
Scalable	
 Pla)orms	
 for	
 Graph	
 Analy5cs	
 and	

Collabora5ve	
 Data	
 Science	

Amol	
 Deshpande	

	

Department	
 of	
 Computer	
 Science	
 and	
 UMIACS	

University	
 of	
 Maryland	
 at	
 College	
 Park	

Joint work with many students and
collaborators These slides at: http://go.umd.edu/w.pdf

Outline	

l  DataHub:	
 A	
 pla)orm	
 for	
 collabora5ve	
 data	
 science	

	

l  GraphGen:	
 Graph	
 Analy5cs	
 on	
 Rela5onal	
 Databases	

l  Mo5va5on	

l  System	
 Overview	
 	

l  Condensed	
 Representa5ons	
 for	
 Large	
 Graphs	

l  Experiments	

	

	

	

These slides at: http://go.umd.edu/w.pdf

Collabora5ve	
 Data	
 Science	

l  Widespread	
 use	
 of	
 “data	
 science”	
 in	
 many	
 many	
 domains	

A typical data analysis workflow

1000s of
datasets

Many steps across many users

Collabora5ve	
 Data	
 Science	

l  Widespread	
 use	
 of	
 “data	
 science”	
 in	
 many	
 many	
 domains	

l  Increasingly	
 the	
 “pain	
 point”	
 is	
 managing	
 the	
 process,	

especially	
 during	
 collabora5ve	
 analysis	

l  Many	
 private	
 copies	
 of	
 the	
 datasets	
 è	
 Massive	
 redundancy	
 	

l  No	
 easy	
 way	
 to	
 keep	
 track	
 of	
 dependencies	
 between	
 datasets	

l  Manual	
 interven5on	
 needed	
 for	
 resolving	
 conflicts	

l  No	
 efficient	
 organiza5on	
 or	
 management	
 of	
 datasets	

l  No	
 easy	
 way	
 to	
 do	
 “provenance”,	
 i.e.,	
 find	
 reasons	
 for	
 an	
 ac5on	

l  No	
 way	
 to	
 analyze/compare/query	
 versions	
 of	
 a	
 dataset	

l  Ad	
 hoc	
 data	
 management	
 systems	
 (e.g.,	
 Dropbox)	
 used	

l  Much	
 of	
 the	
 data	
 is	
 unstructured	
 so	
 typically	
 can’t	
 use	
 DBs	

l  Scien5sts/researchers/analysts	
 are	
 preYy	
 much	
 on	
 their	
 own	

Model	
 Lifecycle	
 Management	

l  “Models”	
 are	
 an	
 integral	
 part	
 of	
 data	
 science	

l  Tradi5onal	
 simple	
 models	
 à	
 today’s	
 complex	
 BIG	
 models	

Often packaged together with results

Challenges	

l  What	
 parameter	
 did	
 we	
 use	
 to	
 get	
 the	
 precision?	

l  How	
 do	
 I	
 know	
 which	
 data	
 corresponds	
 to	
 which	
 model?	

l  e.g.,	
 IPython	
 notebooks	
 don’t	
 usually	
 keep	
 the	
 “data”	

l  How	
 to	
 compare	
 different	
 “pipelines”,	
 iden5fy	
 bugs	

l  Issues	
 during	
 deployment	

l  Monitor	
 model	
 performance,	
 detect	
 problems	
 or	
 anomalies,	
 etc.	

l  Focus	
 of	
 most	
 current	
 work	
 on	
 scalability,	
 training,	
 etc.	

l  Cri5cal	
 history	
 is	
 transient	
 and	
 not	
 captured	

ModelHub: Lifecycle Management for Deep Learning

Hui Miao, Ang Li, Larry S. Davis, Amol Deshpande
University of Maryland, College Park, MD, USA

{hui, angli, lsd, amol}@cs.umd.edu

ABSTRACT
Deep learning has improved state-of-the-art results in many impor-
tant fields, and has been the subject of much research in recent
years, leading to the development of several systems for facili-
tating deep learning. Current systems, however, mainly focus on
model building and training phases, while the issues of data man-
agement, model sharing, and lifecycle management are largely ig-
nored. Deep learning modeling lifecycle contains a rich set of arti-
facts, such as learned parameters and training logs, and frequently
conducted tasks, e.g., to understand the model behaviors and to try
out new models. Dealing with such artifacts and tasks is cumber-
some and left to the users. To address these issues in a comprehen-
sive manner, we propose ModelHub, which includes a novel model
versioning system (dlv); a domain specific language for searching
through model space (DQL); and a hosted service (ModelHub) to
store developed models, explore existing models, enumerate new
models and share models with others.

This paper presents the design of such a lifecycle management
system. First, we generalize model exploration and model enumer-
ation queries from commonly conducted tasks by computer vision
community modelers, and propose a high-level domain specific
language (DSL) to raise the abstraction level aiming at accelerating
the modeling process. To help modeler understand models better,
we also propose two novel model-comparison schemes and related
algorithms. Second, to manage the lifecycle artifacts, especially the
large amount of checkpointed float learned parameters, we exploit
the workloads and design a read-optimized parameter archival stor-
age system (PAS) that minimizes storage footprint and accelerates
query workloads without losing accuracy. PAS archives versioned
models using deltas and our design is featured with chunked bit-
block floating number and a novel progressive model evaluation
query implementation. We further show archiving versioned mod-
els using deltas is a new type of dataset versioning problem and
develop e�cient algorithms for solving it. We conduct extensive
experiments to show the e�ciency of proposed techniques.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 43rd International Conference on Very Large Data Bases,
August 2017, Munich, Germany.
Proceedings of the VLDB Endowment, Vol. 10, No. X
Copyright 2017 VLDB Endowment 2150-8097/11/11... $ 10.00.

Create
/Update
Model

Reference
Models

Train
/Test

Model

Evaluate
Model

Data &
Labels

if accuracy is unsatisfactory, repeat

Serve
Model

Figure 1: Deep Learning Modeling Lifecycle

Deep learning models (also called deep neural networks) have
dramatically improved state-of-the-art results for many important
reasoning and learning tasks including speech recognition, object
recognition, and natural language processing in recent years [29].
Learned using massive amounts of training data, DNN models have
superior generalization capabilities, and the intermediate layers in
many deep learning models have been proven useful in providing
e↵ective semantic features that can be used with other learning
techniques and are applicable to other problems. However, there
are many critical large-scale data management issues in learning,
storing, sharing, and using deep learning models, which are largely
ignored by researchers today, but are coming to the forefront with
the increased use of deep learning in a variety of domains. In this
paper, we discuss some of those challenges in the context of the
modeling lifecycle, and propose a comprehensive system to address
them. Given the large scale of data involved (both training data and
the learned models themselves) and the increasing need for high-
level declarative abstractions, we argue that database researchers
should play a much larger role in this area. Although this paper
primarily focuses on deep neural networks, similar data manage-
ment challenges are seen in lifecycle management of others types
of ML models like logistic regression, XXX, etc.
DNN Modeling Lifecycle and Challenges: Compared with the tra-
ditional approach of feature engineering followed by model learn-
ing [39], deep learning is an end-to-end learning approach, i.e., the
features are not given by a human but learned in an automatic man-
ner from the input data. Moreover, the features are complex and
have a hierarchy along with the network representation. This re-
quires less domain expertise and experience from the modeler, but
understanding and explaining the learned models is di�cult; why
even well-studied models work so well is still a mystery and un-
der active research. Thus, when developing new models, chang-
ing the learned model (especially its network structure and hyper-
parameters) becomes an empirical search task.

