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You  know  Big  Data  is  an  
important  problem  if...	

•  It is featured on the cover of Nature and the Economist! 
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You  know  Big  Data  is  an  even  
more  important  problem  if...	

•  It has a Dilbert cartoon! 



What  is  Big  Data?	
Definition #1: 
•  Big data is like teenage sex:  

o  everyone talks about it,  
o  nobody really knows how to do it,  
o  everyone thinks everyone else is doing it,  
o  so everyone claims they are doing it... 

Definition #2: 
•  Anything that Won't Fit in Excel! 

Definition #3: 
•  Using the Vs 
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The  three  Vs	

•  Volume - size does matter! 

•  Velocity - data at speed, i.e., the data “fire-hose” 

•  Variety - heterogeneity is the rule 
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Five  more  Vs	

•  Variability - rapid change of data characteristics  
 over time 

•  Veracity - ability to handle uncertainty, 
 inconsistency, etc 

 

•  Visibility – protect privacy and provide security 
 

•  Value – usefulness & ability to find the right-needle 
 in the stack 

•  Voracity - strong appetite for data! 
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Enter  Moore’s  Law	

[  Wikipedia  Image  ]	
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Storage  capacity  increase	
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[  Wikipedia  Data  ]	
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But	

•  Human processing capacity remains 
roughly the same! 
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We  refer  to  this  as  the:  

Big  Data  –  Same  Humans  
Problem	



Roadmap	
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About  the  ADMT  Lab	

• Directed  by  	
• Panos  K.  Chrysanthis    	
• Alexandros  Labrinidis	

• Established  in  1995	
• 4+2  PhD  students,  2  MS  students,  6  REUs	

• User-‐‑centric  data  management  for  network-‐‑centric  
applications	
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Entire  Data  Lifecycle	



AstroShelf	
•  Understanding the Universe through scalable 

navigation of a galaxy of annotations 
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Volume      Velocity      Variety                    
Veracity            Visibility  	

•  Astronomy data from multiple sources (images & 
catalogs) 

•  Support collaboration of: 

Ø  people (view-based, declarative annotations) 

Ø  software / data (web services) 

Ø  resources (utilizing local and remote storage) 

•  CONFLuEnCE  prototype:  continuous  workflows  
[Sigmod  2011  &  2012]	

 



SELECT  *  FROM  Plants,  Supplies,  Polluted_H2O  
WHERE  Supplies.type  =  "ʺsolvent”    
          AND  Supplies.name  =  Polluted_H2O.pollutant  
          AND  Polluted_H2O.location  =  Plants.location  
          AND  Plant.id  =  Supplies.plant_id  
PREFERRING  $l  =  Querier    HOLDS    
        OVER  <*,{(pollutant)},$l>  
  CASCADE  LESSTHAN(runtime,  120)  
          AND  $l  =  Querier  HOLDS  OVER  <join,*,$l>;	

AstroShelf  (cont.)	
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Volume      Velocity      Variety                    
Veracity            Visibility  	

•  Unified model for user preferences 
Ø  combine quantitative & qualitative user preferences  

into a single graph model to guide query result 
personalization 

•  Protecting privacy in distributed query processing 
Ø  declarative preferences allow users to balance the 

tradeoff between privacy and performance 

•  User-centric features: 

m2	

-‐‑1	
m3	

m1	 m5	

m4	
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0.2	

‘’I  like  drama  movies  a  bit  more  than    
      horror  movies,  Intensity  of  preference  0.2”	



•  Efficiently Utilizing  Resource in a Data Stream 
Management System 
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CPU time sharing: 
�  Which operator to 

execute now? 
�  And for how long? 

Scheduler	 Load  manager	

What if the system is 
overloaded? 
�  Shed data to meet the 

near-real-time requirement 

Which query plans 
are the best?  

Multiple classes of CQs 
•  Each class has a different priority  

Registering  CQs	

Data  streams	

Query  optimizer	

AQSIOS	 Volume                  Velocity  	
Variability                    	



AQSIOS	
•  Prototype Data Stream Management Systems  

o  Aggregate Continuous Query optimizer 

•  WeaveShare and TriWeave  
[Shenoda et al., CIKM’11 and ICDE’12] 

o  Optimized processing to eliminate redundant computation 

o  Continuous Query Schedulers 

•  HR, HNR [Sharaf et al., VLDB’06 and TODS’08] 

o Average vs Max Response Time 

o Average vs Max Slowdown 

•  CQC and ABD [Al Moakar et al., DMSN’09 and SMDB’12] 

o  Priority Classes 

o  Single-, Dual-, Multi-core, Cloud 
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Volume                  Velocity  	
Variability                    	



•  Load shedder and scheduler-load shedder synergy 

o  SEaMLeSS [Pham et al., SMDB’13] 

