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Databases are Great

Developer ease via ACID

Turing Award winning great



But they are Rigid and Complex



Growth…
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Average Millions of Active Users Rapid growth of some web services led to 
design of new “web-scale” databases… 



Rise of NoSQL
Scaling is needed

Chisel away at functionality 
◦ No transactions
◦ No secondary indexes
◦ Minimal recovery
◦ Mixed Consistency

Not always suitable…



Workloads Fluctuate
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Peak Provisioning
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Peak Provisioning isn’t Perfect
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Growth is not always sustained
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Need Elasticity
ELASTICITY > SCALABILITY



The Promise of Elasticity
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Primary use-cases for elasticity
Database-as-a-Service with elastic placement of non-
correlated tenants, often low utilization per tenant.

High-throughput transactional systems (OLTP)



No Need to Weaken the 
Database!



High Throughput = Main Memory
Cost per GB for RAM is dropping.

Network memory is faster than local disk.

Much faster than disk based DBs.



Approaches for “NewSQL” main-memory*

Highly concurrent, latch-free data structures

Partitioning into single-threaded executors

*Excuse the generalization 
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Application
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Database Partitioning

DISTRICT

CUSTOMER

ORDER_ITEM

ITEM

STOCK

WAREHOUSE

ORDERS

DISTRICT

CUSTOMER

ORDER_ITEM

STOCK

ORDERS ITEM

Replicated

WAREHOUSE

TPC-C Schema Schema Tree

Slide Credits: Andy Pavlo



ITEMITEMjITEMITEMITEM

Database Partitioning

P2

P4

DISTRICT

CUSTOMER

ORDER_ITEM

STOCK

ORDERS

Replicated

WAREHOUSE

P1

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P2

P3

P3

P3

P3

P3

P3

P4

P4

P4

P4

P4

P4

P5

P5

P5

P5

P5

P5

P5

P3

P1

ITEMITEM

ITEM ITEM

ITEM

Partitions

ITEM

Schema Tree

Slide Credits: Andy Pavlo



The Problem: Workload Skew
Many OLTP applications suffer from variable load and high skew: 

Extreme Skew: 40-60% of NYSE trading volume is on 40 individual stocks

Time Variation: Load “follows the sun”

Seasonal Variation: Ski resorts have high load in the winter months

Load Spikes: First and last 10 minutes of trading day have 10X the average volume

Hockey Stick Effect: A new application goes “viral”



High Skew

Low Skew

No Skew Uniform data access

2/3 of queries access top 1/3 
of data

Few very hot items

The Problem: Workload Skew



The Problem: Workload Skew
High skew increases latency by 10X and decreases throughput by 4X

Partitioned shared-nothing systems are especially susceptible
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The Problem: Workload Skew
Possible solutions:

oProvision resources for peak load (Very expensive and brittle!)

oLimit load on system (Poor performance!)

oEnable system to elastically scale in or out to dynamically adapt to changes in load



Elastic Scaling
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Load Balancing
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Two-Tiered Partitioning
What if only a few specific tuples are very hot? Deal with them separately!

Two tiers:
1. Individual hot tuples, mapped explicitly to partitions

2. Large blocks of colder tuples, hash- or range-partitioned at coarse granularity

Possible implementations:
o Fine-grained range partitioning

o Consistent hashing with virtual nodes

o Lookup table combined with any standard partitioning scheme

Existing systems are “one-tiered” and partition data only at course granularity
o Unable to handle cases of extreme skew



E-Store
End-to-end system which extends H-Store (a distributed, shared-nothing, main memory DBMS) 
with automatic, adaptive, two-tiered elastic partitioning
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E-Monitor: High-Level Monitoring
High level system statistics collected every ~1 minute

o CPU indicates system load, used to determine whether to add or remove nodes, or re-
shuffle the data

o Accurate in H-Store since partition executors are pinned to specific cores

o Cheap to collect

o When a load imbalance (or overload/underload) is detected, detailed monitoring is 
triggered



E-Monitor: Tuple-Level Monitoring
Tuple-level statistics collected in case of load imbalance

o Finds the top 1% of tuples accessed per partition (read or written) during a 10 second window

o Finds total access count per block of cold tuples

Can be used to determine workload distribution, using tuple access count as a proxy for system 
load

o Reasonable assumption for main-memory DBMS w/ OLTP workload

Minor performance degradation during collection



E-Monitor: Tuple-Level Monitoring
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E-Planner
Given current partitioning of data, system statistics and hot tuples/partitions from E-Monitor, E-
Planner determines: 

o Whether to add or remove nodes

o How to balance load

Optimization problem: minimize data movement (migration is not free) while balancing system 
load.

