# Performance Management for Cloud Databases via Machine Learning

Olga Papaemmanouil Brandeis University

# Outline

Motivation

Offline Learning

Online Learning

Conclusions

# **Outline**

Motivation

Offline Learning

Online Learning

Conclusions

□Cloud Databases

□ Challenges

☐ State-of-the-Art

□Why Machine Learning?

□WiSeDB Advisor

# **Cloud Computing**



# Cloud Databases Landscape

### Database-as-a-Service

- Managed DBMS
- Relational & NoSQL DBs



### laaS-deployed DBMSs

- Non managed DBMS
- DIY model



# laaS-deployed Databases

### **Management Tools**

- Monitoring resources, performance, cost
- Event-driven scaling



















## **Data Management Application**













# Deployment Challenges











## Data Management Application

Custom-built application management tools













# Deployment Challenges











## SLO (objective metric)

- Query-level: response time
- Workload level: average, total, max, percentile

### **SLA Fees**

Violation penalties

## Data Management Application

Cost Management

**SLA** Management





ORACLE°

Pay-as-you-go Model









# Deployment Challenges











## Data Management Application

**Cost Management** 

Resource Provisioning

**SLA Management** 

Workload Scheduling



















# State-of-the-art

| Placement                      | Provisioning               |                              | Scheduling               |  |  |  |
|--------------------------------|----------------------------|------------------------------|--------------------------|--|--|--|
| PMAX<br>(Liu et al.)           | Auto<br>(Rogers<br>et al.) | Dolly<br>(Cecchet<br>et all) | Shepherd<br>(Chi et al.) |  |  |  |
| <b>SLATree</b><br>(Chi et al.) |                            |                              |                          |  |  |  |
| Multi-tenant SLOs              |                            |                              | iCBS                     |  |  |  |
| (Lang et al.)                  |                            |                              | (Chi et al.)             |  |  |  |
| Delphi / Pythia                | Hypergraph                 |                              |                          |  |  |  |
| (Elmore et al.)                | (Çatalyürek et al.)        |                              |                          |  |  |  |
| SCOPE                          | _                          | <b>zaar</b>                  | many traditional         |  |  |  |
| (Chaiken et al.)               |                            | rti et al.)                  | methods                  |  |  |  |

|                  | Query deadline  | Workload deadline   |
|------------------|-----------------|---------------------|
| State-of-the-art | Average latency | Percentile deadline |
|                  |                 | Piecewise linear    |

| Placement                          | Provisioning               |                               | Scheduling               |  |  |  |
|------------------------------------|----------------------------|-------------------------------|--------------------------|--|--|--|
| PMAX<br>(Liu et al.)               | Auto<br>(Rogers<br>et al.) | <b>Dolly</b> (Cecchet et all) | Shepherd<br>(Chi et al.) |  |  |  |
| SLATree<br>(Chi et al.)            |                            |                               |                          |  |  |  |
| Multi-tenant SLOs<br>(Lang et al.) |                            |                               | iCBS<br>(Chi et al.)     |  |  |  |
| (EG                                | ing ct ai.)                |                               | (On or an)               |  |  |  |
| Delphi / Pythia<br>(Elmore et al.) | ing ot all)                | Hypergr<br>(Çatalyürek        | aph                      |  |  |  |

# Wish List

Requirements

Why ML?

End-to-end cost-aware service

(resource provisioning, workload scheduling)

complex interactions

Application-defined performance goals

(per query deadline, percentile, average latency, max latency)

