
University of Minnesota

1 / 54 February 2013

Database Support for
Recommender Systems

Mohamed F. Mokbel

Department of Computer Science and Engineering,
University of Minnesota

www.cs.umn.edu/~mokbel
mokbel@cs.umn.edu

February 2013 2 / 54

Talk Outline

n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Location-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments

February 2013 3 / 54

Talk Outline

n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Location-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments

February 2013 4 / 54

Recommender System

February 2013 5 / 54

n  Analyze user behavior to recommend personalized and
interesting things to do/read/see

rate movies

Movie
Ratings build

recommendation
model

Similar
Users

Similar
Items

recommendation
query

“Recommend user A five movies”

Offline
Online

Recommender Systems

n  Collaborative filtering process is the most commonly used
one in Recommender Systems

February 2013 6 / 54

?

Collaborative Filtering (CF)

? ?

February 2013 7 / 54

.4

.8 .6 m1 m2

Similarity(m1,m2)

n  Similarity measures
①  Cosine distance
②  Pearson correlation
③  Spearman correlation
④  Adjusted cosine distance

. . .

,
m3

Similarity(m1,m3)

.5
, ,

.3

.9 .8
,

.5
, ,

.4

.7 .6
,

.5
, ,. . .

Item-Based CF Model Building

February 2013 8 / 54

.4

.8 .6
,

.5
, ,

.3

.9 .8
,

.5
, ,

.4

.7 .6
,

.5
, ,

.5 .9 .6
,

.5
, ,

.3 .7 .6
,

.5
, ,

Item-Based CF Recommendations

.8 .6

.9 .5

.5 .7

X 2 +

X 2 +
X 2 +

(

(
(

X 4) / (.8 + .6)

X 4) / (.9 + .5)
X 4) / (.7 + .5)

 = 2.86

 = 2.71
 = 3.17

February 2013 9 / 54

Talk Outline

n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Location-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments

Mohamed F. Mokbel. "DBMS Support for Recommender Systems". In CIDR 2011, Gong show, Asilomar, CA, January 2011.

February 2013 10 / 54

Recommender Systems: Quality vs. Performance

“[Our] solution is based on a huge amount of models and predictors which
would not be practical as part of a commercial recommender system.
However, this result is a direct consequence of the nature and goal of the
competition: obtain the highest possible accuracy at any cost, disregarding
completely the complexity of the solution and the execution performance."

Team BelKor’s Pragmatic Chaos, Winner of the 2009 Netflix Prize

“We have chosen not to discuss computation performance of recommender
algorithms. Such performance is certainly important, and in the future we
expect there to be work on the quality of time-limited and memory-limited
recommendations.”

Herlocker et al. “Evaluating Collaborative Filtering Recommender Systems”, ACM TOIS 2004

n  Recommender systems community have only focused on “quality” issues;
“performance” is considered a secondary issue

n  All heavy work are done offline
n  Models are built over long time period, e.g., movie or books ratings
n  The rank of one item in the system slowly change

February 2013 11 / 54

n  We live in an increasingly social and “real-time” world
q  Number of things to recommend is growing exponentially

q  Users expressing opinions faster than ever
q  Recommendations change second-to-second

Things have changed…

“Like” button
NY	
 Times	
 “Recommend”	
 bu2on	

Facebook	
 Posts	
 Blog/News	
 Items	

•  “Offline”	
 step	
 can	
 no	
 longer	
 be	
 tolerated	

February 2013 12 / 54

n  Incoming stream of ratings data: (user, item, rating)

n  Ratings are used to build a recommendation model as:
q  Item-based collaborative filtering: (item, item, similarity)
q  User-based collaborative filtering: (user, user, similarity)

n  Recommendation query:
q  Item-based collaborative filtering:

o  Given a user u, find the top-k items that are most similar to the items
that u has liked before

q  User-based collaborative filtering:
o  Given a user u, find the top-k items that the users who are similar to u

have liked

Recommender Systems in DBMS ?

Recommender Systems have all the ingredients of a data
management problem

February 2013 13 / 54

DBMS Challenge

*	
 ACM	
 RecSys	
 community	
 is	
 already	
 doing	
 excellent	
 job	
 in	

this	
 fron=er.	
 Lets	
 start	
 from	
 there.	