We tested five different data placement algorithms:
o One-tiered bin packing (ILP – computationally intensive!)

o Two-tiered bin packing (ILP – computationally intensive!)

o First Fit (global repartitioning to balance load)

o Greedy (only move hot tuples)

o Greedy Extended (move hot tuples first, then cold blocks until load is balanced)



E-Planner: Greedy Extended Algorithm
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E-Planner: Greedy Extended Algorithm
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E-Planner: Greedy Extended Algorithm
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E-Planner: Greedy Extended Algorithm
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E-Planner: Other Heuristic algorithms
Greedy

o Like Greedy Extended, but the algorithm stops after all hot tuples have been moved

o If there are not many hot tuples (e.g. low skew), may not sufficiently balance the workload

First Fit
o First packs hot tuples onto partitions, filling one partition at a time

o Then packs blocks of cold tuples, filling the remaining partitions one at a time

o Results in a balanced workload, but does not attempt to limit the amount of data movement



E-Planner: Optimal Algorithms
Two-Tiered Bin Packer

o Uses Integer Linear Programming (ILP) to optimally pack hot tuples and cold blocks onto partitions

o Constraints: each tuple/block must be assigned to exactly one partition, and each partition must 
have total load less than the average + 5%

o Optimization Goal: minimize the amount of data moved in order the satisfy the constraints

One-Tiered Bin Packer
o Like Two-Tiered Bin Packer, but can only pack blocks of tuples, not individual tuples

o Both are computationally intensive, but show one- and two-tiered approaches in best light



Squall
Given plan from E-Planner, Squall physically moves the data while the system is live

For immediate benefit, moves data from hottest partitions to coldest partitions first

More on this in a bit…



Results – Two-Tiered V. One-Tiered
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Results – Heuristic Planners
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Results

Planners Bin Packer One Tiered Bin Packer Two Tiered First Fit Greedy Greedy Extended
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But What About…
Distributed Transactions???

Current E-Store does not take them into account when planning data movement

Ok when most transactions access a single partitioning key – tends to be the case for “tree 
schemas” such as YCSB, Voter, and TPC-C

E-Store++ will address the general case
o More later…



Squall
FINE-GRAINED LIVE RECONFIGURATION FOR PARTITIONED MAIN 
MEMORY DATABASES



The Problem
Need to migrate tuples between partitions to reflect the updated partitioning.

Would like to do this without bringing the system offline:
◦ Live Reconfiguration

Similar to live migration of an entire database between servers.



Existing Solutions are Not Ideal
Predicated on disk based solutions with traditional concurrency and recovery.

Zephyr:  Relies on concurrency (2PL) and disk pages.

ProRea: Relies on concurrency (SI and OCC) and disk pages.

Albatross: Relies on replication and shared disk storage. Also introduces strain on source.

Slacker: Replication middleware based.



Not Your Parent’s Migration
More than a single source and destination

◦ Want lightweight coordination

Single threaded execution model
◦ Either doing work or migration

Presence of distributed transactions 
and replication Migrating 2 warehouses in TPC-C

In E-Store with a Zephyr like migration



Squall
Given plan from E-Planner, Squall physically moves the data while the system is live

Conforms to H-Store single-threaded execution model
o While data is moving, transactions are blocked

To avoid performance degradation, Squall moves small chunks of data at a time, interleaved with 
regular transaction execution



Reconfiguration
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Keys to Performance
Redirect or pull only if needed.

Properly size reconfiguration granule.

Split large reconfigurations to limit demands on 
single partition.

Tune what gets pulled. 

Sometimes pull a little extra.

Migrating 2 warehouses in TPC-C
In E-Store with a Zephyr like migration



Redirect and Pull Only 
When Needed



Data Migration
Query arrives, must be trapped to check if data is potentially moving. Check key map, then 
ranges list.

