Enabling Emerging Edge and loT Applications
with Edge-Cloud Data Management

Faisal Nawab

Assistant Professor at University of California, Irvine

We build
a Data Management Infrastructure

for edge and loT applications
’\

Interactive
real-time
applications

Video-based
surveillance

Autonomous vehicles
and drones

Crowd
management

[Industry 4.0 } Smart Spaces, Internet of Things,
and Edge Applications

e E
What's missing?

e Manage data in real-time, close to users

e The cloud (and centralization) got as far, but now is time

for "the next step”
o High wide-area latency
o Communication throughput demands
o Regulations about using the cloud

e What's the next step?
o Let's reflect on the history of computing

Cloud

Large Data
Wide-area Latency G

- Consolidation/Centralization (higher throughput/resource utilization) —

THRL]
TR 1
Malnfrémes Client-Server éggéj Cloud

1960-70s 1990s 2010s
\
\
\
\
\
Global
Edge-Cloud
PCs and Networked Edge computing , Vava
; & peer-to-peer Aﬂ Al
Machines -
LR/ 2000s O
1980s l’l’
A‘;MA

A;t;t;
Distribution (lower latency/client resources)

Global Edge Cloud: the next phase

T e
Sunflower Ave

ast Plaza

yast Dr
Anton?’

A,
A ®
wa Mafk t IRVINE BUSI Bill Bar e o %,
COMPLE Memor > :
Irvine ;

er St
range Coas @ WOODBRIDG
CoHege ﬁ
@Q
4 Q ir & Event Zen x@w
oac way Temporarily closed
»» Costa Meka hi034
9\99
9,
ﬁ per Farms 9
A
Bay N trawberry
EAST SID Preserve |ot Golf Club
COSTA MESA orarily closed
& ?eo =Y
& 7 & #tion and... &
4 (%) V’° £° Qg‘? | b
Q
Ed f 5
ge (Og) 2 Shady Car
Node (@3) v Temporanlyt
® "% a
Sills & lep " g0
Se ¥ 5 Bonita Canyon SN .
Y/ et 3 Sports Park Ce

:“ .‘.' ANYLOG
v‘,‘,‘.'

Data Management Infrastructure
for the Global-Edge Cloud * -

CIDR 2020

og: a Grand Unification of the Internet of Things

Daniel J. Abadi Owen Arden
University of Maryland University of California,

abadi@cs.umd.edu Santa Cruz
@ owen@soe.ucsc.edu

Faisal Nawab Moshe Shadmon
University of California, AnyLog

Santa Cruz moshe@anylog.co
fnawab@ucsc.edu eGanylog

CIDR 2024

The Tipping Point of
Edge-Cloud Data Management

Faisal Nawab Moshe Shadmon
nawabf@uci.edu moshe@anylog.co
UC Irvine

ABSTRACT

Edge and Internet of Things (IoT) applications have attracted sig-
nificant attention from both industry and academia due to their
immense potential. As a result, the database community—through ints. swit
communications such as the recent database Seattle reports—has f Sl
recognized the criticality of developing a new breed of dat. n-
agement systems specifically tailored for IoT and edge applications.
These systems need to be distributed across edge locations to effec-
tively handle the unique challenges posed by these environments.
However, the development of such databases remains largely mini-
mal in both industry and academia.
Over the past five years, our team has conducted extensive re-
search and collaborated with industry partners to bring an edge-
cloud database to market and to investigate the reasons behind the

A Data Infrastructure for the Global Edge Cloud

Sharing and coordination metadata layer

< 1 centralized (cloud), or

decentrallzed (publlc or private blockchain)

AN A Y S

Query: List the cars that
entered UCI this morning

er St

AN
range Coas *
Colleg Boomers! Irvipg\ésd
9 A|rport Temporarily clos '

imac Way

Q ir & Event Zente
Temporarily closed

WOODBRIDG

R

()
o
)
‘\'3

<

Farms 9

trawberry
Golf Club

orarily closed

/’})e [1)

A

I

N
or Costa Mega 2 l *
2 5 R g ndo
%o, “ *
S &
e e
7 KT8 WK, <.
3 S~ rel o)
ngﬁ; S&'ESA Preserve ;% g& ©l off¥he Arts
NG Donald Bren School
of& S & of @tion and...
s o Q/,{,?
Publishing
Edge (fog) * - Query answering
Node e,
ifop, .
Siflie & : e 9 p 1 and discovery
Se $ Bonita Canyon A
QS Q}Q B'b

