
What we talk about
when we talk about graphs

George Fletcher

Database Group
Eindhoven University of Technology

University of Waterloo

May 25, 2020

Nikolay
Yakovets

George Fletcher Odysseas
Papapetrou

Database Group

TU/e | VISUAL IDENTITY MANUAL – V1 0918 | LOGOCONTENTSPREVIOUS NEXT4

The basic logo is the acronym ‘TU/e’. It is the shortest
possible indication of the name. The capital letters ‘TU’
and the lower case letter ‘e’ are separated by a ‘slash’.
This logo without descriptor is used on items where space
is very limited or where legibility is insufficient. It is also
used in places where TU/e is well known and the addition
of the descriptor will not be necessary.

The logo with descriptor consists of the basic logo and
the English text ‘Eindhoven University of Technology’, fully
capitalized. The use of the English name, also in Dutch
contexts, contributes to an international reputation.

The logo with descriptor has two variants: the ‘Line’
version, in which the English text is to the right of the
basic logo, and the ‘Stack’ version in which the text line
is placed under the basic logo.

Modifying logos or developing other variants is not
permitted. The following pages describe which variant is
used where.

In plain text, the name is first given in full, written with the
acronym behind it in brackets. In all instances after that,
only the acronym will be used:
Eindhoven University of Technology (TU/e)
Eindhoven University of Technology (TU/e)
TU/e

Basic logo

Logo with descriptor

‘Line’ version ‘Stack’ version

LOGO – THE TU/e LOGO

• design and engineering of graph query languages
• social network analytics
• data analytics over streaming and heterogeneous data
• big data infrastructure
• privacy-sensitive data analytics
• data integration

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Ag
AvantGraph

Vc
Vectorized
Compiled

Mm
Main

Ra
Recursive
AnalyticsMemory

Os
Open

Source

Wco
Worst-case

Optimal

Tm
Temporal

Fz
Factorized

Re
Reachability

Td
Topo+data

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Ag
AvantGraph

Open source release
coming in 2020!

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Ag: state of the art recursive
queries and query planning

Contemporary graph QL’s such as
Cypher, G-CORE, PGQL, SPARQL, and
the upcoming standard GQL all support
advanced recursive analytics on graphs

‣ e.g., path navigation and paths a
first-class citizens

Supporting all of these languages, Ag’s
internal logical language is the Regular
Queries extended to the PG model

‣ See Bonifati, Fletcher, Voigt,
Yakovets. Querying Graphs 2018.

‣ SSDBM 2019, SIGMOD 2018

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Ag: state of the art recursive
queries and query planning

Ag query planner/optimizer
properly extends the plan
spaces of earlier RA and
automata-based planners, to
capture novel efficient and
scalable physical execution
strategies specifically for
contemporary recursive
graph analytics (SIGMOD 2016)

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Ag: state of the art
execution engine

• Worst-case optimal join
processing for subgraph
pattern matching queries
‣ de Brouwer, TU Eindhoven 2020

• Compiled and vectorised
queries
‣ van de Wall, TU Eindhoven 2020

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

- avoids explosion of intermediate results (IR) during query evaluation
caused by multiplicity (AMW 2017; Clark, TU Eindhoven 2019; in submission 2020)

- use an answer graph as the representation of the IR

WireFrame:
Factorization of intermediate results with answer graphs

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Ag: advanced reachability
and structural indexing

In addition to state of the art
physical graph representations,
advanced indexing data structures
are introduced.

Landmark indexing — for label-
constrained reachability, the most
common form of recursive path
navigation (SIGMOD 2017)

Structural indexing — subgraph
indexing for conjunctive path
patterns, the core of contemporary
PG languages (arXiv 2020)

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Recursive analytics with data
in Ag

Nodes and edges in property graphs
have local data

‣ e.g., People nodes can have a
name and email address;
Follows edges between people
can have a StartDate

For contemporary graph language
extensions for reasoning about local
data in recursive analytics, we extend
the planner to generate novel execution
plans to leverage new data-aware
optimisation opportunities (EDBT
2020)

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Knowledge modelling for graphs

SHACL for RDF
•Towards efficient validation of RDF graphs against
recursive SHACL. Collaboration with Amazon Neptune.
(Lahaye, 2020).

Property Graph Schema Working Group (LDBC)
• Modeling for graph semantics (2018-current).
• Working closely with ISO GQL standards committee.

TU/e – 2IMD10 (Q3 2018-2019) – Yakovets – Lecture 1

Open Ag research challenges
We are just at the beginning, with many exciting research challenges
• Cardinality estimation for optimising recursive analytics
• Graph aggregation: language extensions and scalable methods
• Benchmarking frameworks for knowledge graph analytics
‣ State of the art frameworks such as gMark (IEEE TKDE 2017) support
recursive analytics and flexible topological control
‣ However, we need models and solutions for temporal graphs, graph
aggregation, property graph data, …

• Schema and constraints for property graphs
‣ Mappings in the presence of graph schema
‣ Schema discovery and conformance checking
‣ Dependencies for property graph data cleaning and quality

• ….

What we talk about

when we talk about graphs

What we talk about when we talk ...

Sapir-Whorf: “the structure of a language affects the ways in
which its speakers conceptualize their world” (Wikipedia)

I Wilhelm von Humboldt (1767-1835): linguistics and philology
I The heterogeneity of language and its influence on the

intellectual development of mankind (1836)

I Franz Boas (1858-1942): anthropology
I Edward Sapir (1884-1939) and Benjamin Whorf (1897-1941):

linguistics
I Language, mind, and reality (1942)

I and in sociology, psychology, philosophy, history (e.g., Kuhn’s
“Structure of scientific revolutions”, Wittgenstein’s language
games), ...
I deep and lasting impact across the sciences

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 14

What we talk about when we talk ...

