Handling Big Streaming Data with DILoS

Alexandros Labrinidis

Advanced Data Management Technologies Lab Department of Computer Science University of Pittsburgh

University of Waterloo - May 21, 2014

You know Big Data is an important problem if...

It is featured on the cover of Nature and the Economist!

You know Big Data is an *even more* important problem if...

• It has a Dilbert cartoon!

What is Big Data?

Definition #1:

- Big data is like teenage sex:
 - o everyone talks about it,
 - nobody really knows how to do it,
 - o everyone thinks everyone else is doing it,
 - \circ so everyone claims they are doing it...

Definition #2:

• Anything that Won't Fit in Excel!

Definition #3:

• Using the Vs

The three Vs

- Volume size does matter!
- Velocity data at speed, i.e., the data "fire-hose"
- Variety heterogeneity is the rule

Five more Vs

- Variability rapid change of data characteristics over time
- Veracity ability to handle uncertainty, inconsistency, etc
- Visibility protect privacy and provide security
- Value usefulness & ability to find the right-needle in the stack
- Voracity strong appetite for data!

Enter Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Storage capacity increase

HDD Capacity (GB)

[Wikipedia Data]

But

- Human Processing Capacity

We refer to this as the: Big Data – Same Humans Problem

About the ADMT Lab

- Directed by
 - Panos K. Chrysanthis
 - Alexandros Labrinidis
- Established in 1995

- 4+2 PhD students, 2 MS students, 6 REUs
- User-centric data management for network-centric applications

Entire Data Lifecycle

AstroShelf

Volume Velocity Variety Veracity Visibility

• Understanding the Universe through scalable navigation of a galaxy of annotations

🛞 🕸 serve pleade (6. jenn)	(g) = C ↓ (M + Graph)	P 🛪 🗠 🕫 🖬	(Carlos and Carlos an	ift in O 👌 - Dager	2 승 회사 위 1 📕
AstroShelf		8 About / Login	AstroShelf		8 About 🔺 Login
				1	
NA.Dex steprees), 258 00004000, 5 16010000 - Scale parsecycles 0.15			All der mennenz in \$2000000 + 20000000 - folge kensengenden in 19		and the second sec

- Astronomy data from multiple sources (images & catalogs)
- Support collaboration of:
 - > people (view-based, declarative annotations)
 - software / data (web services)
 - resources (utilizing local and remote storage)
- CONFLuEnCE prototype: *continuous workflows*[Sigmod 2011 & 2012]

AstroShelf (cont.)

Volume Velocity Variety Veracity Visibility

• User-centric features:

"I like **drama movies** a bit more than **horror movies**, Intensity of preference 0.2"

- SELECT * FROM Plants, Supplies, Polluted_H2O WHERE Supplies.type = "solvent" AND Supplies.name = Polluted_H2O.pollutant AND Polluted_H2O.location = Plants.location AND Plant.id = Supplies.plant_id **PREFERRING** \$l = Querier HOLDS OVER <*,{(pollutant)},\$l> CASCADE LESSTHAN(runtime, 120) AND \$l = Querier HOLDS OVER <join,*,\$l>;
- Unified model for user preferences
 - combine quantitative & qualitative user preferences into a single graph model to guide query result personalization
- Protecting privacy in distributed query processing
 - declarative preferences allow users to balance the tradeoff between privacy and performance

AQSIOS

 Efficiently Utilizing Resource in a Data Stream Management System

AQSIOS

Prototype Data Stream Management Systems

Aggregate Continuous Query optimizer

• WeaveShare and TriWeave [Shenoda et al., CIKM'11 and ICDE'12]

Optimized processing to eliminate redundant computation

Continuous Query Schedulers

- HR, HNR [Sharaf et al., VLDB'06 and TODS'08]
 - Average vs Max Response Time
 - Average vs Max Slowdown
- CQC and ABD [AI Moakar et al., DMSN'09 and SMDB'12]
 - Priority Classes
 - o Single-, Dual-, Multi-core, Cloud

AQSIOS (cont.)