•   SElf Managing Load Shedding for data  

Stream management systems 

o DILoS [Pham et al., SMDB’11] 

•  Seamless integration of priority-based scheduler  

and load shedder 

•  Consistently honor worst-case delay target with 

differentiated classes of service 

•  Exploit system capacity better 

18 

AQSIOS  (cont.)	 Volume                  Velocity  	
Variability                    	
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System  Model  &  Metrics	
•  Multiple priority classes of CQs 

o  Priorities have been quantified into numbers  
•  Higher value means higher priority 

•  Two requirements under overload state: 
1.  Guarantee worst-case Quality of service (QoS) 

•  Worst-case QoS = worst-case response time = delay target 
•  Each class can require a different worst-case QoS 
•  Supported by load manager (load shedder) 

2.  Maximize Quality of Data (QoD) with priority consideration 
•  QoD = 100% - data loss due to shedding 
•  Need to consider priorities of CQ classes 
•  Involve both scheduler and load manager  - Why? 
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State-‐‑of-‐‑the-‐‑art	
•  Previous works consider either…  

o  Priority-based scheduling  
•  CQ’s priority (through QoS function, deadline): e.g., 

[Carney et al., VLDB’03], [Wei et al.,, ISORC’ 06] 
•  Class’ priority: [Al Moakar et al., DMSN’09, SMDB’12]   

o  Or  priority-based load shedding 
•  CQ’s loss-tolerance functions [Tatbul et al., VLDB’03] 

21 

Now we need both of them 
to work together … ?	



Motivation	
•  Two CQs  Q1 and Q2  

o  The same cost  
o  Q1’s priority is twice as high as Q2’s 
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Input  rate	
Q1:  9  tuples/s  	

Scheduler:	 10	 5	

Q2:  9  tuples/s  	

Load  manager:	

à Q2  is  still  overloaded	

à Q1  suffers  from    unnecessary  shedding  	

à  System  capacity  is  not  fully  used	
	



Motivation	
•  Making the load manager aware of the scheduler’s 

policy? 

o  Load manager: I should know that the scheduler can 
process up to 10 tuples of Q1 and 5 tuples of Q2 and… 

o  Scheduler: well, all I can tell you is in this cycle I am 
giving Q1 x% of time to execute and Q2 y% and..., also 
many things out of my control 

•  Context switching time 

•  Background jobs that share the CPU resource 

•  The actual query load 

o  Load manager:  

23 



Our  Hypothesis	

•  By exploiting the synergy between the 
scheduler and the load shedder we can 

o  Support CQ’s priority consistently  

o  Improve the utilization of CPU resource 

24 



Our  solution:  DILoS  framework	

25 

Capacity  usage	

demand	

supply	

budget    =  Σsupplyi	

distributing  budget	

…Class  1	 Class  2	 Class  k	

Load  manager  1	 Load  manager  2	 Load  manager  k	

Global  scheduler	

Local  sched.  1  	 Local  sched.  2  	 Local  sched.  k  	
2-‐‑level  scheduler  
(e.g.,  [Al  Moakar  
SMDB’09])	

Per-‐‑class    
load  manager	



Benefit  of  our  proposed  DILoS  framework	

•  The load manager works in concert with the 

scheduler in honoring CQs’ priority 

o  The load manager does not needs to have its own priority-

based policy 

•  Controls the load in each class as if it is a virtual system 

•  Follows exactly the priority enforcement of the scheduler 

•  Load manager’s feedback improves scheduler’s 
decision 
o  Better exploits system capacity 

26 
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Load  manager  for  DILoS	

•  Each class load manager needs to decide  
“when and how much load to shed” 

o  Estimate the load of each class 
•  [Tatbul et al. , 2003], based on input rates, operator’s 

cost and selectivities 

o  Estimate the system capacity each class actually has 
•  ??? 
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“When  and  how  much”-‐‑  related    definitions	

•  Incoming load L  
o  The amount of time needed to process all the tuples 

coming in per time unit (say, a second) 

•  System capacity LC:  
o  The fraction of each time unit the system can spend on 

processing the incoming tuples 
o  Approximated by a headroom factor H in [0-1] 

•  Overload: 
o  when L > LC 

29 



“when  and  how  much”  state-‐‑of-‐‑the-‐‑art	
•  Aurora [Tatbul et al., 2003] 

o  Excess load = L-LC  

o  No feedback loop, cannot honor delay target 

•  CTRL [Tu et al., 2006] 

o  Based on number of queued tuples to adjust shedding 
decisions 

o  Honors delay target, outperforms Aurora 

•  Both require manually tuned headroom factor H to 
estimate the system capacity!  
o  Offline, manual tuning of H is impractical  

o  Clearly not applicable in this context of per-class load 
manager! 
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Our  Proposal:  ALoMa  –  Adaptive  Load  Manager	