In Fig. 1, we show a typical deep learning modeling lifecycle
(we present an overview of deep neural networks in the next sec-
tion). Given a prediction task, a modeler often starts from well-
known models which have been successful in similar task domains;
she then specifies input training data and output loss functions,
and repeatedly adjusts the DNN on operators and connections like

1

DataHub:	
 A	
 Collabora5ve	
 Data	
 Science	
 Pla)orm	

• 	
 a	
 dataset	
 management	
 system	
 –	

import,	
 search,	
 query,	
 analyze	
 a	
 large	

number	
 of	
 (public)	
 datasets	

• 	
 a	
 dataset	
 version	
 control	
 system	
 –
branch,	
 update,	
 merge,	
 transform	
 large	

structured	
 or	
 unstructured	
 datasets	

• 	
 a	
 provenance	
 database	
 system	
 –	

capture	
 provenance	
 &	
 other	
 metadata,	

and	
 support	
 analysis/introspec5on	

• 	
 an	
 app	
 ecosystem	
 and	
 hooks	
 for	

external	
 applica5ons	
 (Matlab,	
 R,	

iPython	
 Notebook,	
 etc)	
 DataHub	
 Architecture	

Versioned Datasets,
Version Graphs,

Indexes, Provenance

Dataset Versioning Manager

I: Versioning API and Version Browser

ingest vizualize etc.
Client

Applications

DataHub: A Collaborative Data Analytics Platform

II: Native App Ecosystem

query
builder

III: Language Agnostic Hooks

DataHub
Notebook

Joint work with:
 Sam Madden (MIT)
 Aditya Parameswaran (UIUC)

  No, because they typically use fairly simple algorithms

and are optimized to work for code-like data

100 versions

LF Dataset (Real World)
#Versions = 100
Avg. version size = 423 MB

gzip	
 =	
 10.2	
 GB	

svn	
 =	
 8.5	
 GB	

git	
 =	
 202	
 MB	

*this	
 =	
 159	
 MB	

Can	
 we	
 use	
 Version	
 Control	
 Systems	
 (e.g.,	
 Git)?	

  No, because they typically use fairly simple algorithms

and are optimized to work for code-like data
Git ends up using large amounts of RAM for large files

DON’T!

Use extensions*

Can	
 we	
 use	
 Version	
 Control	
 Systems	
 (e.g.,	
 Git)?	

  No support for capturing rich metadata about the

datasets and/or provenance information

  Primitive querying and retrieval functionalities

  No way to specify queries like:

•  identify all predecessor versions of version A that differ from it
by a large number of records

•  rank a set of versions according to a scoring function
•  find the version where the result of an aggregate query is

above a threshold
•  explain why the results of two similar pipelines are different
•  identify the source of an error

Can	
 we	
 use	
 Version	
 Control	
 Systems	
 (e.g.,	
 Git)?	

Version	

Control	
 	

Provenance	

Management	

Collabora5ve	

Data	
 Science	

o  Temporal	
 databases	
 are	
 restricted	
 to	
 managing	
 a	
 linear	

chain	
 of	
 versions	
 of	
 rela5onal	
 data	

o  Recent	
 work	
 in	
 scien5fic	
 databases	
 	

o  Op5mized	
 for	
 array-­‐like	
 data	

o  Also	
 largely	
 a	
 linear	
 chain	
 of	
 versions	

o  “Deduplica5on”	
 strategies	
 in	
 storage	
 systems	

o  Chunk	
 files	
 into	
 blocks	
 and	
 store	
 unique	
 blocks	

o  Works	
 well	
 if	
 changes	
 are	
 localized	

o  Focus	
 primarily	
 on	
 archival	
 storage	
 minimiza5on,	
 ignore	

recrea5on	
 costs	

o  Metadata/Provenance	
 management	
 systems	

o  Much	
 work,	
 but	
 insufficient	
 adop5on	
 as	
 yet	

Other	
 Related	
 Work	

Summary	
 of	
 Ongoing	
 Work	

l  Exploit	
 overlap	
 to	
 reduce	
 storage	
 [VLDB’15,VLDB’16,*,*]	

l  …	
 while	
 keeping	
 retrieval	
 costs	
 low	

l  …	
 for	
 different	
 types	
 of	
 data	
 (unstructured	
 files,	
 rela5onal	
 data,	

documents,	
 and	
 large	
 NN	
 models)	

l  System	
 for	
 managing	
 and	
 querying	
 versioning	
 and	

provenance	
 informa5on	
 [TaPP’15,	
 *]	

l  …	
 along	
 with	
 mechanisms	
 to	
 easily	
 capture	
 provenance	

l  Prototype	
 command-­‐line-­‐based	
 provenance	
 inges5on	
 system,	

built	
 on	
 top	
 of	
 “git”	
 and	
 “Neo4j”	

l  A	
 ver5cal	
 for	
 lifecycle	
 management	
 of	
 deep	
 learning	

models	
 [*]	

	

Outline	

l  DataHub:	
 A	
 pla)orm	
 for	
 collabora5ve	
 data	
 science	

	

l  GraphGen:	
 Graph	
 Analy5cs	
 on	
 Rela5onal	
 Databases	

l  Mo5va5on	

l  System	
 Overview	
 	

l  Condensed	
 Representa5ons	
 for	
 Large	
 Graphs	

l  Experiments	

	

	

These slides at: http://go.umd.edu/w.pdf

l  Increasing	
 interest	
 in	
 querying	
 and	
 reasoning	
 about	
 the	
 underlying	

graph	
 (network)	
 structure	
 in	
 a	
 variety	
 of	
 disciplines	

Graph	
 Data	

A protein-protein interaction
network

Social networks

Financial transaction
networks

Stock Trading Networks

Federal funds networks

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;
HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8

*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;
SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-

X/$6&.Y ,%15 <CD /1 <FGH;

17
ECB

Working Paper Series No 986
December 2008

Communication networks

Disease transmission
networks

World Wide Web

Knowledge Graph

Citation networks

526 The European Physical Journal B

Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.

10
0

10
1

10
2

10
−2

10
−1

10
0

k

P
(>

k)

cumulative degree distributions

(a)

daily
monthly
yearly

10
0

10
1

10
2

10
−2

10
−1

10
0

k

c(
k)

clustering coefficients as functions of degree

(b)

daily
monthly
yearly

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

k

k nn
(k

)

average nearest neighbour degree

(c)

daily
monthly
yearly

Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j)Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

Wide	
 Variety	
 in	
 Graph	
 Queries/Analy5cs	

A protein-protein interaction
network

Social networks

Financial transaction
networks

Federal funds
networks

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;
HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8

*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;
SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-

X/$6&.Y ,%15 <CD /1 <FGH;

17
ECB

Working Paper Series No 986
December 2008

Communication networks

Disease transmission
networks

Knowledge Graph

Citation networks

526 The European Physical Journal B

Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.

10
0

10
1

10
2

10
−2

10
−1

10
0

k

P(
>k

)

cumulative degree distributions

(a)

daily
monthly
yearly

10
0

10
1

10
2

10
−2

10
−1

10
0

k

c(
k)

clustering coefficients as functions of degree

(b)

daily
monthly
yearly

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

k

k nn
(k

)

average nearest neighbour degree

(c)

daily
monthly
yearly

Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j)Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

Stock Trading Networks

World Wide Web

Different types of “queries”
Subgraph pattern matching;
Reachability; Shortest path;
Keyword search; Historical or
Temporal queries…

Continuous “queries” and Real-
time analytics
Online prediction; Monitoring;
Anomaly/Event detection

Batch analysis tasks
Centrality analysis; Community
detection; Network evolution;
Network measurements; Graph
cleaning/inference

Machine learning tasks
Many algorithms can be seen
as message passing in
specially constructed graphs

l  Graph	
 analy5cs/network	
 science	
 tasks	
 too	
 varied	

l  Hard	
 to	
 build	
 general	
 systems	
 like	
 RDBs/Hadoop/Spark	

l  What	
 is	
 a	
 good	
 abstrac5on	
 to	
 provide?	
 	

l  MapReduce?	
 Vertex-­‐centric	
 frameworks?	
 BSP?	

l  Popular	
 graph	
 languages	
 (SPARQL,	
 Cypher)	
 equivalent	
 to	
 SQL	

l  No	
 clear	
 winners	
 or	
 widely	
 used	
 systems	

l  Applica5on	
 developers	
 largely	
 doing	
 their	
 own	
 thing	

l  Fragmented	
 research	
 topic	
 with	
 liYle	
 consensus	

l  Specialized	
 graph	
 databases	
 (Neo4j),	
 RDF	
 Databases	
 	

l  Distributed	
 batch	
 systems	
 (GraphX,	
 Giraph),	
 HPC	
 Single-­‐
memory	
 Engines	
 (Ligra,	
 GreenMarl,	
 X-­‐Stream)	

l  Many	
 specialized	
 indexes,	
 prototypes…	

Graph	
 Data	
 Management:	
 State	
 of	
 the	
 Art	

l  Goal:	
 A	
 complete,	
 func5on-­‐rich	
 system	
 with	
 unified	

declara5ve	
 abstrac5ons	
 for	
 graph	
 queries	
 and	
 analy5cs	

l  Declara5ve	
 cleaning	
 of	
 noisy	
 and	
 imperfect	
 graphs	
 through	
 link	

predic5on	
 and	
 en5ty	
 resolu5on	
 [GDM’11,	
 SIGMOD	
 Demo’13]	

l  Real-­‐5me	
 con5nuous	
 queries	
 and	
 anomaly	
 detec5on	
 over	

dynamic	
 graphs	
 [SIGMOD’12,	
 ESNAM’14,	
 SIGMOD’14,	
 DEB’16]	

l  Historical	
 graph	
 data	
 management	
 and	
 temporal	
 analy5cs	

[ICDE’13,	
 SIGMOD	
 Demo’13,EDBT’16]	

l  Subgraph	
 paYern	
 matching	
 and	
 coun5ng	
 [ICDE’12,	
 ICDE’14]	

l  GraphGen:	
 graph	
 analy5cs	
 over	
 rela5onal	
 data	
 [VLDB	
 Demo’15,	

SIGMOD’17]	

l  NScale:	
 a	
 distributed	
 analysis	
 framework	
 [VLDB	
 Demo’14,	

VLDBJ’15,NDA’16]	

