
Handling Big Streaming Data
with DILoS	

Alexandros Labrinidis

Advanced Data Management Technologies Lab
Department of Computer Science

University of Pittsburgh

University of Waterloo – May 21, 2014	

2

You know Big Data is an
important problem if...	

•  It is featured on the cover of Nature and the Economist!

3

You know Big Data is an even
more important problem if...	

•  It has a Dilbert cartoon!

What is Big Data?	
Definition #1:
•  Big data is like teenage sex:

o  everyone talks about it,
o  nobody really knows how to do it,
o  everyone thinks everyone else is doing it,
o  so everyone claims they are doing it...

Definition #2:
•  Anything that Won't Fit in Excel!

Definition #3:
•  Using the Vs

4

5

The three Vs	

•  Volume - size does matter!

•  Velocity - data at speed, i.e., the data “fire-hose”

•  Variety - heterogeneity is the rule

6

Five more Vs	

•  Variability - rapid change of data characteristics
 over time

•  Veracity - ability to handle uncertainty,
 inconsistency, etc

•  Visibility – protect privacy and provide security

•  Value – usefulness & ability to find the right-needle
 in the stack

•  Voracity - strong appetite for data!

7

Enter Moore’s Law	

[Wikipedia Image]	

8

Storage capacity increase	

0
1000
2000
3000
4000
5000
6000
7000

HDD Capacity (GB)

[Wikipedia Data]	

9

But	

•  Human processing capacity remains
roughly the same!

10

We refer to this as the:

Big Data – Same Humans
Problem	

Roadmap	

11

% of
audience
asleep

of slides

Big Data Intro ✔	

ADMT Lab Intro	

AQSIOS DSMS	

ALoMA	

DILoS	

Conclusions	

12

About the ADMT Lab	

• Directed by 	
• Panos K. Chrysanthis 	
• Alexandros Labrinidis	

• Established in 1995	
• 4+2 PhD students, 2 MS students, 6 REUs	

• User-‐‑centric data management for network-‐‑centric
applications	

13

Entire Data Lifecycle	

AstroShelf	
•  Understanding the Universe through scalable

navigation of a galaxy of annotations

14

Volume Velocity Variety
Veracity Visibility 	

•  Astronomy data from multiple sources (images &
catalogs)

•  Support collaboration of:

Ø  people (view-based, declarative annotations)

Ø  software / data (web services)

Ø  resources (utilizing local and remote storage)

•  CONFLuEnCE prototype: continuous workflows
[Sigmod 2011 & 2012]	

SELECT * FROM Plants, Supplies, Polluted_H2O
WHERE Supplies.type = "ʺsolvent”
 AND Supplies.name = Polluted_H2O.pollutant
 AND Polluted_H2O.location = Plants.location
 AND Plant.id = Supplies.plant_id
PREFERRING $l = Querier HOLDS
 OVER <*,{(pollutant)},$l>
 CASCADE LESSTHAN(runtime, 120)
 AND $l = Querier HOLDS OVER <join,*,$l>;	

AstroShelf (cont.)	

15

Volume Velocity Variety
Veracity Visibility 	

•  Unified model for user preferences
Ø  combine quantitative & qualitative user preferences

into a single graph model to guide query result
personalization

•  Protecting privacy in distributed query processing
Ø  declarative preferences allow users to balance the

tradeoff between privacy and performance

•  User-centric features:

m2	

-‐‑1	
m3	

m1	 m5	

m4	

0.8	 0.8	

0.2	

0.2	

‘’I like drama movies a bit more than
 horror movies, Intensity of preference 0.2”	

•  Efficiently Utilizing Resource in a Data Stream
Management System

16

CPU time sharing:
�  Which operator to

execute now?
�  And for how long?

Scheduler	 Load manager	

What if the system is
overloaded?
�  Shed data to meet the

near-real-time requirement

Which query plans
are the best?

Multiple classes of CQs
•  Each class has a different priority

Registering CQs	

Data streams	

Query optimizer	

AQSIOS	 Volume Velocity 	
Variability 	

AQSIOS	
•  Prototype Data Stream Management Systems

o  Aggregate Continuous Query optimizer

•  WeaveShare and TriWeave
[Shenoda et al., CIKM’11 and ICDE’12]

o  Optimized processing to eliminate redundant computation

o  Continuous Query Schedulers

•  HR, HNR [Sharaf et al., VLDB’06 and TODS’08]

o Average vs Max Response Time

o Average vs Max Slowdown

•  CQC and ABD [Al Moakar et al., DMSN’09 and SMDB’12]

o  Priority Classes

o  Single-, Dual-, Multi-core, Cloud

17

Volume Velocity 	
Variability 	

•  Load shedder and scheduler-load shedder synergy

o  SEaMLeSS [Pham et al., SMDB’13]

•  SElf Managing Load Shedding for data

Stream management systems

o DILoS [Pham et al., SMDB’11]