Sports Park

v

AnyLlog registration 3

—)
—_—

_/

Coordination and Metadata Layer

Register Node Atlanta contains | Node Singapore replicates
P Node Info. data about Table Cars | data to Node AAA and BBB
._?; Policies

g ' NS

L
AnyLog deployments

- Now available to install
> Pip package and virtual machines

- Partners from industry and academia
o Smart city, edge, and loT technology industry

Research Thrusts

Coordination and Metadata Layer

N Sunflower Ave
ast Wlaza @

S0
s Q wa Aarliﬁt

College A

NG
GCons AQ\, D % g%

‘Inhn B(‘omerC‘

edge clusters?

How to coordinate across

;,CO ta vl
> ﬁ Lpper/\n

AnyLog Node Architecture

EAS l
COS T/

Edge to edge
coordination

Edge to cloud
coordination

Storage Layer

%

Bonita Canyon
Sports Park

emeorarlyl @dlge and cloud/blockchain

How to coordinate between

nodes9

Adveﬁe Playground Q* Iy

How to manage an edge
node efficiently?

Shady Car

Temporarily «

1. Edge Node Efficiency (Energy and Endurance)

Predict n’ Write

Hamming Tree

[ICDE’21] [SIGMOD’23]
NVM Lifetime E2-NVM
[VLDB’21Tutorial] [EDBT"23]
2018 2019 2020 2021 2022 2023
2. Edge-to-Edge Coordination
DPaxos BlockPlane AnylLog PeloPartition @ TransEdge
[SIGMOD’18] [ICDE’19] [CIDR’20] [Blockchain’22] [EDBT’23]
Nomadic loT Blockchain
[EDBT’18] [IEEE 10T’19]
2018 2019 2020 2021 2022 2023
3. Edge-to-Cloud (or blockchain) Coordination
Edge-Video CooLSM Croesus ServerlessBFT
[VLDB’18Demo] [ICDE21] [ICDE22] [ICDE’23]
WedgeChain FiME WedgeBlock
[ICDE’21] [Blockchain’22] [EDBT’23]
2018 2019 2020 2021 2022 2023

1. Edge Node Efficiency (Energy and Endurance)

Predict n’ Write

Hamming Tree

3. Edge-to-Cloud/blockchain Coordination

[ICDE’21] [SIGMOD’23]
NVM Lifetime E2-NVM
[VLDB’21Tutorial] [EDBT"23]
2021 2023
2. Edge-to-Edge Coordination
DPaxos BlockPlane AnylLog PeloPartition @ TransEdge
[SIGMOD’18] [ICDE’19] [CIDR’20] [Blockchain’22] [EDBT’23]
Nomadic loT Blockchain
[EDBT’18] [IEEE 10T’19]
2021 2023

Edge-Video
[VLDB’18Demo]

CooLSM
[ICDE’21]
WedgeChain
[ICDE’21]

Croesus
[ICDE’22]

ServerlessBFT
[ICDE’23]
WedgeBlock
[Blockchain’22] [EDBT’23]

2021

2023

Lazy (Asynchronous) Trust

Nawab [ICDE’2021], and
Singh, Zhou, Sadoghi, Mehrotra, Sharma, Nawab [EDBT’2023]

13

Tolerating Malicious Activity

- Edge nodes can be malicious

- The old way to tolerate malicious activities: control all
operation to ensure no one can act maliciously
- But it is very expensive!

The old way ~
A detective "prevents” \
malicious activity

{ Old way #1: Byzantine Fault Tolerance J

Many rounds of communication to detect lies

e

pre-prepare prepare commit reply

N\

Update x
to 10

\\

V/? W
Vil

N
/

Byzantine FT protocols
[LAMPORT, L., SHOSTAK,
R., & PEASE, M 1982], e.g.,
PBFT [OSDI'99],

Expensive
communication rounds
and message
complexity

Must make an
assumption about the
maximum number of
malicious nodes

not suitable for the
edge!

