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Collabora5ve	  Data	  Science	  
l  Widespread	  use	  of	  “data	  science”	  in	  many	  many	  domains	  

A typical data analysis workflow 

1000s of  
datasets 

Many steps across many users 



Collabora5ve	  Data	  Science	  
l  Widespread	  use	  of	  “data	  science”	  in	  many	  many	  domains	  

l  Increasingly	  the	  “pain	  point”	  is	  managing	  the	  process,	  
especially	  during	  collabora5ve	  analysis	  
l  Many	  private	  copies	  of	  the	  datasets	  è	  Massive	  redundancy	  	  
l  No	  easy	  way	  to	  keep	  track	  of	  dependencies	  between	  datasets	  
l  Manual	  interven5on	  needed	  for	  resolving	  conflicts	  
l  No	  efficient	  organiza5on	  or	  management	  of	  datasets	  
l  No	  easy	  way	  to	  do	  “provenance”,	  i.e.,	  find	  reasons	  for	  an	  ac5on	  
l  No	  way	  to	  analyze/compare/query	  versions	  of	  a	  dataset	  

l  Ad	  hoc	  data	  management	  systems	  (e.g.,	  Dropbox)	  used	  
l  Much	  of	  the	  data	  is	  unstructured	  so	  typically	  can’t	  use	  DBs	  
l  Scien5sts/researchers/analysts	  are	  preYy	  much	  on	  their	  own	  



Model	  Lifecycle	  Management	  

l  “Models”	  are	  an	  integral	  part	  of	  data	  science	  
l  Tradi5onal	  simple	  models	  à	  today’s	  complex	  BIG	  models	  

Often packaged together with results 



Challenges	  

l  What	  parameter	  did	  we	  use	  to	  get	  the	  precision?	  
l  How	  do	  I	  know	  which	  data	  corresponds	  to	  which	  model?	  

l  e.g.,	  IPython	  notebooks	  don’t	  usually	  keep	  the	  “data”	  
l  How	  to	  compare	  different	  “pipelines”,	  iden5fy	  bugs	  
l  Issues	  during	  deployment	  

l  Monitor	  model	  performance,	  detect	  problems	  or	  anomalies,	  etc.	  

l  Focus	  of	  most	  current	  work	  on	  scalability,	  training,	  etc.	  
l  Cri5cal	  history	  is	  transient	  and	  not	  captured	  

ModelHub: Lifecycle Management for Deep Learning
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ABSTRACT
Deep learning has improved state-of-the-art results in many impor-
tant fields, and has been the subject of much research in recent
years, leading to the development of several systems for facili-
tating deep learning. Current systems, however, mainly focus on
model building and training phases, while the issues of data man-
agement, model sharing, and lifecycle management are largely ig-
nored. Deep learning modeling lifecycle contains a rich set of arti-
facts, such as learned parameters and training logs, and frequently
conducted tasks, e.g., to understand the model behaviors and to try
out new models. Dealing with such artifacts and tasks is cumber-
some and left to the users. To address these issues in a comprehen-
sive manner, we propose ModelHub, which includes a novel model
versioning system (dlv); a domain specific language for searching
through model space (DQL); and a hosted service (ModelHub) to
store developed models, explore existing models, enumerate new
models and share models with others.

This paper presents the design of such a lifecycle management
system. First, we generalize model exploration and model enumer-
ation queries from commonly conducted tasks by computer vision
community modelers, and propose a high-level domain specific
language (DSL) to raise the abstraction level aiming at accelerating
the modeling process. To help modeler understand models better,
we also propose two novel model-comparison schemes and related
algorithms. Second, to manage the lifecycle artifacts, especially the
large amount of checkpointed float learned parameters, we exploit
the workloads and design a read-optimized parameter archival stor-
age system (PAS) that minimizes storage footprint and accelerates
query workloads without losing accuracy. PAS archives versioned
models using deltas and our design is featured with chunked bit-
block floating number and a novel progressive model evaluation
query implementation. We further show archiving versioned mod-
els using deltas is a new type of dataset versioning problem and
develop e�cient algorithms for solving it. We conduct extensive
experiments to show the e�ciency of proposed techniques.

1. INTRODUCTION
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
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Figure 1: Deep Learning Modeling Lifecycle

Deep learning models (also called deep neural networks) have
dramatically improved state-of-the-art results for many important
reasoning and learning tasks including speech recognition, object
recognition, and natural language processing in recent years [29].
Learned using massive amounts of training data, DNN models have
superior generalization capabilities, and the intermediate layers in
many deep learning models have been proven useful in providing
e↵ective semantic features that can be used with other learning
techniques and are applicable to other problems. However, there
are many critical large-scale data management issues in learning,
storing, sharing, and using deep learning models, which are largely
ignored by researchers today, but are coming to the forefront with
the increased use of deep learning in a variety of domains. In this
paper, we discuss some of those challenges in the context of the
modeling lifecycle, and propose a comprehensive system to address
them. Given the large scale of data involved (both training data and
the learned models themselves) and the increasing need for high-
level declarative abstractions, we argue that database researchers
should play a much larger role in this area. Although this paper
primarily focuses on deep neural networks, similar data manage-
ment challenges are seen in lifecycle management of others types
of ML models like logistic regression, XXX, etc.
DNN Modeling Lifecycle and Challenges: Compared with the tra-
ditional approach of feature engineering followed by model learn-
ing [39], deep learning is an end-to-end learning approach, i.e., the
features are not given by a human but learned in an automatic man-
ner from the input data. Moreover, the features are complex and
have a hierarchy along with the network representation. This re-
quires less domain expertise and experience from the modeler, but
understanding and explaining the learned models is di�cult; why
even well-studied models work so well is still a mystery and un-
der active research. Thus, when developing new models, chang-
ing the learned model (especially its network structure and hyper-
parameters) becomes an empirical search task.

