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Modern Hardware — All over the place...

a
Utilization Wall:

Transaction Logging Unleashed with NVRAM *

Tianzheng Wang
University of Toronto
{tzwang, ryan.johnson} @cs.toronto.edu

Ryan Johnson

Dark Silicon’s Effect on Multicore Scaling
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Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores

Xiangyao Yu
MIT GSAIL
yxy@csail.mit.edu

Andrew Pavlo
Carnegie Mellon University
pavlo@cs.cmu.edu

ABSTRACT

Computer architectures are moving towards an era dominated by
many-core machines with dozens or even hundreds of cores on a
single chip. This unprecedented level of on-chip parallelism intro-
duces a new dimension to scalability that current database manage-
ment systems (DBMSs) were not designed for. In particular, as the
number of cores increases, the problem of concurrency control be-
comes extremely challes Vith hundreds of threads running in
parallel, the complexity of coor nating competing accesses to data
will likely diminish the gains from increased core counts.

“To hetfer understand just how unprepared current DBMSs are for
future CPU architectures, we performed an evaluation of concur-
rency control for on-line transaction processing (OLTP) workloads
on many-core chips. implemented seven concurrency control
alaorithms on 3 main-memory DBMS and using computer simula-

Srinivas Devadas
IT CSAIL
devadas@csail.mit.edu stonebraker@csail.mit.edu

George Bezerra
MIT CSAIL
gbezerra@csail.mit.edu

Michael Stonebraker
MIT CSAIL

that instruction-level parallelism and single-threaded performance
will give way to massive thread-level parallelism.

As Moore’s law continues, the number of cores on a single chip
is expected to keep growing exponentially. Soon we will have hun-
dreds or perhaps & thousand cores on a single chip. The scalability
5 even mor important in

e era. But if the current DBMS technol
adapt (o this reality, all this computational power will be wasted on
bottlenecks, and the extra cores will be rendered useless.

In this paper, we take a peek at this dire future and examine what
happens with transaction processing at ane thousand cores. Rather
than looking at all possible scalability challenges. we limi
scope to concurrency control. With hundreds of threads running
the complexity of coordinating competing accesses to data

bottleneck to sca ty. and will likely -

Data-Oriented Transaction Exe ,
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ABSTRACT
While hardware technol has major

over the past decade. transaction processing  systems have
remained largely unchanged. The number of cores on a chip grows
exponentially, following Moore's Law, allowing for an ever
increasing mumber of fransactions to execute in pafa]]el As the
number of concurrently-executing transactions

contended critical sections become scalability burdens. In tvpﬂl
transaction processing systems the centra
often the first contended component andsc

In this paper. we identify the
ransaction assignment policy as the pwiml
hen we design DORA, a system f
fansaction to smaller actions and assigns 3
@ which data each action is about to &
llows each thread to mostly access threa
with the

fanager. Built on top of a conventional |
faintains all the ACID properties. Eval
mplementation of DORA cn a multicere
JORA attains up to 4.8x higher thronghpy

ABSTRACT

JLTP workloads

ryanjohn@ece.cmu.edu

-

Nikos Hardavelli

nikos@northwesten

ZEcole Polytechnique Fédérale de Lausanne
Lausanne, VD, Switzerland

chip equipped with §
specialized domains fin
With experts in both #
the number of cores a1
exponentially-growing 1
each new process gener

As the number of

i an

Dresden Database

Systems Group

R4

Fast Updates on Read-Optimized Databases
Using Multi-Core CPUs

Jens Krueger!, Changkyu Kim+, Martin Grund’, Nadathur Satish+, David Schwalbt,
Jatin Chhugani*, Hasso Plattner, F'radeep Dubey*, Alexander Zeier'

tHasso-Plattner-Institute, Potsdam, Germany
Contact: jens krueger@ hpi. uni-potsdam.de

TRACT

Read-optimized columnar databasess use differential updates to han-
dle writes by maintaining a separate write-optimized delta partition
which is periodically merged with the read-optimized and com-
pressed main partition. This merge process introduces significant
overheads and unacceptable downtimes in update intensive sys-
tems, aspiring to combine transactional and analytical workloads
into one system

In the first part of the paper, we report data analyses of 12 SAP
Business Suite customer systems. In the second half, we present an
optimized merge process reducing the merge overhead of current
systems by a factor of 30. Our linear-time merge algorithm exploits
the underlying high compute and bandwidth resources of modem
multi-core CPUs with architecture-aware optimizations and effi-
cient parallelization. This enables compressed in-memory column
stores to handle the transactional update rate required by enterprise
applications, while keeping properties of read-optimized databases

justinle@microsoft.com

forage engine when running a variety of § LLAMA is a subsystem designed for new hardware environments
that supports an APT for page-oriented access methods. providing
both cache and storage management. Caching (CL) and storage

for analytic-style queries.

