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In the beginning…

• spatial databases – spatial data mining

height profile:
Maunga Whau Volcano (Mt. Eden), 
Auckland, New Zealand
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Density-based Clustering: Intuition

• probability density function
of the data

• threshold at high 
probability density level

• cluster of low probability
density disappears to noise

probability density function
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Density-based Clustering: Intuition

• low probability density
level

• 2 clusters are merged to 1

probability density function
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Density-based Clustering: Intuition

•medium (good) probability
density level

• 3 clusters are well
separated

probability density function
5



DATABASE
SYSTEMS
GROUP

DBSCAN

DBSCAN: Density-Based Spatial Clustering of Applications 
with Noise
[Ester, Kriegel, Sander, Xu KDD 1996]

• Core points have at least minPts points in their 𝜀𝜀-neighborhood
• Density connectivity is defined based on core points
• Clusters are transitive hulls of density-connected points

minPts = 5
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DBSCAN

• DBSCAN received the 2014 SIGKDD Test of Time Award

• DBSCAN Revisited: Mis-claim, Un-Fixability, and
Approximation [Gan & Tao SIGMOD 2015]

– Mis-claim according to Gan & Tao:
DBSCAN terminates in O(n log n) time. 
DBSCAN actually runs in O(n²) worst-case time.

– Our KDD 1996 paper claims: 
DBSCAN has an “average“ run time complexity of O(n log n) for
range queries with a “small“ radius (compared to the data space
size) when using an appropriate index structure (e.g. R*-tree)

– The criticism should have been directed at the “average“ 
performance of spatial index structures such as R*-trees and not at 
an algorithm that uses such index structures

7



DATABASE
SYSTEMS
GROUP

DBSCAN

• Contributions of the SIGMOD 2015 paper
(apply only to Euclidean distance)

1. Reduction from the USEC (Unit-Spherical Emptiness Checking) 
problem to the Euclidean DBSCAN problem
 lower bound of Ω (𝑛𝑛 ⁄4 3) for the time complexity of every algorithm
solving the Euclidean DBSCAN problem in 𝑑𝑑 ≥ 3

2. Proposal of an approximate grid-based DBSCAN algorithm for
Euclidean distance running in 𝑂𝑂(𝑛𝑛) expected time
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DBSCAN

• DBSCAN Revisited, Revisited: Why and how you should
(still) use DBSCAN [E. Schubert, Sander, Ester, Kriegel, Xu, to appear in 
ACM TODS, 2017]

– Experiments in the SIGMOD 2015 paper not of practical value
– Parameter ɛ for the range queries was chosen much too large         
⟹ the approximate algorithm puts all objects into 1 cluster

– Extensive experiments show that for adequate choice of ɛ, the
original DBSCAN algorithm with an R*-tree index outperforms the
SIGMOD‘15 approximate algorithm
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DBSCAN

• DBSCAN Revisited, Revisited: Why and how you should
(still) use DBSCAN [E. Schubert, Sander, Ester, Kriegel, Xu, to appear in 
ACM TODS, 2017]

– Lessons learnt from SIGMOD 2015 and ACM TODS 2017:

• Lower bound of Ω (𝑛𝑛 ⁄4 3) for the time complexity of any algorithm
solving the Euclidean DBSCAN problem (SIGMOD 2015)

• Original DBSCAN algorithm is still the method of choice
(ACM TODS 2017)

10



DATABASE
SYSTEMS
GROUP

Variants of Density-based Clustering

• OPTICS: Ordering Points To Identify the Clustering Structure
[Ankerst, Breunig, Kriegel, Sander SIGMOD 1999]

• ordering of the database
representing its density-
based clustering structure

• suitable for data of different 
local densities and for
hierarchical clusters
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Variants of Density-based Clustering

• GDBSCAN: Generalized DBSCAN                                    
[Sander, Ester, Kriegel, Xu DMKD Journal 1998]

clusters point objects as well as spatially extended objects
according to spatial and non-spatial attributes and more…
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Survey on Density-based Clustering