In Fig. 1, we show a typical deep learning modeling lifecycle
(we present an overview of deep neural networks in the next sec-
tion). Given a prediction task, a modeler often starts from well-
known models which have been successful in similar task domains;
she then specifies input training data and output loss functions,
and repeatedly adjusts the DNN on operators and connections like
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DataHub:	  A	  Collabora5ve	  Data	  Science	  Pla)orm	  

• 	  a	  dataset	  management	  system	  –	  
import,	  search,	  query,	  analyze	  a	  large	  
number	  of	  (public)	  datasets	  

• 	  a	  dataset	  version	  control	  system	  –
branch,	  update,	  merge,	  transform	  large	  
structured	  or	  unstructured	  datasets	  

• 	  a	  provenance	  database	  system	  –	  
capture	  provenance	  &	  other	  metadata,	  
and	  support	  analysis/introspec5on	  

• 	  an	  app	  ecosystem	  and	  hooks	  for	  
external	  applica5ons	  (Matlab,	  R,	  
iPython	  Notebook,	  etc)	   DataHub	  Architecture	  

Versioned Datasets,
Version Graphs, 

Indexes, Provenance

Dataset Versioning Manager

I: Versioning API and Version Browser

ingest vizualize etc. 
Client 

Applications 

DataHub: A Collaborative Data Analytics Platform

II: Native App Ecosystem

query 
builder

III: Language Agnostic Hooks

DataHub 
Notebook 

Joint work with:  
    Sam Madden (MIT) 
    Aditya Parameswaran (UIUC) 



 
 

  
  No, because they typically use fairly simple algorithms 

and are optimized to work for code-like data 
 

100 versions 

LF Dataset (Real World) 
#Versions = 100 
Avg. version size = 423 MB 

gzip	  =	  10.2	  GB	  

svn	  =	  8.5	  GB	  

git	  =	  202	  MB	  

*this	  =	  159	  MB	  

Can	  we	  use	  Version	  Control	  Systems	  (e.g.,	  Git)?	  



 
 
 
  No, because they typically use fairly simple algorithms 

and are optimized to work for code-like data 
Git ends up using large amounts of  RAM for large files 

 

DON’T!  

Use extensions* 

Can	  we	  use	  Version	  Control	  Systems	  (e.g.,	  Git)?	  



 
 
 
  No support for capturing rich metadata about the 

datasets and/or provenance information 
 
  Primitive querying and retrieval functionalities 

 
  No way to specify queries like: 

•  identify all predecessor versions of version A that differ from it 
by a large number of records 

•  rank a set of versions according to a scoring function 
•  find the version where the result of an aggregate query is 

above a threshold 
•  explain why the results of two similar pipelines are different 
•  identify the source of an error 

Can	  we	  use	  Version	  Control	  Systems	  (e.g.,	  Git)?	  

Version	  
Control	  	  

Provenance	  
Management	  

Collabora5ve	  
Data	  Science	  



o  Temporal	  databases	  are	  restricted	  to	  managing	  a	  linear	  
chain	  of	  versions	  of	  rela5onal	  data	  

o  Recent	  work	  in	  scien5fic	  databases	  	  
o  Op5mized	  for	  array-‐like	  data	  
o  Also	  largely	  a	  linear	  chain	  of	  versions	  

o  “Deduplica5on”	  strategies	  in	  storage	  systems	  
o  Chunk	  files	  into	  blocks	  and	  store	  unique	  blocks	  
o  Works	  well	  if	  changes	  are	  localized	  
o  Focus	  primarily	  on	  archival	  storage	  minimiza5on,	  ignore	  

recrea5on	  costs	  
o  Metadata/Provenance	  management	  systems	  

o  Much	  work,	  but	  insufficient	  adop5on	  as	  yet	  

Other	  Related	  Work	  



Summary	  of	  Ongoing	  Work	  

l  Exploit	  overlap	  to	  reduce	  storage	  [VLDB’15,VLDB’16,*,*]	  
l  …	  while	  keeping	  retrieval	  costs	  low	  
l  …	  for	  different	  types	  of	  data	  (unstructured	  files,	  rela5onal	  data,	  
documents,	  and	  large	  NN	  models)	  

l  System	  for	  managing	  and	  querying	  versioning	  and	  
provenance	  informa5on	  [TaPP’15,	  *]	  
l  …	  along	  with	  mechanisms	  to	  easily	  capture	  provenance	  
l  Prototype	  command-‐line-‐based	  provenance	  inges5on	  system,	  
built	  on	  top	  of	  “git”	  and	  “Neo4j”	  

l  A	  ver5cal	  for	  lifecycle	  management	  of	  deep	  learning	  
models	  [*]	  
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l  Increasing	  interest	  in	  querying	  and	  reasoning	  about	  the	  underlying	  
graph	  (network)	  structure	  in	  a	  variety	  of	  disciplines	  

Graph	  Data	  

A protein-protein interaction 
network 

Social networks 

Financial transaction 
networks  

Stock Trading Networks 

Federal funds networks 

GSCC

GWCC

Tendril
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Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.
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Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j )Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily



Wide	  Variety	  in	  Graph	  Queries/Analy5cs	  
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Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.
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Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j )Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

Stock Trading Networks 
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Different types of “queries” 
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Online prediction; Monitoring; 
Anomaly/Event detection 

Batch analysis tasks 
Centrality analysis; Community 
detection; Network evolution; 
Network measurements; Graph 
cleaning/inference 

Machine learning tasks 
Many algorithms can be seen 
as message passing in 
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l  Graph	  analy5cs/network	  science	  tasks	  too	  varied	  

l  Hard	  to	  build	  general	  systems	  like	  RDBs/Hadoop/Spark	  
l  What	  is	  a	  good	  abstrac5on	  to	  provide?	  	  

