Performance Management for Cloud Databases via Machine Learning

Olga Papaemmanouil Brandeis University

Outline

Motivation

Offline Learning

Online Learning

Conclusions

Outline

Motivation

Offline Learning

Online Learning

Conclusions

□Cloud Databases

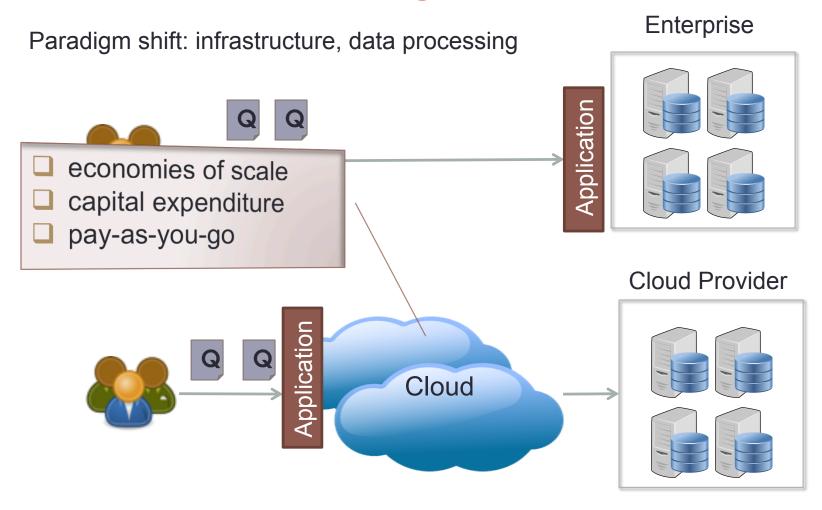
□ Challenges

☐ State-of-the-Art

□Why Machine Learning?

□WiSeDB Advisor

Cloud Computing



Cloud Databases Landscape

Database-as-a-Service

- Managed DBMS
- Relational & NoSQL DBs

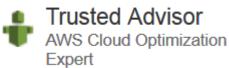
laaS-deployed DBMSs

- Non managed DBMS
- DIY model

laaS-deployed Databases

Management Tools

- Monitoring resources, performance, cost
- Event-driven scaling



Data Management Application

Deployment Challenges

Data Management Application

Custom-built application management tools

Deployment Challenges

SLO (objective metric)

- Query-level: response time
- Workload level: average, total, max, percentile

SLA Fees

Violation penalties

Data Management Application

Cost Management

SLA Management

ORACLE°

Pay-as-you-go Model

Deployment Challenges

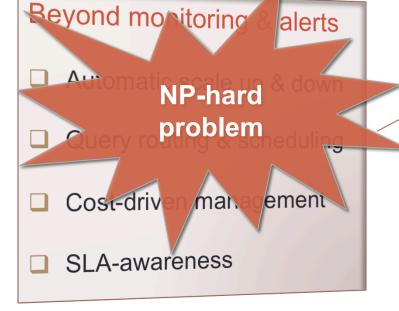
Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling



State-of-the-art

Placement	Provisioning		Scheduling			
PMAX (Liu et al.)	Auto (Rogers et al.)	Dolly (Cecchet et all)	Shepherd (Chi et al.)			
SLATree (Chi et al.)						
Multi-tenant SLOs			iCBS			
(Lang et al.)			(Chi et al.)			
Delphi / Pythia	Hypergraph					
(Elmore et al.)	(Çatalyürek et al.)					
SCOPE	_	zaar	many traditional			
(Chaiken et al.)		rti et al.)	methods			

	Query deadline	Workload deadline
State-of-the-art	Average latency	Percentile deadline
		Piecewise linear

Placement	Provisioning		Scheduling			
PMAX (Liu et al.)	Auto (Rogers et al.)	Dolly (Cecchet et all)	Shepherd (Chi et al.)			
SLATree (Chi et al.)						
Multi-tenant SLOs (Lang et al.)			iCBS (Chi et al.)			
(EG	ing ct ai.)		(On or an)			
Delphi / Pythia (Elmore et al.)	ing ot all)	Hypergr (Çatalyürek	aph			

Wish List

Requirements

Why ML?

End-to-end cost-aware service

(resource provisioning, workload scheduling)

complex interactions

Application-defined performance goals

(per query deadline, percentile, average latency, max latency)

arbitrary goals

Agnostic to workload semantics

arbitrary workloads

WiSeDB Advisor

Offline Learning

- batch scheduling
- performance vs cost exploration

Online Learning

- online scheduling
- performance model free

Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling

Outline

Motivation

Offline Learning

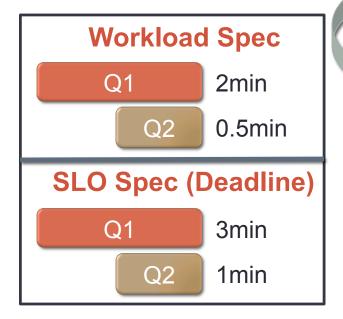
Online Learning

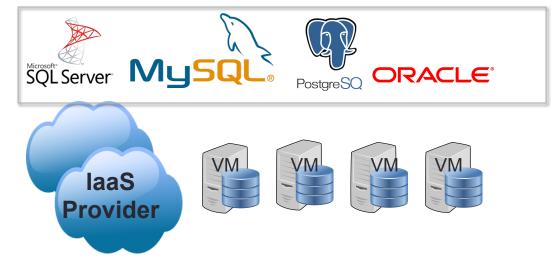
Conclusions

□System Overview

☐ Supervised Learning

☐ Adaptive Learning





Original SLO

Q1 3min, \$0.12/Q1 1min, \$0.2/Q2

Relaxed SLO

Q2 4min, \$0.05/Q1 2min, \$0.1/Q2

Stricter SLO

Q1

2.5min, \$0.15/Q1 Q2 0.7min, \$0.13/Q2

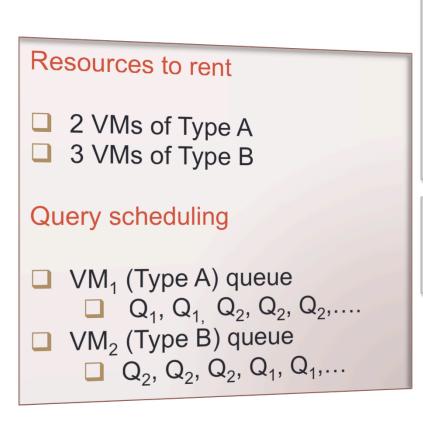
Data Management Application

(Offline) Training

Model Generator

Strategy Recommendations

Relaxed SLO Q1 4min, \$0.05/Q1 Q2 2min, \$0.1/Q2



Data Management Application

Strategy
Recommendations

(Online)
Resource &
Workload
Management

Strategy Generator

Supervised Learning

Model Generator

identify classes

- classes == actions ☐ dispatch a query to a VM
 - ☐ provision new VM

create training data context of actions

- ☐ identify best decisions
- extract cost-related features

generate classifier decision tree

- □ describe (context, action)
- □ verifiable & interpretable

"To be the best, learn from the best" (D. LaCroix)

