
Enabling Emerging Edge and IoT Applications
with Edge-Cloud Data Management

Faisal Nawab

Assistant Professor at University of California, Irvine

Industry 4.0

Video-based
surveillance

Autonomous vehicles
and drones

Crowd
management

Interactive
real-time

applications

We build
a Data Management Infrastructure

for edge and IoT applications

Smart Spaces, Internet of Things,
and Edge Applications

What’s missing?
● Manage data in real-time, close to users

● The cloud (and centralization) got as far, but now is time
for "the next step"
○ High wide-area latency
○ Communication throughput demands
○ Regulations about using the cloud

● What's the next step?
○ Let's reflect on the history of computing

3/
49

Cloud
Data

Center
Large

Wide-area Latency

Mainframes
1960-70s

PCs and Networked
Machines

1980s

Client-Server
1990s

Edge computing
& peer-to-peer

2000s

Cloud
2010s

Consolidation/Centralization (higher throughput/resource utilization)

Distribution (lower latency/client resources)

Global
Edge-Cloud

5

Global Edge Cloud: the next phase

 Edge (fog)
 Node

6

Data Management Infrastructure
for the Global-Edge Cloud

CIDR 2020

CIDR 2024

7

A Data Infrastructure for the Global Edge Cloud

 Edge (fog)
 Node

Sharing and coordination metadata layer
1. centralized (cloud), or
2. decentralized (public or private blockchain)

Query: List the cars that
entered UCI this morning

Publishing
Query answering

AnyLog registration
and discovery

 AnyLog Deployment

8

car
info

time speed

1 11 55

2 12 53

3 13 15

car
info

time speed

11 22 65

22 24 103

44 50 22

Coordination and Metadata Layer

… Register
Node Info.
Policies

Node Atlanta contains
data about Table Cars

Node Singapore replicates
data to Node AAA and BBB

…

9
/
4
9

AnyLog deployments
● Now available to install

○ Pip package and virtual machines
● Partners from industry and academia

○ Smart city, edge, and IoT technology industry

10

Research Thrusts
Coordination and Metadata Layer

Cloud

How to coordinate across
edge clusters?

How to coordinate between
edge and cloud/blockchain
nodes?

How to manage an edge
node efficiently?

AnyLog Node Architecture

Storage Layer

Edge to edge
coordination

Edge to cloud
coordination

11

1. Edge Node Efficiency (Energy and Endurance)

2018 2019 2020 2021 2022 2023

Predict n’ Write
[ICDE’21]
NVM Lifetime
[VLDB’21Tutorial]

Hamming Tree
[SIGMOD’23]
E2-NVM
[EDBT’23]

2. Edge-to-Edge Coordination

2018 2019 2020 2021 2022 2023

DPaxos
[SIGMOD’18]
Nomadic
[EDBT’18]

AnyLog
[CIDR’20]

BlockPlane
[ICDE’19]
IoT Blockchain
[IEEE IoT’19]

3. Edge-to-Cloud (or blockchain) Coordination

2018 2019 2020 2021 2022 2023

CooLSM
[ICDE’21]
WedgeChain
[ICDE’21]

Edge-Video
[VLDB’18Demo]

PeloPartition
[Blockchain’22]

Croesus
[ICDE’22]
FiME
[Blockchain’22]

ServerlessBFT
[ICDE’23]
WedgeBlock
[EDBT’23]

TransEdge
[EDBT’23]

12

1. Edge Node Efficiency (Energy and Endurance)

2018 2019 2020 2021 2022 2023

Predict n’ Write
[ICDE’21]
NVM Lifetime
[VLDB’21Tutorial]

Hamming Tree
[SIGMOD’23]
E2-NVM
[EDBT’23]

2. Edge-to-Edge Coordination

2018 2019 2020 2021 2022 2023

DPaxos
[SIGMOD’18]
Nomadic
[EDBT’18]

AnyLog
[CIDR’20]

BlockPlane
[ICDE’19]
IoT Blockchain
[IEEE IoT’19]