{ Old way #2: utilize a trusted entity }

A detective "prevents” malicious activity

publishers
& Clients

= Update x to 10

% Root

(signed by trusted entity)

Trusted Node
(cloud or
[h(p1:b2)] [h(p3:b4) | blockchain node)

p1 | [p2 | [p3 | [p4 |

read(x)

S
| Root |Root |

>

| p2={...,x=10,...} |

[h(p1:b2)] | h(p3:b4) |
[p1] [p2 |

Send new Merkle Tree with x=10

Edge Node =<

e - -

[Old way #2: utilize a trusted entity }

A detective "prevents” malicious activity

publishers
& Clients/ \

m But...
; This leads to
“ (1) High latency. Trusted entity is far (cloud) or =
slow (blockchain) Trusted Node
(2) Low throughput. Due to needing to funnel (cloud or
{] everything to a single entity] blockchain node)
%“‘ Yot] [p2={...,x=10,...} |
[h(p1:b2)] | h(p3:b4) |
Lp1 | [p2 | Send new Merkle Tree with x=10
o) Edge Node =<
={..., x=10,...
a b 022103 1 (yntrusted)

A New Way to Do Trusted Computation!
4 Design Principle Alert! I

* Observation: We do not trust the edge nodes, but we know who they are!
Generally true for permissioned blockchain too :

* Design: Allow malicious activity, but
« guarantee they are detected... and punished!
related to auditing in byzantine systems:
k PeerReview [SOSP’07], Fides [ICDCS’'20] /

Proposal: Lazy Trust
Allow malicious activity but
punish it eventually

i
!»?é

A New Way to Do Trusted Computation!

"How to guarantee detecting and punishing malicious)
activity?
- Utilize a trusted component:
(a) a trusted cloud node, or
_ (b) a blockchain smart contract Y

publishers
& Clients

e

|

Proposal: Lazy Trust

Allow malicious activity but punish it eventually }

Update x to 10

Al

| added x=10 to
log entry #1

(5

S

))

signed(digest
Log #1
(| {x=10.}
Log
{.x=10
OR
LIE
Log #1
{.x=6..}

Log #1
{-.x=10..}

Log #2
{-.x=15.}

Lazy-Certify digest (

signed (digest (

7

A

Trusted Node

Log #1
{-.x=10..}

Log #1
{.x=10..}

N

))

Edge Processing (Phase | Commit)

Lazy Certification (Phase || Commit)

publishers

[Proposal: Lazy Trust }
& Clients

Allow malicious activity but punish it eventually
i Great! But... (‘\. ¥/

Each data object is in a separate log record
How can we provide a data index for lazy

certification? §

y Trusted Node
3
read(#
signed(digest Log #1
Lazy-Certify digest (=)
S {L;g1#0f1}) {.x=10..}
Log
{ x=10.}]] Log #1
OR signed (digest ({.x=10.]))
y LIE Edge Node

Edge Processing (Phase | Commit)

{.x=6..}

Lazy Certification (Phase || Commit)

[Indexing for Lazy Trust J

- Possible solution: the trusted node
provides a merkle tree

- Merkle tree is ordered and can
enable more efficient access

- But, updating the merkle tree for
each update is expensive!

Trusted Node

Lazy-Certify digest (| {.x=10..} |)

m update(x=10)
ah]

Root
(signed by trusted entity)

[h(p1:62)] [h(p3:b4) |
Edge Node (o1] [p2] [p3] [p4]

| p2={...,x=10,...} |

[Proposal: LSMerkle J
An Index for Lazy Trust

- LSMerkle: a specialized index for lazy trust
and designed for efficient data ingestion
- (inspired from LSM Trees)
- Divide the index tree into levels
- Level 0: most recent data
- Level 1: compactions of older data
- Level 2: compactions of oldest data Trusted Node

Lazy-Certify digest (| {.x=10..} |)

| . update(x=10)
.

AL

LO {x=10.} || {.y=20.}

Global
signed
root

L1
Edge Node

L2 Merkle tree

[Proposal: LSMerkle J
An Index for Lazy Trust

Incoming data is ingested into
Level LO
(fast ingestion)

K

)
LO {.x=10..} {.y=20..}
Global
signed
root
L1
Merkle tree
of older data \
L2

Merkle tree
of oldest data

Proposal: LSMerkle J
An Index for Lazy Trust

When LO becomes full, it is sent to
the cloud node to be compacted

with L1
~
LO {.x=10.} {..y=20..}
new
Global
signed
L1 root
Merkle tree
of older data
(includin
L2

Merkle tree
of oldest data

[Proposal: LSMerkle J

An Index for Lazy Trust

)
LO
Global
signed
root
L1
Merkle tree
of older data
L2

When L1 becomes full, part of it is
sent to the cloud node to be
compacted with L2