Can	
 DBMS	
 do	
 it	
 ?	

Lets not try to find a new way of doing
recommendation*

We need to provide online support and scale
up the computations of existing recommender

methods.

February 2013 14 / 54

Talk Outline

n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Location-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments
Justin J. Levandoski, Michael D. Ekstrand, Michael J. Ludwig, Ahmed Eldawy, Mohamed F. Mokbel and John T. Riedl. " RecBench:
Benchmarks for Evaluating Performance of Recommender System Architectures". In Proceedings of the International Conference on
Very Lage Databases, VLDB 2011, Seattle, WA, September 2011

February 2013 15 / 54

http://www.movielens.org

ACM Software Award 2010: – GroupLens Collaborative Filtering Recommender Systems:
Peter Bergstrom, Lee R Gordon, Jonathan L Herlocker, Neophytos Iacovou, Joseph A Konstan,
Shyong (Tony) K. Lam, David Maltz, Sean McNee, Bradley N Miller, Paul J Resnick, John T Riedl,
Mitesh Suchak

n MovieLens: A Movie
Recommender System,
built and maintained at
University of Minnesota
(GroupLens Research)
q  10 Million ratings
q  10,000 Movies
q  72,000 Users

MovieLens

February 2013 16 / 54

n  Goals:
①  Prompt DB & RecSys research communities to work together
②  A benchmark to test performance of different system architectures

n  Six common recommendation tasks are carefully selected

n  Every task is implemented on three different architectures

RecBench:
A Benchmark for Recommender System Architectures

n  “Hand-built” system
n  Code optimized for

item-based CF
n  Uses DBMS for

metadata and text-
search queries

MultiLens PostgreSQL
n  Unmodified DBMS
n  Ratings relation:

ratings(usr,itm,rating)
n  Model relation:

model(itm, itm, sim)
n  All tasks implemented

in standard SQL

Custom DBMS
n  DBMS (PostgreSQL)

modified to optimize
for fast recommender
model updates

n  SQL same as
unmodified DBMS
approach

February 2013 17 / 54

Stored
Recommendation

Model

Prepare system to start serving user recommendations

RecBench – Task 1: Initialization

February 2013 18 / 54

Produce top-k recommendations from system’s entire item pool

RecBench – Task 2: Pure Recommend

February 2013 19 / 54

Produce top-k recommendations that match item constraints

RecBench – Task 3: Filtered Recommend

February 2013 20 / 54

Produce top-k recommendations based on blended text-search
and recommendation score

RecBench – Task 4: Blended Recommend

February 2013 21 / 54

Generate a user’s predicted rating for a target item

RecBench – Task 5: Item Prediction

February 2013 22 / 54

Incorporate new item(s) into the system for recommendation

RecBench – Task 6: New Item(s)

February 2013 23 / 54

RecBench: Summary of Results
n  Datasets

q  MovieLens: 10 M movie ratings, 10K movies, and 72K users
q  Netflix Challegne: 100 M movie ratings, 18K movies, and 480K users

n  Tasks 1 & 2 (Initialization & Pure Recommend)
q  PostgresSQL has by far the worst performance
q  Custom DBMS does a good job but not as excellent as MultiLens

n  Tasks 3 & 4 (Filtered & Blended Recommend)
q  CustomDBMS way outperforms Multilens as it takes advantage of its

select & top-k operators
q  PostgresSQL performance in the middle.

n  Tasks 5 & 6 (Item Prediction & New Items)
q  MultiLens outperforms others in Task 5 (a basic component in Task 1)
q  CustomDBMS outperforms others in Task 6 due to the built-in

incrementally maintained statistics

February 2013 24 / 54

Talk Outline

n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Context-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments
Justin J. Levandoski, Mohamed Sarwat, Mohamed F. Mokbel, and Michael D. Ekstrand. " RecStore: An Extensible and Adaptive
Framework for Online Recommender Queries inside the Database Engine". In Proceedings of the International Conference on
Extending Database Technology, EDBT 2012, Berlin, Germany, March 2012

February 2013 25 / 54

RecStore pushes the recommender model building inside the
Database Engine to provide online support and scale up the

computations of existing recommender methods.