•  Seamless integration of priority-based scheduler

and load shedder

•  Consistently honor worst-case delay target with

differentiated classes of service

•  Exploit system capacity better

18

AQSIOS (cont.)	 Volume Velocity 	
Variability 	

Roadmap	

19

% of
audience
asleep

of slides

Big Data Intro ✔	

ADMT Lab Intro ✔	

AQSIOS DSMS	

ALoMA	

DILoS	

Conclusions	

System Model & Metrics	
•  Multiple priority classes of CQs

o  Priorities have been quantified into numbers
•  Higher value means higher priority

•  Two requirements under overload state:
1.  Guarantee worst-case Quality of service (QoS)

•  Worst-case QoS = worst-case response time = delay target
•  Each class can require a different worst-case QoS
•  Supported by load manager (load shedder)

2.  Maximize Quality of Data (QoD) with priority consideration
•  QoD = 100% - data loss due to shedding
•  Need to consider priorities of CQ classes
•  Involve both scheduler and load manager - Why?

20

State-‐‑of-‐‑the-‐‑art	
•  Previous works consider either…

o  Priority-based scheduling
•  CQ’s priority (through QoS function, deadline): e.g.,

[Carney et al., VLDB’03], [Wei et al.,, ISORC’ 06]
•  Class’ priority: [Al Moakar et al., DMSN’09, SMDB’12]

o  Or priority-based load shedding
•  CQ’s loss-tolerance functions [Tatbul et al., VLDB’03]

21

Now we need both of them
to work together … ?	

Motivation	
•  Two CQs Q1 and Q2

o  The same cost
o  Q1’s priority is twice as high as Q2’s

22

Input rate	
Q1: 9 tuples/s 	

Scheduler:	 10	 5	

Q2: 9 tuples/s 	

Load manager:	

à Q2 is still overloaded	

à Q1 suffers from unnecessary shedding 	

à System capacity is not fully used	
	

Motivation	
•  Making the load manager aware of the scheduler’s

policy?

o  Load manager: I should know that the scheduler can
process up to 10 tuples of Q1 and 5 tuples of Q2 and…

o  Scheduler: well, all I can tell you is in this cycle I am
giving Q1 x% of time to execute and Q2 y% and..., also
many things out of my control

•  Context switching time

•  Background jobs that share the CPU resource

•  The actual query load

o  Load manager:

23

Our Hypothesis	

•  By exploiting the synergy between the
scheduler and the load shedder we can

o  Support CQ’s priority consistently

o  Improve the utilization of CPU resource

24

Our solution: DILoS framework	

25

Capacity usage	

demand	

supply	

budget = Σsupplyi	

distributing budget	

…Class 1	 Class 2	 Class k	

Load manager 1	 Load manager 2	 Load manager k	

Global scheduler	

Local sched. 1 	 Local sched. 2 	 Local sched. k 	
2-‐‑level scheduler
(e.g., [Al Moakar
SMDB’09])	

Per-‐‑class
load manager	

Benefit of our proposed DILoS framework	

•  The load manager works in concert with the

scheduler in honoring CQs’ priority

o  The load manager does not needs to have its own priority-

based policy

•  Controls the load in each class as if it is a virtual system

•  Follows exactly the priority enforcement of the scheduler

•  Load manager’s feedback improves scheduler’s
decision
o  Better exploits system capacity

26

Roadmap	

27

% of
audience
asleep

of slides

Big Data Intro ✔	

ADMT Lab Intro ✔	

AQSIOS DSMS ✔	

ALoMA: Adaptive Load Manager	

DILoS	

Conclusions	

Load manager for DILoS	

•  Each class load manager needs to decide
“when and how much load to shed”

o  Estimate the load of each class
•  [Tatbul et al. , 2003], based on input rates, operator’s

cost and selectivities

o  Estimate the system capacity each class actually has
•  ???

28

“When and how much”-‐‑ related definitions	

•  Incoming load L
o  The amount of time needed to process all the tuples

coming in per time unit (say, a second)

•  System capacity LC:
o  The fraction of each time unit the system can spend on

processing the incoming tuples
o  Approximated by a headroom factor H in [0-1]

•  Overload:
o  when L > LC

29

“when and how much” state-‐‑of-‐‑the-‐‑art	
•  Aurora [Tatbul et al., 2003]

o  Excess load = L-LC

o  No feedback loop, cannot honor delay target

•  CTRL [Tu et al., 2006]

o  Based on number of queued tuples to adjust shedding
decisions

o  Honors delay target, outperforms Aurora

•  Both require manually tuned headroom factor H to
estimate the system capacity!
o  Offline, manual tuning of H is impractical

o  Clearly not applicable in this context of per-class load
manager!