Merkle tree
of oldest data

Proposal: LSMerkle

reading
- [LO.
Toread al??ctir:t:mw)e(, r\gﬁ;ﬁ? from LO - Iffound in LO, then the signed record is
_ otherwise. we Io;)k in L1 and then L2 returned (similar to the original lazy
; ﬁ trust example)
)
LO {.x=10.} {..y=20..}
Global
signed
L1 root
Merkle tree
of older data \
L2

of oldest data

Merkle tree

If found in L1 or L2, then the item and a
proof is returned to the user. The proof
includes:

- (1) the global signed root
(2) the proof of the merkle tree in the
corresponding level
(3) proof that the key does not exist in
higher levels

L
Evaluation (write latency)

- Clients and edge nodes are in California
- Latency between “edge” nodes in a cluster: emulated 10ms delay

Virginia
[] 10ms

| 110 ms |

L =

[160 ms |
| 210 ms

Cloud Data center
[] WedgeChain

[Cloud only |
[Old Edge-Cloud |

{ What if the trusted entity is a }
blockchain? [WedgeBlock EDBT’23]

0d01_2010010000%0111:1109610%0200100 7 ¥
1001 1010101010 molo 10010 aoidro .
{,) -

0001 101

- Unique opportunities A

- Smart contracts available for anyone as 1:‘” 1
trusted entities 1% s

- Smart contracts to detect and punish Ry

malicious nodes 0, e

- Unique challenges when using a blockchain Trusted entlty
smart contract as the trusted entity (blockchain smart
- A smart contract cannot “sign” contract) A

messages (cannot store private keys)
- We cannot do a lot of operations on the
blockchain (expensive)

e

update(x=10)
_

Edge Node

[Lazy Trust }
WedgeBlock and WedgeChain

(Phase | Commit)

[1. The trusted node is out of the path of execution.

2. Malicious activity (lies) are detected, eventually.
(Phase || Commit)

1. Edge Node Efficiency (Energy and Endurance)

Predict n’ Write

Hamming Tree

3. Edge-to-Cloud/blockchain Coordination

[ICDE’21] [SIGMOD’23]
NVM Lifetime E2-NVM
[VLDB’21Tutorial] [EDBT"23]
2021 2023
2. Edge-to-Edge Coordination
DPaxos BlockPlane AnylLog PeloPartition @ TransEdge
[SIGMOD’18] [ICDE’19] [CIDR’20] [Blockchain’22] [EDBT’23]
Nomadic loT Blockchain
[EDBT’18] [IEEE 10T’19]
2021 2023

Edge-Video
[VLDB’18Demo]

CooLSM
[ICDE’21]
WedgeChain
[ICDE’21]

Croesus
[ICDE’22]

ServerlessBFT
[ICDE’23]
WedgeBlock
[Blockchain’22] [EDBT’23]

2021

2023

CooLLSM pcpe21]

spans edge and cloud nodes?

Question 1: how do we build data storage that }

Cloud-only solution

-

/{ expensive |
coordination J

Edge and cloud as part of a

{

limited |

capacity J \

% Cloud l%

Edge-only solution

__distributed/replicated storage system /

CooLSM:)
Asymmetric storage >)
Use edge and cloud each
_ for what they do best -

CooL.SM [icpe21;

Question 1: how do we build data storage that
spans edge and cloud nodes?

CooLSM:)
Asymmetric storage

Use edge and cloud each
for what they do best

o

cloud node
Edge node
+ large capacity
+ close to users use for intensive and large
Use for real-time actions tasks
- limited capacity - faraway from users
Do not use for intensive or use only for non-real-time
large jobs tasks

CooLLSM pcpe21]

Question 2: how do we use these observations for
the LSM storage structure?

First, let’s reflect on the structure of LSM trees

o 0----01 e
u P
'I LO [l [1 \|
‘ug---- 0
e /’ Cloud Queries/Analytics
Ny R Compactors('
Inge_gt_or 1 Compgctor 1 Readers Al)
I// \\ /fo,’;T:-‘ \\\\ G A —
L2 D000 0l % | t CHCHE () eal-time
,v'g g ;’f 3 {Ls | $hap5th ngestors L) @ actions
\\.\.\ Py oy \ ,, \\fuu..u.._:., e Q i G D
Node 1 Node 2 ol i i Edge and loT Nodes
Compactor 2 Reader 1
B (B .
St ‘~: Deconstructed Distribution after
- L deconstruction
Distributed LSM Tree

