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Who am I?

= Until 2011: PhD in CS at University of Passau
= Distributed databases

Until 2015: Postdoc at University of Toronto
= Big data systems / benchmarking

Until 2019

= Visiting Professor & Research Director at DIMA group, TU Berlin
= Deputy Director of Department IAM at DFKI

= Scientific Coordinator of the Berlin Big Data Center

Since Mai 2019
= Professor for Data Engineering Systems, Digital Engineering Faculty, HPI, U Potsdam

Other activities
= HPI Ombudsperson
= Director of HPI Data Center
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Hasso Plattner Institute

= Computer Science Institute in Potsdam,
Germany

= B.Sc. and M.Sc. degree programs
= Department of University of Potsdam




Research Topics
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= Database Systems (on Modern Hardware)
= ICDE 21, PVLDB 21, SIGMOD 22, SIGMOD 23

= Stream Processing / Real-time Analytics
= PVLDB 20, TODS 21, SIGMOD 22, EDBT 23

= Machine Learning Systems

= SIGMOD 20, ICDE 21, EDBT 22, EDBT 23

= Benchmarking

= TPCTC 21, SIGMOD 21, PVLDB 22, SIGMOD 23

Research Approach

Application
Scenario

Benchmark Development

Benchmarking
Extending

Existing Systems

Exploiting New
Hardware

New System
Development
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This work w

» Clemens Lutz

= Tobias Maltenberger

= Tvan Ilic



This Talk

1. Quick 101 on data processing on GPU

2. Scalable Joins on a single GPU

3. Mult-GPU Sorting
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Big Fast Data Analysis

= Data is growing

= Messages, tweets, social networks
(statuses, check-ins, shared content),
blogs, click streams, various logs, ...

= Everyone is interested!

= The value of data is decreasing with
its age!
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The Hardware Challenge

= Hardware performance is not 42 Years of Microprocessor Trend Data
simply increasing anymore , , , , ; n
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New plot and data collected for 2010-2017 by K. Rupp



Hardware - Industry Trend

- 4

= TPU cloud, tight coupling, scale up, special hardware
= "Only way to meet growing compute demands” - Amin Vahdat (Google)

= We need to be hardware-conscious and make systems efficient - Tilmann
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GPU-accelerated Data Processing
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Graphics Processing Unit (GPU)

= Highly specialized coprocessing chip
= Image rendering -> parallel computations
= Performance increased ~2.4x yearly

= During Moore's law CPU's performance increased 1.8x

[ Wikipedia

= Programming model was based on DirectX

= Targeting workloads for CPUs required major adaptations

11


https://de.wikipedia.org/wiki/Nvidia_NV1

GPGPUs

= CPU cores !'= GPU cores -> Fundamental design differences

= CPU cores
= Minimizing the latency of arithmetic operations
= Latency-oriented design
= Tens of cores

= GPU cores
= Large number of FLOPS and memory accesses
= Throughput-oriented design (1 555 - 3 000 GB/s) CUDA Programming Guide
= Thousands of cores

= Massive parallelism
= CPU bandwidth -> ~100s GB/s
= GPU bandwidth -> ~1555 GB/s (A100) — 3000 GB/s (H100 - 2023)
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU Architecture

Compute Units

Computation cores
Register files

L1 cache

Shared memory

Shared L2 cache
All compute units can access it

Global Memory
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/ Compute Unit \ / Compute Unit \
(CU or SM) (CU or SM)

[ Register ] [ Register ]
[ L1 Cache J[ Local J [ L1 Cache J[ Local J
~ 192KB Memory ~ 192KB Memory
S S /)

/ Compute Unit \
(CU or SM)

[ Register ]
[ L1 Cache J[ Local J
~ 192KB Memory
\S 2/

I_I_I

| L2 cache (up to 400 MB) |

I ~1.5-3 TB/s

[ GPU Global Memory (up to 188 GB) ]

IN 16 - 900 GB/s

Host Memory (DRAM)

)
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GPU Interconnects
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System Interconnects