l  MapReduce?	  Vertex-‐centric	  frameworks?	  BSP?	  
l  Popular	  graph	  languages	  (SPARQL,	  Cypher)	  equivalent	  to	  SQL	  

l  No	  clear	  winners	  or	  widely	  used	  systems	  
l  Applica5on	  developers	  largely	  doing	  their	  own	  thing	  

l  Fragmented	  research	  topic	  with	  liYle	  consensus	  
l  Specialized	  graph	  databases	  (Neo4j),	  RDF	  Databases	  	  
l  Distributed	  batch	  systems	  (GraphX,	  Giraph),	  HPC	  Single-‐
memory	  Engines	  (Ligra,	  GreenMarl,	  X-‐Stream)	  

l  Many	  specialized	  indexes,	  prototypes…	  

Graph	  Data	  Management:	  State	  of	  the	  Art	  



l  Goal:	  A	  complete,	  func5on-‐rich	  system	  with	  unified	  
declara5ve	  abstrac5ons	  for	  graph	  queries	  and	  analy5cs	  
l  Declara5ve	  cleaning	  of	  noisy	  and	  imperfect	  graphs	  through	  link	  
predic5on	  and	  en5ty	  resolu5on	  [GDM’11,	  SIGMOD	  Demo’13]	  

l  Real-‐5me	  con5nuous	  queries	  and	  anomaly	  detec5on	  over	  
dynamic	  graphs	  [SIGMOD’12,	  ESNAM’14,	  SIGMOD’14,	  DEB’16]	  

l  Historical	  graph	  data	  management	  and	  temporal	  analy5cs	  
[ICDE’13,	  SIGMOD	  Demo’13,EDBT’16]	  

l  Subgraph	  paYern	  matching	  and	  coun5ng	  [ICDE’12,	  ICDE’14]	  
l  GraphGen:	  graph	  analy5cs	  over	  rela5onal	  data	  [VLDB	  Demo’15,	  

SIGMOD’17]	  

l  NScale:	  a	  distributed	  analysis	  framework	  [VLDB	  Demo’14,	  
VLDBJ’15,NDA’16]	  

What	  we	  are	  doing 	  	  



l  Graph	  data	  management	  systems	  expect	  and	  manage	  
graph-‐structured	  data,	  i.e.,	  lists	  of	  nodes	  and	  edges	  	  

l  Most	  data	  sits	  in	  RDBMSs	  and	  (increasingly)	  NoSQL	  stores	  
l  Graphs	  must	  be	  extracted	  by	  iden5fying	  and	  connec5ng	  
en55es	  across	  the	  database	  

1.	  Where’s	  the	  Data?	  



1.	  Example:	  TPC-‐H	  

order_key	   customer_key	  

Orders	  

o1	   c1	  

o2	   c2	  

o3	   c3	  

order_key	   part_key	  

LineItem	  
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c4 

c3 c6 
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l  Graph	  data	  management	  systems	  expect	  and	  manage	  
graph-‐structured	  data,	  i.e.,	  lists	  of	  nodes	  and	  edges	  	  

l  Most	  data	  sits	  in	  RDBMSs	  and	  (increasingly)	  NoSQL	  stores	  
l  Graphs	  must	  be	  extracted	  by	  iden5fying	  and	  connec5ng	  
en55es	  across	  the	  database	  

l  Must	  be	  done	  repeatedly	  as	  the	  underlying	  data	  changes	  
l  Tedious	  and	  5me-‐consuming	  

l  Also	  desirable	  to	  avoid	  having	  to	  use	  another	  data	  
management	  system	  

1.	  Where’s	  the	  Data?	  



l  Efficiency	  challenge:	  Extracted	  graphs	  can	  oqen	  be	  
orders-‐of-‐magnitude	  larger	  than	  original	  database	  
l  Homogeneous	  graphs	  (over	  the	  same	  set	  of	  en55es)	  invariably	  
require	  at	  least	  one	  self-‐join	  on	  a	  non-‐key	  

l  DBLP	  Dataset:	  8.6M	  author-‐publica5on	  table	  à	  43M	  edges	  in	  
the	  co-‐authorship	  graph	  

l  Connec5ng	  authors	  with	  papers	  at	  the	  same	  conference	  =	  1.8	  B	  edges	  

l  Even	  if	  the	  final	  graph	  is	  small,	  database	  query	  op5mizers	  
unable	  to	  op5mize	  these	  queries	  well	  
l  High	  selec5vity	  errors	  

1.	  Where’s	  the	  Data?	  



l  Efficiency	  challenge:	  Extracted	  graphs	  can	  oqen	  be	  
orders-‐of-‐magnitude	  larger	  than	  original	  database	  
l  Homogeneous	  graphs	  (over	  the	  same	  set	  of	  en55es)	  invariably	  
require	  at	  least	  one	  self-‐join	  on	  a	  non-‐key	  

l  DBLP	  Dataset:	  8.6M	  author-‐publica5on	  table	  à	  43M	  edges	  in	  
the	  co-‐authorship	  graph	  

l  Connec5ng	  authors	  with	  papers	  at	  the	  same	  conference	  =	  1.8	  B	  edges	  

l  Even	  if	  the	  final	  graph	  is	  small,	  database	  query	  op5mizers	  
unable	  to	  op5mize	  these	  queries	  well	  
l  High	  selec5vity	  errors	  

1.	  Where’s	  the	  Data?	  

Graph Representation Edges Extraction Latency (s)
DBLP Condensed 17,147,302 105.552

Full Graph 86,190,578 > 1200.000
IMDB Condensed 8,437,792 108.647

Full Graph 33,066,098 687.223
TPCH Condensed 52,850 15.520

Full Graph 99,990,000 > 1200.000
UNIV Condensed 60,000 0.033

Full Graph 3,592,176 82.042
Table 1: Extracting graphs in HIGRAPH using our condensed rep-
resentation vs extracting the full graph. IMDB: Co-actors graph (on
a subset of data), DBLP: Co-authors graph, TPCH: Connect cus-
tomers who buy the same product, UNIV: Connect students who
have taken the same course (synthetic, from http://db-book.com)