3. Edge-to-Cloud/blockchain Coordination

2018 2019 2020 2021 2022 2023

CooLSM
[ICDE’21]
WedgeChain
[ICDE’21]

Edge-Video
[VLDB’18Demo]

PeloPartition
[Blockchain’22]

Croesus
[ICDE’22]
FiME
[Blockchain’22]

ServerlessBFT
[ICDE’23]
WedgeBlock
[EDBT’23]

TransEdge
[EDBT’23]

13

WedgeChain and WedgeBlock
Lazy (Asynchronous) Trust
Nawab [ICDE’2021], and
Singh, Zhou, Sadoghi, Mehrotra, Sharma, Nawab [EDBT’2023]

Tolerating Malicious Activity
• Edge nodes can be malicious
• The old way to tolerate malicious activities: control all
operation to ensure no one can act maliciously

• But it is very expensive!

14
/4
9

The old way
A detective "prevents"

malicious activity

Old way #1: Byzantine Fault Tolerance
Many rounds of communication to detect lies

pre-prepare prepare commit reply - Byzantine FT protocols
[LAMPORT, L., SHOSTAK,
R., & PEASE, M 1982], e.g.,
PBFT [OSDI’99],

- Expensive
communication rounds
and message
complexity

- Must make an
assumption about the
maximum number of
malicious nodes

- not suitable for the
edge!

Update x
to 10

16
/4
9

Old way #2: utilize a trusted entity
A detective "prevents" malicious activity

publishers
& Clients

Edge Node
(untrusted)

Trusted Node
(cloud or
blockchain node)

Update x to 10

Send new Merkle Tree with x=10

Root
(signed by trusted entity)

h(p1:b2) h(p3:b4)

p1 p2 p3 p4

p2={..., x=10,...}

read(x)

Root

h(p1:b2) h(p3:b4)

p2

p2={..., x=10,...}

Root

p1

17
/4
9

Old way #2: utilize a trusted entity
A detective "prevents" malicious activity

publishers
& Clients

Edge Node
(untrusted)

Trusted Node
(cloud or
blockchain node)

Update x to 10

Send new Merkle Tree with x=10

Root

h(p1:b2) h(p3:b4)

p1 p2 p3 p4

p2={..., x=10,...}

read(x)

Root

h(p1:b2) h(p3:b4)

p2

p2={..., x=10,...}

Root

p1

But…

This leads to
(1) High latency. Trusted entity is far (cloud) or

slow (blockchain)
(2) Low throughput. Due to needing to funnel

everything to a single entity

A New Way to Do Trusted Computation!

18
/4
9

Proposal: Lazy Trust
Allow malicious activity but

punish it eventually

Design Principle Alert!
• Observation: We do not trust the edge nodes, but we know who they are!

• Generally true for permissioned blockchain too
• Design: Allow malicious activity, but

• guarantee they are detected… and punished!
• related to auditing in byzantine systems:

• PeerReview [SOSP’07], Fides [ICDCS’20]

A New Way to Do Trusted Computation!

19
/4
9

How to guarantee detecting and punishing malicious
activity?
- Utilize a trusted component:

(a) a trusted cloud node, or
(b) a blockchain smart contract

20
/4
9

Proposal: Lazy Trust
Allow malicious activity but punish it eventuallypublishers

& Clients

Edge Node

Trusted Node

Update x to 10

Root

h(p1:b2) h(p3:b4)

p1 p2 p3 p4

p2={..., x=5,...}

read(#500)

Root

h(p1:b2) h(p3:b4)

p2

p2={..., x=10,...}

Root

p1

I added x=10 to
log entry #1

Log #1
{..x=10..}

Log #2
{..x=15..}

Log #1
{..x=10..}

OR

Log #1
{..x=6..}

TRUTH

LIE

Lazy-Certify digest ()Log #1
{..x=10..}

signed (digest ())
Log #1

{..x=10..}

Edge Processing (Phase I Commit)