Model Generator

Offline Learning

identify best <u>decisions</u>

- 1. Generate small workload
- 2. Build decision graph
 - query assignment
 - VM provisioning
- 3. Find optimal (minimum cost) solution (path)
- 4. Extract context of optimal step-by-step decisions

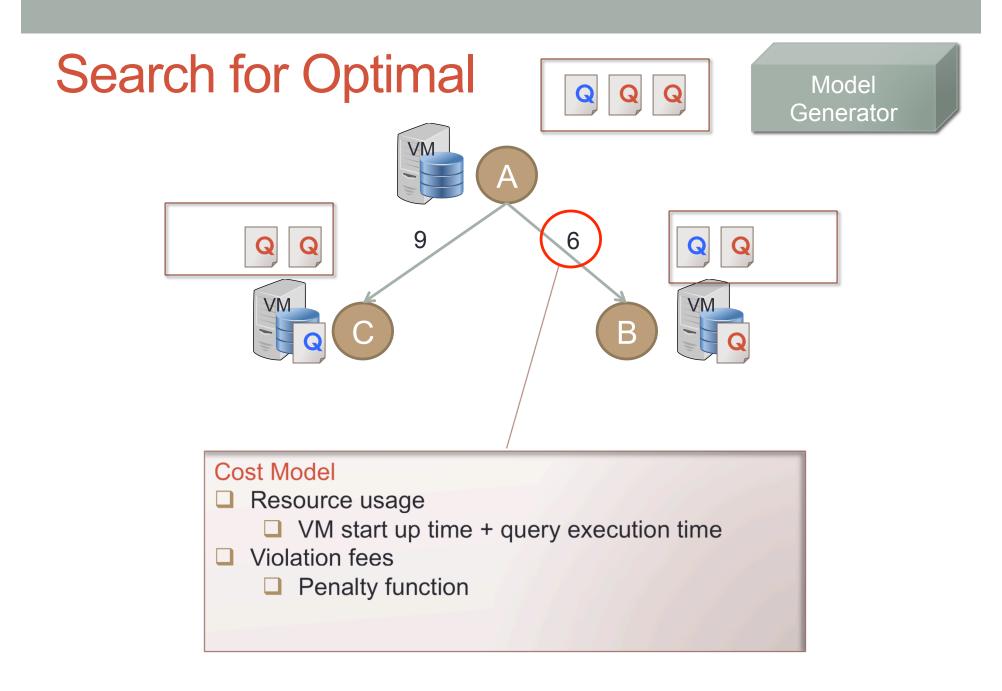
generate model

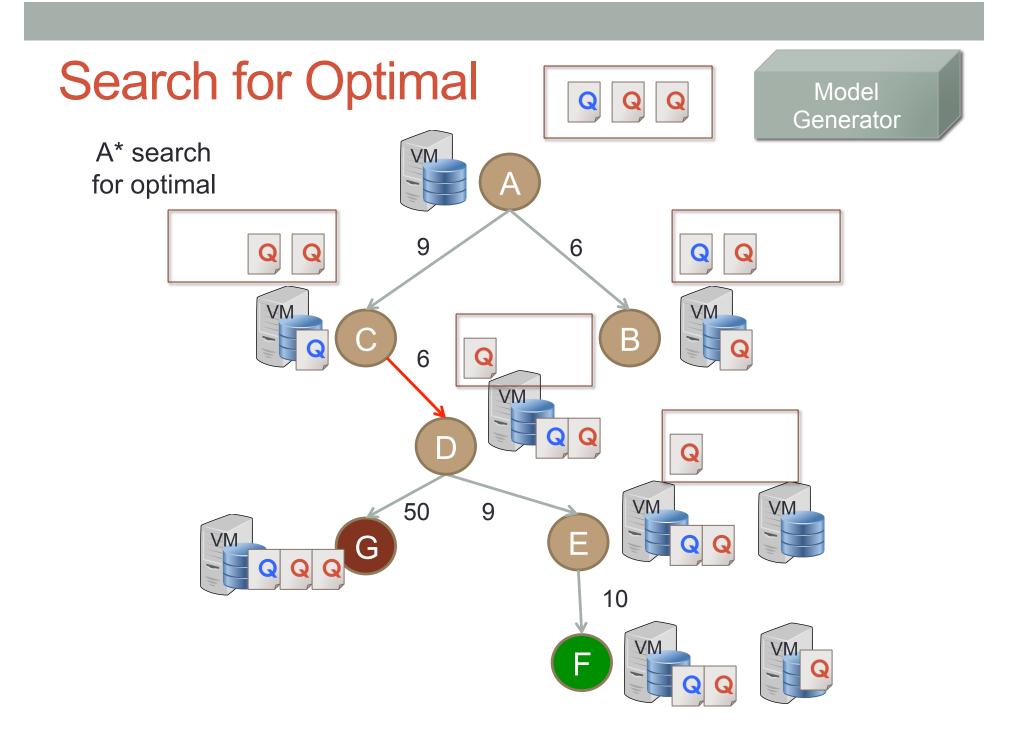
- Repeat for many sample workloads
- 2. Build a training set of (feature, action)
- 3. Train a classifier