= PCI Express

= Connects CPU to storage, memory and coprocessors
= Most commonly used CPU-GPU interconnect
= Current systems use versions 3.0 and 4.0

= X1, x4, x8, x16 lanes

= Not necessarily all lanes are used

= PCle 3.0x16 ->16 GB/s, PCIe 4.0x16 -> 32 GB/s

PCI Express x1, x4, x8, x16

= From PCIe 5.0 also Compute Express Link (CXL)

= (Cache coherent access DtoH and HtoD (like NVLink)
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https://www.howtogeek.com/424453/pcie-4.0-whats-new-and-why-it-matters/
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GPU Interconnects

= NVIDIA NVLink
= Mainly used as an inter-GPU interconnect
= High bandwidth P2P data transfers
= NVLink 2.0 -> 150 GB/s, NVLink 3.0 -> 300 GB/s
= NVLink 4.0 -> 900 GB/s

NVLink Bridge 2.0 (left)
and 3.0 (right)

= NVIDIA NVSwitch =
=  Switching element connecting up to 18 GPUs

= Enables all-to-all GPU interconnectivity in a system EERERB \NVSwitch
: B EEEE R I
= Non-blocking data transfers

=  GPU-GPU bandwidth -> up to 900 GB/s =
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https://www.boston.co.uk/blog/2021/03/09/boston-labs-tests-nvidia-nvlink.aspx
https://www.boston.co.uk/blog/2021/03/09/boston-labs-tests-nvidia-nvlink.aspx
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf

Single CPU - 2 GPU

DES

| 32 GB/s

= Single socket CPU System Memory
= Direct main memory access
= No NUMA effects ! -
32 GB/s !
= Single/Shared PCle x.0 CPU-GPU lane
GPU O =
56 GB/s

= Thinkstation P620
= CPU -> AMD Threadripper PRO 3995WX 64 Core
= GPU -> 2x NVIDIA A5000 24GB NVLink 3.0 connected (56 GB/s)
= CPU-GPU -> Single PCle 4.0x16 lane (32 GB/s)

GPU 1

17



Dual CPU - 4 GPU

Dual socket CPU System

= (CPUs interconnected via a proprietary interconnect
= NUMA effects

Dedicated main memory access
CPU-GPU connected via NVLink
Equal bandwidth across all processors

IBM AC922
= CPU -> 2x IBM Power 9

DES

Memory

170 GB/s

FaX

> 75 GB/s

GPU 0

75 GB/s 4p

75 GB/s

CPU O ....................................... CPU 1

Memory |

170 GB/s

ab 75 GB/s

LD
-

GPU 1

-
Vv

75 GB/s 4

75 GB/s

— NVLink 2.0

GPU 3

= GPU -> 4 x NVIDIA V100 32GB NVLink 2.0 connected (75 GB/s)

= CPU-GPU -> NVLink 2.0 interconnect (75 GB/s)
= CPU-CPU -> IBM XBus 64 GB/s

18
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Dual CPU - 8 GPU

= Single/Shared PCle 4.0 CPU-GPU lane Memory Memory
204 GB/s 204 GB/s

= Switching elements betweenGPUs | .
= All to all GPU communication ..... ?.'%ff’.‘.‘.’f....[: e i
1 GPUof [cpu4 1
= Full GPU-GPU Bandwidth i Wy e gl i E
eenes[NVSWitch] T
= GPU-GPU bandwidth close to global memory bandwidth ~fopu2l " lopu of--i
g e P o i
32 GB/s 32 GB/s

*+ NVLink 3.0 ----- PCle 40 —-1IF

= DGX A100
= CPU -> 2x AMD EPYC 7742
= GPU -> 8x NVIDIA A100 40 GB NVLink 3.0 connected (300 GB/s)
= CPU-GPU -> Shared PCle 4.0x16 lane (32 GB/s)

= CPU-CPU -> AMD Infinity Fabric (102 GB/s)
19
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NVIDIA Grace Hopper