•  Starts with some reasonable value of H, and adjusts 

it accordingly 

•  Has two modules: 

o  Statistics–based load monitor:  estimates the system load 

based on input rate, operators’ costs and selectivities 

o  Response time monitor: monitors the level and moving 

trend of the  actual response time to infer about the system 

load status 
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ALoMa-‐‑  Headroom  Factor  Adjustment  	
•  The two modules disagree: adjust H 

o  The load monitor says “overloaded” but the response time 
monitor says “not overloaded”:  

•  Increase H so that LC is increased towards L 

o  The load monitor says “not overloaded” but the response 
time monitor says “overloaded” 

•   Decrease H so that LC is reduced towards L 

•  The two modules agree:  excess load = L – LC 

32 



ALoMa  –  Headroom  Factor  Adjustment	

•  We use heuristic in the adjustment of H (or LC) 

o  Accommodating system fluctuation and the inherent lag 
of the statistics 

o  Principle: bigger the difference, smaller the % of change 
but bigger in absolute value of change 

33 
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Fig. 4. Response time (A - top plot) with increasing input
rate (B - bottom plot) and its imply on system’s load state.
Note that the system becomes overloaded at the 120th

second while the response time can be still well below
the delay target

Fig. 5. Cost fluctuation in response to changes of input
rate, measured on the RIO system

the cost decreases significantly as the input rate comes
to a peak). This decrease in processing cost on the other
hand results in higher response time since every tuple
has to wait for the others in the same batch.

Note that there are some occasional overshoots in the
response time. This is due to events such as operating
system interrupts and can appear randomly at any point
during the execution time.

When the input rate exceeds 35,000 tuples/sec in
Figure 4B, the corresponding response time in Figure 4A
goes up dramatically due to the accumulated queuing
time and the system can be considered to be overloaded.
We anticipate that in practice, the user-specified delay
target D (the horizontal line in Figure 4A) is much higher
than the response time before this overloading point, so
the system can be allowed to run in an overloaded state
as long as the response time is still below the target.

Let O denote the point after which the system starts
to be overloaded (i.e, the 120th sec in Figure ??). Based
on the above observation, we can map the response time
to the following three load states of the DSMS, each one
requiring a different action from the load manager:
• Normal: the system is not overloaded, the response

time is below or equal to the response time at the
O point.

• Under-threshold overloaded - UT: the system is over-
loaded so the queuing time starts accumulating, the
response time is greater than that at the O point but
still less than the delay target.

• Over-threshold overloaded - OT: the system is over-
loaded and the response time exceeds the delay
target.

4.2.2 Increasing and decreasing the capacity
When ALoMa decides that the estimated H should be
increased, a straightforward answer is to set LC (i.e., H)
equal to L, since the system can withstand the load of L
without being overloaded.

However, consider the case when a high input rate is
measured at time t to calculate the load L. At that time
it is possible that the response time is still that of those
tuples coming at a much lower rate from the previous
period. So ALoMa would then make a mistake by setting
LC equal to L. The dynamic nature of ALoMa enables
it to quickly correct the mistake, but a less aggressive
solution will improve its performance.

Given that the system environment is fairly stable,
the headroom factor usually fluctuates with small ampli-
tudes and big, sudden changes are rare. Therefore, when
the gap between L and LC is small, we can be more
aggressive in moving LC toward L (i.e., when the gap
is small enough, we can set LC equal L). In such cases,
the impact of a mistake due to not-up-to-date statistics,
if any, is also small. On the other hand, if the gap is
big, we should be more conservative and move LC by
a smaller fraction of the gap, because the disagreement
of the two components (which leads to the decision to
adjust LC) is more likely caused by the not-up-to-date
statistics and the impact of an error could be big.

We codify the above ideas into Equation 5. Note that
when the gap between LC and L gets bigger, this formula
also moves LC by a bigger absolute amount, but the ratio
of that amount and the gap is smaller.

LCnew
= LC ±

log2(z + 1)

z
|L− LC | (5)

where z =

{ |L−LC|
LC

.100 if |L−LC|
LC

.100 ≥ 1
1 otherwise

4.2.3 The ALoMa algorithm
The pseudo code in Algorithm 1 shows the skeleton of
ALoMa. Periodically, the load monitor recomputes the
current incoming load L and the response time monitor
determines what is the current load state of the system
(lines 2, 3).



ALoMa  –  Performance  Evaluation	
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Figure 3: Effect of environment changes on CTRL and adaptation of ALoMa. Top plots show the
response time, bottom plot shows the headroom factor recognized by each scheme. Total data loss
for ALoMa and CTRL is 62.98% and 62.69%, respectively.

manual tuning in order to estimate the system capacity portion spent on query processing. Also, it
is scheduler-independent and works with all types of query network, including complex ones with
join, aggregate or shared operators.

