HIERARCHICAL DENSE SUBGRAPH DISCOVERY: MODELS, ALGORITHMS, APPLICATIONS

A. Erdem Sariyuce

University of Waterloo Nov. 19, 2018

University at Buffalo The State University of New York

Graphs all around

Dense subgraph discovery

- Measure of connectedness on edges
 - # edge / # all possible
 - |E| / (|V| choose 2), 1.0 for a clique
- Globally sparse, locally dense

- $-|E| << |V|^2$, but vertex neighborhoods are dense
 - High clustering coefficients density of neighbor graph
- Many nontrivial subgraphs with high density
 And relations among them
- Not clustering: Absolute vs. relative density

Dense subgraphs matter in many applications

- Significance or anomaly
 - Spam link farms [Gibson et al., '05]
 - Real-time stories [Angel et al., '12]

- Computation & summarization
 System throughputs [Gionis et al., '13]
 - Graph visualization [Alvarez et al., '06]

Two effective algorithms to find dense subgraphs with hierarchical relations

Why core/truss decompositions?

- Fundamental building block
 - Densest subgraph: 2-approximation [Charikar'00]
 - O(m.n.log(n).log(m)) -> O(m)
 - Maximal clique finding [Rossi'15]
- Identifying influential spreaders
 - Hubs are not always influential
 - Isolated star problem [Kitsak'10]

Peeling algorithm finds the k-cores & k-trusses

- Core numbers of vertices. O(|E|) [Matula & Beck, '83]
- Truss numbers of edges. O($\sum_{u \in G} {d_u}^2$) [Cohen '08]

Observation: k-truss IS just k-core on the edge-triangle graph!

- Edge and triangle relations
 - Build a bipartite graph!
 - Not a binary relation three edges in a triangle

Why limit to triangles?

- Small cliques in larger cliques
 - 1-cliques in 2-cliques (vertices and edges)
 - 2-cliques in 3-cliques (edges and triangles)
- Generalize for any clique: r-cliques in s-cliques (r < s)
- Convert to bipartite: *r*-cliques on left, *s*-cliques on right
 - Connect if right contains left

Nucleus decomposition generalizes k-core and k-truss algorithms

- k-(r, s) nucleus:
 - Every r-clique takes part in at least k number of s-cliques

Sariyuce, Seshadhri, Pinar, Catalyurek, WWW'15 (Best paper runner-up)

Nucleus decomposition generalizes k-core and k-truss algorithms

- k-(r, s) nucleus:
 - Every r-clique takes part in at least k number of s-cliques
 - Each r-clique pair is connected by series of s-cliques

Sariyuce, Seshadhri, Pinar, Catalyurek, WWW'15 (Best paper runner-up)

Nucleus decomposition generalizes k-core and k-truss algorithms

- k-(r, s) nucleus:
 - Every r-clique takes part in at least k number of s-cliques
 - Each r-clique pair is connected by series of s-cliques

Sariyuce, Seshadhri, Pinar, Catalyurek, WWW'15 (Best paper runner-up)

Peeling works for nucleus decomposition as well!

r-cliques

- On the bipartite graph

 For the set of *r*-cliques
 Degree based
- Sounds expensive?
 - Yes, in theory
 - -r=3, s=4: $O(\sum_{v} cc(v)d(v)^3)$
 - But practical
 - Clustering coefficients decay with the degree in many real-world networks
 - Can be scaled to tens of millions of edges

Comparing hierarchies for different nucleus decompositions

APS Citation Network Analysis

Sariyuce, Seshadhri, Pinar, Catalyurek, TWEB 11(3), 16

What about other graph types? Bipartite networks (One-to-many relations)?

- Author-paper, word-document, actor-movie...
 Bipartite in nature, no triangle
- Usually project bipartite to unipartite
 - Author-paper \rightarrow Co-authorship

- |E| explodes! Information lost (even for weighted)!

• Find dense regions directly on bipartite graph!

What is the "triangle" in a bipartite network?

- Focus on the smallest non-trivial structure
 - (2, 2)-biclique, or butterfly

- Vertex-butterfly, edge-butterfly relations
 - k-tip: Each vertex participates in $\geq k$ butterflies
 - k-wing: Each edge participates in $\geq k$ butterflies
 - Can overlap

D

1-wing

2-wina

C

D

1-tip ---

3-tip — —

Applications

• Amazon Kindle dataset (users rate books)

• Author-paper relations at top DB conferences

Peeling also works for tip and wing decompositions

On the bipartite graph

 Nodes & butterflies
 Edges & butterflies

Challenge: Peeling needs global graph information

Inherently sequential

- Iterative processing

- Where is the vertex with the minimum degree?
- Independent computations not possible
 Nothing is local

Densest parts not revealed until the end
 No sense of approximation, all or none

Any local information to infer the core numbers?

• Core numbers of neighbors

Any local information to infer the core numbers?

• Core numbers of neighbors

- h-index computation!
 - h{3,4}=2, h{2,2,4}=2
 - Start from degrees, repeat until no change
 - Degrees converge to core numbers [Lu et al.'16]
 - Generalizable for nucleus decomposition

converged!

Quick convergence, scalable computation

- Graphs with >100M edges
- 99% similarity in first few iterations
 Approximation!

Conclusion

- Models & algorithms for hierarchical dense subgraph discovery
 - Nucleus decomposition
 - Generalizes *k*-core and *k*-truss; and extend
 - Wide application space
 - Challenging problems
- Exploring the bipartite realm
 - Many opportunities
- Local computations
 - Suitable for shared-nothing systems
- Network analysis by the nucleus hierarchy
 - Fast tools
 - Visualization

erdem@buffalo.edu Papers and codes: http://sariyuce.com

Thanks!

University at Buffalo The State University of New York