What	
 we	
 are	
 doing 	
 	

l  Graph	
 data	
 management	
 systems	
 expect	
 and	
 manage	

graph-­‐structured	
 data,	
 i.e.,	
 lists	
 of	
 nodes	
 and	
 edges	
 	

l  Most	
 data	
 sits	
 in	
 RDBMSs	
 and	
 (increasingly)	
 NoSQL	
 stores	

l  Graphs	
 must	
 be	
 extracted	
 by	
 iden5fying	
 and	
 connec5ng	

en55es	
 across	
 the	
 database	

1.	
 Where’s	
 the	
 Data?	

1.	
 Example:	
 TPC-­‐H	

order_key	
 customer_key	

Orders	

o1	
 c1	

o2	
 c2	

o3	
 c3	

order_key	
 part_key	

LineItem	

o1	
 p1	

o1	
 p2	

o2	
 p1	
 c_key	
 p_key	

c1	
 p1	

c1	
 p2	

c3	
 p2	

c4	
 p1	

c6	
 p1	

Orders	
 	
 	
 	
 	
 LineItem	

o2	
 p3	

o3	
 p1	

o3	
 p2	

o3	
 p2	

c_key	
 name	

Customer	

On order_key

Which customer bought
which product?

On p_key

Which customers
bought the same item?

c1	
 c4	

cust1	
 cust2	

c1	
 c6	

c1	
 c3	

c1

c4	
 c6	

c4

c3 c6

1.	
 Example:	
 TPC-­‐H	

order_key	
 customer_key	

Orders	

o1	
 c1	

o2	
 c2	

o3	
 c3	

order_key	
 part_key	

LineItem	

o1	
 p1	

o1	
 p2	

o2	
 p1	
 c_key	
 p_key	

c1	
 p1	

c1	
 p2	

c3	
 p2	

c4	
 p1	

c6	
 p1	

Orders	
 	
 	
 	
 	
 LineItem	

o2	
 p3	

o3	
 p1	

o3	
 p2	

o3	
 p2	

c_key	
 name	

Customer	

On order_key
On p_key

Which customers
bought the same item?

c1	
 c4	

cust1	
 cust2	

c1	
 c6	

c1	
 c3	

c1

c4	
 c6	

c4

c3 c6

Edge weights based on
geographical distance

l  Graph	
 data	
 management	
 systems	
 expect	
 and	
 manage	

graph-­‐structured	
 data,	
 i.e.,	
 lists	
 of	
 nodes	
 and	
 edges	
 	

l  Most	
 data	
 sits	
 in	
 RDBMSs	
 and	
 (increasingly)	
 NoSQL	
 stores	

l  Graphs	
 must	
 be	
 extracted	
 by	
 iden5fying	
 and	
 connec5ng	

en55es	
 across	
 the	
 database	

l  Must	
 be	
 done	
 repeatedly	
 as	
 the	
 underlying	
 data	
 changes	

l  Tedious	
 and	
 5me-­‐consuming	

l  Also	
 desirable	
 to	
 avoid	
 having	
 to	
 use	
 another	
 data	

management	
 system	

1.	
 Where’s	
 the	
 Data?	

l  Efficiency	
 challenge:	
 Extracted	
 graphs	
 can	
 oqen	
 be	

orders-­‐of-­‐magnitude	
 larger	
 than	
 original	
 database	

l  Homogeneous	
 graphs	
 (over	
 the	
 same	
 set	
 of	
 en55es)	
 invariably	

require	
 at	
 least	
 one	
 self-­‐join	
 on	
 a	
 non-­‐key	

l  DBLP	
 Dataset:	
 8.6M	
 author-­‐publica5on	
 table	
 à	
 43M	
 edges	
 in	

the	
 co-­‐authorship	
 graph	

l  Connec5ng	
 authors	
 with	
 papers	
 at	
 the	
 same	
 conference	
 =	
 1.8	
 B	
 edges	

l  Even	
 if	
 the	
 final	
 graph	
 is	
 small,	
 database	
 query	
 op5mizers	

unable	
 to	
 op5mize	
 these	
 queries	
 well	

l  High	
 selec5vity	
 errors	

1.	
 Where’s	
 the	
 Data?	

l  Efficiency	
 challenge:	
 Extracted	
 graphs	
 can	
 oqen	
 be	

orders-­‐of-­‐magnitude	
 larger	
 than	
 original	
 database	

l  Homogeneous	
 graphs	
 (over	
 the	
 same	
 set	
 of	
 en55es)	
 invariably	

require	
 at	
 least	
 one	
 self-­‐join	
 on	
 a	
 non-­‐key	

l  DBLP	
 Dataset:	
 8.6M	
 author-­‐publica5on	
 table	
 à	
 43M	
 edges	
 in	

the	
 co-­‐authorship	
 graph	

l  Connec5ng	
 authors	
 with	
 papers	
 at	
 the	
 same	
 conference	
 =	
 1.8	
 B	
 edges	

l  Even	
 if	
 the	
 final	
 graph	
 is	
 small,	
 database	
 query	
 op5mizers	

unable	
 to	
 op5mize	
 these	
 queries	
 well	

l  High	
 selec5vity	
 errors	

1.	
 Where’s	
 the	
 Data?	

Graph Representation Edges Extraction Latency (s)
DBLP Condensed 17,147,302 105.552

Full Graph 86,190,578 > 1200.000
IMDB Condensed 8,437,792 108.647

Full Graph 33,066,098 687.223
TPCH Condensed 52,850 15.520

Full Graph 99,990,000 > 1200.000
UNIV Condensed 60,000 0.033

Full Graph 3,592,176 82.042
Table 1: Extracting graphs in HIGRAPH using our condensed rep-
resentation vs extracting the full graph. IMDB: Co-actors graph (on
a subset of data), DBLP: Co-authors graph, TPCH: Connect cus-
tomers who buy the same product, UNIV: Connect students who
have taken the same course (synthetic, from http://db-book.com)

graphs from a relational database1, and execute graph analysis tasks
or algorithms over them in memory. HIGRAPH supports an expres-
sive Domain Specific Language (DSL), based on Datalog [3], al-
lowing users to specify a single graph or a collection of graphs to be
extracted from the relational database (in essence, as views on the
database tables). HIGRAPH uses a translation layer to generate the
appropriate SQL queries to be issued to the database, and creates
an efficient in-memory representation of the graph that is handed
off to the user program or analytics task. HIGRAPH supports a
general-purpose Java Graph API as well as the standard vertex-
centric API for specifying analysis tasks like PageRank. Figure 1
shows a toy DBLP-like dataset, and the query that specifies a “co-
authors” graph to be constructed on that dataset. Figure 1c shows
the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in ana-
lyzing may be too large to extract and represent in memory, even
if the underlying relational data is small. There is a space explo-
sion because of the types of high-output2 joins that are often needed
when constructing these graphs. Table 1 shows several examples of
this phenomenon. On the DBLP dataset restricted to journals and
conferences, there are approximately 1.6 million authors, 3 million
publications, and 8.6 million author-publication relationships; the
co-authors graph on that dataset contained 86 million edges, and re-
quired more than half an hour to extract on a laptop. The condensed
representation that we advocate in this paper is much more efficient
both in terms of the memory requirements and the extraction times.
The DBLP dataset is, in some sense, a best-case scenario since
the average number of authors per publication is relatively small.
Constructing the co-actors graph from the IMDB dataset results in
a similar space explosion. Constructing a graph connecting pairs
of customers who bought the same item in a small TPCH dataset
results in much larger graph than the input dataset. Even on the
DBLP dataset, a graph that connects authors who have papers at
the same conference contains 1.8B edges, compared to 15M edges
in the condensed representation.