LLAMA: A CachelStorage Subsystem for Modern Hardware [©

Justin Levandoski
Microsoft Research
One Microsoft Way

Redmond, WA 98052

David Lomet
Microsoft Research
One Microsoft Way

Redmond, WA 98052

lomet@microsoft.com

*Parallel Computing Lab, Intel Corporation
Contact: changkyw kim@iniel com

partition. Inserting into the write-optimized structure can be |
formed fast if the size of the structure is kept small enough. As
additional ben this also ensures that the read performance d
not degrade significantly. However, keeping this size small impl
merging frequently, which increases the averbead of updates
To the best of our knowledge we are not aware of any sophi
cated imple mentation and therefore compare against a naive imy
mentation. Based on the result of analyzing 12 SAP Business Su
customer systems, we found that current systems would merge
prox. 20 hours every month, while supporting a maximum of ~ 1
updates per second (see Section 2 for more detail). In read-mo:
scenarios this limitation is not a major problem since the wa
load can be stopped during reload, modifications are invisible u
applied in batch or performance degradation is acceptable. Hy
«ever, when engineering a system for both transactional and ana
ical workloads as described in [22, 17, 13], it becomes essen
to reduce the merge overhead and to support the required sin
update rates for handling transactional workloads. Systems un
— b cope with even longer times for merging or |
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Microsoft Research
‘One Microsoft Way

Redmond, WA 98052
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We believe there are fundamental problems posed by cusent

hardware that impact all access methods: B-trees, hashing. mmlti-
attribute, temporal. ete. Further, these problems can be sclved with
‘general mechanisms applicable to most access methods.

-

=

from inl

(SL) layers use a common mapping table that separates a page's
logical and physical location. CL supports data updates and
management npdates (e.z . for index re-organization) via latch-free
compare-and-swap atomic state changes on its mapping table. SL
uses the same mapping table to cope with page location changes
produced by log stmcturing on every page flush. To demonstrate
LLAMA’s suitability,. we tailored our latch-free Bw-tree
implementation to use LLAMA The Bw-tree is a B-tree style
index Layered on LLAMA it has higher performance and
scalability using real workloads compared with BerkeleyDB's B-
tree, which is Inown for good performance

1 INTRODUCTION

1.1 Modern Architectures
Modem computer platforms have changed sufficiently that it is

1. Good processor utilization and scaling with multi-core
processors via latch-free techniques

2 Good performance with multi-level cache based memory
systems via delta updating that reduces cache invalidations.

3. TWhite limited storage in two senses: (1) limited performance

of random writes; (2) Sash write limits; via log structuring.

The Bw-tree [16]. an index resembling B-trees [4, 7], is an example
of a DC or key-value store that exploits these techniques. Indeed,
it is an instance ofa paradigm for how to achieve latch-freedom and
log structuring more generally. In this paper. we describe a new
architecture where the lalch fxee andlog structure techniques of the

Buw-free are i

capable of

supporting multiple access met.hpds, in the same way that a
traditional cache/storage subsystem deals with latched access to
fixed size pages that are written back to disks as in-place updates.
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A Look at Hardware Trends Database
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Increasing Main Memory Capacity® Increasing Number of Cores

= CPU/GPU, hybrids
= FPGA (Field Programmable Gate Array)

\ 4 \ 4

LMain Memory® is the new disk!(?) LParallelism” is the name of the game!
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“stable RAM will be an additional game changer
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The Dresden Agenda ...

A
. Dresden Database
: Systems Group

CULTURE

= (inoffical) cultural capital of Germany (theaters, museums, etc.)