- Load shedder and scheduler-load shedder synergy
 - o SEaMLeSS [Pham et al., SMDB'13]
 - SElf Managing Load Shedding for data Stream management systems

- DILOS [Pham et al., SMDB'11]
 - Seamless integration of priority-based scheduler and load shedder
 - Consistently honor worst-case delay target with differentiated classes of service
 - Exploit system capacity better

System Model & Metrics

- Multiple priority classes of CQs
 - Priorities have been quantified into numbers
 - Higher value means higher priority
- Two requirements under overload state:
 - 1. Guarantee worst-case Quality of service (QoS)
 - Worst-case QoS = worst-case response time = delay target
 - Each class can require a different worst-case QoS
 - Supported by load manager (load shedder)
 - 2. Maximize Quality of Data (QoD) with priority consideration
 - QoD = 100% data loss due to shedding
 - Need to consider priorities of CQ classes
 - Involve both scheduler and load manager Why?

State-of-the-art

- Previous works consider either...
 - Priority-based scheduling
 - CQ's priority (through QoS function, deadline): e.g., [Carney et al., VLDB'03], [Wei et al.,, ISORC' 06]
 - Class' priority: [Al Moakar et al., DMSN'09, SMDB'12]
 - Or priority-based load shedding
 - CQ's loss-tolerance functions [Tatbul et al., VLDB'03]

Now we need both of them to work together ...

Motivation

- Two CQs Q_1 and Q_2
 - The same cost
 - \circ Q₁'s priority is twice as high as Q₂'s

- \rightarrow Q₂ is still overloaded
- \rightarrow Q₁ suffers from unnecessary shedding
- → System capacity is not fully used

Motivation

- Making the load manager aware of the scheduler's policy?
 - **Load manager:** I should know that the scheduler can process up to 10 tuples of Q_1 and 5 tuples of Q_2 and...
 - Scheduler: well, all I can tell you is in this cycle I am giving Q₁ x% of time to execute and Q₂ y% and..., also many things out of my control
 - Context switching time
 - Background jobs that share the CPU resource
 - The actual query load

• Load manager:

Our Hypothesis

• By exploiting the **synergy** between the scheduler and the load shedder we can

Support CQ's priority consistently

Improve the utilization of CPU resource

Our solution: DILoS framework

Benefit of our proposed DILoS framework

- The load manager works in concert with the scheduler in honoring CQs' priority
 - The load manager does not needs to have its own prioritybased policy
 - Controls the load in each class as if it is a virtual system
 - Follows exactly the priority enforcement of the scheduler
- Load manager's feedback improves scheduler's decision
 - Better exploits system capacity

Load manager for DILoS

- Each class load manager needs to decide "when and how much load to shed"
 - $_{\odot}$ Estimate the load of each class
 - [Tatbul et al. , 2003], based on input rates, operator's cost and selectivities
 - Estimate the system capacity each class actually has
 - ???

"When and how much"- related definitions

- Incoming load L
 - The amount of time needed to process all the tuples coming in per time unit (say, a second)
- System capacity **L**_C:
 - The fraction of each time unit the system can spend on processing the incoming tuples
 - Approximated by a *headroom factor H* in [0-1]
- Overload:
 - \circ when **L > L_c**

"when and how much" state-of-the-art

- Aurora [Tatbul et al., 2003]
 - \circ Excess load = L-L_C
 - No feedback loop, cannot honor delay target
- CTRL [Tu et al., 2006]
 - Based on number of queued tuples to adjust shedding decisions
 - Honors delay target, outperforms Aurora
- Both require manually tuned headroom factor **H** to estimate the system capacity!
 - o Offline, manual tuning of H is impractical
 - Clearly not applicable in this context of per-class load manager!

Our Proposal: ALoMa – Adaptive Load Manager

- Starts with some reasonable value of H, and adjusts it accordingly
- Has two modules:
 - Statistics-based load monitor: estimates the system load based on input rate, operators' costs and selectivities
 - Response time monitor: monitors the level and moving trend of the actual response time to infer about the system load status

ALoMa- Headroom Factor Adjustment

- The two modules disagree: adjust H
 - The load monitor says "overloaded" but the response time monitor says "not overloaded":
 - Increase H so that L_C is increased towards L
 - The load monitor says "not overloaded" but the response time monitor says "overloaded"
 - **Decrease** H so that L_c is reduced towards L
- The two modules agree: excess load = $L L_C$

ALoMa – Headroom Factor Adjustment

- We use heuristic in the adjustment of H (or L_C)
 - Accommodating system fluctuation and the inherent lag of the statistics

$$L_{C_{new}} = L_C \pm \frac{\log_2(z+1)}{z} |L - L_C|$$

where $z = \begin{cases} \frac{|L - L_C|}{L_C} .100 & \text{if } \frac{|L - L_C|}{L_C} .100 \ge 1\\ 1 & \text{otherwise} \end{cases}$