In this paper, we address the problem of analyzing such large
graphs by storing and operating upon them using a novel condensed
representation. The relational model already provides a natural
such condensed representation, obtained by omitting some of the
high-output joins from the query required for graph extraction. Fig-
ure 1(d) shows an example of such a condensed representation for
the co-authors graph, where we create explicit nodes for the pubs,
in addition to the nodes for the authors; for two authors, u and v,
there is an edge u ! v, iff there is a directed path from u to v in

1Although HIGRAPH (name anonymized for submission) currently only
supports PostgreSQL, it requires only basic SQL support from the underly-
ing storage engine, and could simply scan the tables if needed.
2We use this term instead of “selectivity" terms to avoid confusion.

Figure 1: Key concepts of HIGRAPH. (Note: the author nodes here
are being shown twice for the sake of simplicity, they are not being
stored twice)
this representation. This representation generalizes the idea of us-
ing cliques and bicliques for graph compression [6, 16]; however,
the key challenge for us is not generating the representation, but
rather dealing with duplicate paths between two nodes.

In Figure 1, we can see such a duplication for the edge a1 ! a4
since they are connected through both p1 and p2 . Such dupli-
cation prevents us from operating on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• A general framework for extracting a condensed representa-

tion (with duplicates) for a large class of extraction queries
over arbitrary relational schemas.

• A suite of in-memory representations to handle the duplication
in the condensed representation.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• The first end-to-end system for enabling analytics on graphs

that exist within purely relational datasets, efficiently, and with-
out requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of HIGRAPH, briefly
describe the graph extraction DSL, and discuss how HIGRAPH de-
cides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

l  En55es	
 can	
 be	
 connected	
 in	
 a	
 variety	
 of	
 different	
 ways	

l  Add	
 an	
 edge	
 if	
 customers	
 bought	
 the	
 same	
 item,	
 or	
 at	
 least	
 5	

same	
 items,	
 or	
 bought	
 items	
 on	
 the	
 same	
 day	
 in	
 the	
 same	
 store	

l  Create	
 a	
 part-­‐supplier	
 bipar5te	
 graph	
 by	
 connec5ng	
 suppliers	

who	
 apply	
 a	
 part	
 in	
 sufficient	
 quan5ty	

2.	
 Which	
 “Graphs”	
 to	
 Analyze?	

Identifying interesting
connections itself
a difficult question

l  En55es	
 can	
 be	
 connected	
 in	
 a	
 variety	
 of	
 different	
 ways	

l  Add	
 an	
 edge	
 if	
 customers	
 bought	
 the	
 same	
 item,	
 or	
 at	
 least	
 5	

same	
 items,	
 or	
 bought	
 items	
 on	
 the	
 same	
 day	
 in	
 the	
 same	
 store	

l  Create	
 a	
 part-­‐supplier	
 bipar5te	
 graph	
 by	
 connec5ng	
 suppliers	

who	
 apply	
 a	
 part	
 in	
 sufficient	
 quan5ty	

l  Oqen	
 need	
 to	
 simultaneously	
 analyze	
 mul5ple	
 graphs	

l  Compare	
 a	
 graph	
 on	
 products	
 today	
 vs	
 yesterday	

l  Plot	
 how	
 supplier	
 centrality	
 (e.g.,	
 PageRank)	
 evolved	
 over	
 5me	

l  Must	
 exploit	
 overlap,	
 and	
 reduce	
 redundant	
 computa5on	

2.	
 Which	
 “Graphs”	
 to	
 Analyze?	

l  “Vertex-­‐centric	
 framework”	
 the	
 most	
 popular	
 today	

l  GraphLab,	
 Apache	
 Giraph,	
 GraphX,	
 X-­‐Stream,	
 Grail,	
 Vertexica,	
 …	

l  Most	
 of	
 the	
 research,	
 especially	
 in	
 databases,	
 focuses	
 on	
 it	

l  “Think	
 like	
 a	
 vertex”	
 paradigm	

l  User	
 provides	
 a	
 compute()	
 func5on	
 that	
 operates	
 on	
 a	
 vertex	

l  Executed	
 in	
 parallel	
 on	
 all	
 ver5ces	
 in	
 an	
 itera5ve	
 fashion	

l  Exchange	
 informa5on	
 at	
 a	
 barrier	
 through	
 message	
 passing	

3.	
 Graph	
 Programming	
 Frameworks	

l  Limita5ons	
 of	
 the	
 vertex-­‐centric	
 frameworks	

l  Works	
 well	
 for	
 some	
 applica5ons	

l  Pagerank,	
 Connected	
 Components,	
 Some	
 ML	
 algorithms,	
 …	

l  However,	
 the	
 framework	
 is	
 very	
 restric5ve	

l  Simple	
 tasks	
 like	
 coun5ng	
 neighborhood	
 stats	
 infeasible	

l  Fundamentally:	
 Not	
 easy	
 to	
 decompose	
 analysis	
 tasks	
 into	

vertex-­‐level,	
 independent	
 local	
 computa5ons	

l  Alterna5ves?	

l  Galois,	
 Ligra,	
 GreenMarl:	
 Low-­‐level	
 APIs,	
 and	
 hard	
 to	
 parallelize	

l  Some	
 others	
 (e.g.,	
 Socialite)	
 restric5ve	
 for	
 different	
 reasons	

3.	
 Graph	
 Programming	
 Frameworks	

3.	
 Example:	
 Local	
 Clustering	
 Coefficient	

1

2

4

3

Measures density around a node
Compute() at Node n:

Need to count the no. of edges between
But does not have access to that information
Option 1: Each node transmits its list of
neighbors to its neighbors
 Huge memory consumption
Option 2: Allow access to neighbors’ state

Neighbors may not be local
What about computations that require 2-
hop information?

neighbors

3.	
 Aside:	
 NScale	
 Distributed	
 Framework	

Local Clustering Coefficient
Dataset NScale Giraph GraphLab GraphX

CE (Node-
Secs)

Cluster
Mem
(GB)

CE (Node-
Secs)

Cluster
Mem (GB)

CE (Node-
Secs)

Cluster
Mem (GB)

CE (Node-
Secs)

Cluster
Mem (GB)

WikiTalk 726 24.16 DNC OOM 1125 37.22 1860 32.00

LiveJournal 1800 50.00 DNC OOM 5500 128.62 4515 84.00

Orkut 2000 62.00 DNC OOM DNC OOM 20175 125.00

•  An	
 end-­‐to-­‐end,	
 subgraph-­‐centric	
 distributed	

graph	
 analy5cs	
 framework	
 (built	
 on	
 Spark)	

•  Users/applica5on	
 programs	
 specify:	
 	

•  Neighborhoods	
 or	
 subgraphs	
 of	
 interest	

•  A	
 kernel	
 compute()	
 to	
 operate	
 on	
 those	
 subgraphs	

•  Framework:	

•  Extracts	
 the	
 relevant	
 subgraphs	
 from	
 underlying	

data	
 and	
 loads	
 in	
 memory	

•  Execu5on	
 engine:	
 Executes	
 user	
 computa5on	
 on	

materialized	
 subgraphs	

Outline	

l  DataHub:	
 A	
 pla)orm	
 for	
 collabora5ve	
 data	
 science	

	

l  GraphGen:	
 Graph	
 Analy5cs	
 on	
 Rela5onal	
 Databases	

l  Mo5va5on	

l  System	
 Overview	
 	

l  Condensed	
 Representa5ons	
 for	
 Large	
 Graphs	

l  Experiments	

	

	

These slides at: http://go.umd.edu/w.pdf

GraphGen	
 Architecture	

Vertexica/GRAIL/SQLGraph	
 vs	
 GraphGen	

Fundamentally different goals

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Nodes Edges

A relational database

Graph analytics/query

SQL Translation
Layer

Ingest/Shredding

Props, ..