30

Our Proposal: ALoMa – Adaptive Load Manager	

•  Starts with some reasonable value of H, and adjusts

it accordingly

•  Has two modules:

o  Statistics–based load monitor: estimates the system load

based on input rate, operators’ costs and selectivities

o  Response time monitor: monitors the level and moving

trend of the actual response time to infer about the system

load status

31

ALoMa-‐‑ Headroom Factor Adjustment 	
•  The two modules disagree: adjust H

o  The load monitor says “overloaded” but the response time
monitor says “not overloaded”:

•  Increase H so that LC is increased towards L

o  The load monitor says “not overloaded” but the response
time monitor says “overloaded”

•  Decrease H so that LC is reduced towards L

•  The two modules agree: excess load = L – LC

32

ALoMa – Headroom Factor Adjustment	

•  We use heuristic in the adjustment of H (or LC)

o  Accommodating system fluctuation and the inherent lag
of the statistics

o  Principle: bigger the difference, smaller the % of change
but bigger in absolute value of change

33

6

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100 120 140

In
pu

t r
at

e
(tu

pl
es

/s
)

time(s)

B. Input rate

Fig. 4. Response time (A - top plot) with increasing input
rate (B - bottom plot) and its imply on system’s load state.
Note that the system becomes overloaded at the 120th

second while the response time can be still well below
the delay target

Fig. 5. Cost fluctuation in response to changes of input
rate, measured on the RIO system

the cost decreases significantly as the input rate comes
to a peak). This decrease in processing cost on the other
hand results in higher response time since every tuple
has to wait for the others in the same batch.

Note that there are some occasional overshoots in the
response time. This is due to events such as operating
system interrupts and can appear randomly at any point
during the execution time.

When the input rate exceeds 35,000 tuples/sec in
Figure 4B, the corresponding response time in Figure 4A
goes up dramatically due to the accumulated queuing
time and the system can be considered to be overloaded.
We anticipate that in practice, the user-specified delay
target D (the horizontal line in Figure 4A) is much higher
than the response time before this overloading point, so
the system can be allowed to run in an overloaded state
as long as the response time is still below the target.

Let O denote the point after which the system starts
to be overloaded (i.e, the 120th sec in Figure ??). Based
on the above observation, we can map the response time
to the following three load states of the DSMS, each one
requiring a different action from the load manager:
• Normal: the system is not overloaded, the response

time is below or equal to the response time at the
O point.

• Under-threshold overloaded - UT: the system is over-
loaded so the queuing time starts accumulating, the
response time is greater than that at the O point but
still less than the delay target.

• Over-threshold overloaded - OT: the system is over-
loaded and the response time exceeds the delay
target.

4.2.2 Increasing and decreasing the capacity
When ALoMa decides that the estimated H should be
increased, a straightforward answer is to set LC (i.e., H)
equal to L, since the system can withstand the load of L
without being overloaded.

However, consider the case when a high input rate is
measured at time t to calculate the load L. At that time
it is possible that the response time is still that of those
tuples coming at a much lower rate from the previous
period. So ALoMa would then make a mistake by setting
LC equal to L. The dynamic nature of ALoMa enables
it to quickly correct the mistake, but a less aggressive
solution will improve its performance.

Given that the system environment is fairly stable,
the headroom factor usually fluctuates with small ampli-
tudes and big, sudden changes are rare. Therefore, when
the gap between L and LC is small, we can be more
aggressive in moving LC toward L (i.e., when the gap
is small enough, we can set LC equal L). In such cases,
the impact of a mistake due to not-up-to-date statistics,
if any, is also small. On the other hand, if the gap is
big, we should be more conservative and move LC by
a smaller fraction of the gap, because the disagreement
of the two components (which leads to the decision to
adjust LC) is more likely caused by the not-up-to-date
statistics and the impact of an error could be big.

We codify the above ideas into Equation 5. Note that
when the gap between LC and L gets bigger, this formula
also moves LC by a bigger absolute amount, but the ratio
of that amount and the gap is smaller.

LCnew
= LC ±

log2(z + 1)

z
|L− LC | (5)

where z =

{ |L−LC|
LC

.100 if |L−LC|
LC

.100 ≥ 1
1 otherwise

4.2.3 The ALoMa algorithm
The pseudo code in Algorithm 1 shows the skeleton of
ALoMa. Periodically, the load monitor recomputes the
current incoming load L and the response time monitor
determines what is the current load state of the system
(lines 2, 3).

ALoMa – Performance Evaluation	

34

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

ALoMa CTRL delay target

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

ALoMa CTRL

Figure 3: Effect of environment changes on CTRL and adaptation of ALoMa. Top plots show the
response time, bottom plot shows the headroom factor recognized by each scheme. Total data loss
for ALoMa and CTRL is 62.98% and 62.69%, respectively.

manual tuning in order to estimate the system capacity portion spent on query processing. Also, it
is scheduler-independent and works with all types of query network, including complex ones with
join, aggregate or shared operators.

We experimentally compare ALoMa with the best schemes in the state-of-the-art, i.e., CTRL
[48] and Aurora [46], using a variety of query networks and input rate patterns, both real and
synthetic. We present below some experimental results. More details can be found in [41]

Recognizing the system capacity
Manually selecting a correct headroom factor, which represents the system capacity spent on quey
processing, is a daunting task. For CTRL, we need to run the query network multiple times with
some sample data, each with a different value of the headroom factor, recording the delay estimated
by the delay estimation model, and comparing the estimated delay with the real response time
measured. The right headroom factor is the one that best matches the estimated delay with the real
one. For Aurora, it is even harder to pick the best headroom factor, since there is no suggested
method to do that, and a change of 0.01 in the headroom factor can significantly changes the
performance of Aurora.