Lazy Certification (Phase II Commit)

signed(digest

 ())Log #1
{..x=10..}

21
/4
9

Proposal: Lazy Trust
Allow malicious activity but punish it eventuallypublishers

& Clients

Edge Node

Trusted Node

Update x to 10

read(#500)

I added x=10 to
log entry #1

Log #1
{..x=10..}

Log #2
{..x=15..}

Log #1
{..x=10..}

OR

Log #1
{..x=6..}

TRUTH

LIE

Lazy-Certify digest ()Log #1
{..x=10..}

signed (digest ())
Log #1

{..x=10..}

Edge Processing (Phase I Commit)

Lazy Certification (Phase II Commit)

signed(digest

 ())Log #1
{..x=10..}

Great! But…

Each data object is in a separate log record.
How can we provide a data index for lazy
certification?

22
/4
9

Indexing for Lazy Trust

Trusted Node

- Possible solution: the trusted node
provides a merkle tree

- Merkle tree is ordered and can
enable more efficient access

- But, updating the merkle tree for
each update is expensive!

Edge Node

Lazy-Certify digest (){..x=10..}

update(x=10)
Root

(signed by trusted entity)

h(p1:b2) h(p3:b4)

p1 p2 p3 p4

p2={..., x=10,...}

Proposal: LSMerkle
An Index for Lazy Trust

Trusted Node

- LSMerkle: a specialized index for lazy trust
and designed for efficient data ingestion

- (inspired from LSM Trees)
- Divide the index tree into levels

- Level 0: most recent data
- Level 1: compactions of older data
- Level 2: compactions of oldest data

Edge Node

Lazy-Certify digest (){..x=10..}

update(x=10)
L0 {..x=10..} {..y=20..}

L1 Merkle tree
of older data

Merkle tree
of oldest data

L2

Global
signed

root

Proposal: LSMerkle
An Index for Lazy Trust

L0 {..x=10..} {..y=20..}

L1
Merkle tree

of older data

Merkle tree
of oldest data

L2

Global
signed

root

Incoming data is ingested into
Level L0

(fast ingestion)

Proposal: LSMerkle
An Index for Lazy Trust

L0 {..x=10..} {..y=20..}

L1
Merkle tree

of older data

Merkle tree
of oldest data

L2

Global
signed

root

When L0 becomes full, it is sent to
the cloud node to be compacted

with L1

Merkle tree
of older data

(including x=10 and y=20)

new
Global
signed

root

Proposal: LSMerkle
An Index for Lazy Trust

L0

L1
Merkle tree

of older data

Merkle tree
of oldest data

L2

Global
signed

root

When L1 becomes full, part of it is
sent to the cloud node to be

compacted with L2

Proposal: LSMerkle
reading

L0 {..x=10..} {..y=20..}

L1
Merkle tree

of older data

Merkle tree
of oldest data

L2

Global
signed

root

- To read a data item x, we start from L0.
If found, we return it

- otherwise, we look in L1, and then L2
- If found in L0, then the signed record is

returned (similar to the original lazy
trust example)

- If found in L1 or L2, then the item and a
proof is returned to the user. The proof

includes:
- (1) the global signed root

- (2) the proof of the merkle tree in the
corresponding level

- (3) proof that the key does not exist in
higher levels

Evaluation (write latency)
• Clients and edge nodes are in California

• Latency between “edge” nodes in a cluster: emulated 10ms delay

28
/4
9

100ms

250ms

Cloud Data center
 WedgeChain

Cloud only
Old Edge-Cloud

Virginia
 10ms

80 ms
110 ms

Ireland
 10ms

160 ms
210 ms

What if the trusted entity is a
blockchain? [WedgeBlock EDBT’23]

Trusted entity
(blockchain smart
contract)

- Unique opportunities
- Smart contracts available for anyone as

trusted entities
- Smart contracts to detect and punish

malicious nodes
- Unique challenges when using a blockchain

smart contract as the trusted entity
- A smart contract cannot “sign”

messages (cannot store private keys)
- We cannot do a lot of operations on the

blockchain (expensive)

Edge Node

update(x=10)

