
Utilizing fast interconnects on GPUs
for data processing
Data Systems Seminars - U Waterloo
March 12, 2024

Prof. Tilmann Rabl
Data Engineering Systems

Hasso Plattner Institute

Who am I?
§ Until 2011: PhD in CS at University of Passau

§ Distributed databases

§ Until 2015: Postdoc at University of Toronto
§ Big data systems / benchmarking

§ Until 2019
§ Visiting Professor & Research Director at DIMA group, TU Berlin
§ Deputy Director of Department IAM at DFKI
§ Scientific Coordinator of the Berlin Big Data Center

§ Since Mai 2019
§ Professor for Data Engineering Systems, Digital Engineering Faculty, HPI, U Potsdam

§ Other activities
§ HPI Ombudsperson
§ Director of HPI Data Center

2

Hasso Plattner Institute

§ Computer Science Institute in Potsdam,
Germany

§ B.Sc. and M.Sc. degree programs
§ Department of University of Potsdam

3

Research Topics

§ Database Systems (on Modern Hardware)
§ ICDE 21, PVLDB 21, SIGMOD 22, SIGMOD 23

§ Stream Processing / Real-time Analytics
§ PVLDB 20, TODS 21, SIGMOD 22, EDBT 23

§ Machine Learning Systems
§ SIGMOD 20, ICDE 21, EDBT 22, EDBT 23

§ Benchmarking
§ TPCTC 21, SIGMOD 21, PVLDB 22, SIGMOD 23

Application
Scenario

Benchmark Development

Benchmarking
Extending
Existing Systems

Exploiting New
Hardware

New System
Development

Research Approach

4

This work

§ Clemens Lutz

§ Tobias Maltenberger

§ Ivan Ilic

5

This Talk

1. Quick 101 on data processing on GPU

2. Scalable Joins on a single GPU

3. Mult-GPU Sorting

6

Big Fast Data Analysis

§ Data is growing

§ Messages, tweets, social networks
(statuses, check-ins, shared content),
blogs, click streams, various logs, …

§ Everyone is interested!

§ The value of data is decreasing with
its age!

7

The Hardware Challenge

§ Hardware performance is not
simply increasing anymore

§ Single thread
–> multi thread

§ Multi core
–> specialization

§ It is getting harder to be
efficient

8

Hardware – Industry Trend

§ TPU cloud, tight coupling, scale up, special hardware

§ “Only way to meet growing compute demands” - Amin Vahdat (Google)

§ We need to be hardware-conscious and make systems efficient - Tilmann

9

GPU-accelerated Data Processing

Graphics Processing Unit (GPU)

§ Highly specialized coprocessing chip

§ Image rendering -> parallel computations

§ Performance increased ~2.4x yearly

§ During Moore's law CPU's performance increased 1.8x

§ Programming model was based on DirectX

§ Targeting workloads for CPUs required major adaptations

Wikipedia

11

https://de.wikipedia.org/wiki/Nvidia_NV1

GPGPUs

§ CPU cores != GPU cores -> Fundamental design differences

§ CPU cores
§ Minimizing the latency of arithmetic operations
§ Latency-oriented design
§ Tens of cores

§ GPU cores
§ Large number of FLOPS and memory accesses
§ Throughput-oriented design (1 555 – 3 000 GB/s)
§ Thousands of cores

§ Massive parallelism
§ CPU bandwidth -> ~100s GB/s
§ GPU bandwidth -> ~1555 GB/s (A100) – 3000 GB/s (H100 - 2023)

12

CUDA Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU Architecture

§ Compute Units
§ Computation cores
§ Register files
§ L1 cache
§ Shared memory

§ Shared L2 cache
§ All compute units can access it

§ Global Memory

Compute Unit
(CU or SM)

Register

L1 Cache
~ 192KB

Local
Memory

L2 Cache (up to 400 MB)

GPU Global Memory (up to 188 GB)