= Grace CPU NVIDIA Grace Hopper Superchip

______________________________________________________________________________

1
1
[ ] A R M : CPU LPDDR5X GPU HBM3
: <512 GB < 96 GB HBM3
' : s i

= 72 Cores TR

1
Hardware Consistency !
1

4
a. o B ey - X
= 480 GB DDR5x 22 Migén ey “ it ﬂm "ou - - EIRRNE 2 %
— o
T P — VI
= 64x PCle 5 lanes i — S

» Hopper GPU |

= 96 GB HBM3

= NVLink 4.0
= 900 GB/s
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Data Transfers — ThinkStation P620

= Single PCle 4.0 channel per
GPU enables efficient CPU-GPU
parallel transfers

= Performance drops for bi-
directional CPU-GPU transfers

= Direct communication between
the two GPUs

2X performance discrepancy
between CPU-GPU and P2P
data transfers

Throughput [GB/s]
g 8 & 8 B
S & © ©o o

o

@ HtoD
= DtoH
%22 HtoD/DtoH

Throughput [GB/s]

N
w
o

[
o
o

—
w
o

—
o
o

w
o

o

@, HtoD
= DtoH
%22 HtoD/DtoH

0.1)
GPU

b) Parallel

wew P2P

101

Memory
, CPU
1 1
32 GB/sE 532 GB/s
1 1
GPU 0 = GPU 1
56 GB/s
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Data Transfers - AC 922

= Significant performance drops

250 250
due tO NUMA effects 5200 : Il;l:z}]-)l E‘ZOO o e = EIZI]-){ Memm Memm
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—E,;loo 8 o g —g‘;mo Q . :gg CPU O _64GB/S ............. CPU1
2 50 S 8 2 50 ZET - = [ =
. ) = =
= CPU-CPU interconnect is the oy I "o @3 0129 75CBis b db 75 GBis
. s d> 75 GB/s 75 GB/s ¢
75 GB/s 75 GB/s
GPU 0 & GPU 1 GPU 2 S GPU 3
. — NVLink 2.0 - X-Bus
= Using two GPUs often faster . .
than all four 3 20} = 27
150 < 150 145 145
[=¥ oy
-§D100~ Z2 —‘S”m 53
g 504 32 33 2 50
. = =
= No performance discrepancy 0T 05 D5 IS, s ens Teend
GPU — GPU GPU +» GPU
between CPU-GPU and P2P 7 -
(a) Serial (b) Parallel

data transfers
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Data Transfers - DGX A100
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Consistent P2P bandwidth

Main memory transfers limited by the
PClIe interconnect

Parallel transfers limited by shared PCle
bus

Despite having NVSwitch, parallel
P2P transfers are faster between co-
located GPUs

>10x performance discrepancy between
CPU-GPU and P2P data transfers
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Topology-aware Algorithm Design

= Pre-allocate memory and reduce data transfers anrr S -
75 GB/s 75 GB/s
. . . 75 GB/s 75 GB/s
= QOrganize the P2P communication
75 GB/s 75 GB/s

= Maximize the bandwidth according to the system's topology

Memory Memory
£ 128 GB/s 128 GB/s |
' 62 GB/ '
______ CPUO F--fF------| CPUL1 |
16 GB/s 16 GB/s

= When data is located on one socket, keep the computation
on the same NUMA node

50 GB/s 50 GB/s

25 GB/s
GPU 1 GPU 3

— NVLink 2.00 ---- PCle 3.0 - - UPI

24
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Scalable GPU-based Join
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ABSTRACT
GPUSs have long been discussed as accelerators for database
query processing because of their high processing power and
memory bandwidth. However, two main challenges limit the
utility of GPUs for large-scale data processing: (1) the on-
board memory capacity is too small to store large data sets,
yet (2) the interconnect bandwidth to CPU main-memory is
insufficient for ad hoc data transfers. As a result, GPU-based
systems and algorithms run into a transfer bottleneck and
do not scale to large data sets. In practice, CPUs process
large-scale data faster than GPUs with current technology.
In this paper, we investigate how a fast i can