LSM Tree

CoolL.SM Data Flow (1 Ingestor/M Compactors)
4 N

Fast real-time operations
insert(key, value)
- Fast ingestion Memt?ble //)
- Fast reads of recent data o, i P s /
- A e
memtable flushed,/ ,/ key, value
(2]
N N :
> w000 mj
P ‘i minor compaction
L1 P
27 PR i = ©
Edge L7 Leader A
—————————— *‘*———————&—’)’i————————-
Cloud \/ m_a]or compaction \\l
2000 ... 0do | oo ... odo)

7Y o [o [[S SN Y [s R [[[s |

Compactor_1 / Leverage cloud capacity)

- heavy compactions on
cloud machines

- Scale compaction with

\ multiple compactors /

CooLSM Correctness

CooLSM is linearizable

Linearizability is a guarantee that a data operation appears to happen
instantaneously at some time between its invocation and return.

Client L \
Upsert1(x=3) Upsert2(x=5) Because all operations are
Upsert3(x=7) funneled through the
ingestor:
A read operation at any time
Ingestor) will always observe the
N\

“execution history” of
upset1, upsert2. then

upsert3 /
<

Compactors

v

Optimization 1: Add read-only backup nodes

insert(key, value)
Memtable /)
key, value ////
key, value
| s ~N2' @
/ - key, value /..J
key, value
memtableflushed /; S key, value
(2)’l’
AN 3 -
N WDDD 0
‘i minor compaction
/:///\L].:D D D LR D‘: \‘—\\\\\ o
Edge L7 Leader A
---------- e e @ — A mmm———— - -
Cloud \/ ma]or compactlon NJ |
0og ... dod | S a]u] NP u]u]x}

PY(m [« N = [= [[N RN ¥ s [u [= RO w|u] =} §

COmpactor 1 Compactor_k

Each compator sends
upsert operations in

Read-only backups the ingestor order

CoolL.SM Backup data flow

Client

Upsert1(x=3) Upsert2(x=5)
Upsert3(x=7)
Ingestor
= >
Compactors \ \

.\ \

CoolL.SM Backup correctness

Client
>
Upsert1(x=3) Upsert2(x=5)
Upsert3(x=7)
T
Ingestor
W, read(x) —
-
But, linearizability is
Compactors not satisfied!
1\ yi \ t
\ N
Reads from the backup
breaks the illusion of
operations happening
Backup at some particular time

read(x)

L
CoolL.SM Backup correctness

Client

[linearizability is not satisfied! \

But, the backup is still useful

Upsert2(x=5)
Upsert3(x=7)

To reason about its correctness, -
we propose an extension of
linearizability

Snapshot-libearizablity: For any \
two read operations from the \
backup nodes r1 and r2, reading
the same data object x, the two
reads observe a correct order of

{psert operations
_— read(x) 2 e

w

v

Optimization 2: Scale ingestion (multiple overlapping ingestors)

multiple ingestors are
receiving potentially
insert(key, valug conflicting operations

Memtable //\
key, value / " Memtable
/ "
m' ::},:: /// 0 . key, value
= | key, value //V/ : i
/:’ e ~ X . .
memtable flushed / , cad Bt - e e

Q0

N

Y @ong .. 0 E W0 u]
Pl ‘i minor compaction i
o>ugd00 O -~ @ _-n000 0
Edge ./_;/ | Leader \\\\\” : ./:/)
TClowd T T T T V7= = T rmorompaion © — ~ T = === ==
000 ... ooo 00 ... ooo)

7Y o [o [[S SN Y [s R [[[s |

Compactor_1 Compactor_k

CooL.SM Correctness with multiple ingestors

Client1

Client2 \

\

Upsert1(x=3)

Ingestor1
Upsert2(x=4)
Ingestor2
AT
Compactors

(v D

multiple ingestors lead to anomalies
in linearizability!

Either

(1) we make ingestors coordinate —
but with high cost, or

(2) we weaken linearizability.

We propose linearizable+concurrent
isolation

Intuition: make the granularity or
ordering based on a window of
concurrency.

- If two operations are performed
within the same time, then it is fine
to be reordered.