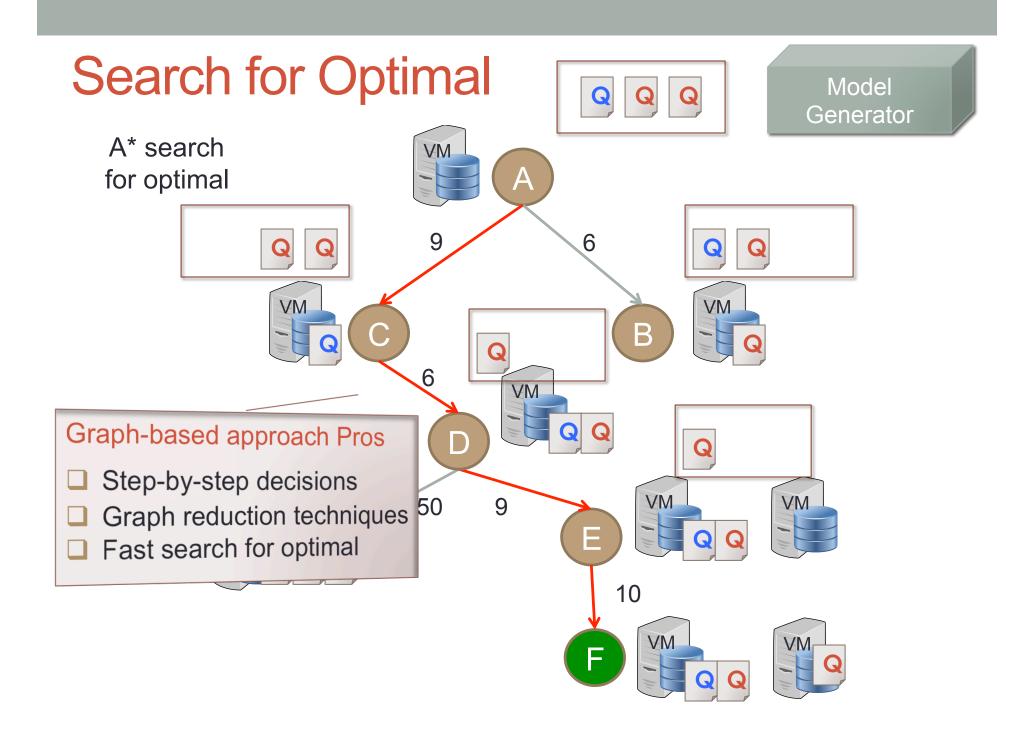
Runtime Scheduling

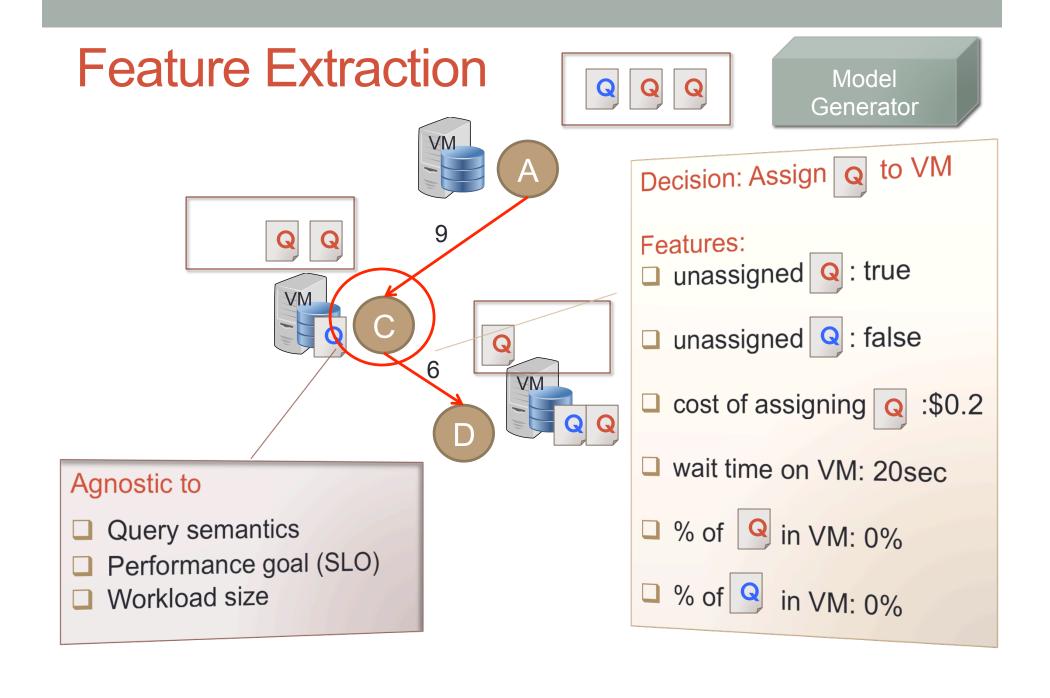
apply model

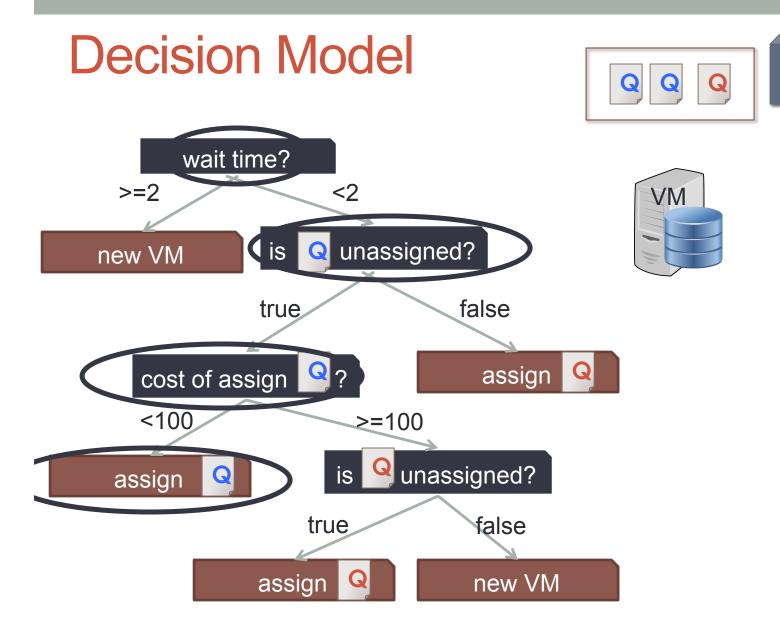
- Use classifier for
 - batch scheduling
 - online scheduling
 - performance vs cost exploration