We aim to push computation into RDBMS
if possible, but expressive programming
framework is a higher priority

Results

A relational database

Graph Definition
+

Graph Analytics/query

In-memory Graph
Execution Engine

Graph Object
+

Execution results

Extraction
Queries Results

GraphGen	
 Graph	
 Extrac5on	
 DSL	

l  Based	
 on	
 non-­‐recursive	
 Datalog	

l  Extended	
 with	
 Aggrega5on	
 and	
 Looping	
 constructs	

l  User	
 needs	
 to	
 specify:	

l  How	
 the	
 nodes	
 and	
 edges	
 are	
 defined	

l  Both	
 effec5vely	
 “views”	
 over	
 the	
 rela5onal	
 data	

l  Allows	
 for	
 homogeneous	
 and	
 heterogeneous	
 graphs	

1.  Construct customer-customer graph if they bought the same
product (TPC-H)

Nodes(ID,	
 Name)	
 :-­‐	
 Customer(ID,	
 Name).	

Edges(ID1,	
 ID2)	
 :-­‐	
 	

Orders(o_key1,	
 ID1),	
 LineItem(o_key1,	
 part_key),	

Orders(o_key2,	
 ID2),	
 LineItem(o_key2,	
 part_key).	

	

GraphGen	
 Graph	
 Extrac5on	
 DSL	

2. Construct one neighborhood graph for each author (DBLP)
 	
 For	
 Author(X,	
 _).	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Nodes(ID,	
 Name)	
 :-­‐	
 Author(ID,	
 Name),	
 ID	
 =	
 X.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Nodes(ID,	
 Name)	
 :-­‐	
 AuthorPub(X,P),	
 AuthorPub(ID,P),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Author(ID,	
 Name).	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Edges(ID1,	
 ID2)	
 :-­‐	
 Nodes(ID1,	
 _),	
 Nodes(ID2,	
 _),	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 AuthorPub(ID1,	
 P),	
 AuthorPub(ID2,	
 P).

3. A Simple Bipartite Graph over Parts and Suppliers
 Nodes(ID,	
 Name,	
 Label	
 =	
 “P”)	
 :-­‐	
 Part(p_key,	
 Name)	

	
 	
 	
 	
 	
 Nodes(ID,	
 Name,	
 Label	
 =	
 “S”)	
 :-­‐	
 Supplier(s_key,	
 Name)	

	
 	
 	
 	
 	
 Edges(ID1,	
 ID2)	
 :-­‐	
 	
 PartSupp(ID1,	
 ID2)	

	

	

Additional	
 constructs	
 for	
 aggregates	
 and	
 node	
 or	

edge	
 “properties”	
 and	
 “weights”	

GraphGen	
 in	
 Java:	
 Vertex-­‐Centric	
 API	

2. Can directly manipulate the graph using a simple API:
-  getVertices(): returns an iterator over all vertices
-  getNeighbors(v): returns an iterator over v’s neighbors
-  existsEdge(v, u), addEdge(v, u), deleteEdge(v, u),

addVertex(v), deleteVertex(v)

3. Working on supporting a more general neighborhood-
centric API from NScale

 - Allows parallelism and other optimizations

GraphGen	
 Graph	
 Explora5on	
 Frontend	

User can visually explore
1-hop neighborhoods

View simple statistics
about the graph

User explores schema
and specifies graphs
to be extracted

GraphGen	
 Enumera5on	
 Framework	

•  Complex	
 rela5onal	
 schemas	
 contain	
 many	
 tables/constraints	

•  Hard	
 to	
 iden5fy	
 interes5ng	
 graphs	
 through	
 just	
 inspec5on	

•  Idea:	
 Inspect	
 the	
 database	
 schema,	
 and	
 propose	
 a	
 set	
 of	
 possible	

graphs	
 by	
 enumera5ng	
 paths	
 or	
 loops	
 in	
 the	
 schema	
 graph	

•  User	
 provides	
 feedback	
 to	
 drive	
 and	
 fine-­‐tune	

Outline	

l  DataHub:	
 A	
 pla)orm	
 for	
 collabora5ve	
 data	
 science	

	

l  GraphGen:	
 Graph	
 Analy5cs	
 on	
 Rela5onal	
 Databases	

l  Mo5va5on	

l  System	
 Overview	
 	

l  Condensed	
 Representa5ons	
 for	
 Large	
 Graphs	

l  Experiments	

	

	

These slides at: http://go.umd.edu/w.pdf

l  The	
 extracted	
 graph	
 may	
 be	
 much	
 larger	
 even	
 than	
 the	

input	
 dataset	

l  Expensive	
 to	
 extract:	
 intermediate/final	
 results	
 too	
 large	

l  Query	
 op5mizers	
 not	
 able	
 to	
 op5mize	
 well	

l  Possibly	
 infeasible	
 to	
 hold	
 in	
 memory	

l  Instead:	
 we	
 extract	
 a	
 condensed	
 representa5on	
 	

l  At	
 most	
 the	
 size	
 of	
 the	
 base	
 tables	
 –	
 usually	
 much	
 smaller	

l  All	
 Graph	
 APIs	
 supported	
 on	
 top	
 of	
 this	
 representa5on	

l  Need	
 to	
 handle	
 duplicaCon	

Key	
 Challenge	

Condensed	
 Representa5on	

(a) Relational Tables

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Nodes(ID, Name):-Author(ID, Name).
Edges(ID1, ID2):-AuthorPub(ID1,
PubID), AuthorPub(ID2, PubID).

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Query to construct a co-authors graph

Figure 2: Key concepts of GRAPHGEN

tasks or algorithms over them in memory. GRAPHGEN supports
an expressive Domain Specific Language (DSL), based on Dat-
alog [1], allowing users to specify graph(s) to be extracted from
the relational database. The user may specify a single graph, or a
collection of graphs to be extracted. GRAPHGEN uses a transla-
tion layer to generate the appropriate SQL queries to be issued to
the database, and creates an efficient in-memory representation of
the graph that is handed off to the user program or analytics task.
GRAPHGEN supports a general-purpose Java Graph API as well as
the standard vertex-centric API for specifying analysis tasks like
PageRank. Figure 2 shows a toy DBLP-like dataset, and the query
that specifies a “co-authors” graph to be constructed on that dataset.
Figure 2c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in analyz-
ing may be too large to construct in memory, even if the underly-
ing relational data is small. There is a space explosion because of
the types of high-selectivity joins (typically self-joins) that are of-
ten needed when constructing those graphs. In Figure 2, we can
see this for the toy dataset where the size of the extracted graph
is larger than the sizes of the individual relations; this is because
each publication effectively results in a clique over its authors. On
the full DBLP dataset restricted to journals and conferences, there
are approximately 1.6 million authors, 3 million publications, and
8.6 million author-publication relationships; the co-authors graph
on that dataset contained 43 million edges. Figure 1 shows the dif-
ferences in extraction latency as we increase the size of the dataset.
The DBLP dataset is highly skewed – while each publication has
an average of 2 authors, there are about 160 publications in the
dataset with over 50 authors each, and 3 of these have over 3000
authors. These publications contribute significantly more to the to-
tal number of edges in the resulting graph, and hence we measure
extraction both with and without them. The DBLP dataset is, in
some sense, a best-case scenario since the average number of au-
thors per publication is relatively small. Constructing the co-actors
graph from the IMDB dataset results in a notably larger space ex-
plosion. Even on the DBLP dataset, a graph that connects authors
who have papers at the same conference contains 1.8 Billion edges,

compared to 7.5 Million edges in the condensed representation.
In this paper, we address the problem of analyzing such large

graphs by storing and operating upon them in a condensed fashion.
The relational model already provides a natural such condensed
representation, obtained by omitting some of the high-selectivity
joins from the required query. Figure 2d shows an example of such
a condensed representation for the co-authors graph, where we cre-
ate explicit nodes for the publications, and any two author nodes
connected to the same publication node are treated as having an
edge. In other words, we compress the cliques and represent them
using virtual nodes, a technique that has been explored for graph
compression in prior literature [4, ?]. However, this representa-
tion may contain duplicate edges (e.g., between nodes a1 and a4),
which means that we cannot operate on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-
duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• The ability to implement and run vertex-centric programs on

smaller footprint representations of the specified graphs in-
memory.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• Providing the first end-to-end system for enabling analytics on

graphs that exist within purely relational datasets, efficiently,
and without requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in recent

years, much of it orthogonal to the work we present here. Here we
focus on the recent work on trying to leverage relational databases
for graph analytics, which has attempted to show that specialized
graph databases or analytics engines may be unnecessary. GRAPH-
GEN has fundamentally different goals than this recent work.