Sapir-Whorf: “the structure of a language affects the ways in
which its speakers conceptualize their world” (Wikipedia)

I Wilhelm von Humboldt (1767-1835): linguistics and philology
I The heterogeneity of language and its influence on the

intellectual development of mankind (1836)

I Franz Boas (1858-1942): anthropology
I Edward Sapir (1884-1939) and Benjamin Whorf (1897-1941):

linguistics
I Language, mind, and reality (1942)

I and in sociology, psychology, philosophy, history (e.g., Kuhn’s
“Structure of scientific revolutions”, Wittgenstein’s language
games), ...
I deep and lasting impact across the sciences

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 14

What we talk about when we talk ...

Sapir-Whorf: “the structure of a language affects the ways in
which its speakers conceptualize their world” (Wikipedia)

I Wilhelm von Humboldt (1767-1835): linguistics and philology
I The heterogeneity of language and its influence on the

intellectual development of mankind (1836)

I Franz Boas (1858-1942): anthropology
I Edward Sapir (1884-1939) and Benjamin Whorf (1897-1941):

linguistics
I Language, mind, and reality (1942)

I and in sociology, psychology, philosophy, history (e.g., Kuhn’s
“Structure of scientific revolutions”, Wittgenstein’s language
games), ...
I deep and lasting impact across the sciences

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 14

What we talk about when we talk ... about graphs

Research focus on the theory, engineering, and applications of
query languages for graph/network data

Today, I will talk about one of my long-term projects

I have been investigating how graph query languages affect the
way in which clients structure their world.

I i.e., how the choice of query language restricts and shapes
concrete graph instances.

Collaborations with colleagues at Singapore, Eindhoven, Hasselt,
Bloomington, Osaka, and Brussels.

Bibliographic details can be found on my homepage.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 15

What we talk about when we talk ... about graphs

Research focus on the theory, engineering, and applications of
query languages for graph/network data

Today, I will talk about one of my long-term projects

I have been investigating how graph query languages affect the
way in which clients structure their world.

I i.e., how the choice of query language restricts and shapes
concrete graph instances.

Collaborations with colleagues at Singapore, Eindhoven, Hasselt,
Bloomington, Osaka, and Brussels.

Bibliographic details can be found on my homepage.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 15

Expressive power of query languages

Notions of language expressivity

Edgar Codd (1972): invents the relational database model (i.e.,
SQL databases) and first algebraic and logical query languages

I How can we measure the expressive power of a database query
language?

I Codd’s solution: introduce notion of “relational completeness”

I is your language as expressive as mine (i.e., the relational
calculus)?

I ... rather ad hoc

What we would like is a language-independent notion of
expressivity

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 17

Notions of language expressivity

Edgar Codd (1972): invents the relational database model (i.e.,
SQL databases) and first algebraic and logical query languages

I How can we measure the expressive power of a database query
language?

I Codd’s solution: introduce notion of “relational completeness”

I is your language as expressive as mine (i.e., the relational
calculus)?

I ... rather ad hoc

What we would like is a language-independent notion of
expressivity

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 17

Notions of language expressivity

Edgar Codd (1972): invents the relational database model (i.e.,
SQL databases) and first algebraic and logical query languages

I How can we measure the expressive power of a database query
language?

I Codd’s solution: introduce notion of “relational completeness”

I is your language as expressive as mine (i.e., the relational
calculus)?

I ... rather ad hoc

What we would like is a language-independent notion of
expressivity

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 17

Notions of language expressivity

Towards language-independent notions of expressivity

Query expressivity (Aho & Ullman 1979, Chandra & Harel 1980)

I What is the expressive power of Codd’s relational
calculus/algebra (to formulate general functions)?

I for example,
I expressible: “triangles?”, “no triangles?”
I not expressible: transitive closure

... primary focus of research community

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 18

Notions of language expressivity

Towards language-independent notions of expressivity

Query expressivity (Aho & Ullman 1979, Chandra & Harel 1980)

I What is the expressive power of Codd’s relational
calculus/algebra (to formulate general functions)?

I for example,
I expressible: “triangles?”, “no triangles?”
I not expressible: transitive closure

... primary focus of research community

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 18

Notions of language expressivity

Towards language-independent notions of expressivity

Query expressivity (Aho & Ullman 1979, Chandra & Harel 1980)

I What is the expressive power of Codd’s relational
calculus/algebra (to formulate general functions)?

I for example,
I expressible: “triangles?”, “no triangles?”
I not expressible: transitive closure

... primary focus of research community

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 18

Notions of language expressivity

Towards language-independent notions of expressivity

Query expressivity (Aho & Ullman 1979, Chandra & Harel 1980)

I What is the expressive power of Codd’s relational
calculus/algebra (to formulate general functions)?

I for example,
I expressible: “triangles?”, “no triangles?”
I not expressible: transitive closure

... primary focus of research community

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 18

Notions of language expressivity

Towards language-independent notions of expressivity

Instance expressivity (Bancilhon and Paredaens 1978)

I What is the expressive power of Codd’s relational algebra (on
an arbitrary fixed instance)?

I fact: T is expressible from S in Codd’s algebra if and only if

constants(T) ⊆ constants(S)

and
automorphism(S) ⊆ automorphism(T).

i.e., characterization in terms of the structure of instance S .

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 19

Notions of language expressivity

Towards language-independent notions of expressivity

Instance expressivity (Bancilhon and Paredaens 1978)

I What is the expressive power of Codd’s relational algebra (on
an arbitrary fixed instance)?

I fact: T is expressible from S in Codd’s algebra if and only if

constants(T) ⊆ constants(S)

and
automorphism(S) ⊆ automorphism(T).

i.e., characterization in terms of the structure of instance S .