graphs from a relational database1, and execute graph analysis tasks
or algorithms over them in memory. HIGRAPH supports an expres-
sive Domain Specific Language (DSL), based on Datalog [3], al-
lowing users to specify a single graph or a collection of graphs to be
extracted from the relational database (in essence, as views on the
database tables). HIGRAPH uses a translation layer to generate the
appropriate SQL queries to be issued to the database, and creates
an efficient in-memory representation of the graph that is handed
off to the user program or analytics task. HIGRAPH supports a
general-purpose Java Graph API as well as the standard vertex-
centric API for specifying analysis tasks like PageRank. Figure 1
shows a toy DBLP-like dataset, and the query that specifies a “co-
authors” graph to be constructed on that dataset. Figure 1c shows
the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in ana-
lyzing may be too large to extract and represent in memory, even
if the underlying relational data is small. There is a space explo-
sion because of the types of high-output2 joins that are often needed
when constructing these graphs. Table 1 shows several examples of
this phenomenon. On the DBLP dataset restricted to journals and
conferences, there are approximately 1.6 million authors, 3 million
publications, and 8.6 million author-publication relationships; the
co-authors graph on that dataset contained 86 million edges, and re-
quired more than half an hour to extract on a laptop. The condensed
representation that we advocate in this paper is much more efficient
both in terms of the memory requirements and the extraction times.
The DBLP dataset is, in some sense, a best-case scenario since
the average number of authors per publication is relatively small.
Constructing the co-actors graph from the IMDB dataset results in
a similar space explosion. Constructing a graph connecting pairs
of customers who bought the same item in a small TPCH dataset
results in much larger graph than the input dataset. Even on the
DBLP dataset, a graph that connects authors who have papers at
the same conference contains 1.8B edges, compared to 15M edges
in the condensed representation.

In this paper, we address the problem of analyzing such large
graphs by storing and operating upon them using a novel condensed
representation. The relational model already provides a natural
such condensed representation, obtained by omitting some of the
high-output joins from the query required for graph extraction. Fig-
ure 1(d) shows an example of such a condensed representation for
the co-authors graph, where we create explicit nodes for the pubs,
in addition to the nodes for the authors; for two authors, u and v,
there is an edge u ! v, iff there is a directed path from u to v in

1Although HIGRAPH (name anonymized for submission) currently only
supports PostgreSQL, it requires only basic SQL support from the underly-
ing storage engine, and could simply scan the tables if needed.
2We use this term instead of “selectivity" terms to avoid confusion.

Figure 1: Key concepts of HIGRAPH. (Note: the author nodes here
are being shown twice for the sake of simplicity, they are not being
stored twice)
this representation. This representation generalizes the idea of us-
ing cliques and bicliques for graph compression [6, 16]; however,
the key challenge for us is not generating the representation, but
rather dealing with duplicate paths between two nodes.

In Figure 1, we can see such a duplication for the edge a1 ! a4
since they are connected through both p1 and p2 . Such dupli-
cation prevents us from operating on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• A general framework for extracting a condensed representa-

tion (with duplicates) for a large class of extraction queries
over arbitrary relational schemas.

• A suite of in-memory representations to handle the duplication
in the condensed representation.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• The first end-to-end system for enabling analytics on graphs

that exist within purely relational datasets, efficiently, and with-
out requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of HIGRAPH, briefly
describe the graph extraction DSL, and discuss how HIGRAPH de-
cides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).



l  En55es	  can	  be	  connected	  in	  a	  variety	  of	  different	  ways	  
l  Add	  an	  edge	  if	  customers	  bought	  the	  same	  item,	  or	  at	  least	  5	  
same	  items,	  or	  bought	  items	  on	  the	  same	  day	  in	  the	  same	  store	  

l  Create	  a	  part-‐supplier	  bipar5te	  graph	  by	  connec5ng	  suppliers	  
who	  apply	  a	  part	  in	  sufficient	  quan5ty	  

2.	  Which	  “Graphs”	  to	  Analyze?	  

Identifying interesting 
connections itself 
a difficult question 



l  En55es	  can	  be	  connected	  in	  a	  variety	  of	  different	  ways	  
l  Add	  an	  edge	  if	  customers	  bought	  the	  same	  item,	  or	  at	  least	  5	  
same	  items,	  or	  bought	  items	  on	  the	  same	  day	  in	  the	  same	  store	  

l  Create	  a	  part-‐supplier	  bipar5te	  graph	  by	  connec5ng	  suppliers	  
who	  apply	  a	  part	  in	  sufficient	  quan5ty	  

l  Oqen	  need	  to	  simultaneously	  analyze	  mul5ple	  graphs	  
l  Compare	  a	  graph	  on	  products	  today	  vs	  yesterday	  

l  Plot	  how	  supplier	  centrality	  (e.g.,	  PageRank)	  evolved	  over	  5me	  

l  Must	  exploit	  overlap,	  and	  reduce	  redundant	  computa5on	  

2.	  Which	  “Graphs”	  to	  Analyze?	  



l  “Vertex-‐centric	  framework”	  the	  most	  popular	  today	  
l  GraphLab,	  Apache	  Giraph,	  GraphX,	  X-‐Stream,	  Grail,	  Vertexica,	  …	  
l  Most	  of	  the	  research,	  especially	  in	  databases,	  focuses	  on	  it	  

l  “Think	  like	  a	  vertex”	  paradigm	  
l  User	  provides	  a	  compute()	  func5on	  that	  operates	  on	  a	  vertex	  
l  Executed	  in	  parallel	  on	  all	  ver5ces	  in	  an	  itera5ve	  fashion	  
l  Exchange	  informa5on	  at	  a	  barrier	  through	  message	  passing	  

3.	  Graph	  Programming	  Frameworks	  



l  Limita5ons	  of	  the	  vertex-‐centric	  frameworks	  
l  Works	  well	  for	  some	  applica5ons	  

l  Pagerank,	  Connected	  Components,	  Some	  ML	  algorithms,	  …	  
l  However,	  the	  framework	  is	  very	  restric5ve	  

l  Simple	  tasks	  like	  coun5ng	  neighborhood	  stats	  infeasible	  
l  Fundamentally:	  Not	  easy	  to	  decompose	  analysis	  tasks	  into	  
vertex-‐level,	  independent	  local	  computa5ons	  

l  Alterna5ves?	  
l  Galois,	  Ligra,	  GreenMarl:	  Low-‐level	  APIs,	  and	  hard	  to	  parallelize	  
l  Some	  others	  (e.g.,	  Socialite)	  restric5ve	  for	  different	  reasons	  

3.	  Graph	  Programming	  Frameworks	  



3.	  Example:	  Local	  Clustering	  Coefficient	  

1
 

2
 

4

3

Measures density around a node 
Compute() at Node n:  

Need to count the no. of edges between 
But does not have access to that information 
Option 1: Each node transmits its list of 
neighbors to its neighbors 
      Huge memory consumption 
Option 2: Allow access to neighbors’ state  

Neighbors may not be local 
What about computations that require 2-
hop information? 