arbitrary goals

Agnostic to workload semantics

arbitrary workloads

## WiSeDB Advisor



## Offline Learning

- batch scheduling
- performance vs cost exploration

### **Online Learning**

- online scheduling
- performance model free

## Data Management Application

**Cost Management** 

Resource Provisioning

**SLA Management** 

Workload Scheduling

















# Outline

Motivation

Offline Learning

Online Learning

Conclusions

□System Overview

☐ Supervised Learning

☐ Adaptive Learning











### **Original SLO**

Q1 3min, \$0.12/Q1 1min, \$0.2/Q2

#### **Relaxed SLO**

Q2 4min, \$0.05/Q1 2min, \$0.1/Q2

### **Stricter SLO**

Q1

2.5min, \$0.15/Q1 Q2 0.7min, \$0.13/Q2

## Data Management Application

(Offline) Training

Model Generator

Strategy Recommendations













# Relaxed SLO Q1 4min, \$0.05/Q1 Q2 2min, \$0.1/Q2







## Data Management Application



Strategy
Recommendations

(Online)
Resource &
Workload
Management

Strategy Generator













# Supervised Learning

Model Generator

identify classes

- classes == actions ☐ dispatch a query to a VM
  - ☐ provision new VM

create training data context of actions

- ☐ identify best decisions
- extract cost-related features

generate classifier decision tree

- □ describe (context, action)
- □ verifiable & interpretable

# "To be the best, learn from the best" (D. LaCroix)

### Model Generator

### **Offline Learning**

## identify best <u>decisions</u>

- 1. Generate small workload
- 2. Build decision graph
  - query assignment
  - VM provisioning
- 3. Find optimal (minimum cost) solution (path)
- 4. Extract context of optimal step-by-step decisions

### generate model

- Repeat for many sample workloads
- 2. Build a training set of (feature, action)
- 3. Train a classifier

### **Runtime Scheduling**

## apply model

- Use classifier for
  - batch scheduling
  - online scheduling
  - performance vs cost exploration











Strategy Generator



Strategy

Generator



### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample



query execution time <=x secs (same deadline per template)

### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample



workload <= x secs

### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample



max latency <=x secs
(longest query in the workload )</pre>

### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample



execution time of 90% of queries in the workload <= x secs

### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample

### **Testing Data**

10 TPC-H templates varied queries/workload





cost: resource utilization+ penalties

### **AWS Cloud**

fees penalty \$0.01/sec of violation

# Effectiveness (small workloads)

### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample

### **Testing Data**

10 TPC-H templates
30 queries/workload
Optimal: Brute force



WiSeDB models are within 8% of the minimum cost solution

# Effectiveness (large workloads)

### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample

### **Testing Data**

10 TPC-H templates5000 queries/workload

One heuristic cannot fit all

WiSeDB learns the right heuristic



Best: top-90% shortest then 10% longest gueries



### **Original SLO**

3min, \$0.12/Q1 Q2 1min, \$0.2/Q2

#### Relaxed SLO

4min, \$0.05/Q1 Q2 2min, \$0.1/Q2

### **Stricter SLO**

Q1

2.5min, \$0.15/Q1 Q2 0.7min, \$0.13/Q2

## Data Management Application

(Offline) Training

Model Generator

Strategy Recommendations

(Online) **Performance** Management

















change only the SLO & reuse the original graph

#### Adaptive Modeling Strategy Recommendations Fast search with A\* best-first search □ tighter SLAs cost more □ old cost < new cost VM $\Box$ h(n) = old optimal cost☐ tighter SLAs give faster search explore-first heuristic: better heuristic $\min \{g(n) + h(n)\}\$ □ no graph generation VM cost so far lower bound for cost to a goal node VM 9 50 10

# **Adaptive Training**

#### **Training Data**

3000 samples 10 TPC-H templates 18 queries/sample

15% stricter SLA

Scratch: training a new model

Adaptive: adapting the original model



Adaptive training time is 96-94% less than original training time

## Performance vs Cost Exploration

Strategy Recommendations







- □ WiSeDB generates models for 10s of alternative SLOs within secs
  - □ Keeps k-top significant ones
    - □Earth Mover's Distance
  - □ No query execution is required
- Model estimates cost/template & expected performance
  - ☐ Assumes a given cost model
- User picks desired model

# Online Scheduling

- Scheduling & provisioning for one query at a time
- Batch-based models not effective for online tasks
  - Do not account for query arrival rate/wait times
- WiSeDB approach
  - Generate a new model upon arrival of new query
  - Adapt previous model to reduce training overhead
  - Reuse past models, when feasible



# Online Scheduling



Workload Spec
Q2 (2+0.5)min
Q3 2min

SLO Spec
Q2 3min
Q3 3min

- ☐ training batch: new query + queued queries
- □ add wait time in expected latency
- □ slow for for high arrival rates





# Online Scheduling



- <u>Model Reuse</u>: reuse model with similar expected latencies/template
- ☐ <u>Linear Shifting</u>: treat as a tightened SLA