• recent survey on density-based clustering:
H.-P. Kriegel, P. Kröger, J. Sander, A. Zimek: Density-based clustering. 
Wiley Interdisciplinary Reviews: Data Mining and Knowledge 
Discovery, 1(3): 231–240, 2011.
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Subspace Clustering in High-
dimensional data spaces

• SUBCLU: Density-Connected SUBspace CLUstering for 
High-Dimensional Data [Kailing, Kriegel, Kröger SDM 2004]

discovers dense clusters in axis-parallel subspaces of the high-dimensional 
data space
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Outlier Detection

• LOF (Local Outlier Factor): Density-based, local outlier
detection [Breunig, Kriegel, Ng, Sander SIGMOD 2000]

• quantifies how outlying an object is in its local neighborhood
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High-dimensional Outlier Detection

• ABOD: Angle-Based Outlier Degree                                
[Kriegel, M. Schubert, Zimek SIGKDD 2008]
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• variance of the angles of the potential "outlier" to
pairs of points

• angles are more stable than distances in high-
dimensional spaces
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Subspace Outlier Detection

• SOD: Subspace Outlier Degree
[Kriegel, Kröger, E. Schubert, Zimek PAKDD 2009]

• detects outliers in subspaces of the high-dimensional data space
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Approximations for Outlier Detection

• Fast and Scalable Outlier Detection with Approximate 
Nearest Neighbor Ensembles [E. Schubert, Zimek, Kriegel DASFAA 2015]

– avoids pairwise comparison of objects to compute nearest neighbors
– computes nearest neighbors in near-linear time using an ensemble

of space-filling curves
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Trend Detection

• SigniTrend: Scalable Detection of Emerging Topics in 
Textual Streams by Hashed Significance Thresholds
[E. Schubert, Weiler, Kriegel SIGKDD 2014]

– introduces a new significance measure using outlier detection
– tracks all keyword pairs using hash tables in a heavy-hitter type 

algorithm
– aggregates the detected co-trends into larger topics using

clustering
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Runtime Evaluation

• The (Black) Art of Runtime Evaluation:    
Are we comparing (data mining) algorithms
or implementations?
[Kriegel, E. Schubert, Zimek KAIS Journal, 1-38, 2016]

– extensive study of runtime behavior of several algorithms
(single-link, DBSCAN, k-means, LOF)

– implementation details often
dominate algorithmic merits

– the same algorithm can
exhibit runtime differences
of two orders of magnitude
and more in different 
implementations
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Runtime Evaluation

• For more realistic comparisons, all algorithms should be
implemented
– in the same framework, in the same version
– at the same level of generality, modularization, and optimization
– using the same backing features (DB layer, index structures)

and all algorithms should be suitably parameterized.

• We should
– compare the behavior of algorithms in scalability experiments, not in 

single absolute runtime values,
– demonstrate at which point (data set size, dimensionality, parameter

values) the asymptotic behavior kicks in.
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Tutorials and Surveys

• Subspace clustering, clustering high-dimensional data
[Kriegel, Kröger, Zimek]

– Tutorials at ICDM, KDD, VLDB, PAKDD
– Survey ACM TKDD 2009

• Outlier detection
– Tutorials at PAKDD, KDD, SDM [Kriegel, Kröger, Zimek]

• Outlier detection in high-dimensional data [Zimek, E. Schubert, 

Kriegel]:
– Tutorials at ICDM, PAKDD
– Survey Statistical Analysis and Data Mining 2012
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Implementations

• all these algorithms (and many more) are available in the
ELKI framework: http://elki.dbs.ifi.lmu.de/

• ELKI is a java framework, integrating fast data management
(e.g., indexing) and many data mining algorithms in a 
flexible way

release 0.6:

Elke Achtert, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek:
Interactive Data Mining with 3D-Parallel-Coordinate-Trees.
Proceedings of the ACM International Conference on Management of Data 
(SIGMOD), New York City, NY, 2013.            (release of version 0.7.1 at VLDB 2015)
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Thank You!
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