Vertexica [12, 11] and GRAIL [7] show how to normalize and
store a graph dataset as a collection of tables in an RDBMS (i.e.,
how to “shred” graph data), and how to map a subset of graph
analysis tasks to relational operations on those tables. They do
not consider the problem of extracting graphs from existing re-
lational datasets, and can only execute analysis tasks that can be
written using the vertex-centric programming framework. GRAPH-
GEN, on the other hand, pushes some computation to the rela-
tional engine, but most of the complex graph algorithms are exe-
cuted on a graph representation of the data in memory. This allows

2

Expanded Graph Condensed Graph

A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6

 a1,a2,a4
a1 001
a2 101
a3 101
a6 101

Virtual nodes

Construc5ng	
 Condensed	
 Graphs	

x
1

x
2

y
1

y
2

a
1

a
2

a
3

a
1

a
2

a
3

x
1

x
2

Orders

Lineitem

Lineitem

Orders

[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1

4

1. Query statistics tables to identify less selective joins
2. Break up the overall query to avoid those joins and

load intermediate results
3. Create a multi-layered representation with “real” and

“virtual” nodes (roughly one layer per postponed join)

Edge from a_i to a_j
 ==
There is a directed path
from a_i to a_j

vertices:315,130 edges:599,902 VS vertices: 15,000 edges: 99,990,000

Construc5ng	
 Condensed	
 Graphs	

x
1

x
2

y
1

y
2

a
1

a
2

a
3

a
1

a
2

a
3

x
1

x
2

Orders

Lineitem

Lineitem

Orders

[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 2 for Q1)

relations, and how these should be combined in order to lead to the
resulting Node and Edge sets. It is important to note here that our
DSL does not get evaluated the same way and does not support all
of the features found in Datalog; like e.g. recursion. The only cor-
relation between the two is that our DSL is inspired by, and uses
many syntactic attributes that characterize the Datalog language.
We also use Datalog terminology when referring to the elements of
the query.

The typical workflow for a user when writing a query in this
DSL would be to initially inspect the database schema and figure
out which relations are relevant to the graph they are interested
in exploring, and then choose which attributes in those relations
would connect the defined entities in the desired way. Such a lan-
guage abstraction allows for making the fine-grained optimizations
described in this paper, transparent, rendering this extraction pro-
cess not only possible but also highly scalable for databases with
large relations. In future work, we plan to investigate building a
command line tool or user interface towards more easily exploring
a database schema that spans large numbers of relations each of
which potentially includes numerous attributes.

should we replace these following examples with their aj-
dacent multi-layered condensed representation counterparts?
With this DSL, users can initially express single graph queries which
can extract both homogeneous, or completely heterogeneous graphs
in terms of the types of nodes that are involved. Figure 4 demon-
strates examples of extraction queries. Depending on the database
schema, the extraction will typically require a direct self-join, like
in the case of the DBLP dataset in Figure 2b, where a co-authorship
graph is extracted. There are situations however where the schema
is more complex and the table which includes the desired edges
does not explicitly exist in the database. In these cases the self-join
required will actually need to be executed on a view of the database
that results from a natural join of two or more tables as in Q3 (Fig-
ure 4). This graph extraction query over the TPC-H schema de-
scribes a graph where customers who have purchased the same item
are connected. The self-join necessary here will normally need to
be executed on the result of joining the Orders and LineItem
relations (shown in Figure 5a), and we support such queries effi-
ciently. The extraction query Q4 extracts a bi-partite (heteroge-
neous) directed graph between instructors and students who took
their courses, shown in Figure 5b .

Q2 shows how the For loop feature can be used to extract sepa-
rate “ego-graphs” for every individual node. We have implemented
a means for extracting these ego-graphs efficiently without the need
for a series of independent SQL queries (through “tagging” re-
turned rows), but omit the details due to lack of space.

3.3 Parsing and Translation

The first step towards communicating the user defined graph ex-
traction to the system is the parsing of the Datalog query and proper
translation into the appropriate SQL. We have built a custom parser
for the DSL described above using the ANTLR [17] parser gen-
erator. The parser is then used to create the Abstract Syntax Tree
(AST) of the query which is in turn used for translation into SQL.
In GRAPHGEN, each line of code in our DSL is typically treated as
a separate query, although connections between the lines of code
loosely exist (e.g., code below a For defines a multiple ego-graph
query, and translation is done accordingly).

The translation itself requires a full walk of the AST, during
which the system gathers information about the query, loads the ap-
propriate data for each involved relation from the database and cre-
ates a translation plan based on the information gathered. Lastly,
the final translation is actually triggered upon exiting the AST walk
and is based on this translation plan.

The translation plan dictates to what extent the graph extraction
task (enumeration of the edges between entities) will be handed
over to the database, and which portion of the graph we will instead
load a condensed representation of into memory therefore delaying
the full enumeration of its edges.

At the point before the final SQL queries are formulated, we
need to somehow detect the likelihood of the query being able to
execute in reasonable time, and of the result fitting in memory. We
do this by trying to detect low selectivity joins at the granularity
of every join in the query. A series of EXPLAIN queries are exe-
cuted against the database to obtain the selectivity estimates for the
involved relations at every join. If the estimates show a join that
will potentially yield a result set whose size estimate surpasses a
threshold, that join is not executed, while in the opposite case, the
join is executed in the database, and the resulting view replaces the
join in the query.

Although we currently use the optimizer-provided estimates di-
rectly for this purpose, given the known limitations of the selectiv-
ity estimation process, we plan to develop techniques to maintain
additional information within GRAPHGEN to improve those esti-
mates in future work. (For example, estimates for Q3 in Figure 4
are off by orders of magnitude.)

The translation process can be explained as the following distinct
steps:

1. Parse query in our DSL and traverse the AST gathering the
list of atoms (relations) that will be used for executing the
command, let A = A1, A2, ..., Ak the set of relations present
in the database that can be used in the query, and let S =
S1, S2, ..., Sk where each Si is the set of attribute aliases
and the potential predicates defined on them in each rule (we
assume every si 2 Sk is either an attribute alias or an at-
tribute alias that appears on the left hand side, or an attribute
alias with a predicate). The order in which the elements in
Sk appear in each rule must correspond to the order they ap-
pear in the database schema, if an attribute is not relevant to
the query we use the underscore symbol (” ”) at that position
in the rule.

2. If the query is a Nodes query, it will have the following for-
mat: Nodes(ID,a1, a2, ..., ai) :-
A1(ID, a1), A2(a1, a2), ..., Aj(ai), where ai 2 Si and Si 2
S. The query is then translated to standard SQL and each
tuple is loaded as a real node in the graph with ID as their
unique identifier and a1, a2, ..., ai as their distinct properties.

3. If the query is an Edges query, it will have the following for-
mat: not sure how to represent the right hand side of the
query in a general mathematical way Edges(ID1,ID2)
:- A1(ID1, a1), A2(ID2, a1, a2), ..., Aj(ai, ...), where ID1

4

4. Expand low-
degree virtual
nodes

y
1

y
2

a
1

a
2

a
3

a
1

a
2

a
3

1. Query statistics tables to identify less selective joins
2. Break up the overall query to avoid those joins and

load intermediate results
3. Create a multi-layered representation with “real” and

“virtual” nodes (roughly one layer per postponed join)

Duplica5on	
 	

y1

y2

a1

a2

a3

a1

a2

a3

l  There	
 are	
 duplicate	
 paths	
 between	
 pairs	
 of	
 nodes	

l  Most	
 graph	
 algorithms	
 cannot	
 handle	
 those	

l  Some	
 (e.g.,	
 connected	
 components)	
 are	
 tolerant	
 	

l  Developed	
 several	
 techniques	
 to	
 handle	
 such	
 duplica5on	

l  Different	
 pre-­‐processing,	
 memory,	
 and	
 computa5on	
 trade-­‐offs	

1.	
 CDUP:	
 On-­‐the-­‐fly	
 De-­‐duplica5on	
 	

l  Keep	
 the	
 graph	
 in	
 condensed	
 representa5on	

l  For	
 every	
 getNeighbors():	
 	

l  Do	
 a	
 DFS	
 from	
 the	
 node	
 to	
 find	
 neighbors	

l  Cache	
 the	
 neighbor-­‐list	
 (if	
 memory	
 available)	

l  Overall	
 most	
 memory-­‐efficient	

l  No	
 pre-­‐processing	
 overhead,	
 but	
 high	
 execu5on	
 overhead	

l  Good	
 for	
 graph	
 algorithms	
 that	
 touch	
 a	
 small	
 frac5on	
 of	
 the	
 graph	