    

neighbors 



3.	  Aside:	  NScale	  Distributed	  Framework	  

Local Clustering Coefficient 
Dataset NScale Giraph GraphLab GraphX 

CE (Node-
Secs) 

Cluster 
Mem 
(GB) 

CE (Node-
Secs) 

Cluster 
Mem (GB) 

CE (Node-
Secs) 

Cluster 
Mem (GB) 

CE (Node-
Secs) 

Cluster 
Mem (GB) 

WikiTalk 726 24.16 DNC OOM 1125 37.22 1860 32.00 

LiveJournal 1800 50.00 DNC OOM 5500 128.62 4515 84.00 

Orkut 2000 62.00 DNC OOM DNC OOM 20175 125.00 

•  An	  end-‐to-‐end,	  subgraph-‐centric	  distributed	  
graph	  analy5cs	  framework	  (built	  on	  Spark)	  

•  Users/applica5on	  programs	  specify:	  	  
•  Neighborhoods	  or	  subgraphs	  of	  interest	  
•  A	  kernel	  compute()	  to	  operate	  on	  those	  subgraphs	  

•  Framework:	  
•  Extracts	  the	  relevant	  subgraphs	  from	  underlying	  

data	  and	  loads	  in	  memory	  
•  Execu5on	  engine:	  Executes	  user	  computa5on	  on	  

materialized	  subgraphs	  



Outline	  
l  DataHub:	  A	  pla)orm	  for	  collabora5ve	  data	  science	  

	  

l  GraphGen:	  Graph	  Analy5cs	  on	  Rela5onal	  Databases	  

l  Mo5va5on	  

l  System	  Overview	  	  

l  Condensed	  Representa5ons	  for	  Large	  Graphs	  

l  Experiments	  
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GraphGen	  Architecture	  



Vertexica/GRAIL/SQLGraph	  vs	  GraphGen	  
Fundamentally different goals 

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Nodes Edges 

A relational database 

Graph analytics/query 

SQL Translation 
Layer 

Ingest/Shredding 

Props, .. 

We aim to push computation into RDBMS 
if possible, but expressive programming 
framework is a higher priority 

Results 

A relational database 

Graph Definition 
+  

Graph Analytics/query 

In-memory Graph  
Execution Engine 

Graph Object 
+  

Execution results 

Extraction 
Queries Results 



GraphGen	  Graph	  Extrac5on	  DSL	  
l  Based	  on	  non-‐recursive	  Datalog	  

l  Extended	  with	  Aggrega5on	  and	  Looping	  constructs	  
l  User	  needs	  to	  specify:	  

l  How	  the	  nodes	  and	  edges	  are	  defined	  
l  Both	  effec5vely	  “views”	  over	  the	  rela5onal	  data	  

l  Allows	  for	  homogeneous	  and	  heterogeneous	  graphs	  

1.  Construct customer-customer graph if they bought the same 
product (TPC-H) 

 
Nodes(ID,	  Name)	  :-‐	  Customer(ID,	  Name).	  
Edges(ID1,	  ID2)	  :-‐	  	  
Orders(o_key1,	  ID1),	  LineItem(o_key1,	  part_key),	  
Orders(o_key2,	  ID2),	  LineItem(o_key2,	  part_key).	  
	  
 



GraphGen	  Graph	  Extrac5on	  DSL	  

2. Construct one neighborhood graph for each author (DBLP) 
   	  For	  Author(X,	  _).	  
	  	  	  	  	  	  	  	  	  	  Nodes(ID,	  Name)	  :-‐	  Author(ID,	  Name),	  ID	  =	  X.	  
	  	  	  	  	  	  	  	  	  	  Nodes(ID,	  Name)	  :-‐	  AuthorPub(X,P),	  AuthorPub(ID,P),	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Author(ID,	  Name).	  
	  	  	  	  	  	  	  	  	  	  Edges(ID1,	  ID2)	  :-‐	  Nodes(ID1,	  _),	  Nodes(ID2,	  _),	  	  	  	  	  	  	  	  	  

	   	   	  	  	  	  	  	  AuthorPub(ID1,	  P),	  AuthorPub(ID2,	  P). 
 
3. A Simple Bipartite Graph over Parts and Suppliers  
        Nodes(ID,	  Name,	  Label	  =	  “P”)	  :-‐	  Part(p_key,	  Name)	  
	  	  	  	  	  Nodes(ID,	  Name,	  Label	  =	  “S”)	  :-‐	  Supplier(s_key,	  Name)	  
	  	  	  	  	  Edges(ID1,	  ID2)	  :-‐	  	  PartSupp(ID1,	  ID2)	  
	  
	  
Additional	  constructs	  for	  aggregates	  and	  node	  or	  
edge	  “properties”	  and	  “weights”	  



GraphGen	  in	  Java:	  Vertex-‐Centric	  API	  

2. Can directly manipulate the graph using a simple API: 
-  getVertices(): returns an iterator over all vertices 
-  getNeighbors(v): returns an iterator over v’s neighbors 
-  existsEdge(v, u), addEdge(v, u), deleteEdge(v, u), 

addVertex(v), deleteVertex(v) 
 

3. Working on supporting a more general neighborhood-
centric API from NScale 

 - Allows parallelism and other optimizations 



GraphGen	  Graph	  Explora5on	  Frontend	  

User can visually explore 
1-hop neighborhoods 

View simple statistics 
about the graph 

User explores schema 
and specifies graphs 
to be extracted 



GraphGen	  Enumera5on	  Framework	  
•  Complex	  rela5onal	  schemas	  contain	  many	  tables/constraints	  