We experimentally compare ALoMa with the best schemes in the state-of-the-art, i.e., CTRL
[48] and Aurora [46], using a variety of query networks and input rate patterns, both real and
synthetic. We present below some experimental results. More details can be found in [41]

Recognizing the system capacity
Manually selecting a correct headroom factor, which represents the system capacity spent on quey
processing, is a daunting task. For CTRL, we need to run the query network multiple times with
some sample data, each with a different value of the headroom factor, recording the delay estimated
by the delay estimation model, and comparing the estimated delay with the real response time
measured. The right headroom factor is the one that best matches the estimated delay with the real
one. For Aurora, it is even harder to pick the best headroom factor, since there is no suggested
method to do that, and a change of 0.01 in the headroom factor can significantly changes the
performance of Aurora.

Not only that, despite carefully selected, a specific value of the headroom factor is not guaran-
teed to be correct for the whole execution time. The top plot of Figure 3 plots the response time of
the system under CTRL, which used a fixed, manually-tuned headroom factor, and ALoMa, which
automatically adjust the headroom factor at runtime. We can observe that as some background
jobs are launched and share the processor with the DSMS at the 100th second, the headroom factor
used for CTRL is no longer correct, making the response time to be twice as high as the delay
target. ALoMa, however, are able to adapt to the change as expected. The bottom plot show the

9

Effect  of  environment  changes  on  CTRL  [Tu  et  al.]    and  adaptation  of  ALoMa.  	
Total  data  loss  for  ALoMa  and  CTRL  is  62.98%  and  62.69%,  respectively  	
	



ALoMa	
•  We showed how ALoMa can automatically 

recognize the system capacity spent on query 
processing  

•  ALoMa’s other important advantages over the 
state-of-the-art 

35 

Ideal  properties	 ALoMa	 CTRL	 Aurora	

Aware  of  delay  target	 ✔	 ✔	

Auto-‐‑adjusting  of  H	 ✔	

Applicable  to  all  query  networks	 ✔	 ✔	

Independent    of  scheduler	 ✔	
	

✔	
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Back  to  DILoS  Framework	
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Global  scheduler	

Local  
(operator)  
scheduler  1	

Local  
(operator)	
Scheduler  k	

Local  
(operator)  
scheduler  N	

…	 …	

ALoMa  1	 ALoMa  k	 ALoMa  N	

Class  1	 Class  k	 Class  N	

Capacity  distribution  
policy	

Class’  capacity  usage	



Scheduling  Policy	

•  A concrete policy implemented: 

o  A class with priority Pk is guaranteed a share  of                
of total system processing capacity if needed. 

•  Adopted from CQC [Al Moakar et al., 2009] 

o  Redundant capacity from a class is distributed to other classes 
in need with “highest priority first”    

•  Different policies can be plugged in, for example:  

o  Absolute priority for higher-priority class:  

•  Higher class can use as much of the available capacity as needed  

o  Relative priority with workload consideration 

•  Higher class receives better QoD regardless of its workload 

38 

Pk Pi
i=1
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Inter-‐‑class  Sharing  	

•  Congestion can happen when a higher-priority class 
share a query segment with a lower-priority one under 
class-based scheduling 

39 

•  The  shared  segment  receives  the  
higher-‐‑priority  as  it  should	

•  However,  the  higher-‐‑priority  class  is  
blocked  waiting  for  the  lower  priority  
one  to  consume  the  intermediate  result	

à DILoS  naturally  provides  a  solution,  
enabling  inter-‐‑class  operator  sharing	

	

Claim:  As  long  as  the  load  of  the  lower-‐‑
priority  class  is  controlled  to  its  capacity,  
congestion  will  not  happen  	



Experiments	
Experimental Settings 
•  AQSIOS DSMS prototype 

•  Three classes 1, 2, 3 of priorities 6, 3, 1; 6 is the highest 

•  All classes have the same workload of 11 queries 

•  Worst-case QoS of class 1, 2, 3 is  300, 400, 500 ms 

•  Input rate:  

o  Constant, step changes, and real input trace for class 1 

o  Constant input rate for class 2 and 3, at a level that would 
overload the classes within its assigned capacity. 