RecStore:
A Storage Engine Support for Recommender Systems

n  Adaptivity of RecStore
q  RecStore is adaptive to different system workloads (Query Intensive

vs. Update Intensive)

n  Extensibility of RecStore
q  RecStore is extensible to support many recommendation methods

(e.g., item-based CF, user-based CF).

February 2013 26 / 54

Model
Filter

Intermediate
Filter

Rating
Data

Model Table

Intermediate Store

Recommendation
Queries

A
cc

es
s M

et
ho

ds
 (I

nd
ex

, S
ca

n)

FAST

MEDIUM

SLOW

SLOW

MEDIUM

FAST

Rating Updates

RecStore: Architecture

RecStore

February 2013 27 / 54

Model
Filter

Intermediate
Filter

Rating
Data

Model Table

Intermediate Store

SLOW

MEDIUM

FAST

Rating Updates

RecStore: Query Latency vs. Maintenance Cost

RecStore

Intermediate Store Only

Intermediate Store / Partial Model Store

-Low Latency Recommendation Query.
-High Storage and maintenance Cost.

Materialize-All

-High Latency Recommendation Query
-Low Storage and maintenance Cost.

Materialize-None

-Middle Ground between Materialize-All
and Materialize-None

-Middle Ground between Materialize-All
and Intermediate-Only

-Lies between Partial Model and
Intermediate Only

Partial Intermediate Store / Partial Model Store

February 2013 28 / 54

DEFINE RECSTORE MODEL ItemItemCosine
FROM Ratings R1, Ratings R2
WHERE R1.ItemId <> R2.itemId AND R1.userId = R2.userId

WITH INTERMEDIATE STORE:

 (R1.itemID as item, R2.itemId as rel_itm,
 vector_lenp, vector_lenq, dot_prod, co_rate)

WITH INTERMEDIATE FILTER:
 ALLOW UPDATE WITH My_IntFilterLogic(),
 UPDATE vector_lenp AS vector_lenp + R1.rating * R1.rating,
 UPDATE vector_lenq AS vector_lenp + R2.rating * R2.rating,
 UPDATE dot_prod AS ot_prod + R1.rating * R2.rating,
 UPDATE co_rate AS 1

WITH MODEL STORE:

 (R1.itemId as item, R2.itemId as rel_itm, COMPUTED sim)

WITH MODEL FILTER:
 ALLOW UPDATE WITH My_ModFilterLogic(),
 UPDATE sim AS if (co_rate < 50)
 co_rate * dot_prod / (50*sqrt(vector_lenp)

 * sqrt (vector_lenq));
 else
 co_rate / sqrt(vector_lenp) *
 sqrt(vector_lenp);

Simple SQL to Plug-in a new Recommendation Method

User-based CF

Item-based CF (Cosine)

MyRec

RecStore

DBMS

Item-based CF (Pearson)

Item-based CF (Probabilistic)

RecStore: Defining a Recommender Model

February 2013 29 / 54

/* Find movies rated by REC_USER_X,
* store in temp table usrXMovies */
CREATE TEMP TABLE usrXMovies AS
SELECT R.mid as itemId, R.rating as rating
FROM ratings R
WHERE R.uid = REC_USER_X;

/* Generate predictions using weighted sum */
SELECT M.itm as Candidate Item,

SUM(M.sim * U.rating)/ SUM(M.sim) as Prediction
FROM Model M, usrXMovies U
WHERE M.rel_itm = U.itmId AND

M.itm NOT IN (select itmId FROM usrXMovies)
GROUP BY M.itm ORDER BY Prediction DESC;

Maintain the recommendation Model to efficiently answer
recommendation queries

uid mid rating
1 1 3.5

2 1 5

… … …

itm rel_itm Prediction
1 2 4.0

… … …

… … …

Model

User/item ratings

RecStore: Querying a Recommender Model

February 2013 30 / 54

Talk Outline
n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Location-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments

Justin J. Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F. Mokbel. " LARS: A Location-Aware Recommender
System". In Proceedings of the IEEE International Conference on Data Engineering, ICDE 2012, Washington D.C., April 2012

Mohamed Sarwat, Justin J. Levandoski, Ahmed Eldawy, and Mohamed F. Mokbel. " LARS*: A Scalable and Efficient Location-Aware
Recommender System". IEEE Transactions on Knowledge and Data Engineering, TKDE 2013, To Appear.