Steffen Zeuch
steffen zeuch@dfki.de

Berlin, Germany

Volker Markl
volker.markl@tu-berlin.de
DFKI GmbH, TU Berlin
Berlin, Germany

W Meory W NVLnk20  Bleso

1246

Bandwidth (GiB/s)
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Theoretical Measured

Figure 1: NVLink 2.0 eliminates the GPU’s main-
‘memory access disadvantage compared to the CPU.
ACM Reference Format:
i teffe b, Tilmann Rabl, and Volker
Markl. 2020, Pump Up the Volume: Processing Large Data on GPUs
th Fast

resolve these scalability limitations using the example of
NVLink 2.0. NVLink 2.0 is a new interconnect technology
that links dedicated GPUs to a CPU. The high bandwidth of
NVLink 2.0 enables us to overcome the transfer bottleneck
and to efficiently process large data sets stored in main-mem-
ory on GPUs. We perform an in-depth analysis of NVLink 2.0

In Proceedings of the 2020 ACM SIGMOD

fe 20), June
14-19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 17 pages.
hitps://doi.org/10.1145/3318464.3389705

1 INTRODUCTION
Over the past decade, co-processors such as GPUs, FPGAs,

and show how we can scale a ‘hash join be-
‘yond the limits of GPU memory. Our evaluation shows speed-
ups of up to 18X over PCI-¢ 3.0 and up to 7.3X over an op-
timized CPU implementation. Fast GPU interconnects thus
enable GPUs to efficiently accelerate query processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copes bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, .

/or a fec. Request
SIGMOD'20, June 14-19, 2020, Portland, OF, USA

©2020 Capyright hld by the owner/author(s). Publication rights licensed
to ACM,

ACNISBN 975-1-4505-6735-6/20/06...$15.00

hitps:/dol org/10.1145/3318464.3389705

ind ASICs have be in research (17, 35, 38,
56] and industry [88] to manage and process large data. De-
i , GPU-enabled datab, aniche [67]

in the overall databases market [28]. In contrast, there is
wide-spread adoption in the deep learning (21, 71) and high
performance computing domains. For instance, 29% of the
Top500 supercomputers support co-processors [92]. Data-
base research points out that a data transfer bottleneck is
the main reason behind the comparatively slow adoption of
GPU-enabled databases [31, 100].

The transfer bottleneck exists because current GPU inter-
connects such as PCl-e 3.0 [1] provide significantly lower
bandwidth than main-memory (ie, CPU memory). We break
down the transfer bottleneck into three fundamental limita-
tions for GPU-enabled data processing:

L1: Low interconnect bandwidth. When the database de-
cides to use the GPU for query processing, it must transfer
data ad hoc from CPU memory to the GPU. With current
interconnects, this transfer is slower than processing the

PORTLAND

ACM SIGMOD/PODS
June 14-19th, 2020

Portland, Oregon USA
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Goa A

Scale GPU-accelerated data management to arbitrary
data volumes.

R

N .
Data i
(TBs) -

N

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 27
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Problem: Transfer Bandwidth /&()}

Y
N
Data Store Ad hoc transfer

(TBs) E”,—— --------------- ~aA >

— £ ¥ RxS e
= CPU GPU =
L= D
s G

= Today’s GPU databases:
= Store data in main memory

= Perform data processing on GPU

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 28



Problem: Transfer Bandwidth

A
N A

Data
(TBs)
N

———___

-.A

A |
\

- 12.3 GiB/s
| CPU PCI-e 3.0 :|

RxS
GPU

Main Me

12.3 GiB/s

» Ad hoc data transfer over PCI-e 3.0

= GPU capable of much higher throughput

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects

GPU Memory
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Problem: Transfer Bandwidth

T
N A

Data

(TBs)

Ny
- -_— oy

¥ - 12.3 GiB/s R o S
CPU PCI-e 3.0 " | GPU

12.3 GiB/s

ng/
1
\
\

Main Me
GPU Memory

DES

&

Interconnect bandwidth & GPU memory capacity limit scalability

“Transfer bottleneck”