# Effectiveness (online scheduling)

#### **Testing Data**

30 queries/workload 10% from optimal

Query wait time < 1 sec





WiSeDB can leverage existing models to offer effective scheduling in a online manner

## Offline Learning



## **Advantages**

- Abstracts away complex decisions
- Generates custom heuristics per application
- Explores Performance vsCost trade-offs

# Data Management Application

(Offline) Training

Model Generator

Strategy Recommendations (Online)
Resource &
Workload
Management

Strategy Generator

















## Offline Learning



#### **Limitations**

- Static models
- Batch scheduling
- Known cost model

# Offline) Training (Online) Resource & Workload Management Strategy Recommendations Strategy Generator Conline) Resource & Workload Management



## **Outline**

Motivation

Offline Learning

Online Learning

Conclusions

□Explicit vs Implicit Modeling

□Reinforcement Learning

## (Explicit) Performance Prediction

- DBMS-related challenges
  - □ isolated vs. concurrent query execution
  - □ low accuracy for new query types ("templates")
  - extensive off-line training
  - state-of-the-art: 15-20% prediction error
- Cloud-related challenges
  - "noisy neighbors"
  - numerous resource configurations
  - predictions errors accumulation

## WiSeDB: Implicit Performance Modeling

- Explicit performance models are NOT necessary for:
  - monetary cost management
  - □ resource & workload management
  - □offer performance SLA and keep penalties low

Wish List #2

- Implicitly model query latency
  - □ predict *monetary cost* ( & violation penalties)
- Online training for dynamic environments
  - ☐ Automatic scaling & workload distribution

## Reinforcement Learning

- Continuous learning
- Explicit reward modeling
- Action selection
  - maximize reward



## **CMABs**

(Contextual Multi-Armed Bandits)

# Contextual Multi-Armed Bandit Problem

Armed Bandit = Slot Machine

Which slot machine to play (action) so that you walk out with the most \$\$\$ (reward)?



(Contextual Multi-Armed Bandits)











# Contextual Multi-Armed Bandit Problem

Slot Machine = Virtual Machine

Which machine to use (new/old) (action) so that you execute the incoming query with minimum cost \$\$ (cost)?



(Contextual Multi-Armed Bandits)











#### Action (per VM)

- Accept
- Pass to next /new VM
- Down one VM type

#### Reward

\$\$ cost: processing &SLA violation penalties

#### Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)









#### Action (per VM)

- Accept
- Pass to next /new VM
- Down one VM type

#### Reward

\$\$ cost: processing &SLA violation penalties

#### Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)









#### Action (per VM)

- Accept
- Pass to next /new VM
- Down one VM type

#### Reward

\$\$ cost: processing &SLA violation penalties

#### Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)









#### Action (per VM)

- Accept
- Pass to next /new VM
- Down one VM type

#### Reward

\$\$ cost: processing &SLA violation penalties

#### Observation

- environment context (query, VM)
- action
- \$\$ cost



(Contextual Multi-Armed Bandits)







#### Action (per VM)

- Accept
- Pass to next /new VM
- Down one VM type

#### Reward

\$\$ cost: processing & SLA violation penalties

#### Observation

- environment context (query, VM)
- action
- \$\$ cost



## **Online Learning**











## **Context Features**

- VM context
  - memory, I/O rate
  - #queries in queue
- Query context
  - tables used
  - # table scans
  - # joins
  - # spill joins
  - cache reads















## **Online Learning**











#### **Action Selection**

- Explore opportunities
  - gather information
- Exploit "safe" actions
  - make best decision given current information
- Thompson sampling















#### **Probabilistic Action Selection**

- Select action according to probability of being the best
- □ Past observations  $D = \{(x_i, a_i, c_i)\}$ 
  - $\square$  modeled by likelihood function over cost  $c: P(c \mid \alpha, x, \theta)$
  - $\square$   $\theta$ : parameters of likelihood function: splits of a regression tree
    - $\square$  if (#joins in the query =1) and (queries in the queue =3) => cost = \$\$
- $\square$  Posterior distribution of  $\theta$  (Bayes rule)

$$P(\theta \mid D) \propto \prod P(c_i \mid a_i, x_i, \theta) P(\theta)$$

 $\square$   $P(\theta)$ : prior distribution of parameters  $\theta$ 

perfect decision tree is unknown



 $\square$  Choose action  $\alpha$  to minimize cost for perfect model  $\theta^*$ 

$$\min_{a'} E(c \mid a', x, \theta^*)]$$

#### **Probabilistic Action Selection**

- Exploitation: pick action based on mean of posterior  $P(\theta|D)$  $\min_{a'} E(c \mid a', x) = \int E(c \mid a', x, \theta) P(\theta \mid D) d\theta$
- Exploration: pick a random action
- □ Thompson Sampling: balance exploration/exploitation

