning	 to	 explore	

l  Working	 on	 extending	 the	 DSL	 to	 support	 specifying	
par5al	 graph	 computa5ons	
l  Can	 push	 more	 computa5on	 into	 the	 RDBMS	

l  Star5ng	 to	 look	 at	 doing	 this	 in	 place	 on	 an	 in-‐memory	
database	

GraphGen:	 Summary	

Thanks	 !!	

More	 at:	 h;p://www.cs.umd.edu/~amol	
	
QuesAons	 ?	

These slides at: http://go.umd.edu/w.pdf