If either source or destination partition is local check their map, keep local if possible.

If neither partition is local, forward to destination.

If data is not moving, process transaction.



Trap for Data Movement
If txn requires incoming data, block execution and schedule data pull.

◦ Can only block dependent nodes in query plan

◦ Upon receipt mark and dirty tracking structures, and unblock.

If txn requires lost data, restart as distributed transaction or forward request.



Data Pull Requests
Live data pulls are scheduled at destination as high priority transactions.

Current transaction finishes before extraction.

Timeout detection is needed.



Chunk Data for 
Asynchronous Pulls



Why Chunk?
Unknown amount of data when not partitioned by clustered index.

Customers by W_ID in TPC-C

Time spent extracting, is time not spent on TXNS.

Want a mechanism to support partial extraction while maintaining consistency.



Async Pulls
Periodically pull chunks of cold data

These pulls are answered lazy

Execution is interwoven with extracting and sending data (dirty the range though!)



Mitigating Async Pulls

Partition 1

Txn Queue

Idle Clock

Partition 2

Txn Queue

Pull Async Data



New Transactions Take Precedent

Partition 1

Txn Queue

Partition 2

Txn Queue



Extract up to Chunk Limit

Txn Queue

Partition 2

Txn Queue

Partition 1

Important to note data 
is partially migrated!



Repeat Until Complete

Partition 1

Txn Queue

Partition 2

Txn Queue

Repeat chunking until complete.
New transactions still take 
precedent



Sizing Chunks
Static analysis to set chunk sizes,  future work to dynamically set sizing and scheduling.

Impact on chunk sizes on a 10% reconfiguration during a YCSB workload.



Space Async Pulls
Introduce delay at destination between new 
async pull requests.

Impact on chunk sizes on a 10% 
reconfiguration during a YCSB workload with 
8mb chunk size.



Splitting Reconfigurations
Split by pairs of source and destination

Example: partition 1 is migrating W_ID 2,3 to partitions 3 and 7, execute as two reconfigurations.

If migrating large objects, split them and use distributed transactions.



Splitting into Sub-Plans
Set a cap on sub-plan splits, and split on pairs 
and ability to decompose migrating objects



All about trade-offs
Trading off time to complete migration and performance degradation.

Future work to consider automating this trade-off based on service level objectives.



Results Highlight

TPC-C load balancing hotspot warehouses



YCSB Latency

YCSB cluster consolidation 4 to 3 nodes
YCSB data shuffle 10% pairwise



E-Store++



Multi-tuple transactions?
Works for TPC-C

◦ Foreign keys form a tree

◦ Most accesses within tree

◦ Likelihood of cross-tree accesses is uniform

What if there is no tree?
◦ E.g. Twitter benchmark
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Stock

w-id

w-id

w-id

w-id

move foreign key tree ✔

… …

User

Follows Followers

u-id u-id

u-idu-id

TPC-C

Twitter



Next: Consider Co-accesses
Move hot tuple only

Move hot + affine tuples

Detrimental

move

Many distributed

transactions

Old server New server

Effective

move

Few distributed

transactions

Balanced load

Overloaded 

server with hot 

and cold tuples



Challenges
More detailed online monitoring

◦ Log co-accesses among tuples

Online two-tiered graph partitioning
◦ Quickly load large access graph in memory 

◦ Real-time partitioning

◦ Two tiered principle for scalability 

◦ hot tuples = fine granularity – cold tuples = coarse granularity



Two-Tiered Access Graph

Graph
◦ Hot tuples

◦ Warm sets: 1-hop cold tuples

◦ Cold ranges: rest

Smaller than 1-tiered warm 
set

warm 
set

warm 
set

warm 
set

cold 
range

cold 
range

cold 
range



Initial Results

Many-to-many database (producer – parts – supplier)

2x throughput improvement
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I Fell Asleep… What Happened
Skew happens, two-tiered partitioning for greedy load-balancing and elastic 
growth helps

If you have work or migrate, be careful to break up the migrations and don’t be 
too needy on any one partition.

We are thinking hard about skewed workloads that aren’t trivial to partition.

Questions?