y1

y2

a1

a2

a3

a1

a2

a3

a3: {}

y1

y2

a1

a2

a3

a1

a2

a3

a3: {a1,a2,a3}

2.	
 DEDUP-­‐1:	
 De-­‐duplicate	
 the	
 graph	

l  Pre-­‐process	
 the	
 graph	
 to	
 remove	
 duplica5on,	
 but	
 keep	
 in	

condensed	
 form	

l  i.e.,	
 guarantee	
 that	
 there	
 is	
 only	
 one	
 path	
 from	
 a	
 node	
 to	
 each	
 neighbor	

l  Specialized	
 iterators	
 that	
 return	
 the	
 neighbors	
 one-­‐by-­‐one	

p1

p2

p3

a1

a2

a3

a4

a5

a6

a1

a2

a3

a4

a5

a6p4

p1

p2

a1

a2

a3

a4

a5

a6

a1

a2

a3

a4

a5

a6p4

A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6

2.	
 DEDUP-­‐1:	
 De-­‐duplicate	
 the	
 graph	

l  Pre-­‐process	
 the	
 graph	
 to	
 remove	
 duplica5on,	
 but	
 keep	
 in	

condensed	
 form	

l  i.e.,	
 guarantee	
 that	
 there	
 is	
 only	
 one	
 path	
 from	
 a	
 node	
 to	
 each	
 neighbor	

l  Specialized	
 iterators	
 that	
 return	
 the	
 neighbors	
 one-­‐by-­‐one	

l  Most	
 “portable”	
 representa5on	
 (outside	
 of	
 expanded)	

l  Easy	
 to	
 modify	
 other	
 graph	
 libraries	
 to	
 support	
 this	

l  Pre-­‐processing:	
 is	
 it	
 possible	
 to	
 do	
 this	
 op5mally?	

l  No:	
 same	
 complexity	
 as	
 compressing	
 a	
 graph	
 by	
 finding	
 cliques	
 or	
 bicliques	

l  Prior	
 work	
 in	
 graph	
 compression	
 literature	

l  Those	
 algorithms	
 not	
 useful	
 –	
 take	
 expanded	
 graph	
 as	
 input	

l  We	
 proposed	
 and	
 evaluated	
 5	
 algorithms	
 for	
 doing	
 this	
 efficiently	

l  Greedily	
 resolve	
 the	
 duplica5on	
 real	
 node	
 at	
 a	
 5me,	
 or	
 virtual	
 node	
 at	
 a	
 5me	

l  Adapta5on	
 of	
 a	
 frequent	
 paYern	
 mining	
 algorithm	

3.	
 DEDUP-­‐2:	
 Undirected	
 Virtual	
 Edges	

l  Allow	
 "undirected"	
 edges	
 between	
 virtual	
 nodes	

l  More	
 complicated	
 seman5cs	
 than	
 "directed"	
 edges	

l  Can	
 have	
 tremendous	
 benefits	
 for	
 dense	
 graphs	

l  Limited	
 applicability	

l  Difficult	
 to	
 work	
 with,	
 and	
 guarantee	
 correctness	

4.	
 Deduplica5on	
 using	
 Bitmaps	

l  Use	
 "bitmaps"	
 at	
 virtual	
 nodes	
 to	
 remove	
 duplicate	
 paths	

l  Iterators	
 use	
 this	
 bitmaps	
 to	
 return	
 neighbors	
 without	
 duplica5on	

l  Typically	
 uses	
 less	
 memory	
 than	
 DEDUP-­‐1	

l  At	
 the	
 expense	
 of	
 higher	
 itera5on	
 overhead	
 and	
 lower	
 portability	

p1

p2

p3

p4

p1

p2

p4

A1: a2, a4, a3, a5
A2: a1, a2, a4
A3: a1, a2, a4
A4: a1, a2, a4, a2, a3, a5
A5: a2, a3, a5, a4
A6: a4, a5, a6

p1

p2

p3

p4

 a1,a2,a4
a1 001
a2 101
a3 101
a6 101

4.	
 Deduplica5on	
 using	
 Bitmaps	

l  Use	
 "bitmaps"	
 at	
 virtual	
 nodes	
 to	
 remove	
 duplicate	
 paths	

l  Iterators	
 use	
 this	
 bitmaps	
 to	
 return	
 neighbors	
 without	
 duplica5on	

l  Typically	
 uses	
 less	
 memory	
 than	
 DEDUP-­‐1	

l  At	
 the	
 expense	
 of	
 higher	
 itera5on	
 overhead	
 and	
 lower	
 portability	

l  Works	
 with	
 mul5-­‐layered	
 representa5ons	
 too	

x1

x2

y1

y2

a1

a2

a3

a1

a2

a3

x1

x2

a1 1
y1

a1 1 1
y1

a2

y2

1 1

a1 1 1
x1

a2

a3

x2

1 1
1 1

a1 0
a2

a3

x2

0
0

a1 1
a1

a2

a3
1
1

a1 1 1
a2

a3

a2 a3

1 1
1 1

4.	
 Deduplica5on	
 using	
 Bitmaps	

l  Use	
 "bitmaps"	
 at	
 virtual	
 nodes	
 to	
 remove	
 duplicate	
 paths	

l  Iterators	
 use	
 this	
 bitmaps	
 to	
 return	
 neighbors	
 without	
 duplica5on	

l  Typically	
 uses	
 less	
 memory	
 than	
 DEDUP-­‐1	

l  At	
 the	
 expense	
 of	
 higher	
 itera5on	
 overhead	
 and	
 lower	
 portability	

l  Works	
 with	
 mul5-­‐layered	
 representa5ons	
 too	

l  Some	
 tricks	
 required	
 to	
 keep	
 memory	
 footprint	
 low	

l  Preprocessing	
 step	
 to	
 set	
 the	
 bitmaps	

l  Turns	
 out	
 to	
 be	
 NP-­‐Hard	
 to	
 do	
 op5mally,	
 even	
 for	
 single-­‐layer	
 graphs	

l  Non-­‐trivial	
 to	
 parallelize	
 to	
 exploit	
 mul5ple	
 cores	

Outline	

l  DataHub:	
 A	
 pla)orm	
 for	
 collabora5ve	
 data	
 science	

	

l  GraphGen:	
 Graph	
 Analy5cs	
 on	
 Rela5onal	
 Databases	

l  Mo5va5on	

l  System	
 Overview	
 	

l  Condensed	
 Representa5ons	
 for	
 Large	
 Graphs	

l  Experiments	

	

	

These slides at: http://go.umd.edu/w.pdf

In-­‐memory	
 Graph	
 Sizes	

Start to see significant differences even with small datasets
Both DEDUP1 or Bitmaps-based approaches work well

Figure 10: Comparing the in-memory graph sizes for different
datasets; the bottom (lighter) bars show the number of nodes.

in Section 6.2.
Figure 10 shows how the different algorithms fare against each

other. For each algorithm and each dataset, we report the total
number of nodes and edges, and also show the breakdown between
them; the algorithm used for DEDUP-1 was Greedy Virtual Nodes
First, described in Section 5.2.1. When the average degree of vir-
tual nodes is small and there is a large number of virtual nodes (as
is the case with DBLP and Synthetic_1), we observe that there is
a relatively small difference in the size of the condensed and ex-
panded graphs, and deduplication (DEDUP1 and DEDUP2) actu-
ally results in an even smaller footprint graph.

On the other hand, the IMDB dataset shows a 8-fold difference
in size between EXP and C-DUP and over a 5-fold difference with
all other representations. Synthetic_2 portrays the amount of com-
pression possible in graphs with very large, overlapping cliques.
The BMP representations prevail here as well; however this dataset
also shows how the DEDUP2 representation can be significantly
more compact than DEDUP1, while maintaining its natural, more
portable structure compared to the BMP representations. As we
can see, VMiner not only requires expanding the graph first, but
also generally finds a much worse representation than DEDUP-1.
This corroborates our hypothesis that working directly with the im-
plicit representation of the graph results in better compression.

We also measured actual memory footprints for the same datasets,
which largely track the relative performance shown here, with one
major difference being that BMP representations perform a little
worse because of the extra space required for storing the bitmaps.
Those results can be found in the extended version of the paper. We
report memory footprints for larger datasets in Section 6.2.