Not only that, despite carefully selected, a specific value of the headroom factor is not guaran-
teed to be correct for the whole execution time. The top plot of Figure 3 plots the response time of
the system under CTRL, which used a fixed, manually-tuned headroom factor, and ALoMa, which
automatically adjust the headroom factor at runtime. We can observe that as some background
jobs are launched and share the processor with the DSMS at the 100th second, the headroom factor
used for CTRL is no longer correct, making the response time to be twice as high as the delay
target. ALoMa, however, are able to adapt to the change as expected. The bottom plot show the

9

Effect of environment changes on CTRL [Tu et al.] and adaptation of ALoMa. 	
Total data loss for ALoMa and CTRL is 62.98% and 62.69%, respectively 	
	

ALoMa	
•  We showed how ALoMa can automatically

recognize the system capacity spent on query
processing

•  ALoMa’s other important advantages over the
state-of-the-art

35

Ideal properties	 ALoMa	 CTRL	 Aurora	

Aware of delay target	 ✔	 ✔	

Auto-‐‑adjusting of H	 ✔	

Applicable to all query networks	 ✔	 ✔	

Independent of scheduler	 ✔	
	

✔	
	

Roadmap	

36

% of
audience
asleep

of slides

Big Data Intro ✔	

ADMT Lab Intro ✔	

AQSIOS DSMS ✔	

ALoMA: Adaptive Load Manager ✔	

DILoS	

Conclusions	

Back to DILoS Framework	

37

Global scheduler	

Local
(operator)
scheduler 1	

Local
(operator)	
Scheduler k	

Local
(operator)
scheduler N	

…	 …	

ALoMa 1	 ALoMa k	 ALoMa N	

Class 1	 Class k	 Class N	

Capacity distribution
policy	

Class’ capacity usage	

Scheduling Policy	

•  A concrete policy implemented:

o  A class with priority Pk is guaranteed a share of
of total system processing capacity if needed.

•  Adopted from CQC [Al Moakar et al., 2009]

o  Redundant capacity from a class is distributed to other classes
in need with “highest priority first”

•  Different policies can be plugged in, for example:

o  Absolute priority for higher-priority class:

•  Higher class can use as much of the available capacity as needed

o  Relative priority with workload consideration

•  Higher class receives better QoD regardless of its workload

38

Pk Pi
i=1

N

∑

Inter-‐‑class Sharing 	

•  Congestion can happen when a higher-priority class
share a query segment with a lower-priority one under
class-based scheduling

39

•  The shared segment receives the
higher-‐‑priority as it should	

•  However, the higher-‐‑priority class is
blocked waiting for the lower priority
one to consume the intermediate result	

à DILoS naturally provides a solution,
enabling inter-‐‑class operator sharing	

	

Claim: As long as the load of the lower-‐‑
priority class is controlled to its capacity,
congestion will not happen 	

Experiments	
Experimental Settings
•  AQSIOS DSMS prototype

•  Three classes 1, 2, 3 of priorities 6, 3, 1; 6 is the highest

•  All classes have the same workload of 11 queries

•  Worst-case QoS of class 1, 2, 3 is 300, 400, 500 ms

•  Input rate:

o  Constant, step changes, and real input trace for class 1

o  Constant input rate for class 2 and 3, at a level that would
overload the classes within its assigned capacity.

40

Result with Constant Input Rate	

41

 Average response time (ms)	 Average data loss (%)	

Class 1	 Class 2	 Class 3	 Class 1	 Class 2	 Class 3	

 No load manager	 3.40	 3.53	 56541.69	 0	 0	 0	

Common load manager	 3.00	 3.13	 517.07	 11.42	 11.43	 11.60	

Per-‐‑class load manager	 3.55	 3.75	 492.84	 0	 0	 35.95	

DILoS	 4.28	 4.38	 42.95	 0	 0	 0	

Understand the Benefit of the Synergy	

42

Implicit redistribution observed without explicit synergy

Explicit synergy and redistribution

C
ap

ac
ity

 p
or
tio

n	
C
ap

ac
ity

 p
or
tio

n	

Data	 loss:	 	
•  Class	 1:	 0	 %	
•  Class	 2:	 0	 %	
•  Class	 3:	 	 35.9	

à	 Be%er	 capacity	 usage	 by	 exploi4ng	 batch	 processing!	 	

Data	 loss:	 	
•  Class	 1:	 0	 %	
•  Class	 2:	 0	 %	
•  Class	 3:	 0%	

Higher than 0.1!

Enabling inter-‐‑class sharing	

9

In order to help each load manager to quickly adapt
to the new value of the capacity portion, the scheduler
also changes the headroom factor of each load manager,
as in Equation 7. This new value set by the scheduler
does not need to be perfectly accurate because the load
manager is able to automatically adjust it.