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Game Changer

DES

= Fast interconnects

= e.g., NVLink 2.0, Infinity Fabric, CXL
= High bandwidth (124 GB/s total)

= System-wide cache-coherence
= data-dependent memory access
= fine-grained CPU+GPU cooperation

« E.g., AC 922

Bandwidth (GiB/s)
=
Q

a
o

B vemory [ NvLink2.0 PCl-e 3.0
158.95

12461 DX 12069 OX

Theoretical Measured

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 31
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Solution ’@

*Probe-side scalin
Hash L e
loi eBuild-side scaling
oin e GPU+CPU cooperation

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 32



Probe-Side Scaling

NVLink 2.0 GPU

Main Memory
O
O
(-
2\
S

3
IIII GPU Memory

I_
o
o
>~
-
©

B

Interconnect feature: High bandwidth

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Probe-Side Scaling

= CPU (PRA) ~ PCl-e 3.0 = NVLink 2.0
- PCl-e 3.0 -- NVLink2.0 -- GPU memory

Q

54- - - —————= - —=n

o

F 34

)

527

IS

%1- """""""" A ———————§——4
= | | | ,
=70 2048 4096 6144 8192

Probe relation size (million tuples)

« Up to 2x122 GB

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Probe-Side Scaling

o

Throughput (G Tuples/s)

N W A

—
1

= CPU (PRA) ~ PCl-e 3.0 = NVLink 2.0
- PCl-e 3.0 -- NVLink2.0 -- GPU memory

larger than GPU memory
—
0 2048 4096 6144 8192

Probe relation size (million tuples)

* Upto 2122 GB

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Probe-Side Scaling

PCl-e 3.0 = NVLink 2.0

= CPU (PRA

@ - 0 NVLink2.0 - GPU memory
B g | S PEIEIPIEreS Simiimimimios
@
[}
= 31
O
52
Q
e
o1 -
8 """"""" e —————— e S ey A
Eo - - - -
0 2048 4096 6144 8192

Probe relation size (million tuples)

* Upto 2122 GB
* CPU baseline: Radix-partitioned hash join

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Probe-Side Scaling

- CPU (PRA NVLink 2.0
- PCl-e 3.0 -- NVtmk270~ - GPU memory

Q

@ 41

o

= 31

)

52

£

8 I - . . ——t—
< i i i i
=70 2048 4096 6144 8192

Probe relation size (million tuples)

* Upto 2122 GB
* CPU baseline: Radix-partitioned hash join

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Probe-Side Scaling

+ CPU (PRA) * PCl-e 3.0
- PCl-e3.0 - NVLink 2.0 - GPtrmemory

© ... - pcles0 - NVLink2.0 - GPUmemory
54- : - = — = - —n
o

= 3 \

)

52

IS

%’1' ____________________ 4 ————————$——4
= , , , ,
=70 2048 4096 6144 8192

Probe relation size (million tuples)

* Upto 2122 GB
* CPU baseline: Radix-partitioned hash join

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Probe-Side Scaling

+ CPU (PRA) » PCl-e 3.0 = NVLink 2.0

) _ - PCl-e 3.0 -- NVLink2.0 -- GPU memory

E4_-.-.-.-.-§ ____________________________________ ;_. ..... ._._._.. _____ Skl ikttt

@ :

Q .

S | 6 X

5 27 ?

o :

e

3

=0 - - - -
0 2048 4096 6144 8192

Probe relation size (million tuples)

* Upto 2122 GB
* CPU baseline: Radix-partitioned hash join

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Probe-Side Scaling

+ CPU (PRA) » PCl-e 3.0 = NVLink 2.0

:w\ - PCl-e 3.0 -- NVLink2.0 -- GPU memory

B g | S g oo RIS

[ -

[}

F 34

O

527

Q

e

3

E O ] ] L] L]
0 2048 4096 6144 8192

Probe relation size (million tuples)