40 



Result  with  Constant  Input  Rate	

41 

  Average  response  time  (ms)	   Average  data  loss  (%)	

Class  1	 Class  2	 Class  3	 Class  1	 Class  2	 Class  3	

  No    load  manager	 3.40	 3.53	 56541.69	 0	 0	 0	

Common  load  manager	 3.00	 3.13	 517.07	 11.42	 11.43	 11.60	

Per-‐‑class  load  manager	 3.55	 3.75	 492.84	 0	 0	 35.95	

DILoS	 4.28	 4.38	 42.95	 0	 0	 0	



Understand  the  Benefit  of  the  Synergy	
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Implicit redistribution observed without explicit synergy 

Explicit synergy and redistribution 
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Data	  loss:	  	  
•  Class	  1:	  0	  %	  
•  Class	  2:	  0	  %	  
•  Class	  3:	  	  35.9	  

à	  Be%er	  capacity	  usage	  by	  exploi4ng	  batch	  processing!	  	  

Data	  loss:	  	  
•  Class	  1:	  0	  %	  
•  Class	  2:	  0	  %	  
•  Class	  3:	  0%	  

Higher than 0.1! 



Enabling  inter-‐‑class  sharing	

9

In order to help each load manager to quickly adapt
to the new value of the capacity portion, the scheduler
also changes the headroom factor of each load manager,
as in Equation 7. This new value set by the scheduler
does not need to be perfectly accurate because the load
manager is able to automatically adjust it.

Hnew
k =

Tnew
k

Tk

×Hk (7)

5.3 Overhead of DILoS
The overall overhead of DILoS includes the cost of the
statistics collection and the cost of redistributing the
system capacity among classes. The statistics collection
cost has time complexity of O(T*Op) where T is the
number of incoming tuples and Op is the number of op-
erators in the query network. However, without DILoS,
a typical DSMS system would still need to collect these
statistics for a variety of purposes such as load shed-
ding, scheduling, query optimizing, and performance
auditing. Therefore, the mere cost added by DILoS is
the cost of redistributing the system capacity among the
class. This cost actually depends on the specific policy
incorporated. For the specific materialization presented
in this paper, the redistributing requires one pass to
compute demandi and supplyi, and another pass to dis-
tribute the total budget. Therefore, this process has time
complexity of O(C) where C is the number of priority
classes. Because C usually ranges from a few to tens,
and the redistributing only happen once after several
scheduling cycles, this cost is negligible. In fact, as shown
in our experiments, this extra cost of DILoS is obscured
by the benefit it brings: significantly more data can be
processed (i.e., much less shedding).

6 INTER-CLASS SHARING IN DILOS
Dropping the assumption that there is no sharing be-
tween classes of different priority, we explain in this
section the problem caused by this inter-class sharing
and discuss our solution to handle it in DILoS.

6.1 Congestion problem
Given a prioritized scheduler such as CQC, intuitively
the shared segment between a query of high priority
and a query of lower priority should remain in the high-
priority class in order not to affect its performance. Fig.
7 illustrates this, in which a query of class 1 (higher
priority) shares a segment with a query of class k (lower
priority), and the shared segment remains in class 1.

However, this still could lead to a situation when
the performance of the high-priority query is negatively
affected. We show this through an experiment with the
CQC scheduler (without any load manager). There are
three classes in this experiment, with class 1(highest
priority) shares a query segment with class 3 (lowest
priority). The result is shown in Fig. 8, in which the

Fig. 7. per-class load manager, with class 1 (high priority)
sharing a segment with class k (lower priority)
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Fig. 8. Congestion problem: response times with sharing
enabled and no load shedder, input stream SDc and
query network QN-A (see Section 7.2.1)

response times of the class 1’s queries that are shared
with class 3 increase dramatically after a certain period.

This phenomenon is due to the congestion at the end
of the shared segment. The intermediate tuples produced
by the shared segment are placed in a shared queue for
the downstream operators to read from. However, while
the downstream operator belonging to the high-priority
class can consume these tuples fast enough to keep up
with the production rate, the operators belonging to the
low-priority class, however, are much slower. Therefore,
the intermediate tuples accumulate and once they fill the
queue, the upstream segment has to stop processing and
wait, causing the corresponding high-priority queries
also to be blocked. Note that this problem persists even
if each downstream operator has its own input queue for
the intermediate tuples instead of using a shared queue:
the upstream shared segment still needs to postpone its
processing if one of the queues becomes full.