Hnew
k =

Tnew
k

Tk

×Hk (7)

5.3 Overhead of DILoS
The overall overhead of DILoS includes the cost of the
statistics collection and the cost of redistributing the
system capacity among classes. The statistics collection
cost has time complexity of O(T*Op) where T is the
number of incoming tuples and Op is the number of op-
erators in the query network. However, without DILoS,
a typical DSMS system would still need to collect these
statistics for a variety of purposes such as load shed-
ding, scheduling, query optimizing, and performance
auditing. Therefore, the mere cost added by DILoS is
the cost of redistributing the system capacity among the
class. This cost actually depends on the specific policy
incorporated. For the specific materialization presented
in this paper, the redistributing requires one pass to
compute demandi and supplyi, and another pass to dis-
tribute the total budget. Therefore, this process has time
complexity of O(C) where C is the number of priority
classes. Because C usually ranges from a few to tens,
and the redistributing only happen once after several
scheduling cycles, this cost is negligible. In fact, as shown
in our experiments, this extra cost of DILoS is obscured
by the benefit it brings: significantly more data can be
processed (i.e., much less shedding).

6 INTER-CLASS SHARING IN DILOS
Dropping the assumption that there is no sharing be-
tween classes of different priority, we explain in this
section the problem caused by this inter-class sharing
and discuss our solution to handle it in DILoS.

6.1 Congestion problem
Given a prioritized scheduler such as CQC, intuitively
the shared segment between a query of high priority
and a query of lower priority should remain in the high-
priority class in order not to affect its performance. Fig.
7 illustrates this, in which a query of class 1 (higher
priority) shares a segment with a query of class k (lower
priority), and the shared segment remains in class 1.

However, this still could lead to a situation when
the performance of the high-priority query is negatively
affected. We show this through an experiment with the
CQC scheduler (without any load manager). There are
three classes in this experiment, with class 1(highest
priority) shares a query segment with class 3 (lowest
priority). The result is shown in Fig. 8, in which the

Fig. 7. per-class load manager, with class 1 (high priority)
sharing a segment with class k (lower priority)

 1
 10

 100
 1000

 10000
 100000
 1e+06

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Fig. 8. Congestion problem: response times with sharing
enabled and no load shedder, input stream SDc and
query network QN-A (see Section 7.2.1)

response times of the class 1’s queries that are shared
with class 3 increase dramatically after a certain period.

This phenomenon is due to the congestion at the end
of the shared segment. The intermediate tuples produced
by the shared segment are placed in a shared queue for
the downstream operators to read from. However, while
the downstream operator belonging to the high-priority
class can consume these tuples fast enough to keep up
with the production rate, the operators belonging to the
low-priority class, however, are much slower. Therefore,
the intermediate tuples accumulate and once they fill the
queue, the upstream segment has to stop processing and
wait, causing the corresponding high-priority queries
also to be blocked. Note that this problem persists even
if each downstream operator has its own input queue for
the intermediate tuples instead of using a shared queue:
the upstream shared segment still needs to postpone its
processing if one of the queues becomes full.

6.2 Handling inter-class sharing in DILoS
Interestingly, this problem can be solved with an ap-
propriate employment of load management: as long as
the low-priority class is not overloaded, i.e., it can keep
up with the incoming workload including the input fed
by the shared segment, there will be no congestion of
intermediate tuples at the end of the shared segment.

43

Class 1 shares a query segment with class 3 under a class-‐‑based
scheduling policy (CQC [Al Moakar et al., 2011]) (constant input rate)	

Congestion 	

We solved it
with DILoS	

14

Response time (ms) Data loss (%)
class 1 class 2 class 3 class 1 class 2 class 3

No load manager 3.40 3.53 56541.69 0 0 0
Common load manager 4.01 4.74 513.71 42.19 42.15 42.24
Separate load manager 4.91 7.21 492.16 0 0 85.37
DILoS (Full synergy) 8.90 34.18 487.04 0 0 24.43
DILoS with inter-class sharing 9.05 36.54 482.53 0 0 14.70

TABLE 3
DILoS’ advantages shown through average response time and data loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

Fig. 15. Headroom factor estimated, with SDc, QN-A, and
one ALoMa instance per class

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

Fig. 16. Headroom factor estimated, with SDc, QN-A, and
DILoS’ full synergy

Under a complete DILoS framework when the sched-
uler use the feedback from the load manager instances,
the effectiveness is clear: The data loss is reduced by
more than 70% compared to the case with no synergy
(24.43% vs 85.37% data loss for class 3 as in Table 3)2.
Given 13 stream sources used by class 3, each with
the input rate of 950 tuples/second, this decrease in
data loss means approximately 7,526 more tuples are
processed per second. At the same time, the response
times of the three classes are well controlled. At the same
time, the response times of the three classes are well
controlled and the overall goal is preserved: we are still
consistent in providing better QoS and QoD for the class
of higher priority. When inter-class sharing is supported
in DILoS, more data is save (14.70% vs 24.43%) while
the performance of the higher-priority class (class 1) is
not affected by the lower-priority class (class 3). Figure
17 shows the response time of the three classes under a
complete DILoS framework with inter-class sharing.