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 19

Notions of language expressivity

Towards language-independent notions of expressivity

Instance expressivity (Bancilhon and Paredaens 1978)

I What is the expressive power of Codd’s relational algebra (on
an arbitrary fixed instance)?

I fact: T is expressible from S in Codd’s algebra if and only if

constants(T) ⊆ constants(S)

and
automorphism(S) ⊆ automorphism(T).

i.e., characterization in terms of the structure of instance S .

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 19

Instance expressivity

On an (arbitrary) fixed instance S , characterize output space of a
given language L

Given a source instance S and target instance T , can S
be mapped to T in L?

S T
? ∈ L

For two objects o1, o2 ∈ S, can they be distinguished by
an expression e ∈ L?

o1 ∈ e(S) o2 /∈ e(S)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 20

Instance expressivity

On an (arbitrary) fixed instance S , characterize output space of a
given language L

Given a source instance S and target instance T , can S
be mapped to T in L?

S T
? ∈ L

For two objects o1, o2 ∈ S, can they be distinguished by
an expression e ∈ L?

o1 ∈ e(S) o2 /∈ e(S)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 20

Instance expressivity

On an (arbitrary) fixed instance S , characterize output space of a
given language L

Given a source instance S and target instance T , can S
be mapped to T in L?

S T
? ∈ L

For two objects o1, o2 ∈ S, can they be distinguished by
an expression e ∈ L?

o1 ∈ e(S) o2 /∈ e(S)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 20

Instance expressivity

Example. Suppose S is a text document collection and L is
keyword queries.

Then objects (i.e., documents) o1, o2 ∈ S can be distinguished iff
one of o1 and o2 has a keyword the other doesn’t.

I for example, o1 has an occurrence of the keyword “Codd” and
o2 doesn’t.

Example. Suppose S is an XML document and L is XPath
restricted to parent-child navigation.

Then objects (i.e., nodes in an XML document) o1, o2 ∈ S can be
distinguished iff one of o1 and o2 has an incoming path the other
doesn’t.

I for example, o1 is an “author/name/lastname” and o2 isn’t.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 21

Instance expressivity

Example. Suppose S is a text document collection and L is
keyword queries.

Then objects (i.e., documents) o1, o2 ∈ S can be distinguished iff
one of o1 and o2 has a keyword the other doesn’t.

I for example, o1 has an occurrence of the keyword “Codd” and
o2 doesn’t.

Example. Suppose S is an XML document and L is XPath
restricted to parent-child navigation.

Then objects (i.e., nodes in an XML document) o1, o2 ∈ S can be
distinguished iff one of o1 and o2 has an incoming path the other
doesn’t.

I for example, o1 is an “author/name/lastname” and o2 isn’t.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 21

Instance expressivity

The BP result is for first-order logic on finite models i.e., relational
calculus (= SQL) on relational databases.

Structural characterizations later discovered for query languages on
nested relations, object-oriented DBs, ...

However, no significant application was made of these results
towards engineering of data management systems.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 22

Our results on instance expressivity

tree structured data

I structural characterizations and indexing for XPath fragments
(Inf Syst 2020, J Comput Syst Sci 2016, Inf Syst 2009)

(arbitrary) graph structured data

I structural characterizations of Tarski’s relation algebra on
directed edge-labeled graphs (arXiv 2020, Inf Sci 2015, J
Logic Comput 2015)

I structural characterizations of SPARQL fragments (DBPL
2011, ICDT 2014)

I structural indexing for accelerated SPARQL evaluation
(ESWC 2012)

structured data (relational databases)

I structural characterizations and indexing for SQL (ICDT 2014,
EDBT 2016)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 23

Our results on instance expressivity

tree structured data

I structural characterizations and indexing for XPath fragments
(Inf Syst 2020, J Comput Syst Sci 2016, Inf Syst 2009)

(arbitrary) graph structured data My focus today

I structural characterizations of Tarski’s relation algebra on
directed edge-labeled graphs (arXiv 2020, Inf Sci 2015, J
Logic Comput 2015)

I structural characterizations of SPARQL fragments (DBPL
2011, ICDT 2014)

I structural indexing for accelerated SPARQL evaluation
(ESWC 2012)

structured data (relational databases)

I structural characterizations and indexing for SQL (ICDT 2014,
EDBT 2016)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 24

Bigger picture

Morgan & Claypool 2018 and Springer 2018

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 25

Tarski’s Relation Algebra

Why graph data?

Big graph data sets are ubiquitous

I social networks (e.g., LinkedIn, Facebook)

I scientific networks (e.g., Uniprot,
PubChem)

I knowledge graphs (e.g., DBPedia, MS
Academic Graph)

I ...

Focus is on “things” and their relationships

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 27

Why graph data?

Analytics on big graphs increasingly important

I role discovery in social networks

I identifying interesting patterns in biological networks

I finding important publications in a citation network

I ...

In response to these trends, we have recently witnessed an
explosion of graph data management solutions, e.g.,

I Graph databases such as Neo4j and Amazon Neptune

I Graph analytics platforms such as PGX, Flink Gelly, GraphX

I Triple stores such as Virtuoso and AllegroGraph

I Datalog engines such as LogicBlox and Datomic

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 28

Why graph data?

Analytics on big graphs increasingly important

I role discovery in social networks

I identifying interesting patterns in biological networks

I finding important publications in a citation network

I ...

In response to these trends, we have recently witnessed an
explosion of graph data management solutions, e.g.,

I Graph databases such as Neo4j and Amazon Neptune

I Graph analytics platforms such as PGX, Flink Gelly, GraphX

I Triple stores such as Virtuoso and AllegroGraph

I Datalog engines such as LogicBlox and Datomic

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 28

Paths in graphs

Relation Algebra1 already proposed by Alfred Tarski in the 1940’s
as a basic query language for reasoning about paths in graphs

1not to be confused with Codd’s relational algebra (circa 1970)
George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 29

Graphs

We are interested in navigating over graphs whose edges are
labeled by symbols from a finite label set Λ.