•  Hard	  to	  iden5fy	  interes5ng	  graphs	  through	  just	  inspec5on	  
•  Idea:	  Inspect	  the	  database	  schema,	  and	  propose	  a	  set	  of	  possible	  

graphs	  by	  enumera5ng	  paths	  or	  loops	  in	  the	  schema	  graph	  
•  User	  provides	  feedback	  to	  drive	  and	  fine-‐tune	  



Outline	  
l  DataHub:	  A	  pla)orm	  for	  collabora5ve	  data	  science	  

	  

l  GraphGen:	  Graph	  Analy5cs	  on	  Rela5onal	  Databases	  

l  Mo5va5on	  

l  System	  Overview	  	  

l  Condensed	  Representa5ons	  for	  Large	  Graphs	  

l  Experiments	  
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l  The	  extracted	  graph	  may	  be	  much	  larger	  even	  than	  the	  
input	  dataset	  
l  Expensive	  to	  extract:	  intermediate/final	  results	  too	  large	  
l  Query	  op5mizers	  not	  able	  to	  op5mize	  well	  
l  Possibly	  infeasible	  to	  hold	  in	  memory	  

l  Instead:	  we	  extract	  a	  condensed	  representa5on	  	  
l  At	  most	  the	  size	  of	  the	  base	  tables	  –	  usually	  much	  smaller	  
l  All	  Graph	  APIs	  supported	  on	  top	  of	  this	  representa5on	  
l  Need	  to	  handle	  duplicaCon	  

Key	  Challenge	  



Condensed	  Representa5on	  

(a) Relational Tables

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows
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Nodes(ID, Name):-Author(ID, Name).
Edges(ID1, ID2):-AuthorPub(ID1, 
PubID), AuthorPub(ID2, PubID).

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows
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Query to construct a co-authors graph 
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tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Expanded Graph Condensed Graph 

A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6

      a1,a2,a4
a1  001
a2  101
a3  101
a6  101

Virtual nodes 
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[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1

4

1. Query statistics tables to identify less selective joins 
2. Break up the overall query to avoid those joins and 

load intermediate results 
3. Create a multi-layered representation with “real” and 

“virtual” nodes (roughly one layer per postponed join) 

Edge from a_i to a_j 
              == 
There is a directed path 
from a_i to a_j 

vertices:315,130 edges:599,902     VS     vertices: 15,000 edges: 99,990,000 
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[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1
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Duplica5on	  	  
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l  There	  are	  duplicate	  paths	  between	  pairs	  of	  nodes	  
l  Most	  graph	  algorithms	  cannot	  handle	  those	  

l  Some	  (e.g.,	  connected	  components)	  are	  tolerant	  	  

l  Developed	  several	  techniques	  to	  handle	  such	  duplica5on	  
l  Different	  pre-‐processing,	  memory,	  and	  computa5on	  trade-‐offs	  



1.	  CDUP:	  On-‐the-‐fly	  De-‐duplica5on	  	  
l  Keep	  the	  graph	  in	  condensed	  representa5on	  
l  For	  every	  getNeighbors():	  	  

l  Do	  a	  DFS	  from	  the	  node	  to	  find	  neighbors	  
l  Cache	  the	  neighbor-‐list	  (if	  memory	  available)	  

l  Overall	  most	  memory-‐efficient	  
l  No	  pre-‐processing	  overhead,	  but	  high	  execu5on	  overhead	  
l  Good	  for	  graph	  algorithms	  that	  touch	  a	  small	  frac5on	  of	  the	  graph	  
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a3: {a1,a2,a3} 



2.	  DEDUP-‐1:	  De-‐duplicate	  the	  graph	  
l  Pre-‐process	  the	  graph	  to	  remove	  duplica5on,	  but	  keep	  in	  

condensed	  form	  
l  i.e.,	  guarantee	  that	  there	  is	  only	  one	  path	  from	  a	  node	  to	  each	  neighbor	  

l  Specialized	  iterators	  that	  return	  the	  neighbors	  one-‐by-‐one	  
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A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6



2.	  DEDUP-‐1:	  De-‐duplicate	  the	  graph	  
l  Pre-‐process	  the	  graph	  to	  remove	  duplica5on,	  but	  keep	  in	  

condensed	  form	  
l  i.e.,	  guarantee	  that	  there	  is	  only	  one	  path	  from	  a	  node	  to	  each	  neighbor	  

l  Specialized	  iterators	  that	  return	  the	  neighbors	  one-‐by-‐one	  
l  Most	  “portable”	  representa5on	  (outside	  of	  expanded)	  

l  Easy	  to	  modify	  other	  graph	  libraries	  to	  support	  this	  
l  Pre-‐processing:	  is	  it	  possible	  to	  do	  this	  op5mally?	  

l  No:	  same	  complexity	  as	  compressing	  a	  graph	  by	  finding	  cliques	  or	  bicliques	  
l  Prior	  work	  in	  graph	  compression	  literature	  
l  Those	  algorithms	  not	  useful	  –	  take	  expanded	  graph	  as	  input	  

l  We	  proposed	  and	  evaluated	  5	  algorithms	  for	  doing	  this	  efficiently	  
l  Greedily	  resolve	  the	  duplica5on	  real	  node	  at	  a	  5me,	  or	  virtual	  node	  at	  a	  5me	  
l  Adapta5on	  of	  a	  frequent	  paYern	  mining	  algorithm	  



3.	  DEDUP-‐2:	  Undirected	  Virtual	  Edges	  

l  Allow	  "undirected"	  edges	  between	  virtual	  nodes	  
l  More	  complicated	  seman5cs	  than	  "directed"	  edges	  

l  Can	  have	  tremendous	  benefits	  for	  dense	  graphs	  
l  Limited	  applicability	  
l  Difficult	  to	  work	  with,	  and	  guarantee	  correctness	  