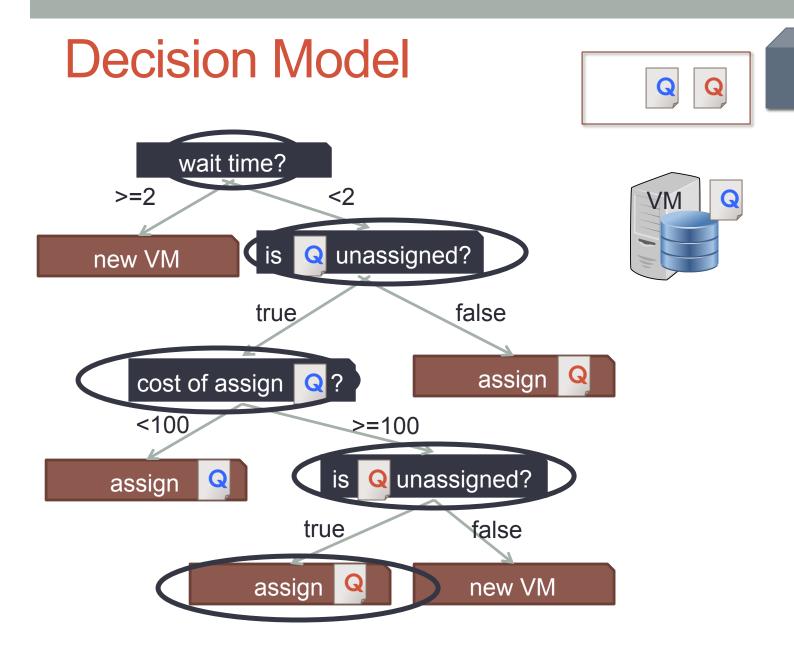






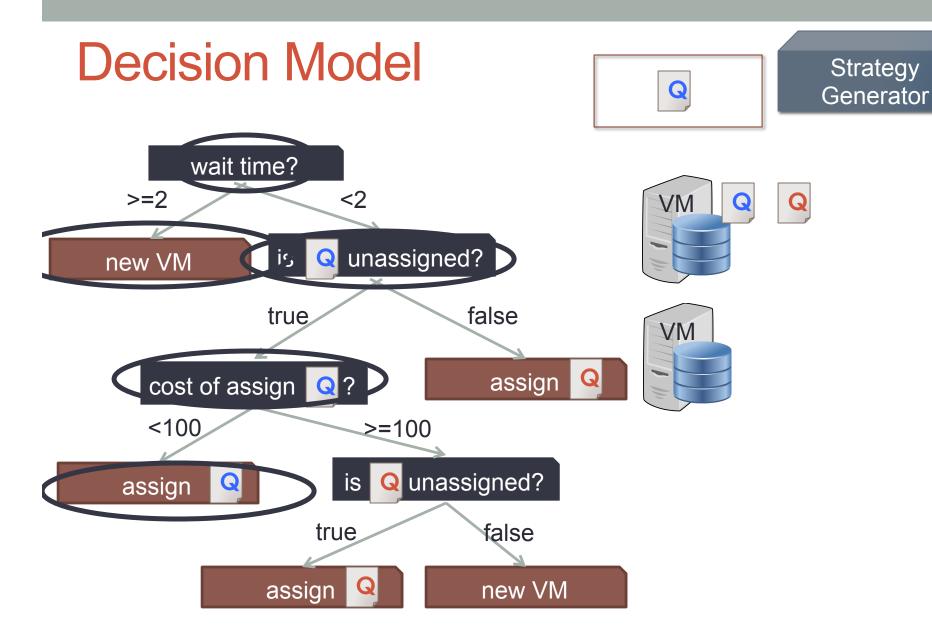


Strategy Generator



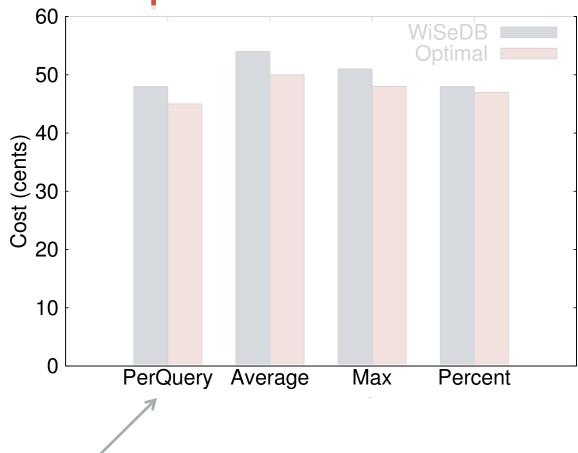
Strategy

Generator



Training Data

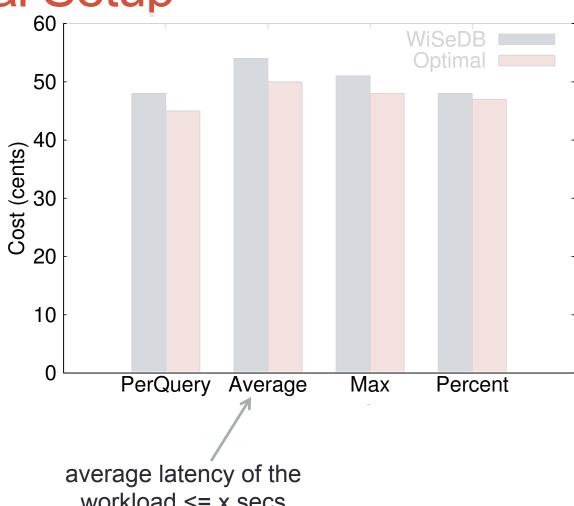
3000 samples 10 TPC-H templates 18 queries/sample



query execution time <=x secs (same deadline per template)

Training Data

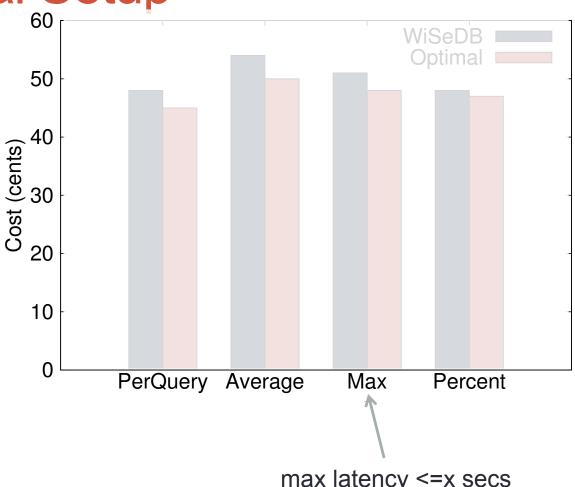
3000 samples 10 TPC-H templates 18 queries/sample



workload <= x secs

Training Data

3000 samples 10 TPC-H templates 18 queries/sample



max latency <=x secs
(longest query in the workload)</pre>

Training Data

3000 samples 10 TPC-H templates 18 queries/sample

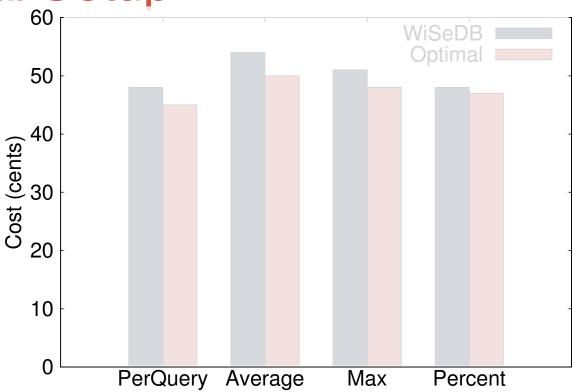
execution time of 90% of queries in the workload <= x secs

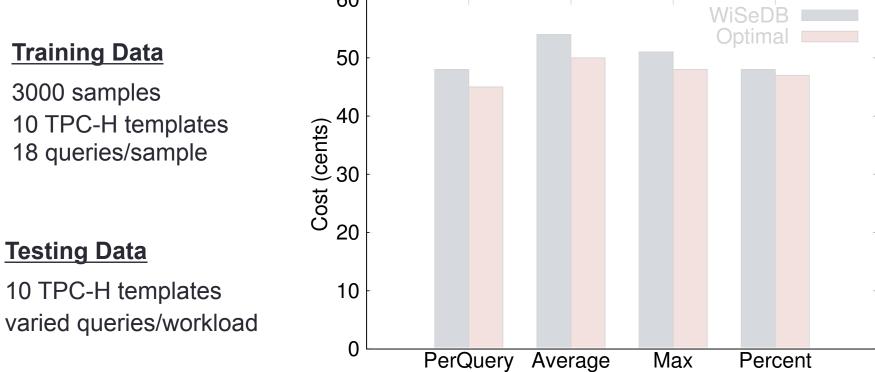
Training Data

3000 samples 10 TPC-H templates 18 queries/sample

Testing Data

10 TPC-H templates varied queries/workload





cost: resource utilization+ penalties

AWS Cloud

fees penalty \$0.01/sec of violation

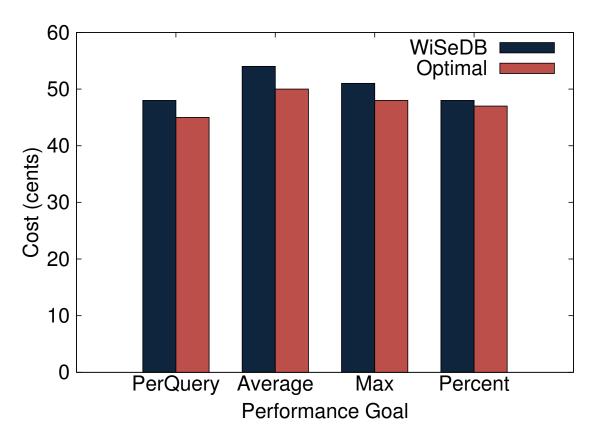
Effectiveness (small workloads)