A graph is a relational structure G , consisting of

I a set of nodes V and,

I for every ` ∈ Λ, a relation G (`) ⊆ V × V , the set of edges
with label `.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 30

Graphs

We are interested in navigating over graphs whose edges are
labeled by symbols from a finite label set Λ.

A graph is a relational structure G , consisting of

I a set of nodes V and,

I for every ` ∈ Λ, a relation G (`) ⊆ V × V , the set of edges
with label `.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 30

Graphs

For example, suppose we have

V = people ∪ hospitals ∪ diseases

and edge labels

Λ = {knows,worksAt, patientOf, hasDisease, treatsDisease}

with semantics restricted as:

knows ⊆ people × people

worksAt ⊆ people × hospitals

patientOf ⊆ people × people

hasDisease ⊆ people × diseases

treatsDisease ⊆ hospitals × diseases.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 31

Graphs

A small fragment of such a graph

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 32

Basic language features

Basic conjunctive path algebra T +: algebra whose expressions are
built up from

I the edge labels Λ,

I the primitive ∅, and

I the primitive id , (i.e., the identity relation)

using

I converse (e−1),

I composition (e1 ◦ e2), and

I intersection (e1 ∩ e2).

On input graph G , each expression e ∈ T + defines a path query
e(G), which evaluates to a set of paths in G

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 33

Basic language features

Basic conjunctive path algebra T +: algebra whose expressions are
built up from

I the edge labels Λ,

I the primitive ∅, and

I the primitive id , (i.e., the identity relation)

using

I converse (e−1),

I composition (e1 ◦ e2), and

I intersection (e1 ∩ e2).

On input graph G , each expression e ∈ T + defines a path query
e(G), which evaluates to a set of paths in G

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 33

Basic language features

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: by person, the doctors of their friends

knows ◦ patientOf(G) = {(umi , saori), (kotaro, saori), . . .}

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 34

Basic language features

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: treatable diseases

[(treatsDisease−1 ◦ treatsDisease) ∩ id](G) = π2(treatsDisease)(G)

= {(flu, flu), . . .}

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 35

Other language features

The basic algebra is extended with the following features:

I union (e1 ∪ e2),

I diversity (di), (i.e., the non-identity relation), and

I difference (e1 \ e2).

Tarski’s algebra T consists of the language having all basic and
nonbasic features.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 36

Nonbasic language features

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: people and their untreatable diseases

hasDisease \ (hasDisease ◦ π2(treatsDisease))(G) =

{(sue,migraine), . . .}

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 37

Tarski’s algebra

Why is T interesting for the study of graph databases?

Tarski’s algebra is to navigational graph query languages
as

Codd’s algebra is to relational DB query languages.

(The conjunctive path queries are to navigational graph query languages
as

The conjunctive queries are to relational DB query languages.)

In fact, the algebra is quite modest: T is equivalent to FO3
2 on

graphs, i.e., first-order logic using at most three distinct variable
names, in two free variables (Tarski and Givant 1987).
I and, T + is equivalent to ∃FO3

2 .

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 38

Tarski’s algebra

Why is T interesting for the study of graph databases?

Tarski’s algebra is to navigational graph query languages
as

Codd’s algebra is to relational DB query languages.

(The conjunctive path queries are to navigational graph query languages
as

The conjunctive queries are to relational DB query languages.)

In fact, the algebra is quite modest: T is equivalent to FO3
2 on

graphs, i.e., first-order logic using at most three distinct variable
names, in two free variables (Tarski and Givant 1987).
I and, T + is equivalent to ∃FO3

2 .

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 38

Tarski’s algebra

Why is T interesting for the study of graph databases?

Tarski’s algebra is to navigational graph query languages
as

Codd’s algebra is to relational DB query languages.

(The conjunctive path queries are to navigational graph query languages
as

The conjunctive queries are to relational DB query languages.)

In fact, the algebra is quite modest: T is equivalent to FO3
2 on

graphs, i.e., first-order logic using at most three distinct variable
names, in two free variables (Tarski and Givant 1987).
I and, T + is equivalent to ∃FO3

2 .

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 38

Tarski’s algebra

Why is T interesting for the study of graph databases?

Tarski’s algebra is to navigational graph query languages
as

Codd’s algebra is to relational DB query languages.

(The conjunctive path queries are to navigational graph query languages
as

The conjunctive queries are to relational DB query languages.)

In fact, the algebra is quite modest: T is equivalent to FO3
2 on

graphs, i.e., first-order logic using at most three distinct variable
names, in two free variables (Tarski and Givant 1987).
I and, T + is equivalent to ∃FO3

2 .

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 38

Instance Expressivity

Language equivalence

A marked structure G is a triple (G , a, b) where G is a graph, and
(a, b) is an ordered pair of nodes from G .

For two marked structures G1 = (G1, a1, b1) and G2 = (G2, a2, b2),
we write

G1 ≡ G2

if G1 and G2 are indistinguishable in T , i.e., for every expression e
in the algebra,

(a1, b1) ∈ e(G1) ⇔ (a2, b2) ∈ e(G2).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 40

Language equivalence

A marked structure G is a triple (G , a, b) where G is a graph, and
(a, b) is an ordered pair of nodes from G .

For two marked structures G1 = (G1, a1, b1) and G2 = (G2, a2, b2),
we write

G1 ≡ G2

if G1 and G2 are indistinguishable in T , i.e., for every expression e
in the algebra,

(a1, b1) ∈ e(G1) ⇔ (a2, b2) ∈ e(G2).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 40

Language equivalence

ina

dan

ike doc

deb

knows

loves

knows

knows loves

loves

Example. Consider graph G above.