SEMI CONDUCTOR INDUSTRY

* No.l semiconductor site in Europe
» No.5 semiconductor site on the planet
- Siltronic wafer production, Toppan / Dupont Photomasks
- Infineon Global Foundries
- ZMD, ATMEL, Applied Materials
- Intel, Amazon etc.

LARGE TOP-NOTCH R&D ORGANIZATIONS
= TU Dresden with >38.000 students

* Fraunhofer with 11 institutes (1.200 employees) ama Zon
» Max Planck with 3 institutes (900 employees) ~ !

-

* Leibnitz Gesellschaft with 4 institutesand 1.500 employees ? :=:E_-=-'E_' /-j Infineon

* Helmholtz Institute, Rossendorf (800 employees) w ==="= (intel Lo
@ &< F

L) ONiEReITAT @ GLOBALFOUNDRIES FystemsWuttimedia Solutions
DRESDEN
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The cfAED mission é Dresden Database

2010 2020 .
] CENTER FOR
o | Moore’s Law ADYANCING
2 S 5 DRESDEN
= 3 @
! 2
Advances in e  Augmenting CMOS & gn
Materials Science cfaed i . Complementing CMOS > ]
* Replacing CMOS 2
2 ...more shots on a goal

INFORMATION
PROCESSING

System
Complexity

Unique Window of Opportunity
for shaping the next big technology waves

DEVICES
& ClRCUITS

SO ME NUMBERS
= FUNDING VOLUME // € 34 million
= FUNDING PERIOD //1 Nov 2012 - 31 Oct 2017
= PARTICIPATING INSTITUTIONS // 11 < FUnerion
= INVESTIGATORS // ~ 60

TECHNISCHE
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CMOS Industry focus

I Silicon NW

o Carbon

O Organic
BAC

m Chemical
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The ,HAEC-Box”  KQSHAEC Y > SRR

CRC 912

Highly Adaptive Energy-Efficient Computing —_— _— — e
KEY CHARACTERISTICS v |
» Optical communication on board B
» Adaptive wireless backplane communication = T EIO-PCBy
= 3D stacking processor | memory

= Self-* capabilities on SW-level _

it S S S
- - I wIT

Multiple layers of memory and processing units
» Impact on processor design 0 Instruction set extensions

» React on computer architecture 0 DB architecturefor Scale-up
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xPU Developments and Consequences
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Motivation of ,DB Processor égs{gfggg Database

DATABASE MACHINES (ANCIENT)
= Processors build from scratch
* Long development cycles
= High development costs

TODAY’S DATABASE SERVERS
= Fat cores (area & power)
» Few HW adaptions
= CMOS scaling

TU Dresden ' *Ji 500

N 74

OUR APPROACH

= HW/SW Co-design

= Customizable processor

= Application-specific ISA
extensions

= Tool flow & short HW
development cycles

TECHNISCHE
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Currently available HW: The Tomahawk?2
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DRAM
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Core manager (CM):

= Extended Xtensa-LX4

Scheduling specificinstruction set
32KB for code

64KB for data

Processing Elements (PEs)

= Xtensa-LX4 from Tensilica (how Cadence)
= 32KB for code

= 32KB for data

Application Core (App)
= 570T core from Tensilica (how Cadence)
= 16KB cache forcode
= 16KB cache fordata

2 x 128MB DRAM




Customizable Processor Model

f Tensilica LX5 Processor ‘:

H e ' 1

e N | Inst. | 320 Local Instr. <

! RISC Fetch [T i Memory

: Instruction Set U, H

RN J ]

V' r ~ i | Localpata | | .
1 —— L < >
H Register Files 32 E Memory 0

1 <

: \_ ) LSU <7 :

: 9 y 1y Local Data ’

i ) Memory 1

e e e e —,  —, — ——— — ————— ’

TECHNISCHE
UNIVERSITAT
DRESDEN

}4O0MIaN UOI1d9UUOdIa]U|

¥

Extended Tensilica LX5 Processor

Instruction Set

~

Basic RISC Instr. Set

Bitmap-Specific Instr. Set

V=

-~

Register Files

[

Basic Registers

[

Bitmap-Specific Registers

o e

Bitmap-Specific States

”