Training Data

3000 samples 10 TPC-H templates 18 queries/sample

Testing Data

10 TPC-H templates
30 queries/workload
Optimal: Brute force



WiSeDB models are within 8% of the minimum cost solution

Effectiveness (large workloads)

Training Data

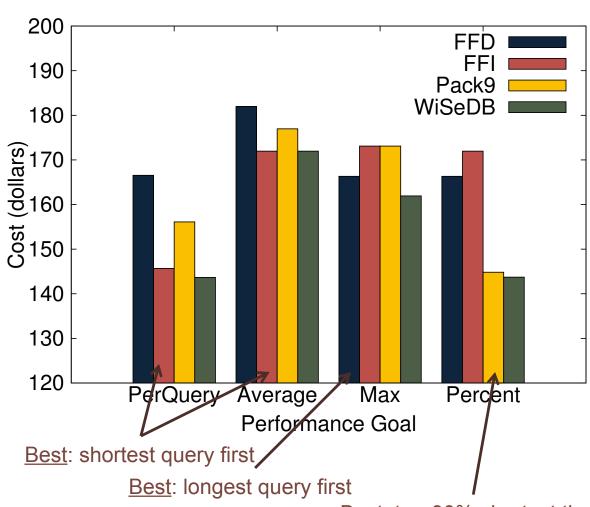
3000 samples 10 TPC-H templates 18 queries/sample

Testing Data

10 TPC-H templates5000 queries/workload

One heuristic cannot fit all

WiSeDB learns the right heuristic



Best: top-90% shortest then 10% longest gueries

Original SLO

3min, \$0.12/Q1 Q2 1min, \$0.2/Q2

Relaxed SLO

4min, \$0.05/Q1 Q2 2min, \$0.1/Q2

Stricter SLO

Q1

2.5min, \$0.15/Q1 Q2 0.7min, \$0.13/Q2

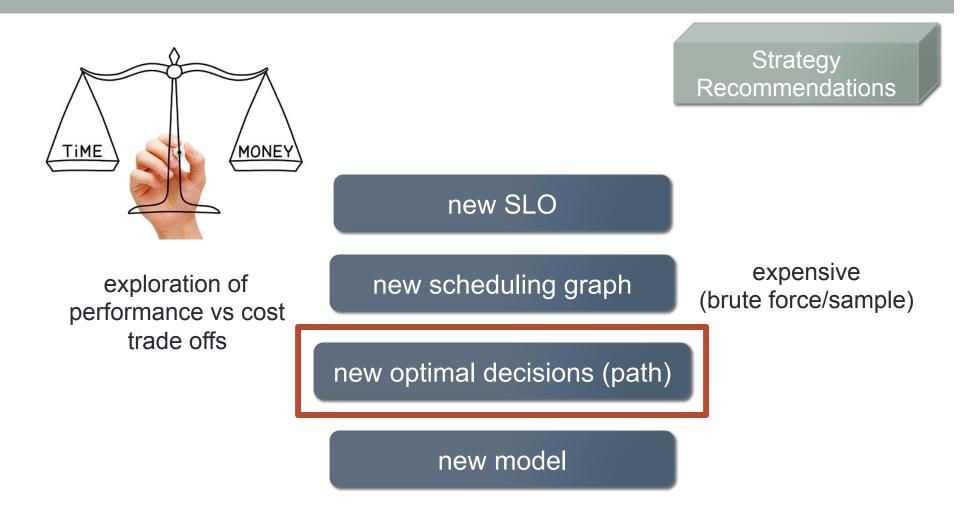
Data Management Application

(Offline) Training

Model Generator

Strategy Recommendations

(Online) **Performance** Management



change only the SLO & reuse the original graph

Adaptive Modeling Strategy Recommendations Fast search with A* best-first search □ tighter SLAs cost more □ old cost < new cost VM \Box h(n) = old optimal cost☐ tighter SLAs give faster search explore-first heuristic: better heuristic $\min \{g(n) + h(n)\}\$ □ no graph generation VM cost so far lower bound for cost to a goal node VM 9 50 10

Adaptive Training

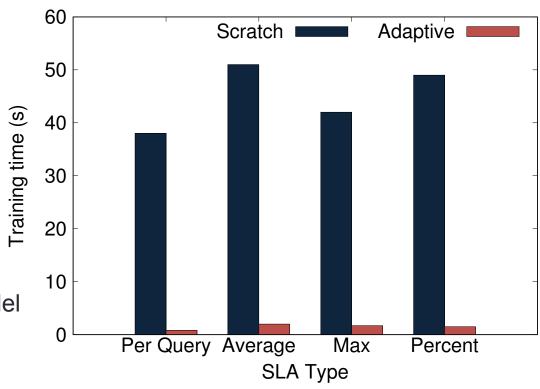
Training Data

3000 samples 10 TPC-H templates 18 queries/sample

15% stricter SLA

Scratch: training a new model

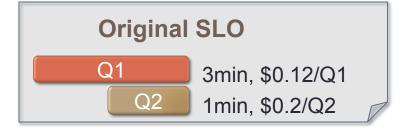
Adaptive: adapting the original model



Adaptive training time is 96-94% less than original training time

Performance vs Cost Exploration

Strategy Recommendations



- □ WiSeDB generates models for 10s of alternative SLOs within secs
 - □ Keeps k-top significant ones
 - □Earth Mover's Distance
 - □ No query execution is required
- Model estimates cost/template & expected performance
 - ☐ Assumes a given cost model
- User picks desired model

Online Scheduling

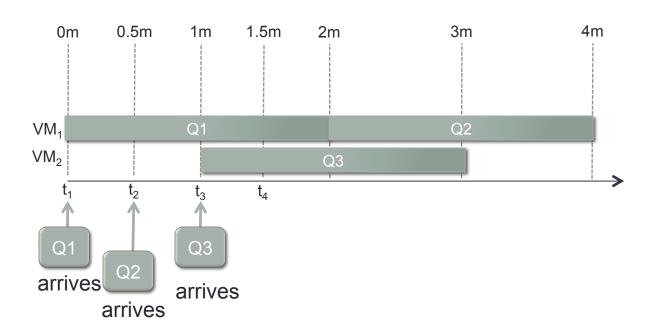
- Scheduling & provisioning for one query at a time
- Batch-based models not effective for online tasks
 - Do not account for query arrival rate/wait times
- WiSeDB approach
 - Generate a new model upon arrival of new query
 - Adapt previous model to reduce training overhead
 - Reuse past models, when feasible

