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Context: life science

e The study of living organisms (plants, humans,

micro-organisms, . . . ) and their association with
internal or external conditions

e Interdisciplinary research domain spanning
agronomy, biology, botany, etc.
e Very strong in the city of Montpellier
CIRAD, INRAE, Inria, IRD, Univ Montpellier, SupAgro
e Many challenges due to climate change

o Adaptation, resilience, epidemics, land-use conflicts,
biodiversity conservation

e Example of practical question: how to select or breed
better plant varieties?



Life Science Data and Workflows

» The data comes from many different data sources

e Modern platforms, e.g., high-throughput phenotyping,
next-generation sequencing, remote sensing, etc.

e International databases, e.g., Data.World,
GenomeHub, AgMIP, EMPHASIS, etc.

e Such data can be used to

e Produce and train models, e.g., ML models

e Derive information and knowledge or make predictions
using complex workflows

o Example: plant modeling to predict impact

e Heterogeneous data: plant phenotype, plant genotype,
environment data (meteo, soil)

e Analyze through multiple workflows



Models in Life Science

Statistical machine learning models

e Find patterns in existing data

e Simple equations, derived from statistics and regression
analysis

o A lot of data is needed (the more data, the better)

Mechanistic models

e Derived from the mathematical modeling of a phenomenon
capturing the fundamental laws of natural sciences

e Less data needed to calibrate the model

e Running a mechanistic model for a certain number of time
steps allows simulating the phenomenon

Example: crop simulation models reproduce the main functions of
plants such as the evolution of plant architecture, light interception,
photosynthesis, and water/nitrogen balance in the crop and soil



Multiscale Plant Modelling
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Big Data Sources

o International databases ¢ Data produced by

e Genomics (Elixir, platforms and models
GenomeHub) e Time series
e Soil, climate, meteo e 3D data
* Phenomics
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Multiscale Crop Modeling Framework

Opportunities

Multi-scale crop modelling framework

Data

Regional-to-global scale

* Interfacing crop models with land surface,
climate and economic models

* Spatially explicit representation

* Model-data integration

N

Organ-to-field scale

* Improving the simulation of crop
physiological responses to environmental
variability and change

¢ Broadening and improving the

* Model-data integration

\
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Gene-to-cell

* Integrating top-down and bottom-up
approaches for genetic representation in
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Data for model development and evaluation

Regional-to-global scale

* Remote sensing

» Crowdsourcing

¢ Administrative survey and census

¢ Experimental networks following
standardized protocols

Organ-to-field scale
* Manipulative field experiments
* Proximal sensing

* High-throughput phenotyping

Gene-to-cell scale
* High-throughput genotyping

* Multiomics data

B. Peng et al.: Towards a Multiscale Crop Modelling Framework for Climate Change Adaptation
Assessment. Nature Plants, 2020




Model Intercomparison and Improvement
Project (AgMIP) o

CoLuMBIA UNIVERSITY
' 'Y OF NEW YORK

Develops simulation crop models to
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Use Case: plant phenotyping

e High-throughput phenotyping
platforms

o Enable the collection of quantitative
data on thousands of plants under
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controlled environmental conditions PhenoArch |fform
Temperature, humidity, drought, light, etc. INRAE, Montpellier
» Scientific workflows
e To analyze, reconstruct, and visualize e
the spatial and temporal development OpenAlea A
of the geometry and topology of plants |

in various environmental conditions Workflow system
CIRAD & Inria, Montpellier

C. Pradal, C. Fournier, P. Valduriez, S. Boulakia

Openalea: scientific workflows combining data analysis and simulation. SSDBM 2015 »



OpenAlea Phenomenal Workflow

e Coupling high-throughput phenotyping analysis with

biophysical models
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PhenoArch platform, Montpellier
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« InfraPhenoGrid: a grid
SIS infrastructure for phenotyping
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« Phenomenal: automatic 3D
shoot reconstruction

OpenAga
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G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, P. Valduriez

Cache-aware Scheduling of Scientific Workflows in a Multisite Cloud, FGCS 2021 .



OpenAlea Workflows

3D organ tracking of a maize plant
with PhenoTrack3D workflow )

Multi-view
reconstruction
| —————

Phenomenal workflow

Reconstructed root system architecture
using RootSystemTracker workflow
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Use Case Requirements

o Efficient execution of OpenAlea workflows
o Parallel transfer of large image datasets
e Distributed execution within a cluster
e Caching of intermediate results for later use

e Ease of use

e Reproducibility of executions using provenance
information

o Dashboards to ease reruns of workflows with different
parameters and display execution results
» Integration with other workflows

e To understand the genotype-to-phenotype relationships,
and relate plant traits with genotyping workflows, e.g.,
Galaxy

14



Related Work

* Wide spectrum from generic to specific

e Cloud services
e Many ready-to-use services within a PaaS
o Lack of services for scientific applications
e Vendor lock-in

o Data-based systems
e Scientific workflows: Galaxy, Kepler, OpenAlea, etc.
e Data analytics: Spark, Flink, etc.

e Polystores: BigDAWG, BigIntegrator, CloudMdSQL, etc.

* Model life-cycle frameworks
e MLaaS by cloud providers, Mlflow, ProvLake, etc.

15



Related Work (cont.)

Science platforms

e Provide services and resources for research communities to
perform collaborative research, observation and
experimentation

More or less specialized for some particular science

e InfraPhenoGrid: grid-based platform for plant phenomics

e PHIS: phenotyping hybrid information system

o Pl@ntnet: participatory platform for the production and
sharing of botanical data

e CyVerse: platform for life sciences with services and
resources to deal with huge datasets and complex data
analyses

16



LifeSWS: objectives

* Open service-based architecture
e Data analysis workflow services for life sciences

* Organize massive and heterogeneous data
e In connection with models

» Make workflow artifacts easy to search, debug,
and parallelize

o Artifacts = datasets, models, metadata, workflow
components, etc.