Lazy Trust
WedgeBlock and WedgeChain

1. The trusted node is out of the path of execution.
(Phase I Commit)

2. Malicious activity (lies) are detected, eventually.
(Phase II Commit)

•

31

1. Edge Node Efficiency (Energy and Endurance)

2018 2019 2020 2021 2022 2023

Predict n’ Write
[ICDE’21]
NVM Lifetime
[VLDB’21Tutorial]

Hamming Tree
[SIGMOD’23]
E2-NVM
[EDBT’23]

2. Edge-to-Edge Coordination

2018 2019 2020 2021 2022 2023

DPaxos
[SIGMOD’18]
Nomadic
[EDBT’18]

AnyLog
[CIDR’20]

BlockPlane
[ICDE’19]
IoT Blockchain
[IEEE IoT’19]

3. Edge-to-Cloud/blockchain Coordination

2018 2019 2020 2021 2022 2023

CooLSM
[ICDE’21]
WedgeChain
[ICDE’21]

Edge-Video
[VLDB’18Demo]

PeloPartition
[Blockchain’22]

Croesus
[ICDE’22]
FiME
[Blockchain’22]

ServerlessBFT
[ICDE’23]
WedgeBlock
[EDBT’23]

TransEdge
[EDBT’23]

32
/4
9

CooLSM [ICDE’21]

Question 1: how do we build data storage that
spans edge and cloud nodes?

Cloud

Cloud-only solution

Cloud

Edge-only solution

Cloud

Edge and cloud as part of a
distributed/replicated storage system

Cloud

Use edge and cloud each
for what they do best

Slow limited
capacity

expensive
coordination

CooLSM:
Asymmetric storage

33
/4
9

CooLSM [ICDE’21]

Question 1: how do we build data storage that
spans edge and cloud nodes?

Cloud

Use edge and cloud each
for what they do best

CooLSM:
Asymmetric storage

Edge node

+ close to users
Use for real-time actions

- limited capacity
Do not use for intensive or

large jobs

cloud node

+ large capacity
use for intensive and large

tasks

- faraway from users
use only for non-real-time

tasks

34
/4
9

CooLSM [ICDE’21]

Question 2: how do we use these observations for
the LSM storage structure?

First, let’s reflect on the structure of LSM trees

LSM Tree

Distributed
LSM Tree

Deconstructed
LSM Tree

Distribution after
deconstruction

35
/4
9

CooLSM Data Flow (1 Ingestor/M Compactors)

Edge

Cloud

Fast real-time operations

- Fast ingestion
- Fast reads of recent data

Leverage cloud capacity

- heavy compactions on
cloud machines

- Scale compaction with
multiple compactors

36
/4
9

CooLSM Correctness
CooLSM is linearizable

Linearizability is a guarantee that a data operation appears to happen
instantaneously at some time between its invocation and return.

Client

Ingestor

Compactors

Upsert1(x=3) Upsert2(x=5)

1 2

Upsert3(x=7)

3

Because all operations are
funneled through the
ingestor:

A read operation at any time
will always observe the
“execution history” of
upset1, upsert2. then
upsert3

37
/4
9

Optimization 1: Add read-only backup nodes

Edge

Cloud

Read-only backups

Each compator sends
upsert operations in
the ingestor order

38
/4
9

CooLSM Backup data flow
Client

Ingestor

Compactors

Upsert1(x=3) Upsert2(x=5)

1 2

Upsert3(x=7)

3

Backup
1 2 3

39
/4
9

CooLSM Backup correctness
Client

Ingestor

Compactors

Upsert1(x=3) Upsert2(x=5)

1 2

Upsert3(x=7)

3

Backup
1 2 3

But, linearizability is
not satisfied!

read(x)

read(x)

Reads from the backup
breaks the illusion of
operations happening
at some particular time

40
/4
9

CooLSM Backup correctness
Client

Ingestor

Compactors

Upsert1(x=3) Upsert2(x=5)

1 2

Upsert3(x=7)

3

Backup
1 2 3read(x)

read(x)

linearizability is not satisfied!