Online Scheduling

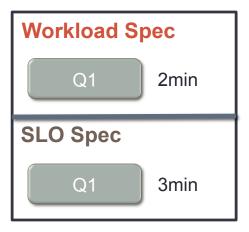
Workload Spec
Q2 (2+0.5)min
Q3 2min

SLO Spec
Q2 3min
Q3 3min

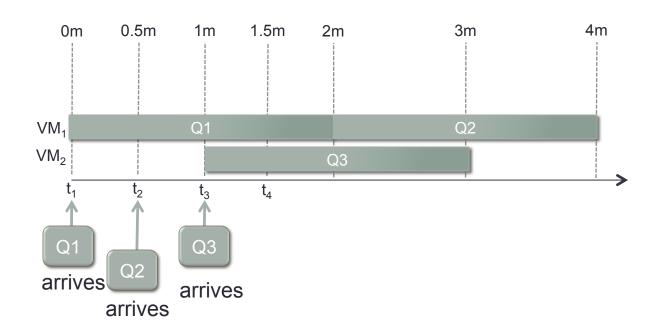
- ☐ training batch: new query + queued queries
- □ add wait time in expected latency
- □ slow for for high arrival rates



Online Scheduling



- <u>Model Reuse</u>: reuse model with similar expected latencies/template
- ☐ <u>Linear Shifting</u>: treat as a tightened SLA

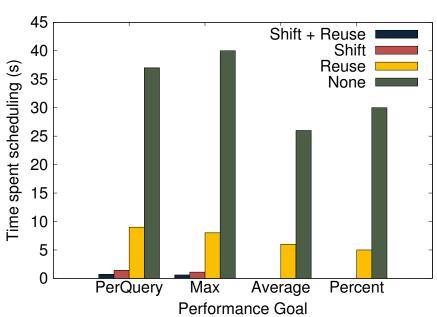


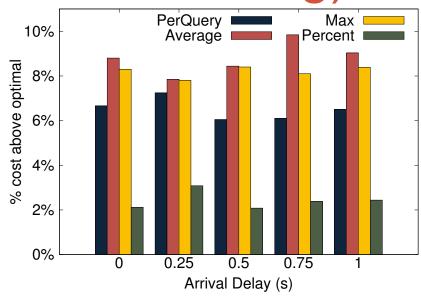
Effectiveness (online scheduling)

Testing Data

30 queries/workload 10% from optimal

Query wait time < 1 sec





WiSeDB can leverage existing models to offer effective scheduling in a online manner

Offline Learning

Advantages

- Abstracts away complex decisions
- Generates custom heuristics per application
- Explores Performance vsCost trade-offs

Data Management Application

(Offline) Training

Model Generator

Strategy Recommendations (Online)
Resource &
Workload
Management

Strategy Generator

Offline Learning

Limitations

- Static models
- Batch scheduling
- Known cost model

Offline) Training (Online) Resource & Workload Management Strategy Recommendations Strategy Generator Conline) Resource & Workload Management

Outline

Motivation

Offline Learning

Online Learning

Conclusions

□Explicit vs Implicit Modeling

□Reinforcement Learning

(Explicit) Performance Prediction

- DBMS-related challenges
 - □ isolated vs. concurrent query execution
 - □ low accuracy for new query types ("templates")
 - extensive off-line training
 - state-of-the-art: 15-20% prediction error
- Cloud-related challenges
 - "noisy neighbors"
 - numerous resource configurations
 - predictions errors accumulation

WiSeDB: Implicit Performance Modeling

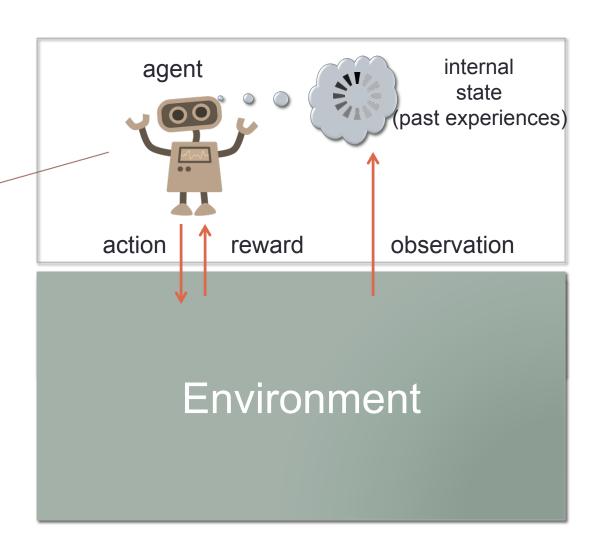
- Explicit performance models are NOT necessary for:
 - monetary cost management
 - □ resource & workload management
 - □offer performance SLA and keep penalties low

Wish List #2

- Implicitly model query latency
 - □ predict *monetary cost* (& violation penalties)
- Online training for dynamic environments
 - ☐ Automatic scaling & workload distribution

Reinforcement Learning

- Continuous learning
- Explicit reward modeling
- Action selection
 - maximize reward



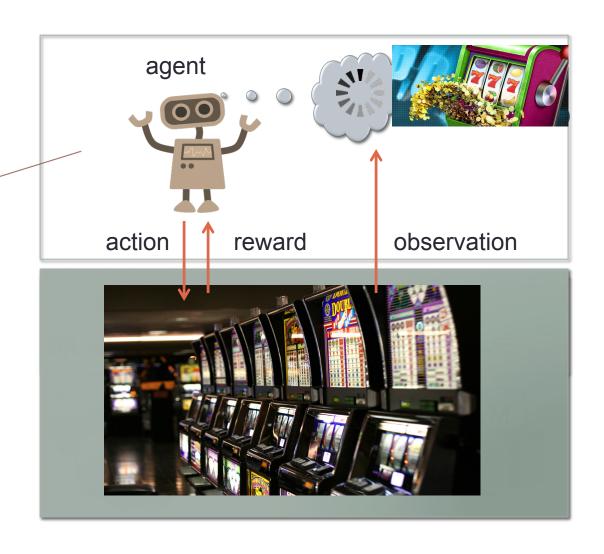
CMABs

(Contextual Multi-Armed Bandits)

Contextual Multi-Armed Bandit Problem

Armed Bandit = Slot Machine

Which slot machine to play (action) so that you walk out with the most \$\$\$ (reward)?

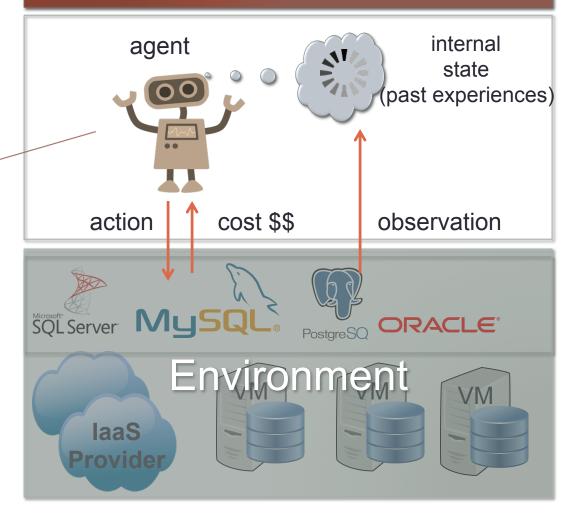


(Contextual Multi-Armed Bandits)

Contextual Multi-Armed Bandit Problem

Slot Machine = Virtual Machine

Which machine to use (new/old) (action) so that you execute the incoming query with minimum cost \$\$ (cost)?