Understand the benefit of the synergy

2. We have observed in some experiments, not shown due to space
limitation, that if the total system load is lighter, the reduction in data
loss under DILoS can reach up to 100%, i.e., no shedding is needed.

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Fig. 17. Response times with SDc, QN-A, DILoS, and
inter-class sharing

One might think that the advantage of DILOS’ full
synergy in reducing data loss is only due to the fact that
it repairs the over-provisioning of system capacity for
some classes. This benefit is true for a global scheduler
that strictly fixes the CPU time allocation. However,
DILoS actually achieves more than merely repairing the
over-provisioning: it exploits batch processing to further
increase system capacity utilization.

Figure 15 plots the headroom factor (i.e., the capacity
portion) estimated by each load manager of each class
when an ALoMa instance is created to manage the load
in each class, but the scheduler does not used the feed-
back from these ALoMa instances to adjust its decision.
At the beginning of the experiment, we initialize the
headroom factors for classes 1, 2, and 3 by their expected
values, i.e., 0.6, 0.3, and 0.1, respectively. However, we
observed that the headroom factor of classes 2 and 3,
estimated by the load manager at runtime, is above its
expected value of 0.3 and 0.1, respectively. This phe-
nomenon is due to the policy of CQC: if a class finishes
executing all tuples in its queues, the scheduler lets the
next class in the round run, without waiting for the
former class to use up its quota (waiting for new tuples).
Thus, when a class is very lightly loaded (class 1 in this
case), part of its assigned capacity is automatically given
to the other classes3. Thus, CQC by itself already allows
implicit capacity sharing and the system capacity seems
to have been used fully.

However, figure 16 shows that class 3 actually receives
even more system capacity when the full synergy is
used (i.e., the scheduler uses feedback from the ALoMa
instances to adjust its decisions, which explains why it

3. Note that in this case, the estimated headroom factor of class 1
is not adjusted and still remains at the initial value because the load
manager does not have the necessary signals to decrease it.

Result with Step Changes in Class 1’s Input Rate	

44

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Figure 12: Response times under DILoS, with step changes in input rate of class 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

dr
op

 p
er

ce
nt

ag
e

(%
)

time(s)

class 1
class 2
class 3

Figure 13: Shedding and estimated headroom factors under DILoS, with stap changes in input rate
of class 1

class 1 to the other two classes, enabling them to shed less. However, as soon as the load of class
1 increases (e.g., at the 100th second), DILoS gives back to this class all or part of its original
capacity so that its performance, as specified by its class priority, is preserved.

3.3.3 Extensibility

As a framework with two-level integrated scheduling and load managing, DILoS enable easy in-
corporation of different scheduling and load shedding schemes at both the global and local level.
At the global level, different capacity allocation and redistribution policies can be adopted once
the scheduler obtains the report from the load manager regarding the capacity usage of each class.
At the second, local level, different load shedders and operator schedulers can be used. We discuss
in this section these possibilities.

Different Capacity allocation and redistribution policies
The beauty of our proposed scheduler and load-shedder synergy is that it is not limited to a single
policy. For exposition, we use in this paper the extended CQC policy that is sound in some context,

17

Result with Step Changes in Class 1’s Input Rate	

45

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Figure 12: Response times under DILoS, with step changes in input rate of class 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

dr
op

 p
er

ce
nt

ag
e

(%
)

time(s)

class 1
class 2
class 3

Figure 13: Shedding and estimated headroom factors under DILoS, with stap changes in input rate
of class 1

class 1 to the other two classes, enabling them to shed less. However, as soon as the load of class
1 increases (e.g., at the 100th second), DILoS gives back to this class all or part of its original
capacity so that its performance, as specified by its class priority, is preserved.

3.3.3 Extensibility

As a framework with two-level integrated scheduling and load managing, DILoS enable easy in-
corporation of different scheduling and load shedding schemes at both the global and local level.
At the global level, different capacity allocation and redistribution policies can be adopted once
the scheduler obtains the report from the load manager regarding the capacity usage of each class.
At the second, local level, different load shedders and operator schedulers can be used. We discuss
in this section these possibilities.

Different Capacity allocation and redistribution policies
The beauty of our proposed scheduler and load-shedder synergy is that it is not limited to a single
policy. For exposition, we use in this paper the extended CQC policy that is sound in some context,

17

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Figure 12: Response times under DILoS, with step changes in input rate of class 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

dr
op

 p
er

ce
nt

ag
e

(%
)

time(s)

class 1
class 2
class 3

Figure 13: Shedding and estimated headroom factors under DILoS, with stap changes in input rate
of class 1

class 1 to the other two classes, enabling them to shed less. However, as soon as the load of class
1 increases (e.g., at the 100th second), DILoS gives back to this class all or part of its original
capacity so that its performance, as specified by its class priority, is preserved.