February 2013 31 / 54

“Locations” and “Recommendations”

n  Recommender systems rely on the input triple :
(user, item, rating)

q  Recommender systems completely ignore the spatial aspects of both
users and items

n  Adding Location-awareness to Recommender Systems
q  Recommend movies based on the locations of the ratings

n  Adding Recommendation-awareness to Location-based
services
q  Instead of asking about restaurants in a certain area or closest to me,

I can ask a recommender system to suggest few restaurants to me

Do we need to consider “Locations” ?

February 2013 32 / 54

Location Matters:
Netflix Rental Patterns

n  Movie preferences differ based on the user location (zip code)

February 2013 33 / 54

Location Matters:
Top-3 Check-In Destinations in Foursquare

City % of check-ins

Edina 59%

Minneapolis 37%

Edin Prarie 5%

Fousquare users
from Edina tend to
visit venues in …

City % of check-ins

St. Paul 17%

Minneapolis 13

Roseville 10%

City % of check-ins

Brooklyn Park 32%

Robbinsdale 20%

Minneapolis 15% Fousquare users
from Falcon Heights
tend to visit venues in …

Fousquare users
from Robbinsdale tend to
visit venues in …

n  Destination preferences differ based on the user location (zip
code) and the destination location

February 2013 34 / 54

n  We need to go beyond the traditional rating triple (user, item,
rating) to include the following taxonomy:

①  Spatial Rating for Non-spatial Items
o  (user_location, user, item, rating)
o  Example: A user with a certain location is rating a movie
o  Recommendation: Recommend a movie that neighbor users have liked

②  Non-spatial Rating for Spatial Items
o  (user, item_location, item, rating)
o  Example: A user with unknown location is rating a restaurant
o  Recommendation: Recommend a restaurant within a close vicinity

③  Spatial Rating for Spatial Items
o  (user_location, location, item_location, item, rating)
o  Example: A user with a certain location is rating a restaurant

LARS:
A Location-Aware Recommender System

February 2013 35 / 54

(x1, y1)

4

A

5

C

3

B
B

3

C

4

C

4

B

2

(x2, y2)

(x3, y3)
(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)

Cell 1 Cell 2 Cell 3

Build Collaborative
Filtering Model using:

User Item Rating

A 4

C 5

Cell 1

Build Collaborative
Filtering Model using:

User Item Rating

B 3

B 3

C 4

Build Collaborative
Filtering Model using:

User Item Rating

B 4

C 5

Cell 2 Cell 3

1. Partition ratings by user location

2. Build collaborative filtering model for each cell
using only ratings contained within the cell

Cell 1 Cell 2 Cell 3

3. Generate recommendations using
collaborative filtering using the model of
the cell containing querying user

Querying
user

Recommendation List

Spatial User Ratings For Non-Spatial Items

February 2013 36 / 54

Influence Levels

Spatial User Ratings For Non-Spatial Items

User Partitioning

n Smaller cells è More “localized” answer

n Each user can select a personalized
localized level

n Scalability problem in terms of
maintaining large numbers of
recommendation models

n No need to maintain all cells

n  If four cells will end up giving the same
recommendations, merge them.

n  If ratings inside a cell are diverse, split it
n Merging and splitting balance between

localization and storage/maintenance

February 2013 37 / 54

(x1,
y1)

Non-Spatial User Ratings For Spatial Items

n Penalize items based on their
distance from the user.

n Distance from the user is
normalized to the ratings scale
to get the Travel Penalty.

n Use a ranking function that
combines the recommendation
score and travel penalty

n  Incrementally, retrieve items
based on travel penalty, and
calculate the ranking score on
an ad-hoc basis

n Employ an early stopping
condition to minimize the list of
accessed items to get the K
recommended items

Travel Penalty

February 2013 38 / 54

Spatial User Ratings For Spatial Items

+

User Partitioning Travel Penalty

February 2013 39 / 54

Talk Outline
n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Location-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments

Mohamed Sarwat, James Avery, and Mohamed F. Mokbel. " Recathon: A Unified Architecture for Personalized
Recommendation in Database Systems". Under Preperation.

February 2013 40 / 54

Context-Aware Recommendation: Why?