(Contextual Multi-Armed Bandits)

Action (per VM)

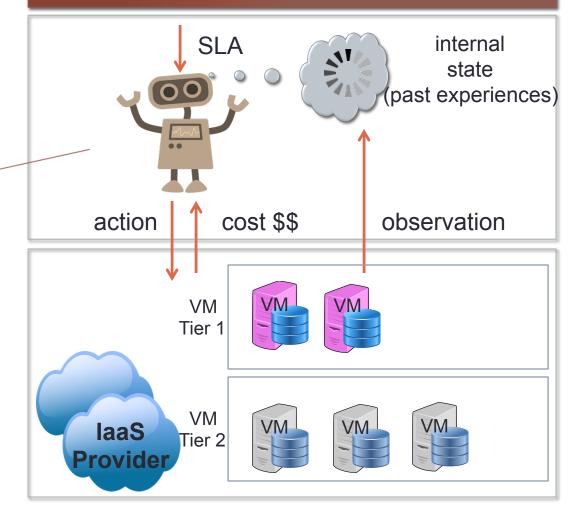
- Accept
- Pass to next /new VM
- Down one VM type

Reward

\$\$ cost: processing &SLA violation penalties

Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)

Action (per VM)

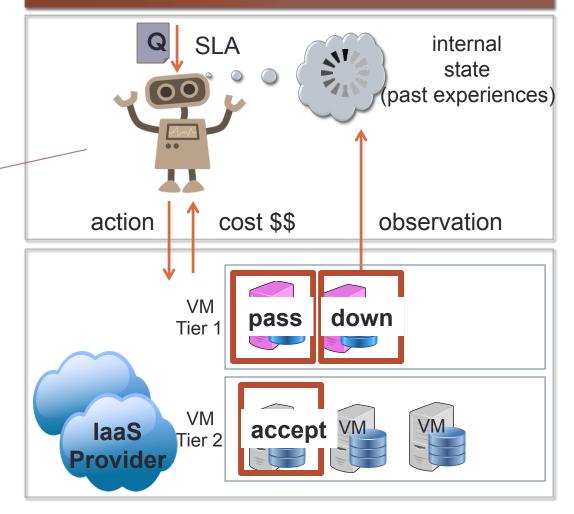
- Accept
- Pass to next /new VM
- Down one VM type

Reward

\$\$ cost: processing &SLA violation penalties

Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)

Action (per VM)

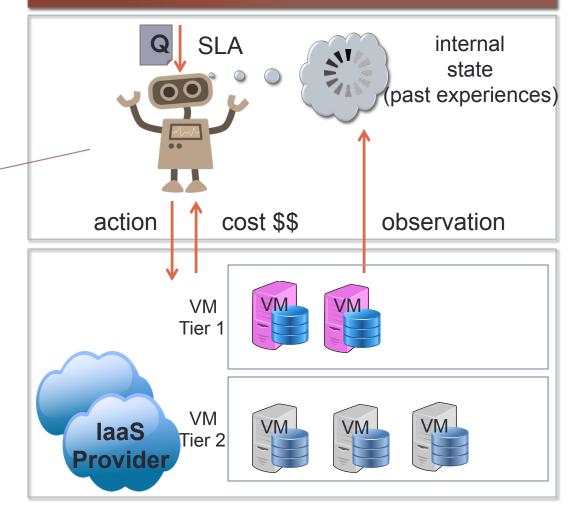
- Accept
- Pass to next /new VM
- Down one VM type

Reward

\$\$ cost: processing &SLA violation penalties

Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)

Action (per VM)

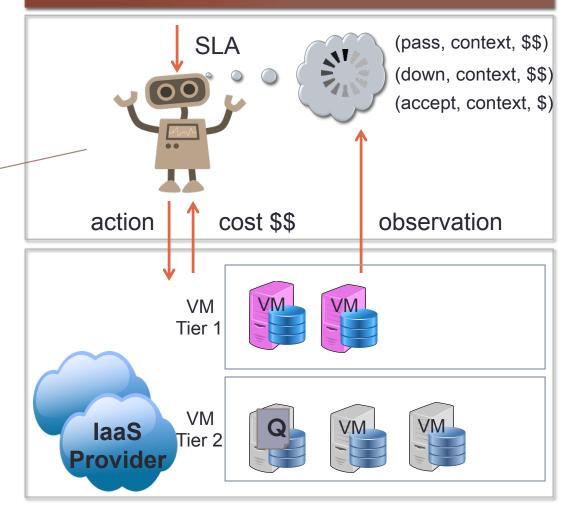
- Accept
- Pass to next /new VM
- Down one VM type

Reward

\$\$ cost: processing &SLA violation penalties

Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)

Action (per VM)

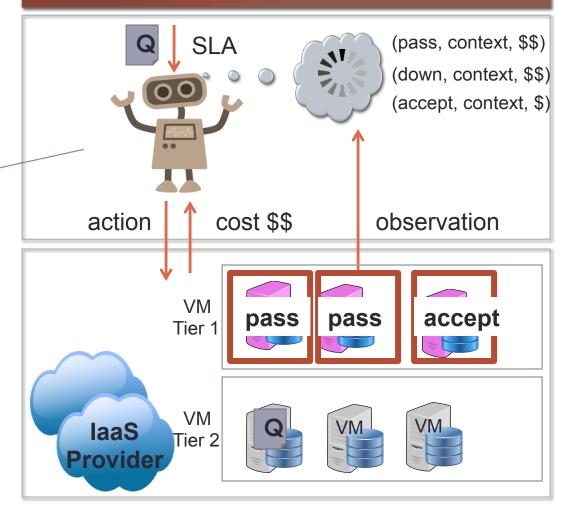
- Accept
- Pass to next /new VM
- Down one VM type

Reward

\$\$ cost: processing & SLA violation penalties

Observation

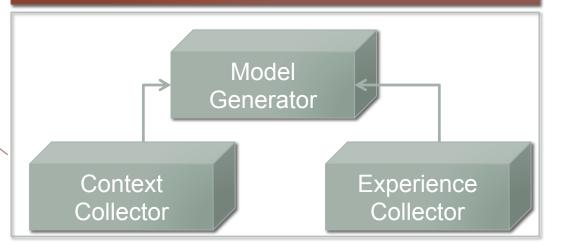
- environment context (query, VM)
- action
- \$\$ cost