Here, we have
(G , ina, dan) 6≡ (G , ike, deb) since

knows ◦ (loves \ id)(G) = {(ike, deb)}.

That is, ina only knows people who love themselves ...

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 41

Language equivalence

ina

dan

ike doc

deb

knows

loves

knows

knows loves

loves

Example. Consider graph G above. Here, we have
(G , ina, dan) 6≡ (G , ike, deb) since

knows ◦ (loves \ id)(G) = {(ike, deb)}.

That is, ina only knows people who love themselves ...

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 41

Structural equivalence

Let G1 and G2 be two graphs with node sets V1 and V2,
respectively, and a, b ∈ V1, c , d ∈ V2.

Furthermore, for graph G with node set V , let paths(G) denote
the set

{(x , y) | x , y ∈ V and there is an undirected path from x to y in G}.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 42

Structural equivalence

Marked structures (G1, a, b) and (G2, c , d) are bisimilar, denoted
(G1, a, b) ≈ (G2, c , d), if and only if the following hold:

1. 1.1 (forth) if a = b then c = d ;
1.2 (back) if c = d then a = b;

2. for each ` ∈ Λ,
2.1 (forth) if `(a, b) ∈ G1, then `(c , d) ∈ G2; and, if `(b, a) ∈ G1,

then `(d , c) ∈ G2;
2.2 (back) if `(c , d) ∈ G2, then `(a, b) ∈ G1; and, if `(d , c) ∈ G2,

then `(b, a) ∈ G1; and,

3. (forth) for each m1 ∈ V1, if (a,m1) and (m1, b) are in
paths(G1), then there exists m2 ∈ V2 such that (c ,m2) and
(m2, d) are in paths(G2), and, furthermore,
(G1, a,m1) ≈ (G2, c ,m2) and (G1,m1, b) ≈ (G2,m2, d);

4. (back) for each m2 ∈ V2, if (c ,m2) and (m2, d) are in
paths(G2), then there exists m1 ∈ V1 such that (a,m1) and
(m1, b) are in paths(G1), and, furthermore,
(G2, c,m2) ≈ (G1, a,m1) and (G2,m2, d) ≈ (G1,m1, b).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 43

Structural equivalence

Marked structures (G1, a, b) and (G2, c , d) are bisimilar, denoted
(G1, a, b) ≈ (G2, c , d), if and only if the following hold:

1. 1.1 (forth) if a = b then c = d ;
1.2 (back) if c = d then a = b;

2. for each ` ∈ Λ,
2.1 (forth) if `(a, b) ∈ G1, then `(c , d) ∈ G2; and, if `(b, a) ∈ G1,

then `(d , c) ∈ G2;
2.2 (back) if `(c , d) ∈ G2, then `(a, b) ∈ G1; and, if `(d , c) ∈ G2,

then `(b, a) ∈ G1; and,

3. (forth) for each m1 ∈ V1, if (a,m1) and (m1, b) are in
paths(G1), then there exists m2 ∈ V2 such that (c ,m2) and
(m2, d) are in paths(G2), and, furthermore,
(G1, a,m1) ≈ (G2, c ,m2) and (G1,m1, b) ≈ (G2,m2, d);

4. (back) for each m2 ∈ V2, if (c ,m2) and (m2, d) are in
paths(G2), then there exists m1 ∈ V1 such that (a,m1) and
(m1, b) are in paths(G1), and, furthermore,
(G2, c,m2) ≈ (G1, a,m1) and (G2,m2, d) ≈ (G1,m1, b).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 43

Structural equivalence

Marked structures (G1, a, b) and (G2, c , d) are bisimilar, denoted
(G1, a, b) ≈ (G2, c , d), if and only if the following hold:

1. 1.1 (forth) if a = b then c = d ;
1.2 (back) if c = d then a = b;

2. for each ` ∈ Λ,
2.1 (forth) if `(a, b) ∈ G1, then `(c , d) ∈ G2; and, if `(b, a) ∈ G1,

then `(d , c) ∈ G2;
2.2 (back) if `(c , d) ∈ G2, then `(a, b) ∈ G1; and, if `(d , c) ∈ G2,

then `(b, a) ∈ G1; and,

3. (forth) for each m1 ∈ V1, if (a,m1) and (m1, b) are in
paths(G1), then there exists m2 ∈ V2 such that (c ,m2) and
(m2, d) are in paths(G2), and, furthermore,
(G1, a,m1) ≈ (G2, c ,m2) and (G1,m1, b) ≈ (G2,m2, d);

4. (back) for each m2 ∈ V2, if (c ,m2) and (m2, d) are in
paths(G2), then there exists m1 ∈ V1 such that (a,m1) and
(m1, b) are in paths(G1), and, furthermore,
(G2, c,m2) ≈ (G1, a,m1) and (G2,m2, d) ≈ (G1,m1, b).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 43

Structural equivalence

Marked structures (G1, a, b) and (G2, c , d) are bisimilar, denoted
(G1, a, b) ≈ (G2, c , d), if and only if the following hold:

1. 1.1 (forth) if a = b then c = d ;
1.2 (back) if c = d then a = b;

2. for each ` ∈ Λ,
2.1 (forth) if `(a, b) ∈ G1, then `(c , d) ∈ G2; and, if `(b, a) ∈ G1,

then `(d , c) ∈ G2;
2.2 (back) if `(c , d) ∈ G2, then `(a, b) ∈ G1; and, if `(d , c) ∈ G2,

then `(b, a) ∈ G1; and,

3. (forth) for each m1 ∈ V1, if (a,m1) and (m1, b) are in
paths(G1), then there exists m2 ∈ V2 such that (c ,m2) and
(m2, d) are in paths(G2), and, furthermore,
(G1, a,m1) ≈ (G2, c ,m2) and (G1,m1, b) ≈ (G2,m2, d);