A need for a system that generates
context-aware recommendations

 “Recommend me five books”

 “Recommend me five books,
based on my location”

 “Recommend me five books,
based on my age”

 “Recommend me five books,
based on my job”

 “Recommend me five books,
based on my budget”

February 2013 41 / 54

Recathon:
A Context-Aware Recommender System

n  Same as Indexing:
q  A recommender can be built on one (or more) attribute(s)
q  A recommender can be dropped anytime
q  A recommender is maintained with inserting new items
q  There are different methods of building a recommender

n  Different from Indexing
q  A query needs to explicitly specify which recommender model to use
q  Recommenders are maintained differently based on query and

transaction workload
q  Recommenders can be maintained partially to provide part of the final

answer or fully to directly give the final answer

Main Idea: Treat recommender systems in the
same way as indexing in databases

February 2013 42 / 54

UserID Age City Salary

1 20 Minneapolis 3K

2 35 Saint Paul 4K

3 18 Falcon Heights 3.5K

4 23 Edina 5K

5 31 Minnetonka 10K

ItemID Movie

1 Lord of the Rings

2 Manhattan

3 The Good, the Bad, and the Ugly

UserID ItemID Rating

1 1 3.5

1 3 4.5

3 2 1.5

4 1 5.0

5 1 3.0

CREATE RECOMMENDER RecommenderName
USERS FROM User_Table_Name
ITEMS FROM Items_Table_Name
RATINGS FROM Rating_Table_Name
ATTRIBUTES User_Attributes
USING RecommenderMethod

MovieUsers

MovieTable

MovieRating

Recathon: Creating a Recommender

CREATE RECOMMENDER AgeRec
USERS FROM MovieUsers
ITEMS FROM MovieTable
RATINGS FROM MovieRating
ATTRIBUTES Age
USING ItemBasedCF

CREATE RECOMMENDER AgeCityRec
USERS FROM MovieUsers
ITEMS FROM MovieTable
RATINGS FROM MovieRating
ATTRIBUTES Age, City
USING SVD

February 2013 43 / 54

SELECT ItemID
FROM AgeRec R1
RECOMMEND(10) R1.uid = 1 AND

 R1.age = 20

Recathon: Querying a Recommender

n  Once a recommender is created, a set of intermediate tables
and views are created

n  Tables and views are continuously maintained, based on an
adaptive maintenance technique

n  Recommenders are exposed to Recathon users as views
that can be queried with standard SQL

SELECT ItemID
FROM AgeRec R1
RECOMMEND(10) R1.uid = 1 AND

 R1.age = 20 AND
 City = ‘Edina’

Recommend me a movie based
on my Age

Recommend me a movie based
on my Age & City

February 2013 44 / 54

Talk Outline

n  Background on Recommender Systems

n  DBMS for Recommender Systems

n  RecBench: A Benchmark for Recommender System Architectures

n  RecStore: A Storage Engine Support for Recommender Systems

n  LARS: A Context-Aware Recommender System

n  Recathon: A Context-Aware Recommender System

n  Summary, Commercial Ads, and Acknowledgments

February 2013 45 / 54

Summary

February 2013 46 / 54

Related Publications
n  Papers

q  Mohamed Sarwat, Justin J. Levandoski, Ahmed Eldawy, and Mohamed F. Mokbel. "LARS*: A Scalable and Efficient
Location-Aware Recommender System". IEEE Transactions on Knowledge and Data Engineering, TKDE 2013, To
Appear.

q  Justin J. Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F. Mokbel. " LARS: A Location-Aware
Recommender System". In Proceedings of the IEEE International Conference on Data Engineering, ICDE 2012,
Washington D.C., April 2012

q  Justin J. Levandoski, Mohamed Sarwat, Mohamed F. Mokbel, and Michael D. Ekstrand. " RecStore: An Extensible and
Adaptive Framework for Online Recommender Queries inside the Database Engine". In Proceedings of the
International Conference on Extending Database Technology, EDBT 2012, Berlin, Germany, March 2012

q  Jie Bao, Yu Zheng and Mohamed Mokbel. "Location-based and Preference-Aware Recommendation Using Sparse
Geo-Social Networking Data". In Proceedings of the ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL GIS 2012, Redondo Beach, California, November 2012

q  Justin J. Levandoski, Michael D. Ekstrand, Michael J. Ludwig, Ahmed Eldawy, Mohamed F. Mokbel and John T. Riedl.
" RecBench: Benchmarks for Evaluating Performance of Recommender System Architectures". In Proceedings of the
International Conference on Very Lage Databases, VLDB 2011, Seattle, WA, September 2011

q  Mohamed Sarwat, James Avery, and Mohamed F. Mokbel. " Recathon: A Unified Architecture for Personalized
Recommendation in Database Systems". Under Preparation.