3.3.3 Extensibility

As a framework with two-level integrated scheduling and load managing, DILoS enable easy in-
corporation of different scheduling and load shedding schemes at both the global and local level.
At the global level, different capacity allocation and redistribution policies can be adopted once
the scheduler obtains the report from the load manager regarding the capacity usage of each class.
At the second, local level, different load shedders and operator schedulers can be used. We discuss
in this section these possibilities.

Different Capacity allocation and redistribution policies
The beauty of our proposed scheduler and load-shedder synergy is that it is not limited to a single
policy. For exposition, we use in this paper the extended CQC policy that is sound in some context,

17

Result with Real Input Rate for Class 1	

46

16

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Fig. 20. Response times with SDr, QN-B, and DILoS
(with sharing)

ule, including those used by DILoS to enforce explicit
capacity redistribution: they might need some cycles of
adjustment before they can pick up the right decision.
This occurs when the input rate fluctuates considerably
after each load management cycle (recall that in Sp

although the upper and lower bounds of the input rate
are kept constant for class 2, the input rate of each load
management cycle follows a Pareto distribution within
the two bounds). In such a case, the lag of the statistics-
based decision causes small additional shedding in some
time windows. The additional data loss, however, is very
small and often not observed because it is obscured by
the normal fluctuations in the system.

The results also show the benefit of sharing in saving
data, and confirms that with appropriate load manage-
ment the sharing does not affect the QoS and QoD of
the higher priority class.

7.2.5 QN-B and SDr (Figures 20, 21; Table 6, 7)
In this set of experiments we replace the synthetic input
rate pattern by SDr with the real trace for class 1 (Fig.
14). This real input rate pattern has two challenging
periods when the rate keeps increasing with sudden,
very high peaks.

We show the response time of the three classes under
DILoS with inter-class sharing in Fig. 20. In order to
understand better the behavior of the load manager un-
der each of the three classes, we also plot the headroom
factors and shedding percentages in Fig. 21 (the top and
the middle plot, respectively). For convenience, at the
bottom of this figure we repeat the real input rate pattern
used for class 1. As expected, when the input rate of class
1 increases (e.g., from the 250th to the 300th second), the
excess capacity the class can give to the other classes
decreases. This has the clearest effect on class 3, the
lowest priority class, causing this class to drop a lot more
data during that period.

In the first 250 seconds of the experiment, none of
the classes is overloaded and the recognized headroom
factors might be higher than the true values, because of
the implicit redistribution of the system capacity when
some of the classes have very light load, as mentioned
in Sec. 7.2.2.The load managers recognizes the correct
headroom factor when the load of some of the classes
reaches their capacities and the explicit redistribution
happens, which is the case during the high-load period

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

dr
op

 p
er

ce
nt

ag
e

(%
)

time(s)

class 1
class 2
class 3

Fig. 21. Estimated headroom factors (top) and shedding
rates (middle) in response to the input rate of class 1
(bottom), with SDr, QN-A, and DILoS (with sharing)

(after the 250th second).
Tables 6 and 7 compare the average response time and

data loss for all cases. In this experiment, while synergy
still brings significant benefit in terms of exploiting sys-
tem capacity (much more data is saved: 3.28% vs 7.49%
of total data loss), it also incurs a trade-off: the data loss
of class 1 under the two cases with synergy is higher
compared to the case without synergy. As shown in Fig.
21, the shedding of class 1 corresponds to the sudden
high peaks of input rate during the high-load period.
As in the previous experiment, this is due to inherent
lag of the statistics-based decision. More specifically,
since class 1 passed its excess capacity to the others, its
remain capacity became rather tight and hence a sudden,
huge increase in the input rate caused overloading, and
subsequently, load shedding, before the scheduler could
recognize and correct the situation.

We believe this trade-off is acceptable given that the
increase in the shedding rate of class 1 (0.45%) is much
smaller compared to the total data saved (12.97% for
class 3 and 4.21% overall). This happens only in very
extreme situations and is eventually corrected. In prac-
tice, if a class is highly critical and such a trade-off is
not tolerated, one can develop a capacity redistribution
policy that includes a limit on the shared usage of
the class’ capacity (while still allowing the class to use
redundant capacity from other classes and allowing the
normal capacity redistribution among the other classes).

The results also confirm that the proposed approach
for inter-class sharing saves more data for class 3 while

16

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Fig. 20. Response times with SDr, QN-B, and DILoS
(with sharing)

ule, including those used by DILoS to enforce explicit
capacity redistribution: they might need some cycles of
adjustment before they can pick up the right decision.
This occurs when the input rate fluctuates considerably
after each load management cycle (recall that in Sp

although the upper and lower bounds of the input rate
are kept constant for class 2, the input rate of each load
management cycle follows a Pareto distribution within
the two bounds). In such a case, the lag of the statistics-
based decision causes small additional shedding in some
time windows. The additional data loss, however, is very
small and often not observed because it is obscured by
the normal fluctuations in the system.

The results also show the benefit of sharing in saving
data, and confirms that with appropriate load manage-
ment the sharing does not affect the QoS and QoD of
the higher priority class.