» Technical goal

e Make workflows work as seamlessly with data as
queries do in business data processing

17



LifeSciDS: principles

e Ease of use through web interfaces
o For different kinds of users
e Access to various tools and execution environments

* Open, composable architecture with well-defined APIs
e To foster services interoperability

e Distributed architecture
e Performance and scalability in the cloud using distributed
database principles
e Integrated services

e Local (in the same data center) or remote (in remote data
centers)

e Support for various databases (SQL, NoSQL, SciDB, etc.)
e Support for various scientific files (HDF and NetCDF)

18



Architecture

Workflow providers
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Presentation and Directory Services

 Web dashboard service to build specific dashboards for
different types of users

e Domain scientists, workflow providers, model providers and data
providers

e These dashboards allow users to analyze and display real-time data
as charts and reports

e Directory

e Manages data about LifeSWS users, access rights, dashboards and
services

e Basis for secured access to services
e Web server-side API

o Allows LifeSWS developers to access LifeSWS services from more
general Web applications

e External data view to ease the development of dashboards
and workflows

e (Can be represented by a knowledge graph

20



Workflow Services

e Make it easy for scientists to develop, debug and
optimize their workflows
e Sharing of data, models and workflow components
e Model execution using different tools and data sources

* Primary services
e Catalog (including version management)
e Model management
e Workflow integration
e Data analytics

21



Model Management

e Support of various types of models
e Machine learning models
Statistical, deep learning, ...

e Mechanistic models

o LifeSWS added value

e Through a unified view of different model artifacts
(produced with different tools), LifeSWS can improve
model selection and allow for model integration

22



Model Integration

ML model integration

e Considering an ensemble of models, i.e., a set of
models aiming at the prediction of the same target*

Run each individual participant model, possibly across
different tools, over the same input

Produce an integrated result, often using a linear
combination of the results

Mechanistic model integration
e Requires workflow integration (see next)

*R. Zorrilla, E. Ogasawara, P. Valduriez, F. Porto
A Data-Driven Model Selection Approach to Spatio-Temporal Prediction. SBBD 2022
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Workflow Integration

e Support for integrating and efficiently executing
workflows on different systems using the Workflow
Access APIs

e Some similar goals and functions found in data
integration

o Workflow definition

e Candidate: Common Workflow Language (CWL), an open
standard to make workflows portable, reusable and easy
to share

e CWL is explicit about inputs/outputs to form the
workflow, data locations and execution models, which
can be deployed using software container technologies,
such as Docker and Singularity

24



Workflow Integration (cont.)

Workflow execution

e Once an integrated workflow has been defined and its
mappings registered, e.qg., using CWL, it can be executed
using a LifeSWS scheduler that orchestrates execution
across different workflow systems, in connection with
these systems’ schedulers

Provenance

e Helps to reproduce, trace, assess, understand, and
explain how datasets have been produced

Caching of intermediate datasets

e The decision whether to cache can be explicit or made
automatic based on workflow fragment analysis

25



LifeSWS Platforms

» Implement and deploy LifeSWS services to address
the specific requirements of vertical applications
e Using different software and hardware infrastructures

e Reusing software components that (partially) implement
the services

o Examples of deployments
e Laptop
e On-premise cluster of servers
e Cloud (public, private or hybrid)

» Gypscie as a LifeSWS platform

26



The Gypscie Platform*

 Data Management using SAVIME

e SAVIME: in-memory array database system
Enables simulation real-time monitoring
e Registration, transformation and metadata description

e Data locality for transformation and training
e Querying
ML Model Management
e Model building, importing and serving
e DJEnsemble method for automatic model composition
e Model Metrics management

e Event detection
o Integrates the Harbinger component
e Algorithms for offline event detection
e Multiple Execution Environments
e Santos Dumont Supercomputer, Spark cluster

*F. Porto, P. Valduriez. Data and Machine Learning Model Management with Gypscie.
CARLA Workshop on HPC and Data Sciences meet Scientific Computing, 2022
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DJEnsemble

o Cost-based selection and allocation method of a
disjoint ensemble of spatio-temporal models

e Large data domains partitioned into subdomains

according to data similarity properties (e.g., with time
series data, we place similar series together)

e Instead of a single model covering diverse data
patterns, opt for specialized models and combine them
when needed;

e Automatic algorithm to combine subdomain models to

answer a predictive query

Exploits data similarity between query region and models’
training regions

R. Zorrilla, F. Porto, E. Ogasawara, P. Valduriez. A Data-Driven Model Selection Approach to Spatio-Temporal Prediction.
Nominated for best paper, SBBD 2022 Conf.

R. S. Pereira, et al., DJEnsemble; A Cost-based Selection and Allocation of a Disjoint Ensemble of Spario-temporal Models,

SSDBM 2021 Conf.
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Gypscie Platform Architecture
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Research Directions

» Make it easy to integrate and run heterogeneous workflows
e Using the Common Workflow Language (CWL)

* Provide efficient execution of heterogeneous workflows

e By caching intermediate results and performing cache-aware
scheduling

» Make it easy for domain scientists to manage the model life
cycle

e Model selection and model integration for different types of models
managed using different tools

» Assist scientists in analyzing diverse data types
e Focus on time series

o Keep track of the provenance of both data sources and
software components

e To aid in debugging and to enhance the reproducibility of
computational experiments
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