n  Demos
q  Mohamed Sarwat, Jie Bao, Ahmed Eldawy, Justin J. Levandoski, Amr Magdy, and Mohamed F. Mokbel. "Sindbad: A

Location-based Social Networking System". In Proceedings of ACM SIGMOD Conference on Management of Data,
ACM SIGMOD 2012, Scottsdale, AZ, May, 2012.

q  Badrish Chandramouli, Justin J. Levandoski, Ahmed Eldawy and Mohamed F. Mokbel. "StreamRec: A Real-Time
Recommender System". In Proceedings of ACM SIGMOD Conference on Management of Data, ACM SIGMOD 2011,
Athenes, Greece, Jun., 2011.

q  Mohamed Sarwat, James Avery, and Mohamed F. Mokbel. " Recathon: A Unified Architecture for Personalized
Recommendation in Database Systems". Under Preparation.

February 2013 47 / 54

Commercial Ads

February 2013 48 / 54

Operations Indexes

Interact with the system and express your queries in a
simple high level language with built-in spatial support

Spatial high level language

Analyze your spatial data efficiently

Language

Built-in spatial data types

Have all your spatial datasets ready to load in
SpatialHadoop with the built-in spatial data types

Data types

Spatial Indexes

Datasets are organized efficiently using spatial indexes
(Grid or R-tree) that are adapted to MapReduce

Efficient Spatial Operations

Analyze your data on large clusters with built-in spatial
operations that runs efficiently using spatial indexes

Spatial Hadoop

Website: http://spatialhadoop.cs.umn.edu/
Download source code, binary distribution, and instructions

February 2013 49 / 54

MNTG: Web-based Traffic Generator

n Easy-to-generate
traffic data for road
networks
q No need to do the

installation/configuration

q Very easy to get the data,
just clicks

q Works for road networks
in US

q Dedicated server for data
generation

q Email notifications

q Visualization tools

Website: http://mntg.cs.umn.edu

Video: http://www.youtube.com/watch?v=dVP4oc0k9nU

February 2013 50 / 54

Acknowledgment

February 2013 51 / 54

The RecBench, RecStore, LARS, and Recathon Team

James Avery

n  Ph.D. Alumni

Justin Levandoski
(PhD, 2011)

Researcher at Microsoft
Research (MSR) -- Database
Group,
Redmond, USA

n  Current Members: Ph.D. Students

Ahmed Eldawy Mohamed Sarwat

February 2013 52 / 54

Other Group Members

Louai Al-Arabi Abdeltawab Hendawi

n  Ph.D. Alumni

Biplob Debnath
(PhD, 2011)

Researcher,
NEC Labs,
NJ, USA

Mohamed Khalefa
(PhD, 2011)

Assistant Professor,
Alexandria University,
Egypt

n  Current Members: Ph.D. Students

Jie Bao

Chi-Yin Chow
(PhD, 2010)

Assistant Professor
at City University
of Hong Kong,
Hong Kong

Amr Magdy

February 2013 53 / 54

Acknowledgment: Funding
n  NSF-IIS: Towards Spatial Database Management Systems for

Flash Memory Storage. 2012 -2015

n  Microsoft Research. Microsoft Unrestricted Gift, October, 2010

n  NSF- CAREER: Extensible Personalization of Spatial and Spatio-
temporal Database Management Systems. 2010 -2015

n  Microsoft Research. Microsoft Unrestricted Gift, January, 2010

n  Microsoft Research. Microsoft Unrestricted Gift, April, 2009

n  NSF- IIS: Towards Ubiquitous Location Services: Scalability and
Privacy of Location-based Continuous Queries. 2008 -2012

n  NSF- IIS: Preference- And Context-Aware Query Processing for
Location-based Data-based servers. 2008 -2012

n  NSF- CNS: Infrastructure for Research in Spatio-Temporal and
Context-Aware Systems and Applications. 2007 - 2012

February 2013 54 / 54

Thanks