- Only ensure the order of

\ operations that do not overlap /

CooLSM

Deconstructing and distributing LSM
storage across edge and cloud nodes

Design principle: consider the
asymmetry of resources between edge
and cloud nodes

Useful for storage disaggregation in
general, e.g., Nova-LSM [SIGMOD’21],
dLSM [ICDE’23]

We apply the asymmetric edge-cloud
principle to other problems

Cloud Queries/Analytics
Compactors 1
Readers OO
Ingestors () <f"'®\ Real-time
actions

e Edg{e}a\ndJIoT{N!des D

ICDE 2023

Reliable Transactions in Serverless-Edge
Architecture

Suyash Gupta®, Sajjad Rahnama, Erik Linsenmayer, Faisal Nawab’, Mohammad Sadoghi
Exploratory Systems Lab
University of California, Davis
! University of California, Irvine
*University of California, Berkeley

trusted database

untrusted serverless

)

L\l_l —

Nomadic loT Blockchain

2022

You’ve got a Friend in ME (Mobile Edge): Blockchain Pr

Blockchain

with Cloud Node Backup

Zane Karl'*, Hayden Freedman'*, Ahmad Showail'3, Abhishek Singh', Samaa Gazzaz Faisal Nawab'
zkarl @uci.edu, hfreedma@uci.edu, ahmad.showail @kaust.edu.sa, ab} uci.edu, sgazzaz c.edu, nawabf@uci.edu
lDonalcl Bren School of Information and Computer Science, University of California, Irvine, Irvme CA, 92697, USA
2Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
3Department of Computer Engineering, Taibah University, Madinah, Saudi Arabia

#iumcuomn 1000101100100
g@k nain

109101 & 0
XT11a0 1 O w
Q-p161 1 I \)
1119 3 20 4’*‘}
1 19 0001303 0610p0Q, 031

1

4 b ! 100101110 010 001

1) 1ot Y fo1 0¥ o

\ R 5oy 10 K Gopty 1
1% 1051 BO)OUU].
1011, 41 1401

Ground Truth

Stale knowledge

/

ICDE 2022

Croesus: Multi-Stage Processing and Transactions
for Video-Analytics in Edge-Cloud Systems

Samaa Gazzaz
UC Santa Cruz
sgazzaz@ucsc.edu

Vishal Chakraborty
UC Irvine
vi.c@uci.edu

Faisal Nawab
UC Irvine
nawabf@uci.edu

Il

fast transactions Corrections

[DTOCRTTIANT ZZ] [CDDT ZJ]

In edge-to-cloud and edge-to-blockchain,

design for the asymmetry between resources

CoolLSM
[ICDE’21]
WedgeChain
[ICDE’21]

ServerlessBFT
[ICDE’22] [ICDE’23]

FiME WedgeBlock
[Blockchain'22] [EDBT23]

Croesus

2021

2022 2023

)

~

/ Ongoing/future work

- Edge-to-cloud Transaction
Processing

- Croesus [ICDE’22]: Fast
transactions on edge and

corrections in the cloud

- Inspired by Invariant Confluence [P.
Bailis, et. al. VLDB’14] and Guesses

and Apologies [P. Helland &
Campbell CIDR'09] /

Fast transactions in edge and \

compensations in the cloud

- Inspired by Sagas [H. Garcia-Molina
and K. Salem SIGMOD’87]

\ initial txn segment

compensation

\\ fast txn

ICDE 2022

Croesus: Multi-Stage Processing and Transactions
for Video-Analytics in Edge-Cloud Systems

Samaa Gazzaz
UC Santa Cruz
sgazzaz@ucsc.edu vi.c@uci.edu

Vishal Chakraborty Faisal Nawab
UC Irvine

nawabf@uci.edu

/- Chopping txns to edge hop and\

cloud hop
- Inspired by Transaction Chopping [D.
Shasha et. al TODS’95] and Transaction
Chains [Y. Zhang et. al SOSP’13]

final hop txn

\\ fast 1st-hop txn

45

final txn segment /

)

L
Edge-Cloud Data Management

Managing and unifying
data management
for the future of computing

Design for the asymmetry of
edge and cloud resource

Global Edge-Cloud
Data Management

L
UCI Edge Lab

https://nawab.me/ e Research funding

LA
3 (qf\(

nawabf@uci.edu

Data management on the Edge

Compliance to data protection
regulations in smart spaces

CyberTraining: Data Science for
Engineering

e Industry funding
Next Generation Data
00 MetCI Infrastructure Award
I
o o ANYLOG

osiie R"BLOX Resilience of

Large-scale Systems

-

2
w.

-~

https://edgelab.ics.uci.edu/