6.1.2 Graph Algorithms Performance
Figure 11 shows the results of running 3 different graph algo-

rithms on the different in-memory representations. We compared

(a) DBLP (b) Synthetic_1
Figure 11: Performance of Graph Algorithms on Each Representa-
tion for two datasets (vertical red line represents EXP)

the performance of Degree calculation, Breadth First Search (BFS)
starting from a single node, as well as PageRank on the entire
graph. Again, the results shown are normalized to the values for
the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API.
Again, the BFS results are the mean of runs on a specific set of 50
randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs.

We also ran a comprehensive set of microbenchmarks comparing
the performance of the basic graph operations against the different
representations. Those results can be found in Appendix C, and as
can be seen there, BFS and PageRank both follow the trends of the
micro-benchmarks in terms of differences between representations.

For IMDB and Synthetic_2, both of which yield very large ex-
panded graphs, we observed little to no overhead in real world
performance compared to EXP when actually running algorithms
on top of these representations, especially when it comes to the
BITMAP and DEDUP1 representations (we omit these graphs).
DBLP and Synthetic_1 datasets portray a large gap in performance
compared to EXP; this is because these datasets consist of a large
number of small virtual nodes, thus increasing the average number
of virtual nodes that need to be iterated over for a single calculation.
This is also the reason why DEDUP1 and BITMAP2 typically per-
form better; they feature a smaller number of virtual neighbors per
real node than representations like C-DUP and BMP1, and some-
times DEDUP2 as well.

(a) (b)
Figure 12: Deduplication Performance Results (a) Deduplication
time comparison between algorithms. Random (RAND) vertex or-
dering was used where applicable, (b) Small variations caused by
node ordering in deduplication

6.1.3 Comparing Deduplication Algorithms
Figure 12a shows the running times for the different deduplica-

tion algorithms (on a log-scale). As expected, BITMAP-1 is the
fastest of the algorithms, whereas the DEDUP-1 and DEDUP-2 al-
gorithms take significantly more time. We note however that dedu-
plication is a one-time cost, and the overhead of doing so may be
acceptable in many cases, especially if the extracted graph is serial-
ized and repeatedly analyzed over a period of time. Finally, Figure
12b shows how the performance of the various algorithms varies
depending on the processing order. We did not observe any no-
ticeable differences or patterns in this performance across various
datasets, and recommend using the random ordering for robustness.

6.2 Large Datasets
To reason about the practicality and scalability of HIGRAPH, we

evaluated its performance on a series of datasets that yielded larger
and denser graphs (Table 3). Datasets Layered_1 and Layered_2
are synthetically generated multi-layer condensed graphs, while

VMiner: Graph
compression
using Bi-Cliques

Impact	
 on	
 Performance	
 (a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 12: Microbenchmarks for each representation

(a) DBLP (b) IMDB (c) Synthetic 1 (d) Synthetic 2
Figure 13: Performance of Graph Algorithms on Each Representation

extra hop is required for obtaining all real neighbors of a vertex.
DEDUP1 is typically more performant than the BITMAP represen-
tations in datasets where there is a large amount of small cliques.

In terms of the EXISTSEDGE() operation, we have included aux-
iliary indices in both virtual and real vertices, which allow for rapid
checks on whether a logical edge exists between two real nodes.
Latency in this operation is relative to the total number of vir-
tual nodes, the indexes of which need to be checked. The RE-
MOVEVERTEX() operation is actually more efficient on the CDUP,
DEDUP1 and DEDUP2 representations than EXP. In order for a
vertex to be removed from the graph, explicit removal of all of its
edges is required. In representations like DEDUP1 and DEDUP2,
that employ virtual nodes, we need to remove a smaller number of
edges on average in the removal process. DEDUP2 is most interest-
ing here because a real node is always connected to only 1 virtual
node, therefore the removal cost is constant.

Graph Algorithms Performance: While micro-benchmarks are
definitely informative, the end performance of running actual algo-
rithms on top of these representations is also something that needs
to be explored. Figure 12 shows the results of running 3 differ-
ent graph algorithms on the different in-memory representations.
We compared the performance of Degree calculation, Breadth First
Search starting from a single node, as well as PageRank on the en-
tire graph. Again, the results shown are normalized to the values
for the full EXP representation. Degree and PageRank were imple-
mented and run on our custom vertex-centric framework described
in Section 3.4, while BFS was run in a single threaded manner start-
ing from a single random node in the graph, using our Graph API
to operate directly on top of each of the representations. Again, the
Breadth first search results are the mean of runs on a specific set of
50 randomly selected real nodes on all of the representations, while
the PageRank are an average of 10 runs. As we can see, BFS and
PageRank both follow the trends of the micro-benchmarks in terms
of differences in performance between representations.

For datasets like IMDB and Synthetic 2 that yield very large ex-
panded graphs, we observe that there is little to no overhead in real
world performance compared to EXP when actually running algo-
rithms on top of these representations, especially when it comes
to the BITMAP and DEDUP1 representations. On the flip side,

the DBLP and Synthetic 1 datasets portray a large gap in perfor-
mance compared to EXP. The reason for this gap is the fact that
these datasets consist of a large number of small virtual nodes, thus
increasing the average number of virtual nodes that need to be it-
erated over for a single calculation. This is also the reason why
DEDUP1 and BITMAP2 typically perform better; they feature a
smaller number of virtual neighbors per real node than representa-
tions like C-DUP and BMP1, and sometimes DEDUP2 as well.

6.3 Comparing De-duplication Algorithms
Finally, we compare the various de-duplication algorithms pre-

sented in Section 5. Figure 13a compares the number of edges
in the resulting graph after running the different de-duplication al-
gorithms. As we can see, the differences between the different
DEDUP-1 algorithms are largely minor, with the Virtual Nodes
First Greedy algorithm having a slight edge on most datasets. The
comparisons across different representations mirror the relative mem-
ory footprint performance (Figure 10), with the main difference be-
ing the overheads associating with bitmaps in BITMAP represen-
tations that are not counted here.

Figure 13b shows the running times for the different algorithms
(on a log-scale). As expected, BITMAP-1 is the fastest of the al-
gorithms, whereas the DEDUP-1 and DEDUP-2 algorithms take
significantly more time. We note however that de-duplication is a
one-time cost, and the overhead of doing so may be acceptable in
many cases, especially if the extracted graph is serialized and re-
peatedly analyzed over a period of time. Finally, Figure 13c shows
how the performance of the various algorithms varies depending on
the processing order. We did not observe any noticeable differences
or patterns in this performance, and recommend using the random
ordering for robustness.

7. CONCLUSION
In this paper, we presented GRAPHGEN, a system that enables

users to analyze the implicit interconnection structures between en-
tities in normalized relational databases, without the need to ex-
tract the graph structure and load it into specialized graph engines.
GRAPHGEN can interoperate with a variety of graph analysis li-
braries and supports a standard graph API, breaking down the barri-

12

IMDB Subset A Synthetic Graph

Generally acceptable performance hit, with DEDUP1 doing the best
(at a significantly higher preprocessing cost)

Large	
 Datasets	

CDUP BMP-DEDUP EXP
Syn-1 1.421 2.737 >64
Syn-2 1.613 2.258 19.798
Syn-3 1.276 1.493 1.2
Syn-4 9.9 13.042 >64
TPC-H .023 .049 7.398

CDUP BMP-DEDUP EXP
Syn-1 382 284 DNF
Syn-2 129 111 85
Syn-3 0.01 0.02 0.01
Syn-4 1.3 0.12 DNF
TPC-H 86 8.5 16

Memory Footprint (GB)

Time to run Breadth First Search (seconds)

l  Need	
 to	
 support	
 graph	
 analy5cs	
 on	
 RDBMSs	
 in	
 situ	

l  GraphGen	
 provides	
 a	
 declara5ve	
 DSL	
 and	
 a	
 suite	
 of	

op5miza5ons	
 for	
 achieving	
 this	

l  Many	
 computa5onal	
 challenges	
 that	
 we	
 are	
 just	

beginning	
 to	
 explore	

l  Working	
 on	
 extending	
 the	
 DSL	
 to	
 support	
 specifying	

par5al	
 graph	
 computa5ons	

l  Can	
 push	
 more	
 computa5on	
 into	
 the	
 RDBMS	

l  Star5ng	
 to	
 look	
 at	
 doing	
 this	
 in	
 place	
 on	
 an	
 in-­‐memory	

database	

GraphGen:	
 Summary	

Thanks	
 !!	

More	
 at:	
 h;p://www.cs.umd.edu/~amol	

	

QuesAons	
 ?	

These slides at: http://go.umd.edu/w.pdf