Host Memory (DRAM)

Compute Unit
(CU or SM)

Register

L1 Cache
~ 192KB

Local
Memory

Compute Unit
(CU or SM)

Register

L1 Cache
~ 192KB

Local
Memory

~1.5 - 3 TB/s

~ 16 - 900 GB/s

13

GPU Interconnects

§ PCI Express

§ Connects CPU to storage, memory and coprocessors

§ Most commonly used CPU-GPU interconnect

§ Current systems use versions 3.0 and 4.0

§ x1, x4, x8, x16 lanes

§ Not necessarily all lanes are used

§ PCIe 3.0x16 ->16 GB/s, PCIe 4.0x16 -> 32 GB/s

§ From PCIe 5.0 also Compute Express Link (CXL)

§ Cache coherent access DtoH and HtoD (like NVLink)

System Interconnects

PCI Express x1, x4, x8, x16

15

https://www.howtogeek.com/424453/pcie-4.0-whats-new-and-why-it-matters/

§ NVIDIA NVLink
§ Mainly used as an inter-GPU interconnect
§ High bandwidth P2P data transfers
§ NVLink 2.0 -> 150 GB/s, NVLink 3.0 -> 300 GB/s
§ NVLink 4.0 -> 900 GB/s

§ NVIDIA NVSwitch
§ Switching element connecting up to 18 GPUs
§ Enables all-to-all GPU interconnectivity in a system
§ Non-blocking data transfers
§ GPU-GPU bandwidth -> up to 900 GB/s

GPU Interconnects

NVLink Bridge 2.0 (left)
and 3.0 (right)

NVSwitch

16

https://www.boston.co.uk/blog/2021/03/09/boston-labs-tests-nvidia-nvlink.aspx
https://www.boston.co.uk/blog/2021/03/09/boston-labs-tests-nvidia-nvlink.aspx
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf

§ Single socket CPU System

§ Direct main memory access

§ No NUMA effects

§ Single/Shared PCIe x.0 CPU-GPU lane

§ Thinkstation P620
§ CPU -> AMD Threadripper PRO 3995WX 64 Core
§ GPU -> 2x NVIDIA A5000 24GB NVLink 3.0 connected (56 GB/s)
§ CPU-GPU -> Single PCIe 4.0x16 lane (32 GB/s)

Single CPU – 2 GPU

Memory

GPU 0 GPU 1

CPU

56 GB/s

32 GB/s 32 GB/s

17

§ Dual socket CPU System
§ CPUs interconnected via a proprietary interconnect
§ NUMA effects

§ Dedicated main memory access

§ CPU-GPU connected via NVLink

§ Equal bandwidth across all processors

§ IBM AC922
§ CPU -> 2x IBM Power 9
§ GPU -> 4 x NVIDIA V100 32GB NVLink 2.0 connected (75 GB/s)
§ CPU-GPU -> NVLink 2.0 interconnect (75 GB/s)
§ CPU-CPU -> IBM XBus 64 GB/s

Dual CPU – 4 GPU

18

§ Single/Shared PCIe 4.0 CPU-GPU lane

§ Switching elements between GPUs

§ All to all GPU communication

§ Full GPU-GPU Bandwidth

§ GPU-GPU bandwidth close to global memory bandwidth

§ DGX A100
§ CPU -> 2x AMD EPYC 7742
§ GPU -> 8x NVIDIA A100 40 GB NVLink 3.0 connected (300 GB/s)
§ CPU-GPU -> Shared PCIe 4.0x16 lane (32 GB/s)
§ CPU-CPU -> AMD Infinity Fabric (102 GB/s)