GPUs can efficiently process large, out-of-core data

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Build-Side Scaling w

NVLink 2.0 GPU

GPU Memory

Insert

Interconnect feature: Data-dependent memory access

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 41



Build-Side Scaling

+ CPU (PRA) + PCl-e 3.0 = NVLink 2.0

» - PCl-e3.0 -~ GPU memory
8 o o —- —0— o - o :
§.2.0'
|_
91.5'
21.01
= ""‘Q::: """""""""""""""""""""""""""
§O.5- — . |
= 0.0 - — T — G
0 512 1024 1536 2048

Build & probe relation size (million tuples)

e Up to 30x30 GB with a 30 GB hash table =90 GB

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Build-Side Scaling

= CPU (PRA) + PCl-e 3.0 = NVLink 2.0
- PCl-e 3.0 -- GPU memory

larger than GPU memory

t (G Tuples/s)
- N
o O

3 1.0

0 512 1024 1536 2048

Build & probe relation size (million tuples)

e Up to 3030 GB with a 30 GB hash table =90 GB
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Build-Side Scaling

= CPU (PRA) + PCl-e 3.0 = NVLink 2.0
- PCl-e3.0 -~ GPU memory

ghput (G Tuples/s)

o = = DN
oo O o1 O

u

Thro
o
(@)

512 1024 1536 2048
Build & probe relation size (million tuples)

* Up to 3030 GB with a 30 GB hash table =90 GB
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Build-Side Scaling

+ CPU (PRA) + PCl-e 3.0 = NVLink 2.0

» - PCl-e3.0 - GPU memory

% | i i .

§.2.0'

|_

91.5'

3101 N

=

05 T x :

o fﬂll*\'_/|<:

< 0.0 . —
512 1536 2048

Build & probe relation size (million tuples)

e Up to 30x30 GB with a 30 GB hash table =90 GB
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Build-Side Scaling

+ CPU (PRA) + PCl-e 3.0 = NVLink 2.0<G_NVLink 2.0 Hybrid HT >

) - PCl-e 3.0 - GPU memory

) - - + 4t * * :

O

§.2.0'

|_

91.5'

21.01

= R SN SR S | NP

205

= 0.0 - — —
512 1024 1536 2048

Build & probe relation size (million tuples)

* Up to 3030 GB with a 30 GB hash table =90 GB
* Hybrid hash table spills to CPU memory

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 46
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Build-Side Scaling

< CPU (PRA) + PCl-e 3.0 = NVLink2.0 + NVLink 2.0 Hybrid HT

) - PCl-e 3.0 -~ GPU memory

) + —_—r + :

®

§.2.0'

I_

91.5'

31.01

S I IS S | WP S

20.5- — N\

E 0.0 - — -
0 512 1024 1536 2048

Build & probe relation size (million tuples)

GPUs are able to operate on large, out-of-core data structures

... but should cache data structures in GPU memory

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects
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Conclusion ’&?j}

We explore in which ways fast interconnects benefit databases:
= Qut-of-core data sets
= Qut-of-core data structures

= Fine-grained cooperative co-processing

Key technology enablers:
= Hardware accelerators

= Fast interconnects

Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects 48
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Sneak Peak - Triton Join — SIGMOD 2022

= Radix-partitioned GPU hash join

= Hierarchical partitioning

— L1 [ g RIS
R[5 .\ e,
\. / . @ CPU Radix Join ' 4 GPU No-Partitioning Join 4% GPU Triton Join
. — o 2
S Pl . R M kS 295
= . a, <« '
~~ J . Hash Tables = =
\- GPU > CPU .E
R/—J H/_J < 1.507 : E Our contribution
1* Pass 274 Pags JomR and S _§* I
Partitioning %0 (.75 [
=
o : |
= 0.00 - = . '
0 512 1024 1536 2048

Build & Probe Relation Size (Million Tuples / Relation)
Triton Join: Efficiently Scaling to a Large Join State on

GPUs with Fast Interconnects — Clemens Lutz et al.
SIGMOD 2022 49
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Multi-GPU Sorting




Multi-GPU Data Processing @ DES

valuating Multi-GPU Sorting with Modern Interconnects @ SIGMOD 2022
Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, Tilmann Rabl
RMG Sort: A Radix-Partitioning-Based Multi-GPU Sorting Algorithm @ BTW 2023

Ivan Ilic, Ilin Tolovski, Tilmann Rabl

5 s
Vg VDI
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Peer-to-Peer-based Sorting

DES

= Algorithm stages:
1. Split data across the GPUs
2. Find the pivot on each GPU
3. Exchange data between GPUs
4. Sorted subarrays

= In-place sorting algorithm

= Algorithm limited by the total GPU memory

= Max. data to sort: ~50% of total GPU memory

)
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GPU 0

Al7 11 12 16
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.........