Systems Group

Data Prefetcher ]
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< A Dresden Database
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OverVieW' Tool Flow é?resdﬁen Database

| Application ] int res= (vO + vl + v2) >> shift8;
¥
Profiling r—-=» HDL Processor Generator ]
& ~
[ Cycle Count & Hotspots ] Processor Model
w# _ RTL description (HDL)

i Processor Extensions
1
1

[ Unit Extensions ] [ ISA Extensions ]

Technology
h 4 Libraries
—h@hesis
v Synthesis I
[ Processor Generator ] Parameter
1

* Y
. Processor Model [ HDL Verification ]
Compiler . ”
Simulation (cycle acc.) ¢

Correctness? Area,

* |
[ Application Adaptions ] N Power and Timing
. . o .
// shift8 -> internal state / Requirements met?

int res=add3_shifv0, v1, v2); Verification

Y
——

Yes

h 4
Processor with
Application-Specific ISA

TECHNISCHE
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A selection of database primitives...

SET OPERATIONS (FOR RID LISTS)

= |ntersection
= Difference
= Union

SORTING
= Merge Sort

HASH OPERATIONS

* |nteger Hashing
= String Hashing
» Hash Table Management

COMPRESSION (FOR BITMAP INDEXES)

= Word-Aligned Hybrid (WAH)
= Position List Word Aligned Hybrid (PLWAH)
= COMPressed Adaptive indeX (COMPAX)

TECHNISCHE
UNIVERSITAT
DRESDEN
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Sorted-Set Intersection

int intersect(int* A, int* B, int [_a, int [_b, int* C) {
int pos_a =0, pos_b=0, pos_c=0;
while( pos_a< l_a && pos_b<I_b){

if( Al pos_a] == B[ pos_b]){

Clpos_c++] =Alpos_al;

pos_a++;
pos_b++;

}

else if(Alpos_al <Bl[pos_b])
pos_a++;

else
pos_b++;

}

return pos_c;

J\

&
N Dresden Database
Systems Group

- internal states

— mergedin one inst.

= + 2x 128 bit data busses + explicit load-store + SIMD + ...

TECHNISCHE
UNIVERSITAT
DRESDEN
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Selectivity: Intersection é&l&i‘éﬁﬂ Database

—o—DBA_2LSU_EIS w/ partial loading —=—DBA_1LSU_EIS w/ partial loading
—#&— DBA_2LSU_EIS w/o partial loading —>&DBA_1LSU_EIS w/o partial loading Final processor
== DBA_1LSU —0—108Mini /

1800

1600 /

A

'—\
o
o
o

+1 Load-Store unit

1200

=1

<

o

(&]

[«B]

[%2]

@

o

2]

<

q') -

£ 1000

2 800 + Partial loading
o

= 600

=3 ry

= 400

2 + Extended ISA
S 200

3 I v ]
g 0 ¥ e *__§_.*=¥=bﬁ t\ Data bus: |
= 0 10 20 30 40 50 60 70 80 90 100 32->128 bit

Selectivity [in %]

TECHNISCHE
@ UNIVERSITAT 17
DRESDEN



7

e
Throughput [Mib/s] é?ﬁﬁi‘iii‘p Database

Selectivity: 50%

Intersection
Difference
Merge—Sort

Load—Store

Partial
fIMHz|

Processor

10SMINT’ _ 442 313 264 357 17 | |
DBA_1LSU 435 507 477 504 3o o Dawmbusi32->128 bi
¢ DBALILSUEIS no 424 5134 6650 6588 29.3
DBA_2LSU_EIS no 410 693.0 643.0 637.0 28.3
C DBA_ILSU_EIS yes 424  859.0 5742  859.0 29.3
DBA 2LSU BIS _yes 410 1203.0 7804 1192.6 28.3

| | | |

=> DBA_2LSU_EIS vs. 108MINI: 38x 30x 33x 17x

— Final processor

+1 Load-Store unit
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Comparison

SORTED-SET INTERSECTION

)

1/

e
é Dresden Database
Systems Group

INTEL 17-920

DBA_2LSU_EIS

Throughput (elements/s)
Clock frequency

Max. TDP
Cores/Threads

Feature size

Area (logic & memory)

1,100 mio
2.67 GHz
130 W
4/8
45 nm

263 mm?2

1,203 mio
0.41 QHz — /ximprovement

0.135 W — 963ximprovement
1/1

65 nm

1.5 mm?2 ——— 175ximprovement

TECHNISCHE
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Timing and Area

)