But, the backup is still useful

To reason about its correctness,
we propose an extension of
linearizability

Snapshot-libearizablity: For any
two read operations from the
backup nodes r1 and r2, reading
the same data object x, the two
reads observe a correct order of
upsert operations

read(x)

41
/4
9

Optimization 2: Scale ingestion (multiple overlapping ingestors)

Edge

Cloud

multiple ingestors are
receiving potentially

conflicting operations

42
/4
9

CooLSM Correctness with multiple ingestors

Client1

Ingestor1

Compactors

1

Ingestor2

Client2

Upsert2(x=4)

Upsert1(x=3)

2

12

multiple ingestors lead to anomalies
in linearizability!

Either
(1) we make ingestors coordinate –

but with high cost, or
(2) we weaken linearizability.

We propose linearizable+concurrent
isolation

Intuition: make the granularity or
ordering based on a window of
concurrency.

- If two operations are performed
within the same time, then it is fine
to be reordered.

- Only ensure the order of
operations that do not overlap

CooLSM

- Deconstructing and distributing LSM
storage across edge and cloud nodes

- Design principle: consider the
asymmetry of resources between edge
and cloud nodes

-

- Useful for storage disaggregation in
general, e.g., Nova-LSM [SIGMOD’21],
dLSM [ICDE’23]

- We apply the asymmetric edge-cloud
principle to other problems

44

2018 2019 2020 2021 2022 2023

Predict n’ Write
[ICDE’21]
NVM Lifetime
[VLDB’21Tutorial]

Hamming Tree
[SIGMOD’23]
E2-NVM
[EDBT’23]

2. Edge-to-Edge Coordination

2018 2019 2020 2021 2022 2023

DPaxos
[SIGMOD’18]
Nomadic
[EDBT’18]

AnyLog
[CIDR’20]

BlockPlane
[ICDE’19]
IoT Blockchain
[IEEE IoT’19]

3. Edge-to-Cloud/blockchain Coordination

2018 2019 2020 2021 2022 2023

CooLSM
[ICDE’21]
WedgeChain
[ICDE’21]

Edge-Video
[VLDB’18Demo]

PeloPartition
[Blockchain’22]

Croesus
[ICDE’22]
FiME
[Blockchain’22]

ServerlessBFT
[ICDE’23]
WedgeBlock
[EDBT’23]

TransEdge
[EDBT’23]

Cloud

untrusted serverless trusted database

Cloud

ICDE 2023 ICDE 2022

fast transactions Corrections

In edge-to-cloud and edge-to-blockchain,
design for the asymmetry between resources

Blockchain
2022

Stale knowledge Ground Truth

Blockchain

45

Cloud

ICDE 2022

initial txn segment final txn segment

Ongoing/future work
- Edge-to-cloud Transaction

Processing
- Croesus [ICDE’22]: Fast

transactions on edge and
corrections in the cloud

- Inspired by Invariant Confluence [P.
Bailis, et. al. VLDB’14] and Guesses
and Apologies [P. Helland &
Campbell CIDR’09]

- Fast transactions in edge and
compensations in the cloud

- Inspired by Sagas [H. Garcia-Molina
and K. Salem SIGMOD’87]

Cloud
fast txn compensation

- Chopping txns to edge hop and
cloud hop

- Inspired by Transaction Chopping [D.
Shasha et. al TODS’95] and Transaction
Chains [Y. Zhang et. al SOSP’13]

Cloud
fast 1st-hop txn final hop txn

Edge-Cloud Data Management

Managing and unifying
data management

for the future of computing

Design for the asymmetry of
edge and cloud resource

46
/4
9

Global Edge-Cloud
Data Management

UCI Edge Lab
https://nawab.me/

nawabf@uci.edu
EdgeLab students

● Research funding

● Industry funding

47
/4
9

Data management on the Edge

Compliance to data protection
regulations in smart spaces

CyberTraining: Data Science for
Engineering

Next Generation Data
Infrastructure Award

Resilience of
Large-scale Systems

https://edgelab.ics.uci.edu/