.........

12 13 15 16

GPU 2 GPU 3
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,\|2 7@11 12 13 15 16 |1 3 4 5 61014|B

12 13 15 16| 9 10 11 14|

1 3 4 5
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DES
Heterogenous CPU-GPU Sorting
= Algorithm stages: , i . e
L. Fill a single GPU with data = e
2. Execute an in-place sort o o G sorto | p
3. Bl_dlrectlonal CPU_GPU data EXChange ....................................................... 1 ....................................................................................... \ ...............
4. CPU Merge & GPU Sort executed in parallel e W o e v
5. Final merge on CPU ®[ o 1 |l e 47| sort1

= Sorted data can be larger than combined GPU capacity

= Main memory bound algorithm
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Radix-Partitioning-based Sorting

Algorithm stages:
1. Partition keys based on radix value (MSB)

2. Exchange buckets between all GPUs via
P2P transfers

3. Sort buckets on each GPU using a single-
GPU sorting primitive

In-place sorting algorithm
Algorithm limited by the total GPU memory

Max. data to sort: ~50% of total GPU
memory

DES

00000010 00111010 01110001 01100010 — Bucket [2]

00000001 10101011 01011000 00110101 — Bucket [1]

GPUO
Before P2P Key Swap

GPU 1

GPU 2

GPU 3

After P2P Key Swap

Bucket [1]:

00000001 00000000 00000000 00011010
00000001 10101011 01011000 00110101

00000001 11111111 11111111 11110101
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Performance Analysis - DGX A100
800 800 800
719.2
"»' 700 P2P "»n' 700 "»' 700 HET
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@@ HtoD Copy
B Radix Partition
B P2P Key Swap
#5%  Sort Chunk
B Sort Buckets & DtoH Copy
B DtoH Copy
B8 CPU Multiway Merge
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Performance Analysis - AC922
500 500 5001
449.0 - _ 446.0
= P2P - RMG = HET
é E‘ 400 1 351.0 375.2 é 400‘:
& £ 300 & 300
-+ -+ — 4
5 5 S 200-
- ]
3 = o :
5 5 5 100
A 7 % :
] O_'
1 2 4 1 2 1 1 2 4
Number of GPUs Number of GPUs Number of GPUs
@@ HtoD Copy
BN Radix Partition
B P2P Key Swap
8 Sort Chunk
B Sort Buckets & DtoH Copy
B DtoH Copy
B8 CPU Multiway Merge
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Takeaways

500

s]

RMG 375.2

351.0

m
o
()
o

Scaling operators on Multi-GPU systems has limited benefits

3001

2001

t duration [

Often the best performance is achieved on 2 or 4 GPUs

r
<
—_
()
..J:.

= Overall fastest solution - 2 GPU mode on AC922 Number of GPUs
80077192
OLAP workloads rely on data transfers to GPU Memory Ezgg P2P
=  Short computation time - majority spent on data transfers é 233 ‘
_g 3007 247.0 240.0
Bound by the interconnect bandwidth e

= DGX A100 -> P2P throughput: 279 GB/s, HtoD: 24 GB/s L Nunflor of GPUS

] ] ] ] Sorting + merging is only
Topology awareness and algorithm adaptation is essential 10-15% of the total runtime
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Summary

= GPU-accelerated data processing
= Scalable GPU Joins
= Multi-GPU Sorting

= Coming next: Multi-GPU Joins

= Questions?
= tilmann.rabl@hpi.de

DES
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