Y
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NE — N
~ ~ )
gﬁ 5 S s T Final processor
= 2 = < = .
Q N o = T <
S 2 S > I ES
= ) < <~ S ag
65 nm  1OSMINT 0.220! - 4420 274! Part Area[%0]
DBA_1LSU 0.177  0.874 435 56.6 Basic Core 20.5
DBA_2LSU 0.177  0.870 429 57.1 Decoding/Muxing 14.4
DBA_1LSU_EIS 0.523  0.874 424  123.5 States 14.7
DBA 2LSU_EIS 0.645  0.870 410  135.1 Op: All 11.3
28 nm DBA_2LSU_EIS 0.169  0.232 500 47.0 Op: Intersection 6.8
Thttp://www.tensilica.com/uploads/pdf/108Mini. pdf Op: Difference 9.0
Op: Union 17.6
_ . Op: Merge-Sort 5.7
Relative Area Consumption(DBA_2LSU_EIS)
SUM 100
20
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Tomahawk?2 Programming M Dresden Database

Trace View - joptisimulater 4/ATSC targets/mi-heat-tracing -y01_compiled [run/shaeti/trace.otf * - Vampir (auf tomshawisimulator)
Ele Edit Chert Fiter Window belp
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Main Driver: NUMA Awareness

-
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(a) Intel Machine (Detailed).

NODE € 2 NODE NODE <€ > NODE
/ \\
NODE € > NDDE’: NODE <€ > NODE

M @ B o

(b) AMD Machine (Topology View).

RACK
4*IRY

IRU 8*Compute Blade

7"\

Dresden Database

Systems Group

Compute Blade
2*CPU

-~

NODE | | NODE

arl arl

(c) SGI Machine (Topology View).

Intel machine

AMD machine

SGI machine

distance bandwidth latency | distance (link width) bandwidth latency | distance bandwidth latency
(GB/s) (ns) (GB/s) (ns) (GB/s) (ns)

local 26.7 129 local 16.4 85 local 36.2 81

1 hop QPI  10.7 193 1 hop HT (full link) 5.8 136 2nd processor 9.5 400
1 hop HT (split,single) 4.2 152 1hop NUMALink 7.5 505-515
L hop HT (split,dual) 2.9 152 2hop NUMALink 7.5 625-635
2hop HT (split,single) 3.7 196 3hopNUMALink 7.1 745-T55
2hop HT (split,dual) 1.8 196 4hop NUMALink 6.5 870

TECHNISCHE
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DRESDEN

23



TA versus Data-Oriented Architecture (DORA) é&l&i‘ésﬁf’ata“’ase

Transaction-Oriented Architecture
shared-everything

Which

Ippokratis Pandis'
T

Ryan Johnson'#

Data-Oriented Architecture
mixed shared-everything & shared-nothing

Data-Oriented Transaction Execution

Nios Hardavellas®  Anastasia Allamaki®!

"Camegee Metkn University ool
Pittsbungh, A, USA

Architecture ?

ABSTRACT

applsimice, ach -
processing (OLTV). rsssng il i
sl

3 3
edu ch
kL ¥
vi U

sE-

setiom

. Indkecﬁon '
= s
.

114] To tap the
m ol asees, o e Sk Wt
ormusce 1o sesle

Data

=== | ack of scalability

g oo cotersaoe- e

mmager. Bualt ou top of & covveamal Wange mmpise, DORA

e 43 G ACID properin. Frabunce of 3 prosepe P 1

mmwul&hh&w [ T
e prazmg & vty of syntbet: sl ibwield !