4. (back) for each m2 ∈ V2, if (c ,m2) and (m2, d) are in
paths(G2), then there exists m1 ∈ V1 such that (a,m1) and
(m1, b) are in paths(G1), and, furthermore,
(G2, c,m2) ≈ (G1, a,m1) and (G2,m2, d) ≈ (G1,m1, b).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 43

Structural equivalence

Marked structures (G1, a, b) and (G2, c , d) are bisimilar, denoted
(G1, a, b) ≈ (G2, c , d), if and only if the following hold:

1. 1.1 (forth) if a = b then c = d ;
1.2 (back) if c = d then a = b;

2. for each ` ∈ Λ,
2.1 (forth) if `(a, b) ∈ G1, then `(c , d) ∈ G2; and, if `(b, a) ∈ G1,

then `(d , c) ∈ G2;
2.2 (back) if `(c , d) ∈ G2, then `(a, b) ∈ G1; and, if `(d , c) ∈ G2,

then `(b, a) ∈ G1; and,

3. (forth) for each m1 ∈ V1, if (a,m1) and (m1, b) are in
paths(G1), then there exists m2 ∈ V2 such that (c ,m2) and
(m2, d) are in paths(G2), and, furthermore,
(G1, a,m1) ≈ (G2, c ,m2) and (G1,m1, b) ≈ (G2,m2, d);

4. (back) for each m2 ∈ V2, if (c ,m2) and (m2, d) are in
paths(G2), then there exists m1 ∈ V1 such that (a,m1) and
(m1, b) are in paths(G1), and, furthermore,
(G2, c,m2) ≈ (G1, a,m1) and (G2,m2, d) ≈ (G1,m1, b).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 43

Structural equivalence

If only the forth conditions hold, then we say (G2, c, d) simulates
(G1, a, b), denoted by (G1, a, b) � (G2, c , d).

If (G1, a, b) � (G2, c , d) and (G2, c , d) � (G1, a, b), then we say
these marked structures are similar, which we denote by
(G1, a, b) ∼ (G2, c , d).

Note that on a graph G , ≈ and ∼ are equivalence relations on
paths(G).

Furthermore, partitioning under ≈ and ∼ is tractable, with
O(m log n) and O(mn log n) solutions, respectively, for a graph
with m edges and n nodes (Paige and Tarjan 1987, Ranzato 2014).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 44

Structural equivalence

If only the forth conditions hold, then we say (G2, c, d) simulates
(G1, a, b), denoted by (G1, a, b) � (G2, c , d).

If (G1, a, b) � (G2, c , d) and (G2, c , d) � (G1, a, b), then we say
these marked structures are similar, which we denote by
(G1, a, b) ∼ (G2, c , d).

Note that on a graph G , ≈ and ∼ are equivalence relations on
paths(G).

Furthermore, partitioning under ≈ and ∼ is tractable, with
O(m log n) and O(mn log n) solutions, respectively, for a graph
with m edges and n nodes (Paige and Tarjan 1987, Ranzato 2014).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 44

Structural equivalence

ina

dan

ike doc

deb

knows

loves

knows

knows loves

loves

Example. Consider again graph G above. Here, we have
(G , ina, dan) ∼ (G , ike, deb).

Example. Note, however, that (G , ina, dan) 6≈ (G , ike, deb) since
ina doesn’t know someone like doc (i.e., someone who doesn’t love
themself).
Recall that (G , ina, dan) 6≡ (G , ike, deb) ... this isn’t a coincidence

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 45

Structural equivalence

ina

dan

ike doc

deb

knows

loves

knows

knows loves

loves

Example. Consider again graph G above. Here, we have
(G , ina, dan) ∼ (G , ike, deb).

Example. Note, however, that (G , ina, dan) 6≈ (G , ike, deb) since
ina doesn’t know someone like doc (i.e., someone who doesn’t love
themself).

Recall that (G , ina, dan) 6≡ (G , ike, deb) ... this isn’t a coincidence

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 45

Structural equivalence

ina

dan

ike doc

deb

knows

loves

knows

knows loves

loves

Example. Consider again graph G above. Here, we have
(G , ina, dan) ∼ (G , ike, deb).

Example. Note, however, that (G , ina, dan) 6≈ (G , ike, deb) since
ina doesn’t know someone like doc (i.e., someone who doesn’t love
themself).
Recall that (G , ina, dan) 6≡ (G , ike, deb) ... this isn’t a coincidence

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 45

Structural equivalence

Coupling Theorem (J Logic Comput 2015)

Let G1 = (G1, a1, b1) and G2 = (G2, a2, b2) be marked structures.
Then

G1 ≡ G2 ⇔ G1 ≈ G2.

We similarly obtained novel bisimulation characterizations for a
wide range of fragments of the algebra.

For positive algebra fragments such as T +, we similarly obtained
new simulation characterizations.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 46

Structural equivalence

Coupling Theorem (J Logic Comput 2015)

Let G1 = (G1, a1, b1) and G2 = (G2, a2, b2) be marked structures.
Then

G1 ≡ G2 ⇔ G1 ≈ G2.

We similarly obtained novel bisimulation characterizations for a
wide range of fragments of the algebra.

For positive algebra fragments such as T +, we similarly obtained
new simulation characterizations.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 46

Structural equivalence

Coupling Theorem (J Logic Comput 2015)

Let G1 = (G1, a1, b1) and G2 = (G2, a2, b2) be marked structures.
Then

G1 ≡ G2 ⇔ G1 ≈ G2.

We similarly obtained novel bisimulation characterizations for a
wide range of fragments of the algebra.