6.2 Handling inter-class sharing in DILoS
Interestingly, this problem can be solved with an ap-
propriate employment of load management: as long as
the low-priority class is not overloaded, i.e., it can keep
up with the incoming workload including the input fed
by the shared segment, there will be no congestion of
intermediate tuples at the end of the shared segment.
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Class  1  shares  a  query  segment  with  class  3  under  a  class-‐‑based  
scheduling  policy  (CQC    [Al  Moakar  et  al.,  2011])  (constant  input  rate)	

Congestion  	

We  solved  it  
with  DILoS	

14

Response time (ms) Data loss (%)
class 1 class 2 class 3 class 1 class 2 class 3

No load manager 3.40 3.53 56541.69 0 0 0
Common load manager 4.01 4.74 513.71 42.19 42.15 42.24
Separate load manager 4.91 7.21 492.16 0 0 85.37
DILoS (Full synergy) 8.90 34.18 487.04 0 0 24.43
DILoS with inter-class sharing 9.05 36.54 482.53 0 0 14.70

TABLE 3
DILoS’ advantages shown through average response time and data loss
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Fig. 15. Headroom factor estimated, with SDc, QN-A, and
one ALoMa instance per class
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Fig. 16. Headroom factor estimated, with SDc, QN-A, and
DILoS’ full synergy

Under a complete DILoS framework when the sched-
uler use the feedback from the load manager instances,
the effectiveness is clear: The data loss is reduced by
more than 70% compared to the case with no synergy
(24.43% vs 85.37% data loss for class 3 as in Table 3)2.
Given 13 stream sources used by class 3, each with
the input rate of 950 tuples/second, this decrease in
data loss means approximately 7,526 more tuples are
processed per second. At the same time, the response
times of the three classes are well controlled. At the same
time, the response times of the three classes are well
controlled and the overall goal is preserved: we are still
consistent in providing better QoS and QoD for the class
of higher priority. When inter-class sharing is supported
in DILoS, more data is save (14.70% vs 24.43%) while
the performance of the higher-priority class (class 1) is
not affected by the lower-priority class (class 3). Figure
17 shows the response time of the three classes under a
complete DILoS framework with inter-class sharing.

Understand the benefit of the synergy

2. We have observed in some experiments, not shown due to space
limitation, that if the total system load is lighter, the reduction in data
loss under DILoS can reach up to 100%, i.e., no shedding is needed.
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Fig. 17. Response times with SDc, QN-A, DILoS, and
inter-class sharing

One might think that the advantage of DILOS’ full
synergy in reducing data loss is only due to the fact that
it repairs the over-provisioning of system capacity for
some classes. This benefit is true for a global scheduler
that strictly fixes the CPU time allocation. However,
DILoS actually achieves more than merely repairing the
over-provisioning: it exploits batch processing to further
increase system capacity utilization.

Figure 15 plots the headroom factor (i.e., the capacity
portion) estimated by each load manager of each class
when an ALoMa instance is created to manage the load
in each class, but the scheduler does not used the feed-
back from these ALoMa instances to adjust its decision.
At the beginning of the experiment, we initialize the
headroom factors for classes 1, 2, and 3 by their expected
values, i.e., 0.6, 0.3, and 0.1, respectively. However, we
observed that the headroom factor of classes 2 and 3,
estimated by the load manager at runtime, is above its
expected value of 0.3 and 0.1, respectively. This phe-
nomenon is due to the policy of CQC: if a class finishes
executing all tuples in its queues, the scheduler lets the
next class in the round run, without waiting for the
former class to use up its quota (waiting for new tuples).
Thus, when a class is very lightly loaded (class 1 in this
case), part of its assigned capacity is automatically given
to the other classes3. Thus, CQC by itself already allows
implicit capacity sharing and the system capacity seems
to have been used fully.

However, figure 16 shows that class 3 actually receives
even more system capacity when the full synergy is
used (i.e., the scheduler uses feedback from the ALoMa
instances to adjust its decisions, which explains why it

3. Note that in this case, the estimated headroom factor of class 1
is not adjusted and still remains at the initial value because the load
manager does not have the necessary signals to decrease it.
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Figure 12: Response times under DILoS, with step changes in input rate of class 1
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Figure 13: Shedding and estimated headroom factors under DILoS, with stap changes in input rate
of class 1

class 1 to the other two classes, enabling them to shed less. However, as soon as the load of class
1 increases (e.g., at the 100th second), DILoS gives back to this class all or part of its original
capacity so that its performance, as specified by its class priority, is preserved.

3.3.3 Extensibility

As a framework with two-level integrated scheduling and load managing, DILoS enable easy in-
corporation of different scheduling and load shedding schemes at both the global and local level.
At the global level, different capacity allocation and redistribution policies can be adopted once
the scheduler obtains the report from the load manager regarding the capacity usage of each class.
At the second, local level, different load shedders and operator schedulers can be used. We discuss
in this section these possibilities.

Different Capacity allocation and redistribution policies
The beauty of our proposed scheduler and load-shedder synergy is that it is not limited to a single
policy. For exposition, we use in this paper the extended CQC policy that is sound in some context,

17
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class 1 to the other two classes, enabling them to shed less. However, as soon as the load of class
1 increases (e.g., at the 100th second), DILoS gives back to this class all or part of its original
capacity so that its performance, as specified by its class priority, is preserved.