Dual CPU – 8 GPU

19

NVIDIA Grace Hopper

§ Grace CPU
§ ARM
§ 72 Cores
§ 480 GB DDR5x
§ 64x PCIe 5 lanes

§ Hopper GPU
§ 96 GB HBM3

§ NVLink 4.0
§ 900 GB/s

20

§ Single PCIe 4.0 channel per
GPU enables efficient CPU-GPU
parallel transfers

§ Performance drops for bi-
directional CPU-GPU transfers

§ Direct communication between
the two GPUs

§ 2x performance discrepancy
between CPU-GPU and P2P
data transfers

Data Transfers – ThinkStation P620

21

§ Significant performance drops
due to NUMA effects

§ CPU-CPU interconnect is the
main bottleneck

§ Using two GPUs often faster
than all four

§ No performance discrepancy
between CPU-GPU and P2P
data transfers

Data Transfers - AC 922

22

§ Consistent P2P bandwidth

§ Main memory transfers limited by the
PCIe interconnect

§ Parallel transfers limited by shared PCIe
bus

§ Despite having NVSwitch, parallel
P2P transfers are faster between co-
located GPUs

§ >10x performance discrepancy between
CPU-GPU and P2P data transfers

Data Transfers - DGX A100

23

§ Pre-allocate memory and reduce data transfers

§ Organize the P2P communication

§ Maximize the bandwidth according to the system's topology

§ When data is located on one socket, keep the computation
on the same NUMA node

Topology-aware Algorithm Design

24

Scalable GPU-based Join

Clemens Lutz, Sebastian Breß, Steffen Zeuch,
Tilmann Rabl, Volker Markl

SIGMOD 2020 – Best Paper

Follow-up: Triton Join - SIGMOD 2022

Pump Up the Volume: Processing Large Data on
GPUs with Fast Interconnects

Goal

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 27

Scale GPU-accelerated data management to arbitrary
data volumes.

Data
(TBs)

R ⋈ S
Data
(GBs)

Problem: Transfer Bandwidth

§ Today’s GPU databases:

§ Store data in main memory

§ Perform data processing on GPU

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 28

CPU GPU
M

ai
n

M
em

or
y

G
PU

 M
em

or
y

Data
(TBs)

R ⋈ S

Ad hoc transferStore

Problem: Transfer Bandwidth

§ Ad hoc data transfer over PCI-e 3.0

§ GPU capable of much higher throughput

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 29

PCI-e 3.0CPU GPU
12.3 GiB/s

12.3 GiB/s
M

ai
n

M
em

or
y

G
PU

 M
em

or
y

Data
(TBs)

R ⋈ S

Problem: Transfer Bandwidth

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 30

PCI-e 3.0CPU GPU
12.3 GiB/s

12.3 GiB/s
M

ai
n

M
em

or
y

G
PU

 M
em

or
y

Data
(TBs)

R ⋈ S

Interconnect bandwidth & GPU memory capacity limit scalability

“Transfer bottleneck”

Game Changer

§ Fast interconnects
§ e.g., NVLink 2.0, Infinity Fabric, CXL

§ High bandwidth (124 GB/s total)

§ System-wide cache-coherence
§ data-dependent memory access
§ fine-grained CPU+GPU cooperation

§ E.g., AC 922

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 31

5× 6×

Solution

Hash
Join

•Probe-side scaling
•Build-side scaling
•GPU+CPU cooperation

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 32

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 33

NVLink 2.0CPU GPU
M

ai
n

M
em

or
y

GP
U

 M
em

or
y

#
#
#
#

hash(k)

#
Lookup

Interconnect feature: High bandwidth

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 34

• Up to 2⋈122 GB

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 35

• Up to 2⋈122 GB

GPU
memory

larger than GPU memory

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 36

• Up to 2⋈122 GB
• CPU baseline: Radix-partitioned hash join

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 37

• Up to 2⋈122 GB
• CPU baseline: Radix-partitioned hash join

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 38

• Up to 2⋈122 GB
• CPU baseline: Radix-partitioned hash join

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 39

• Up to 2⋈122 GB
• CPU baseline: Radix-partitioned hash join

6×

Probe-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 40

GPUs can efficiently process large, out-of-core data

Build-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 41

NVLink 2.0CPU GPU
M

ai
n

M
em

or
y

GP
U

 M
em

or
y

#
#
#
#

hash(k)