4.	  Deduplica5on	  using	  Bitmaps	  
l  Use	  "bitmaps"	  at	  virtual	  nodes	  to	  remove	  duplicate	  paths	  

l  Iterators	  use	  this	  bitmaps	  to	  return	  neighbors	  without	  duplica5on	  
l  Typically	  uses	  less	  memory	  than	  DEDUP-‐1	  

l  At	  the	  expense	  of	  higher	  itera5on	  overhead	  and	  lower	  portability	  
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4.	  Deduplica5on	  using	  Bitmaps	  
l  Use	  "bitmaps"	  at	  virtual	  nodes	  to	  remove	  duplicate	  paths	  

l  Iterators	  use	  this	  bitmaps	  to	  return	  neighbors	  without	  duplica5on	  
l  Typically	  uses	  less	  memory	  than	  DEDUP-‐1	  

l  At	  the	  expense	  of	  higher	  itera5on	  overhead	  and	  lower	  portability	  
l  Works	  with	  mul5-‐layered	  representa5ons	  too	  
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4.	  Deduplica5on	  using	  Bitmaps	  
l  Use	  "bitmaps"	  at	  virtual	  nodes	  to	  remove	  duplicate	  paths	  

l  Iterators	  use	  this	  bitmaps	  to	  return	  neighbors	  without	  duplica5on	  
l  Typically	  uses	  less	  memory	  than	  DEDUP-‐1	  

l  At	  the	  expense	  of	  higher	  itera5on	  overhead	  and	  lower	  portability	  
l  Works	  with	  mul5-‐layered	  representa5ons	  too	  

l  Some	  tricks	  required	  to	  keep	  memory	  footprint	  low	  

l  Preprocessing	  step	  to	  set	  the	  bitmaps	  
l  Turns	  out	  to	  be	  NP-‐Hard	  to	  do	  op5mally,	  even	  for	  single-‐layer	  graphs	  
l  Non-‐trivial	  to	  parallelize	  to	  exploit	  mul5ple	  cores	  



Outline	  
l  DataHub:	  A	  pla)orm	  for	  collabora5ve	  data	  science	  

	  

l  GraphGen:	  Graph	  Analy5cs	  on	  Rela5onal	  Databases	  

l  Mo5va5on	  

l  System	  Overview	  	  

l  Condensed	  Representa5ons	  for	  Large	  Graphs	  

l  Experiments	  

	  

	  
These slides at: http://go.umd.edu/w.pdf 



In-‐memory	  Graph	  Sizes	  

Start to see significant differences even with small datasets 
Both DEDUP1 or Bitmaps-based approaches work well 

Figure 10: Comparing the in-memory graph sizes for different
datasets; the bottom (lighter) bars show the number of nodes.

in Section 6.2.
Figure 10 shows how the different algorithms fare against each

other. For each algorithm and each dataset, we report the total
number of nodes and edges, and also show the breakdown between
them; the algorithm used for DEDUP-1 was Greedy Virtual Nodes
First, described in Section 5.2.1. When the average degree of vir-
tual nodes is small and there is a large number of virtual nodes (as
is the case with DBLP and Synthetic_1), we observe that there is
a relatively small difference in the size of the condensed and ex-
panded graphs, and deduplication (DEDUP1 and DEDUP2) actu-
ally results in an even smaller footprint graph.

On the other hand, the IMDB dataset shows a 8-fold difference
in size between EXP and C-DUP and over a 5-fold difference with
all other representations. Synthetic_2 portrays the amount of com-
pression possible in graphs with very large, overlapping cliques.
The BMP representations prevail here as well; however this dataset
also shows how the DEDUP2 representation can be significantly
more compact than DEDUP1, while maintaining its natural, more
portable structure compared to the BMP representations. As we
can see, VMiner not only requires expanding the graph first, but
also generally finds a much worse representation than DEDUP-1.
This corroborates our hypothesis that working directly with the im-
plicit representation of the graph results in better compression.

We also measured actual memory footprints for the same datasets,
which largely track the relative performance shown here, with one
major difference being that BMP representations perform a little
worse because of the extra space required for storing the bitmaps.
Those results can be found in the extended version of the paper. We
report memory footprints for larger datasets in Section 6.2.

6.1.2 Graph Algorithms Performance
Figure 11 shows the results of running 3 different graph algo-

rithms on the different in-memory representations. We compared

(a) DBLP (b) Synthetic_1
Figure 11: Performance of Graph Algorithms on Each Representa-
tion for two datasets (vertical red line represents EXP)

the performance of Degree calculation, Breadth First Search (BFS)
starting from a single node, as well as PageRank on the entire
graph. Again, the results shown are normalized to the values for
the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API.
Again, the BFS results are the mean of runs on a specific set of 50
randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs.

We also ran a comprehensive set of microbenchmarks comparing
the performance of the basic graph operations against the different
representations. Those results can be found in Appendix C, and as
can be seen there, BFS and PageRank both follow the trends of the
micro-benchmarks in terms of differences between representations.

For IMDB and Synthetic_2, both of which yield very large ex-
panded graphs, we observed little to no overhead in real world
performance compared to EXP when actually running algorithms
on top of these representations, especially when it comes to the
BITMAP and DEDUP1 representations (we omit these graphs).
DBLP and Synthetic_1 datasets portray a large gap in performance
compared to EXP; this is because these datasets consist of a large
number of small virtual nodes, thus increasing the average number
of virtual nodes that need to be iterated over for a single calculation.
This is also the reason why DEDUP1 and BITMAP2 typically per-
form better; they feature a smaller number of virtual neighbors per
real node than representations like C-DUP and BMP1, and some-
times DEDUP2 as well.

(a) (b)
Figure 12: Deduplication Performance Results (a) Deduplication
time comparison between algorithms. Random (RAND) vertex or-
dering was used where applicable, (b) Small variations caused by
node ordering in deduplication

6.1.3 Comparing Deduplication Algorithms
Figure 12a shows the running times for the different deduplica-

tion algorithms (on a log-scale). As expected, BITMAP-1 is the
fastest of the algorithms, whereas the DEDUP-1 and DEDUP-2 al-
gorithms take significantly more time. We note however that dedu-
plication is a one-time cost, and the overhead of doing so may be
acceptable in many cases, especially if the extracted graph is serial-
ized and repeatedly analyzed over a period of time. Finally, Figure
12b shows how the performance of the various algorithms varies
depending on the processing order. We did not observe any no-
ticeable differences or patterns in this performance across various
datasets, and recommend using the random ordering for robustness.