For positive algebra fragments such as T +, we similarly obtained
new simulation characterizations.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 46

Structural Indexing

Structural indexing

Up to this point, our investigations of Tarski’s algebra have
focused on the relative expressive power of the various fragments
of the algebra, and their structural characterizations.

We have also obtained structural characterizations for a core
fragment of SPARQL, the W3C’s recommendation language for
the RDF graph data model, with an eye towards “structural” index
design. (DBPL 2011, ICDT 2014)

The basic idea here is to group together structurally equivalent
RDF triples, since the language cannot distinguish them, and build
access mechanisms on top of these “blocks.”

We then use this index to accelerate query processing on a reduced
search space (ESWC 2012, ICDT 2014).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 48

Structural indexing

Up to this point, our investigations of Tarski’s algebra have
focused on the relative expressive power of the various fragments
of the algebra, and their structural characterizations.

We have also obtained structural characterizations for a core
fragment of SPARQL, the W3C’s recommendation language for
the RDF graph data model, with an eye towards “structural” index
design. (DBPL 2011, ICDT 2014)

The basic idea here is to group together structurally equivalent
RDF triples, since the language cannot distinguish them, and build
access mechanisms on top of these “blocks.”

We then use this index to accelerate query processing on a reduced
search space (ESWC 2012, ICDT 2014).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 48

Empirical study

SaintDB: Implement disk-based bisimulation index atop RDF-3x
open-source state-of-the-art value-based triple store.

I the first triple-based structural index for RDF

I our index is formally coupled to practical core fragment of
SPARQL

Empirical analysis on community benchmark data/queries
demonstrates competitiveness with RDF-3X on broad range of
query scenarios, with up to multiple orders of magnitude reduction
in query processing costs

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 49

Partitioning massive graphs under bisimulation

Note that this approach only works if computing bisimulation
partitioning of big graphs is practical.

Efficient main memory approaches to bisimulation partitioning
have been studied since the 80’s, as bisimilarity is a fundamental
notion arising in a wide range of contexts (e.g., set theory,
distributed computing, process modeling, social networks, ...).

However, there has been no approach to compute bisimulation on
massive disk-resident graphs.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 50

Partitioning massive graphs under bisimulation

Note that this approach only works if computing bisimulation
partitioning of big graphs is practical.

Efficient main memory approaches to bisimulation partitioning
have been studied since the 80’s, as bisimilarity is a fundamental
notion arising in a wide range of contexts (e.g., set theory,
distributed computing, process modeling, social networks, ...).

However, there has been no approach to compute bisimulation on
massive disk-resident graphs.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 50

Partitioning massive graphs under bisimulation

To address this, we have developed the first I/O-efficient
approaches to bisimulation partitioning of massive graphs
(SIGMOD 2012, CIKM 2013)

We have also developed the first effective MapReduce and
distributed solutions for this problem
(BICOD 2013, SAC 2016)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 51

Partitioning massive graphs under bisimulation

Empirical study shows that bisimulation reductions are often
practical

Reductions between 10−1 and 10−4 (or better) for both number of
edges and number of nodes, for many practical data sets, such as
DBPedia, Linked MDB, Jamendo, DBLP, and Twitter
(CIKM 2013, SAC 2016)

of course, for some data, there is no structure to compress, and
the “reductions” are too fine

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 52

Partitioning massive graphs under bisimulation

Empirical study shows that bisimulation reductions are often
practical

Reductions between 10−1 and 10−4 (or better) for both number of
edges and number of nodes, for many practical data sets, such as
DBPedia, Linked MDB, Jamendo, DBLP, and Twitter
(CIKM 2013, SAC 2016)

of course, for some data, there is no structure to compress, and
the “reductions” are too fine

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 52

Ongoing and open research directions

Ongoing and open research directions

(1) Further engineering studies into structural indexing for efficient
path query processing.

Current focus: the conjunctive fragment of Tarski’s Algebra, T +,
in analogy to the conjunctive FO queries for efficient SQL
evaluation.

I core of industrial graph query languages such as Cypher
(Neo4j), PGQL (Oracle), and our standards proposal G-CORE
(SIGMOD 2018)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 54

Ongoing and open research directions: T +

Consider the following query languages:

I ∃FO3
2 , the fragment of the positive existential first order

queries on graphs consisting of all those queries having one or
two free variables, constructed using at most three distinct
variables and having a connected join graph.

I SPII , the family of all those graph patterns expressible as
source-to-target directed edge-labeled graphs recursively
constructed by a finite sequence of series and parallel
combinations of nodes, forward edges, and inverse edges.

I TarskiLog , the language of positive non-recursive Datalog
programs over graphs where the body of each rule uses at
most three distinct variables and has a connected join graph;
and, each rule has a distinct binary head predicate.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 55

Ongoing and open research directions: T +

Consider the following query languages:

I ∃FO3
2 , the fragment of the positive existential first order

queries on graphs consisting of all those queries having one or
two free variables, constructed using at most three distinct
variables and having a connected join graph.

I SPII , the family of all those graph patterns expressible as
source-to-target directed edge-labeled graphs recursively
constructed by a finite sequence of series and parallel
combinations of nodes, forward edges, and inverse edges.

I TarskiLog , the language of positive non-recursive Datalog
programs over graphs where the body of each rule uses at
most three distinct variables and has a connected join graph;
and, each rule has a distinct binary head predicate.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 55

Ongoing and open research directions: T +

Consider the following query languages:

I ∃FO3
2 , the fragment of the positive existential first order

queries on graphs consisting of all those queries having one or
two free variables, constructed using at most three distinct
variables and having a connected join graph.

I SPII , the family of all those graph patterns expressible as
source-to-target directed edge-labeled graphs recursively
constructed by a finite sequence of series and parallel
combinations of nodes, forward edges, and inverse edges.