Online Learning

Context Features

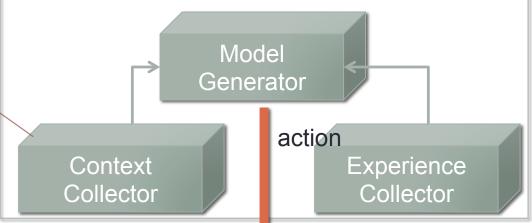
- VM context
 - memory, I/O rate
 - #queries in queue
- Query context
 - tables used
 - # table scans
 - # joins
 - # spill joins
 - cache reads



Online Learning

Action Selection

- Explore opportunities
 - gather information
- Exploit "safe" actions
 - make best decision given current information
- Thompson sampling



Probabilistic Action Selection

- Select action according to probability of being the best
- □ Past observations $D = \{(x_i, a_i, c_i)\}$
 - \square modeled by likelihood function over cost $c: P(c \mid \alpha, x, \theta)$
 - \square θ : parameters of likelihood function: splits of a regression tree
 - \square if (#joins in the query =1) and (queries in the queue =3) => cost = \$\$
- \square Posterior distribution of θ (Bayes rule)

$$P(\theta \mid D) \propto \prod P(c_i \mid a_i, x_i, \theta) P(\theta)$$

 \square $P(\theta)$: prior distribution of parameters θ

perfect decision tree is unknown

 \square Choose action α to minimize cost for perfect model θ^*

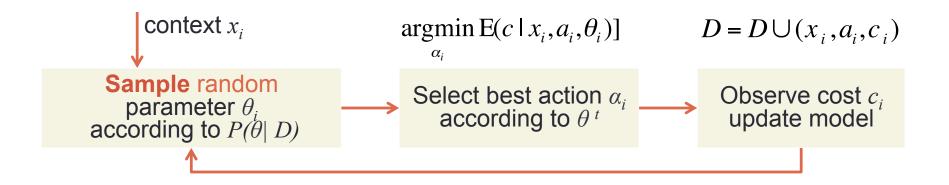
$$\min_{a'} E(c \mid a', x, \theta^*)]$$

Probabilistic Action Selection

- Exploitation: pick action based on mean of posterior $P(\theta|D)$ $\min_{a'} E(c \mid a', x) = \int E(c \mid a', x, \theta) P(\theta \mid D) d\theta$
- Exploration: pick a random action
- □ Thompson Sampling: balance exploration/exploitation

Select <u>random</u> action according to probability that it is the best

WiSeDB Action Selection



Select a <u>random decision tree</u> and pick <u>best action</u> according to it

Update the experience set

Create new model

Effectiveness

Training Data

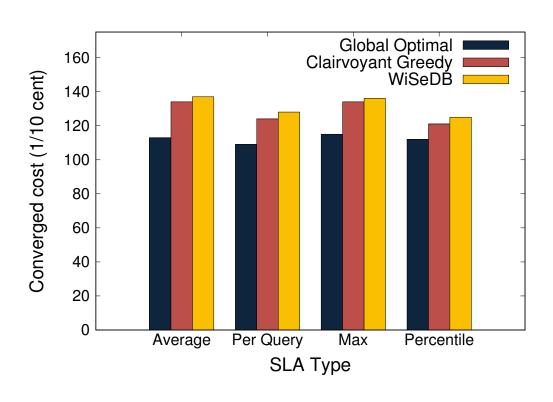
30 query sequence22 TPC-H templatesrepeat until convergence

Optimal: brute force (NP-hard)

Clairvoyant: perfect cost model

Amazon AWS

t2.large, t2.medium, t2.small



WiSeDB models can perform at the same cost as a perfect cost model

Effectiveness (concurrency)

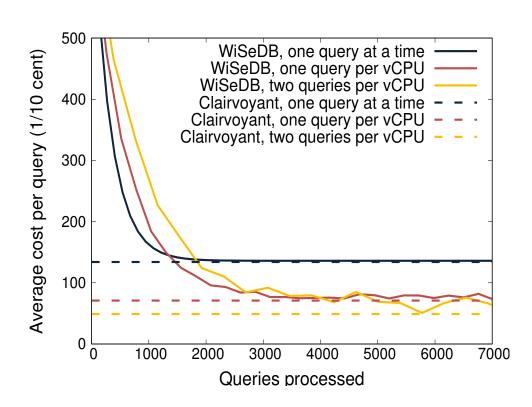
Training Data

22 TPC-H templates 900 queries/hour Poison distribution

Clairvoyant: perfect cost model

One query/vCPU: 1-2 queries

Two queries/vCPU: 2-4 queries



WiSeDB models handles concurrency levels with no pre-training or tuning

Adaptivity

Training Data

13 TPC-H templates 900 queries/hour Poison distribution Max SLO

all new at once: 7 new templates every 2000 queries (after convergence)

new over time: 1 new template every 500 queries



WiSeDB models quickly adapt to new unseen before templates

More details...

[VLDB 2016] WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases, R. Marcus and O. Papaemmanouil (longer version on arXiv)

[CloudDB2016] Workload Management for Cloud Databases via Machine Learning, Ryan Marcus, Olga Papaemmanouil,

[CIDR 2015] XCloud: Extensible Performance Management for Cloud Data Services, Olga Papaemmanouil.

[EDBT 2014] Contender: A Resource Modeling Approach for Concurrent Query Performance Prediction, Jenny Duggan, Olga Papaemmanouil, Ugur Cetintemel, Eli Upfal

[CloudDB 2014] SLA-driven Workload Management for Cloud Databases, Dimokritos Stamatakis, Olga Papaemmanouil.

[DMC 2012] Supporting Extensible Performance SLAs for Cloud Databases, Olga Papaemmanouil.

[SIGMOD 2011] Performance Prediction for Concurrent Database Workloads, Jennie Rogers, Ugur Cetintemel, Olga Papaemmanouil, Eli Upfal.

[SMDB 2010] A Generic Auto-Provisioning Framework for Cloud Databases, Jennie Rogers, Olga Papaemmanouil, Ugur Cetintemel.

Next Steps: Batch Scheduling

- Train once, use "forever"?
 - obsolescence detection and correction via SVMs

Oplinal Indendance Maximum. margin

Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling

Next Steps

Batch Processing (Offline Learning)

- Concurrent query execution
- Hybrid (offline/online) model
- Exploratory Query Execution

Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling

Next Steps: Online Learning

- Query Scheduling
 - query ordering actions
- Shut-down strategy
 - hill-climbing learning
- Training overhead
 - search space reduction

Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling

Next Steps: Tenant Placement

Database-as-a-Service

- Managed DBMS
- Relational & NoSQL DBs
- Cost effective tenantsassignment to resources
 - SLO-awareness

Conclusions

- Cost and SLA management for laaS-deployed DBs are not becoming simpler
- WiSeDB demonstrates how ML techniques can help
 - discover customized solutions for app-specific SLAs
 - □ automate complex application management decisions
 - □ adapt to workload and resource configurations
 - □ **build** systems that perform beyond unaided human heuristics

Our Database Group

Ryan Marcus

Cloud Databases Machine Learning

Kyriaki Dimitriadou

Interactive Data Exploration Benchmarking Optimizers Machine Learning

Zhan Li

Statistical Analysis

THANK YOU

Questions?