6.2 Large Datasets
To reason about the practicality and scalability of HIGRAPH, we

evaluated its performance on a series of datasets that yielded larger
and denser graphs (Table 3). Datasets Layered_1 and Layered_2
are synthetically generated multi-layer condensed graphs, while
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Impact	  on	  Performance	  (a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 12: Microbenchmarks for each representation

(a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 13: Performance of Graph Algorithms on Each Representation

extra hop is required for obtaining all real neighbors of a vertex.
DEDUP1 is typically more performant than the BITMAP represen-
tations in datasets where there is a large amount of small cliques.

In terms of the EXISTSEDGE() operation, we have included aux-
iliary indices in both virtual and real vertices, which allow for rapid
checks on whether a logical edge exists between two real nodes.
Latency in this operation is relative to the total number of vir-
tual nodes, the indexes of which need to be checked. The RE-
MOVEVERTEX() operation is actually more efficient on the CDUP,
DEDUP1 and DEDUP2 representations than EXP. In order for a
vertex to be removed from the graph, explicit removal of all of its
edges is required. In representations like DEDUP1 and DEDUP2,
that employ virtual nodes, we need to remove a smaller number of
edges on average in the removal process. DEDUP2 is most interest-
ing here because a real node is always connected to only 1 virtual
node, therefore the removal cost is constant.

Graph Algorithms Performance: While micro-benchmarks are
definitely informative, the end performance of running actual algo-
rithms on top of these representations is also something that needs
to be explored. Figure 12 shows the results of running 3 differ-
ent graph algorithms on the different in-memory representations.
We compared the performance of Degree calculation, Breadth First
Search starting from a single node, as well as PageRank on the en-
tire graph. Again, the results shown are normalized to the values
for the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API
to operate directly on top of each of the representations. Again, the
Breadth first search results are the mean of runs on a specific set of
50 randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs. As we can see, BFS and
PageRank both follow the trends of the micro-benchmarks in terms
of differences in performance between representations.

For datasets like IMDB and Synthetic 2 that yield very large ex-
panded graphs, we observe that there is little to no overhead in real
world performance compared to EXP when actually running algo-
rithms on top of these representations, especially when it comes
to the BITMAP and DEDUP1 representations. On the flip side,

the DBLP and Synthetic 1 datasets portray a large gap in perfor-
mance compared to EXP. The reason for this gap is the fact that
these datasets consist of a large number of small virtual nodes, thus
increasing the average number of virtual nodes that need to be it-
erated over for a single calculation. This is also the reason why
DEDUP1 and BITMAP2 typically perform better; they feature a
smaller number of virtual neighbors per real node than representa-
tions like C-DUP and BMP1, and sometimes DEDUP2 as well.

6.3 Comparing De-duplication Algorithms
Finally, we compare the various de-duplication algorithms pre-

sented in Section 5. Figure 13a compares the number of edges
in the resulting graph after running the different de-duplication al-
gorithms. As we can see, the differences between the different
DEDUP-1 algorithms are largely minor, with the Virtual Nodes
First Greedy algorithm having a slight edge on most datasets. The
comparisons across different representations mirror the relative mem-
ory footprint performance (Figure 10), with the main difference be-
ing the overheads associating with bitmaps in BITMAP represen-
tations that are not counted here.

Figure 13b shows the running times for the different algorithms
(on a log-scale). As expected, BITMAP-1 is the fastest of the al-
gorithms, whereas the DEDUP-1 and DEDUP-2 algorithms take
significantly more time. We note however that de-duplication is a
one-time cost, and the overhead of doing so may be acceptable in
many cases, especially if the extracted graph is serialized and re-
peatedly analyzed over a period of time. Finally, Figure 13c shows
how the performance of the various algorithms varies depending on
the processing order. We did not observe any noticeable differences
or patterns in this performance, and recommend using the random
ordering for robustness.

7. CONCLUSION
In this paper, we presented GRAPHGEN, a system that enables

users to analyze the implicit interconnection structures between en-
tities in normalized relational databases, without the need to ex-
tract the graph structure and load it into specialized graph engines.
GRAPHGEN can interoperate with a variety of graph analysis li-
braries and supports a standard graph API, breaking down the barri-
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Generally acceptable performance hit, with DEDUP1 doing the best  
(at a significantly higher preprocessing cost) 



Large	  Datasets	  

CDUP BMP-DEDUP EXP 
Syn-1 1.421  2.737 >64 
Syn-2 1.613 2.258 19.798 
Syn-3 1.276 1.493 1.2 
Syn-4 9.9 13.042 >64 
TPC-H .023 .049 7.398 

CDUP BMP-DEDUP EXP 
Syn-1 382 284 DNF 
Syn-2 129 111 85 
Syn-3 0.01 0.02 0.01 
Syn-4 1.3 0.12 DNF 
TPC-H 86 8.5 16 

Memory Footprint (GB) 

Time to run Breadth First Search (seconds) 



l  Need	  to	  support	  graph	  analy5cs	  on	  RDBMSs	  in	  situ	  
l  GraphGen	  provides	  a	  declara5ve	  DSL	  and	  a	  suite	  of	  
op5miza5ons	  for	  achieving	  this	  

l  Many	  computa5onal	  challenges	  that	  we	  are	  just	  
beginning	  to	  explore	  

l  Working	  on	  extending	  the	  DSL	  to	  support	  specifying	  
par5al	  graph	  computa5ons	  
l  Can	  push	  more	  computa5on	  into	  the	  RDBMS	  

l  Star5ng	  to	  look	  at	  doing	  this	  in	  place	  on	  an	  in-‐memory	  
database	  

GraphGen:	  Summary	  



Thanks	  !!	  
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