3.3.3 Extensibility

As a framework with two-level integrated scheduling and load managing, DILoS enable easy in-
corporation of different scheduling and load shedding schemes at both the global and local level.
At the global level, different capacity allocation and redistribution policies can be adopted once
the scheduler obtains the report from the load manager regarding the capacity usage of each class.
At the second, local level, different load shedders and operator schedulers can be used. We discuss
in this section these possibilities.

Different Capacity allocation and redistribution policies
The beauty of our proposed scheduler and load-shedder synergy is that it is not limited to a single
policy. For exposition, we use in this paper the extended CQC policy that is sound in some context,
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class 1 to the other two classes, enabling them to shed less. However, as soon as the load of class
1 increases (e.g., at the 100th second), DILoS gives back to this class all or part of its original
capacity so that its performance, as specified by its class priority, is preserved.

3.3.3 Extensibility

As a framework with two-level integrated scheduling and load managing, DILoS enable easy in-
corporation of different scheduling and load shedding schemes at both the global and local level.
At the global level, different capacity allocation and redistribution policies can be adopted once
the scheduler obtains the report from the load manager regarding the capacity usage of each class.
At the second, local level, different load shedders and operator schedulers can be used. We discuss
in this section these possibilities.

Different Capacity allocation and redistribution policies
The beauty of our proposed scheduler and load-shedder synergy is that it is not limited to a single
policy. For exposition, we use in this paper the extended CQC policy that is sound in some context,
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Fig. 20. Response times with SDr, QN-B, and DILoS
(with sharing)

ule, including those used by DILoS to enforce explicit
capacity redistribution: they might need some cycles of
adjustment before they can pick up the right decision.
This occurs when the input rate fluctuates considerably
after each load management cycle (recall that in Sp

although the upper and lower bounds of the input rate
are kept constant for class 2, the input rate of each load
management cycle follows a Pareto distribution within
the two bounds). In such a case, the lag of the statistics-
based decision causes small additional shedding in some
time windows. The additional data loss, however, is very
small and often not observed because it is obscured by
the normal fluctuations in the system.

The results also show the benefit of sharing in saving
data, and confirms that with appropriate load manage-
ment the sharing does not affect the QoS and QoD of
the higher priority class.

7.2.5 QN-B and SDr (Figures 20, 21; Table 6, 7)
In this set of experiments we replace the synthetic input
rate pattern by SDr with the real trace for class 1 (Fig.
14). This real input rate pattern has two challenging
periods when the rate keeps increasing with sudden,
very high peaks.

We show the response time of the three classes under
DILoS with inter-class sharing in Fig. 20. In order to
understand better the behavior of the load manager un-
der each of the three classes, we also plot the headroom
factors and shedding percentages in Fig. 21 (the top and
the middle plot, respectively). For convenience, at the
bottom of this figure we repeat the real input rate pattern
used for class 1. As expected, when the input rate of class
1 increases (e.g., from the 250th to the 300th second), the
excess capacity the class can give to the other classes
decreases. This has the clearest effect on class 3, the
lowest priority class, causing this class to drop a lot more
data during that period.

In the first 250 seconds of the experiment, none of
the classes is overloaded and the recognized headroom
factors might be higher than the true values, because of
the implicit redistribution of the system capacity when
some of the classes have very light load, as mentioned
in Sec. 7.2.2.The load managers recognizes the correct
headroom factor when the load of some of the classes
reaches their capacities and the explicit redistribution
happens, which is the case during the high-load period
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Fig. 21. Estimated headroom factors (top) and shedding
rates (middle) in response to the input rate of class 1
(bottom), with SDr, QN-A, and DILoS (with sharing)

(after the 250th second).
Tables 6 and 7 compare the average response time and

data loss for all cases. In this experiment, while synergy
still brings significant benefit in terms of exploiting sys-
tem capacity (much more data is saved: 3.28% vs 7.49%
of total data loss), it also incurs a trade-off: the data loss
of class 1 under the two cases with synergy is higher
compared to the case without synergy. As shown in Fig.
21, the shedding of class 1 corresponds to the sudden
high peaks of input rate during the high-load period.
As in the previous experiment, this is due to inherent
lag of the statistics-based decision. More specifically,
since class 1 passed its excess capacity to the others, its
remain capacity became rather tight and hence a sudden,
huge increase in the input rate caused overloading, and
subsequently, load shedding, before the scheduler could
recognize and correct the situation.

We believe this trade-off is acceptable given that the
increase in the shedding rate of class 1 (0.45%) is much
smaller compared to the total data saved (12.97% for
class 3 and 4.21% overall). This happens only in very
extreme situations and is eventually corrected. In prac-
tice, if a class is highly critical and such a trade-off is
not tolerated, one can develop a capacity redistribution
policy that includes a limit on the shared usage of
the class’ capacity (while still allowing the class to use
redundant capacity from other classes and allowing the
normal capacity redistribution among the other classes).