 Principle: bigger the difference, smaller the % of change but bigger in absolute value of change

ALoMa – Performance Evaluation

Effect of environment changes on CTRL [Tu et al.] and adaptation of ALoMa. Total data loss for ALoMa and CTRL is 62.98% and 62.69%, respectively

ALoMa

- We showed how ALoMa can automatically recognize the system capacity spent on query processing
- ALoMa's other important advantages over the state-of-the-art

Ideal properties	ALoMa	CTRL	Aurora
Aware of delay target	~	~	
Auto-adjusting of H	~		
Applicable to all query networks	~		~
Independent of scheduler	~		~

Back to DILoS Framework

Scheduling Policy

- A concrete policy implemented:
 - \circ A class with priority P_k is guaranteed a share of of total system processing capacity if needed.
 - Adopted from CQC [Al Moakar et al., 2009]
 - Redundant capacity from a class is distributed to other classes in need with "highest priority first"
- Different policies can be plugged in, for example:
 - Absolute priority for higher-priority class:
 - Higher class can use as much of the available capacity as needed
 - Relative priority with workload consideration
 - Higher class receives better QoD regardless of its workload

 $P_k / \sum_{i=1}^N P_i$

Inter-class Sharing

 Congestion can happen when a higher-priority class share a query segment with a lower-priority one under class-based scheduling

- The shared segment receives the higher-priority as it should
- However, the higher-priority class is blocked waiting for the lower priority one to consume the intermediate result
 - → DILoS naturally provides a solution, enabling inter-class operator sharing

<u>Claim:</u> As long as the load of the lowerpriority class is controlled to its capacity, congestion will not happen

Experiments

Experimental Settings

- AQSIOS DSMS prototype
- Three classes 1, 2, 3 of priorities 6, 3, 1; 6 is the highest
- All classes have the same workload of 11 queries
- Worst-case QoS of class 1, 2, 3 is 300, 400, 500 ms
- Input rate:
 - Constant, step changes, and real input trace for class 1
 - Constant input rate for class 2 and 3, at a level that would overload the classes within its assigned capacity.

Result with Constant Input Rate

	Average response time (ms)			Average data loss (%)		
	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
No load manager	3.40	3.53	56541.69	0	0	0

Understand the Benefit of the Synergy

Implicit redistribution observed without explicit synergy

Enabling inter-class sharing

Class 1 shares a query segment with class 3 under a class-based scheduling policy (CQC [Al Moakar et al., 2011]) (constant input rate)

Result with Step Changes in Class 1's Input Rate

44

Result with Step Changes in Class 1's Input Rate

45

Result with Real Input Rate for Class 1

The real input is the trace of TCP packages to and from The Berkeley Lab (http://ita.ee.lbl.gov/html/contrib/LBL- PKT.html)

Result with Real Input Rate for Class 1's

	Average response time (ms)			Average data loss (%)		
	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
No synergy (& no sharing)	22.31	68.23	300.91	0.01	0.79	21.67
DILoS without sharing	25.69	76.86	122.66	0.46	0.68	8.70
DILoS with sharing	25.03	70.29	127.28	0.44	0.82	6.54

Conclusions

- Advantages of DILoS:
 - Seamless integration:

Volume Velocity Variability

- The load manager detects and follows exactly the current priority enforcement of the global scheduler
- Global scheduling decision improved
 - Explicitly control the distribution of available capacity
 - **Exploit batch processing** to increase capacity utilization
 - Enable inter-class sharing to maximize the chance for query optimization
- Different priority policies can be plugged in
- Future works:
 - Synergy with priority-based memory management
 - Consider advanced architecture (multi-core, cloud)

A (Big) Team Effort

<u>Faculty</u>

- Panos Chrysanthis
- Alexandros Labrinidis
- Adam Lee
- Kirk Pruhs

FUNDING (DILoS)

- NSF IIS-0534531
- NSF CAREER IIS-0746696
- EMC/Greenplum
- Andrew Mellon Predoctoral Fellowship

<u>Students</u>

- Lory Al Moakar
- Di Bao
- Nick Farnan
- Roxana Gheorghiu
- Shenoda Guirguis
- Qinglan Li
- Panickos Neophytou
- Thao Pham
- Mohamed Sharaf
- Matt Schroeder
- Nikhil Venkatesh

http://db.cs.pitt.edu