Select <u>random</u> action according to probability that it is the best

#### WiSeDB Action Selection



Select a <u>random decision tree</u> and pick <u>best action</u> according to it

**Update the experience set** 

**Create new model** 

## Effectiveness

#### **Training Data**

30 query sequence22 TPC-H templatesrepeat until convergence

Optimal: brute force (NP-hard)

Clairvoyant: perfect cost model

#### **Amazon AWS**

t2.large, t2.medium, t2.small



WiSeDB models can perform at the same cost as a perfect cost model

# Effectiveness (concurrency)

#### **Training Data**

22 TPC-H templates 900 queries/hour Poison distribution

Clairvoyant: perfect cost model

One query/vCPU: 1-2 queries

Two queries/vCPU: 2-4 queries



WiSeDB models handles concurrency levels with no pre-training or tuning

## Adaptivity

#### **Training Data**

13 TPC-H templates 900 queries/hour Poison distribution Max SLO

all new at once: 7 new templates every 2000 queries (after convergence)

new over time: 1 new template every 500 queries



WiSeDB models quickly adapt to new unseen before templates

## More details...

**[VLDB 2016]** WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases, R. Marcus and O. Papaemmanouil (longer version on arXiv)

[CloudDB2016] Workload Management for Cloud Databases via Machine Learning, Ryan Marcus, Olga Papaemmanouil,

[CIDR 2015] XCloud: Extensible Performance Management for Cloud Data Services, Olga Papaemmanouil.

[EDBT 2014] Contender: A Resource Modeling Approach for Concurrent Query Performance Prediction, Jenny Duggan, Olga Papaemmanouil, Ugur Cetintemel, Eli Upfal

[CloudDB 2014] SLA-driven Workload Management for Cloud Databases, Dimokritos Stamatakis, Olga Papaemmanouil.

[DMC 2012] Supporting Extensible Performance SLAs for Cloud Databases, Olga Papaemmanouil.

[SIGMOD 2011] Performance Prediction for Concurrent Database Workloads, Jennie Rogers, Ugur Cetintemel, Olga Papaemmanouil, Eli Upfal.

**[SMDB 2010]** A Generic Auto-Provisioning Framework for Cloud Databases, Jennie Rogers, Olga Papaemmanouil, Ugur Cetintemel.

# Next Steps: Batch Scheduling



- Train once, use "forever"?
  - obsolescence detection and correction via SVMs

# Oplinal Indendance Maximum. margin

#### Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling

















## Next Steps

# **Batch Processing** (Offline Learning)

- Concurrent query execution
- Hybrid (offline/online) model
- Exploratory Query Execution



#### Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling













# **Next Steps: Online Learning**



- Query Scheduling
  - query ordering actions
- Shut-down strategy
  - hill-climbing learning
- Training overhead
  - search space reduction

#### Data Management Application

Cost Management

Resource Provisioning

SLA Management

Workload Scheduling













## Next Steps: Tenant Placement

#### Database-as-a-Service

- Managed DBMS
- Relational & NoSQL DBs
- Cost effective tenantsassignment to resources
  - SLO-awareness



## Conclusions

- Cost and SLA management for laaS-deployed DBs are not becoming simpler
- WiSeDB demonstrates how ML techniques can help
  - discover customized solutions for app-specific SLAs
  - □ automate complex application management decisions
  - □ adapt to workload and resource configurations
  - □ **build** systems that perform beyond unaided human heuristics

# Our Database Group



**Ryan Marcus** 

**Cloud Databases** Machine Learning



**Kyriaki Dimitriadou** 

Interactive Data Exploration Benchmarking Optimizers Machine Learning



**Zhan Li** 

Statistical Analysis

# THANK YOU

Questions?