Pros & Cons No load balancing & indirection required
= Energy proportional by design
Well investigated and
Challenges widely deployed

TECHNISCHE
UNIVERSITAT
DRESDEN

ey Ln massive parallel systems

epticn
caitical sectiom [14]. Commquestly. thesw syiess fioe

=== |0ad Balancingand indirection required

== Not energy proportional by design

(1)
(2)

Speed up load balancing indirection to work
efficiently for in-memory systems

How to make the data-oriented architecture
energy proportional
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ERIS Data Management Core

application code (+ custom operators)

dynamic loading

4.. Slim Data Management Core

LLVM

Monitoring and Load Balancing

different storage formats

V&
&N Dresden Database
< Systems Group

... an academic playground for modern DB techniques

CHARACTERISTICS

data-oriented architecture
(via message passing)

NUMA awareness
heterogeneous hardware
aggressive elasticity strategies
dynamic data placement policies
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ERIS Overall Architecture P U Tt

DATA- ORIENTED ARCHITECTURE
» Follows MVCC principle
= Distributionbased on logical partitioning
= Aggressive re-partioning using copy as well as link strategies

NUMA-Optimized High-Throughput Data Command Routing

Global Partition Table (GPT)
Monitoring

Local Memory

Local Command Buffer :
SR CES

- EJ: - L] L] ~ v v 7 AEU's Partitions
m AEU AEU
LOU LCU Core 1 Core N : Ere_lj @eﬁ %\A\ s
C‘g Ess i & ;__/ . 1 A B B _‘ z “ = Store

a

<
~ Local Memory Manager
Local Memaory

—
' ' Local Memory Manager |

Local Memory )

Multiprocessor 1 Multiprocessor M

TECHNISCHE
@ UNIVERSITAT 2 6
DRESDEN



Evaluation: Some MicroBenchmarking

LOOKUP/UPSERT THROUGHPUT DEPENDING ON INDEX SIZE

Lookup

Upsert
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Dresden Database
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SCAN PERFORMANCE

= SGI| Machine
= 488 cores — parallel scan
= 8 billion entries in the column store

~
N Dresden Database

. /8
Evaluation: Scan Throughput é

LINK AND MEMORY CONTROLLER ACTIVITY

= AMD Machine
= Scan: 8B Keys
= |ookup: 1B Keys

- ‘17.8 ‘ ‘ W ERIS Shared
Lookup
o 83.8
Single RAM | 33,8 z —
N EE N
Interleaved 273 Scan
ERIS 2094,1 - |
0 500 1000 1500 2000 2500 Lookup
Bandwidth [GB/s] E ]
=
Scan
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Evaluation: L3 Cache Usage  Dresden Database

L3 CACHE USAGE — INDEX LOOKUP L3 C ACHE LINE STATE — INDEX LOOKUP
» Percentage of all hits
= 1B keys
ERIS I Shared el [ R|S |3 Cache Shared L3 Cache
400 80 100
= 350 F 70 iy 90 ERIS W Shared Index
= o 0
< o 30 76,6%
= 300 - 60 =
= = 70
= 250 | - s0 2 58,4%
a ‘ s 2 60
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® 200 40 S ° 5o
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= 150 - 30 ] 40
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Cache Line State
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Key Component: Load Balancer

BALANCING STRATEGIES
= Copy Strategy:

= Link Strategy:
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Throughput [Million/s]
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. . Inter-Node
copy data within NUMA systems Transfer
between different sockets o
delegate pointer, delay data movment e

Transfer

link

Local Memory Local Memory
Multiprocessor 1 Multiprocessor 2
-+MA1 —-=0One-Shot -+MASB ——w/o Load Balancer
0 10 20 30 40 50 60 70 80 90 100 110 120
Time [s]
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" A Dresden Database
COHC[USIOH .. ; Systems Group

Slim Data Management Core
e QVHAEC

- - --.:l I:_— :___1 |—l:
Local Memory [I I Local Memory | Local Memory :! | Local Memory

CRC 912
Highly Adaptive Energy-Efficient Computing

Sca DSﬁ

and Load Balancing DRESDEN LEIPZIG

DRESDEN Aéﬂ

* MODERN HARDWARE DEMANDS SIGNIFICANT RE- THINKING OF DB ARCHITECTURES
concept \v‘

= extreme NUMA Systems: ,distributed system” with common address space
= customizable processors (,dark silicon”): revival of the database machine?

CENTER FOR

clfaed &

» communication: optical / wireless & RMDA:
blurring the boundaries between scale-out and scale-up
» Non-Volatile RAM: will be a game-changer!
=  SLIM AND EXTENSIBLE DATA MANAGEMENT CORE TO 5G Lab
= efficiently support today’s applications requirements (mixed OLTP/OLAP workloads etc.) Germany

» embrace and exploit capabilities of modern hardware
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