I TarskiLog , the language of positive non-recursive Datalog
programs over graphs where the body of each rule uses at
most three distinct variables and has a connected join graph;
and, each rule has a distinct binary head predicate.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 55

Ongoing and open research directions: T +

Example. Consider the query “doctors and their known patients.”

This is expressed in ∃FO3
2 as

{(x , y) | doctor(x , x) ∧ patientOf(y , x) ∧ ∃x(knows(x , y))}

in SPII as

targetsource
knowspatientOf

doctor

and in TarskiLog as

known(X ,X) : − knows(Y ,X)

result(X ,Y) : − doctor(X ,X), patientOf (Y ,X), known(Y ,Y).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 56

Ongoing and open research directions: T +

Example. Consider the query “doctors and their known patients.”
This is expressed in ∃FO3

2 as

{(x , y) | doctor(x , x) ∧ patientOf(y , x) ∧ ∃x(knows(x , y))}

in SPII as

targetsource
knowspatientOf

doctor

and in TarskiLog as

known(X ,X) : − knows(Y ,X)

result(X ,Y) : − doctor(X ,X), patientOf (Y ,X), known(Y ,Y).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 56

Ongoing and open research directions: T +

Example. Consider the query “doctors and their known patients.”
This is expressed in ∃FO3

2 as

{(x , y) | doctor(x , x) ∧ patientOf(y , x) ∧ ∃x(knows(x , y))}

in SPII as

targetsource
knowspatientOf

doctor

and in TarskiLog as

known(X ,X) : − knows(Y ,X)

result(X ,Y) : − doctor(X ,X), patientOf (Y ,X), known(Y ,Y).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 56

Ongoing and open research directions: T +

Example. Consider the query “doctors and their known patients.”
This is expressed in ∃FO3

2 as

{(x , y) | doctor(x , x) ∧ patientOf(y , x) ∧ ∃x(knows(x , y))}

in SPII as

targetsource
knowspatientOf

doctor

and in TarskiLog as

known(X ,X) : − knows(Y ,X)

result(X ,Y) : − doctor(X ,X), patientOf (Y ,X), known(Y ,Y).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 56

Ongoing and open research directions: T +

Example “doctors and their known patients”, cont.

In T +, we can express this as

(doctor ∩ id) ◦ patientOf−1 ◦ π2(knows).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 57

Ongoing and open research directions: T +

In general, we can establish that:

T +, ∃FO3
2 , SPII , and TarskiLog are equivalent in expres-

sive power.

Hence we have four natural alternative syntaxes (algebraic,
declarative, graphical, and rule-based) for the conjunctive path
queries.

Leveraging the Coupling Theorem, we have been developing
structural indexes and query evaluation methods for T +. We are
able to demonstrate across a wide range of scenarios up to 3 orders
of magnitude speed-up over the state of the art, while being
maintainable and without increasing index size (arXiv 2020).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 58

Ongoing and open research directions: T +

In general, we can establish that:

T +, ∃FO3
2 , SPII , and TarskiLog are equivalent in expres-

sive power.

Hence we have four natural alternative syntaxes (algebraic,
declarative, graphical, and rule-based) for the conjunctive path
queries.

Leveraging the Coupling Theorem, we have been developing
structural indexes and query evaluation methods for T +. We are
able to demonstrate across a wide range of scenarios up to 3 orders
of magnitude speed-up over the state of the art, while being
maintainable and without increasing index size (arXiv 2020).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 58

Ongoing and open research directions: T +

In general, we can establish that:

T +, ∃FO3
2 , SPII , and TarskiLog are equivalent in expres-

sive power.

Hence we have four natural alternative syntaxes (algebraic,
declarative, graphical, and rule-based) for the conjunctive path
queries.

Leveraging the Coupling Theorem, we have been developing
structural indexes and query evaluation methods for T +. We are
able to demonstrate across a wide range of scenarios up to 3 orders
of magnitude speed-up over the state of the art, while being
maintainable and without increasing index size (arXiv 2020).

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 58

Ongoing and open research directions

In addition to the affordances of structural indexes, T + has many
other nice properties.

For example, it is known that all queries expressible in conjunctive
finite variable logics have bounded treewidth (Kolaitis and Vardi
2000)

I in the case of T +, treewidth 2.

Hence, reasoning about T + (i.e., query evaluation, static analysis,
query minimization) is practical.

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 59

Ongoing and open research directions

(2) Study other basic issues in graphs, such as uncertain/dirty
data, reasoning about time, and distributed query processing

I path queries on uncertain temporal knowledge graphs

(3) Study other basic applications of structural characterizations of
query languages, e.g.,

I query language design in social network analysis (cf. Marx and
Masuch, Social Networks 25(1), 2003; Fan ICDT 2012)

I structure-sensitive privacy and security mechanisms

I dynamic structure (e.g., schema) discovery, via
language-distinguishability

I visualizing language-induced structures (e.g., interplay of
“schema” knowledge)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 60

Ongoing and open research directions

(2) Study other basic issues in graphs, such as uncertain/dirty
data, reasoning about time, and distributed query processing

I path queries on uncertain temporal knowledge graphs

(3) Study other basic applications of structural characterizations of
query languages, e.g.,

I query language design in social network analysis (cf. Marx and
Masuch, Social Networks 25(1), 2003; Fan ICDT 2012)

I structure-sensitive privacy and security mechanisms

I dynamic structure (e.g., schema) discovery, via
language-distinguishability

I visualizing language-induced structures (e.g., interplay of
“schema” knowledge)

George Fletcher (Eindhoven University of Technology) – University of Waterloo – May 25, 2020 60

What we talk about
when we talk about graphs

Thanks very much! Questions?

George Fletcher
Database Group

Eindhoven University of Technology