The results also confirm that the proposed approach
for inter-class sharing saves more data for class 3 while
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ule, including those used by DILoS to enforce explicit
capacity redistribution: they might need some cycles of
adjustment before they can pick up the right decision.
This occurs when the input rate fluctuates considerably
after each load management cycle (recall that in Sp

although the upper and lower bounds of the input rate
are kept constant for class 2, the input rate of each load
management cycle follows a Pareto distribution within
the two bounds). In such a case, the lag of the statistics-
based decision causes small additional shedding in some
time windows. The additional data loss, however, is very
small and often not observed because it is obscured by
the normal fluctuations in the system.

The results also show the benefit of sharing in saving
data, and confirms that with appropriate load manage-
ment the sharing does not affect the QoS and QoD of
the higher priority class.

7.2.5 QN-B and SDr (Figures 20, 21; Table 6, 7)
In this set of experiments we replace the synthetic input
rate pattern by SDr with the real trace for class 1 (Fig.
14). This real input rate pattern has two challenging
periods when the rate keeps increasing with sudden,
very high peaks.

We show the response time of the three classes under
DILoS with inter-class sharing in Fig. 20. In order to
understand better the behavior of the load manager un-
der each of the three classes, we also plot the headroom
factors and shedding percentages in Fig. 21 (the top and
the middle plot, respectively). For convenience, at the
bottom of this figure we repeat the real input rate pattern
used for class 1. As expected, when the input rate of class
1 increases (e.g., from the 250th to the 300th second), the
excess capacity the class can give to the other classes
decreases. This has the clearest effect on class 3, the
lowest priority class, causing this class to drop a lot more
data during that period.

In the first 250 seconds of the experiment, none of
the classes is overloaded and the recognized headroom
factors might be higher than the true values, because of
the implicit redistribution of the system capacity when
some of the classes have very light load, as mentioned
in Sec. 7.2.2.The load managers recognizes the correct
headroom factor when the load of some of the classes
reaches their capacities and the explicit redistribution
happens, which is the case during the high-load period
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(after the 250th second).
Tables 6 and 7 compare the average response time and

data loss for all cases. In this experiment, while synergy
still brings significant benefit in terms of exploiting sys-
tem capacity (much more data is saved: 3.28% vs 7.49%
of total data loss), it also incurs a trade-off: the data loss
of class 1 under the two cases with synergy is higher
compared to the case without synergy. As shown in Fig.
21, the shedding of class 1 corresponds to the sudden
high peaks of input rate during the high-load period.
As in the previous experiment, this is due to inherent
lag of the statistics-based decision. More specifically,
since class 1 passed its excess capacity to the others, its
remain capacity became rather tight and hence a sudden,
huge increase in the input rate caused overloading, and
subsequently, load shedding, before the scheduler could
recognize and correct the situation.

We believe this trade-off is acceptable given that the
increase in the shedding rate of class 1 (0.45%) is much
smaller compared to the total data saved (12.97% for
class 3 and 4.21% overall). This happens only in very
extreme situations and is eventually corrected. In prac-
tice, if a class is highly critical and such a trade-off is
not tolerated, one can develop a capacity redistribution
policy that includes a limit on the shared usage of
the class’ capacity (while still allowing the class to use
redundant capacity from other classes and allowing the
normal capacity redistribution among the other classes).

The results also confirm that the proposed approach
for inter-class sharing saves more data for class 3 while

The  real  input  is  the  trace  of  TCP  packages  to  and  from  The  Berkeley  Lab  
  (h|p://ita.ee.lbl.gov/html/contrib/LBL-‐‑  PKT.html)  	
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  Average  response  time  (ms)	   Average  data  loss  (%)	

Class  1	 Class  2	 Class  3	 Class  1	 Class  2	 Class  3	

  No    synergy  (&  no  sharing)	 22.31	 68.23	 300.91	 0.01	 0.79	 21.67	

DILoS  without  sharing	 25.69	 76.86	 122.66	 0.46	 0.68	 8.70	

DILoS  with  sharing	 25.03	 70.29	 127.28	 0.44	 0.82	 6.54	
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Conclusions	



Conclusions	
•  Advantages of DILoS: 

o  Seamless integration: 

•  The load manager detects and follows exactly the current priority 
enforcement of the  global scheduler 

o  Global scheduling decision improved 

•  Explicitly control the distribution of available capacity 

•  Exploit batch processing to increase capacity utilization 

•  Enable inter-class sharing to maximize the chance for query 
optimization 

o  Different priority policies can be plugged in 

•  Future works: 
o  Synergy with priority-based memory management 

o  Consider advanced architecture (multi-core, cloud)  
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