7.2.5 QN-B and SDr (Figures 20, 21; Table 6, 7)
In this set of experiments we replace the synthetic input
rate pattern by SDr with the real trace for class 1 (Fig.
14). This real input rate pattern has two challenging
periods when the rate keeps increasing with sudden,
very high peaks.

We show the response time of the three classes under
DILoS with inter-class sharing in Fig. 20. In order to
understand better the behavior of the load manager un-
der each of the three classes, we also plot the headroom
factors and shedding percentages in Fig. 21 (the top and
the middle plot, respectively). For convenience, at the
bottom of this figure we repeat the real input rate pattern
used for class 1. As expected, when the input rate of class
1 increases (e.g., from the 250th to the 300th second), the
excess capacity the class can give to the other classes
decreases. This has the clearest effect on class 3, the
lowest priority class, causing this class to drop a lot more
data during that period.

In the first 250 seconds of the experiment, none of
the classes is overloaded and the recognized headroom
factors might be higher than the true values, because of
the implicit redistribution of the system capacity when
some of the classes have very light load, as mentioned
in Sec. 7.2.2.The load managers recognizes the correct
headroom factor when the load of some of the classes
reaches their capacities and the explicit redistribution
happens, which is the case during the high-load period

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

dr
op

 p
er

ce
nt

ag
e

(%
)

time(s)

class 1
class 2
class 3

Fig. 21. Estimated headroom factors (top) and shedding
rates (middle) in response to the input rate of class 1
(bottom), with SDr, QN-A, and DILoS (with sharing)

(after the 250th second).
Tables 6 and 7 compare the average response time and

data loss for all cases. In this experiment, while synergy
still brings significant benefit in terms of exploiting sys-
tem capacity (much more data is saved: 3.28% vs 7.49%
of total data loss), it also incurs a trade-off: the data loss
of class 1 under the two cases with synergy is higher
compared to the case without synergy. As shown in Fig.
21, the shedding of class 1 corresponds to the sudden
high peaks of input rate during the high-load period.
As in the previous experiment, this is due to inherent
lag of the statistics-based decision. More specifically,
since class 1 passed its excess capacity to the others, its
remain capacity became rather tight and hence a sudden,
huge increase in the input rate caused overloading, and
subsequently, load shedding, before the scheduler could
recognize and correct the situation.

We believe this trade-off is acceptable given that the
increase in the shedding rate of class 1 (0.45%) is much
smaller compared to the total data saved (12.97% for
class 3 and 4.21% overall). This happens only in very
extreme situations and is eventually corrected. In prac-
tice, if a class is highly critical and such a trade-off is
not tolerated, one can develop a capacity redistribution
policy that includes a limit on the shared usage of
the class’ capacity (while still allowing the class to use
redundant capacity from other classes and allowing the
normal capacity redistribution among the other classes).

The results also confirm that the proposed approach
for inter-class sharing saves more data for class 3 while

The real input is the trace of TCP packages to and from The Berkeley Lab
 (h|p://ita.ee.lbl.gov/html/contrib/LBL-‐‑ PKT.html) 	
	

Result with Real Input Rate for Class 1’s	

47

 Average response time (ms)	 Average data loss (%)	

Class 1	 Class 2	 Class 3	 Class 1	 Class 2	 Class 3	

 No synergy (& no sharing)	 22.31	 68.23	 300.91	 0.01	 0.79	 21.67	

DILoS without sharing	 25.69	 76.86	 122.66	 0.46	 0.68	 8.70	

DILoS with sharing	 25.03	 70.29	 127.28	 0.44	 0.82	 6.54	

Roadmap	

48

% of
audience
asleep

of slides

Big Data Intro ✔	

ADMT Lab Intro ✔	

AQSIOS DSMS ✔	

ALoMA ✔	

DILoS ✔	

Conclusions	

Conclusions	
•  Advantages of DILoS:

o  Seamless integration:

•  The load manager detects and follows exactly the current priority
enforcement of the global scheduler

o  Global scheduling decision improved

•  Explicitly control the distribution of available capacity

•  Exploit batch processing to increase capacity utilization

•  Enable inter-class sharing to maximize the chance for query
optimization

o  Different priority policies can be plugged in

•  Future works:
o  Synergy with priority-based memory management

o  Consider advanced architecture (multi-core, cloud)

49

Volume Velocity 	
Variability 	

A (Big) Team Effort	
Students
•  Lory Al Moakar
•  Di Bao
•  Nick Farnan
•  Roxana Gheorghiu
•  Shenoda Guirguis
•  Qinglan Li
•  Panickos Neophytou
•  Thao Pham
•  Mohamed Sharaf
•  Matt Schroeder
•  Nikhil Venkatesh

50

Faculty
•  Panos Chrysanthis
•  Alexandros Labrinidis
•  Adam Lee
•  Kirk Pruhs

FUNDING (DILoS)
•  NSF IIS-0534531
•  NSF CAREER IIS-0746696
•  EMC/Greenplum
•  Andrew Mellon

Predoctoral Fellowship

 http://db.cs.pitt.edu