#
Insert

Interconnect feature: Data-dependent memory access

Build-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 42

• Up to 30⋈30 GB with a 30 GB hash table = 90 GB

Build-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 43

Hash table in GPU memory larger than GPU memory

• Up to 30⋈30 GB with a 30 GB hash table = 90 GB

Build-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 44

• Up to 30⋈30 GB with a 30 GB hash table = 90 GB

85%

Build-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 45

• Up to 30⋈30 GB with a 30 GB hash table = 90 GB

18×

Build-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 46

• Up to 30⋈30 GB with a 30 GB hash table = 90 GB
• Hybrid hash table spills to CPU memory

Build-Side Scaling

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 47

GPUs are able to operate on large, out-of-core data structures

… but should cache data structures in GPU memory

Conclusion

We explore in which ways fast interconnects benefit databases:

§ Out-of-core data sets

§ Out-of-core data structures

§ Fine-grained cooperative co-processing

Key technology enablers:

§ Hardware accelerators

§ Fast interconnects

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 48

Sneak Peak – Triton Join – SIGMOD 2022

§ Radix-partitioned GPU hash join

§ Hierarchical partitioning

49

Triton Join: Efficiently Scaling to a Large Join State on
GPUs with Fast Interconnects – Clemens Lutz et al.
SIGMOD 2022

Multi-GPU Sorting

Evaluating Multi-GPU Sorting with Modern Interconnects @ SIGMOD 2022

Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: A Radix-Partitioning-Based Multi-GPU Sorting Algorithm @ BTW 2023

Ivan Ilic, Ilin Tolovski, Tilmann Rabl

Multi-GPU Data Processing @ DES

51

§ Algorithm stages:
1. Split data across the GPUs
2. Find the pivot on each GPU
3. Exchange data between GPUs
4. Sorted subarrays

§ In-place sorting algorithm

§ Algorithm limited by the total GPU memory

§ Max. data to sort: ~50% of total GPU memory

Peer-to-Peer-based Sorting

52

§ Algorithm stages:
1. Fill a single GPU with data
2. Execute an in-place sort
3. Bi-directional CPU-GPU data exchange
4. CPU Merge & GPU Sort executed in parallel
5. Final merge on CPU

§ Sorted data can be larger than combined GPU capacity

§ Main memory bound algorithm

Heterogenous CPU-GPU Sorting

53

§ Algorithm stages:
1. Partition keys based on radix value (MSB)
2. Exchange buckets between all GPUs via

P2P transfers
3. Sort buckets on each GPU using a single-

GPU sorting primitive

§ In-place sorting algorithm

§ Algorithm limited by the total GPU memory

§ Max. data to sort: ~50% of total GPU
memory

Radix-Partitioning-based Sorting

54

Performance Analysis – DGX A100

55

RMGP2P HET

Performance Analysis - AC922

56

P2P RMG HET

§ Scaling operators on Multi-GPU systems has limited benefits

§ Often the best performance is achieved on 2 or 4 GPUs

§ Overall fastest solution – 2 GPU mode on AC922

§ OLAP workloads rely on data transfers to GPU Memory

§ Short computation time – majority spent on data transfers

§ Bound by the interconnect bandwidth

§ DGX A100 -> P2P throughput: 279 GB/s, HtoD: 24 GB/s

§ Topology awareness and algorithm adaptation is essential

Takeaways

Sorting + merging is only
10-15% of the total runtime

57

P2P

RMG

Summary

§ GPU-accelerated data processing

§ Scalable GPU Joins

§ Multi-GPU Sorting

§ Coming next: Multi-GPU Joins

§ Questions?
§ tilmann.rabl@hpi.de

58

