Evolving the Architecture
of Sgl Server

Paul Larson, Microsoft Research

Microsoft

Research

Time travel back to circa 1980

* Typical machine was VAX 11/780
1 MIPS CPU with 1KB of cache memory
8 MB memory (maximum)

80 MB disk drives, 1 MB/second transfer rate
$250K purchase price!

* Basic DBMS architecture established T
* Rows, pages, B-trees, buffer pools, lock manager,

e Still using the same basic architecture!

Buffer: efefe]!

But hardware has evolved dramatically

USS per GB of PC class memory

Source: www.jcmit.com/memoryprice.htm

No of cores/socket over time

[y
o

1000000

100000

10000

1000

Cores per socket
(@) N H (@) (0]

100
2004 2005 2006 2007 2008 2009
10 . .
Year of introduction
1

1990 1995 2000 2005 2010 Mainstream High end

Shrinking memory prices Stalling clock rates but more and
more cores...

Paul Larson, Nov 2013

Workloads evolve too...

SB
A
8
6 [OLTP j\
Mixed
4 DW
2

SQL 7.0 SQL 2K SQL 2K5 SQL 2K8

Paul Larson, Nov 2013

Are elephants doomed?

Z=
=

Main-memory DBMSs

/.
(
6! X,) ;
—

Column stores

Paul Larson, Nov 2013

Make the elephant dance!

NE- (69
e
Ve

Rpollo

=X Lo
SQL Server

OK, time to get serious...

* Apollo
e Column store technology integrated into SQL Server
* Targeted for data warehousing workloads
* Firstinstallment in SQL 2012, second in SQL 2014

* Hekaton
* Main-memory database engine integrated into SQL Server
» Targeted for OLTP workloads
* Initial version in SQL 2014

* This talk doesn’t cover
« PDW — SQL Server Parallel Data Warehouse appliance
* SQL Azure —SQL Server in the cloud

What is a column store index?

A B-tree index stores
data row-wise

0

@]

1 c2 _C3

A column store index stores data column-
wise
» Each page stores data from a single column

» Data not stored in sorted order
» Optimized for scans

o

aul Larson, Nov 2013

Project Apollo challenge

* Column stores beat the pants off row stores on DW workloads
* Less disc space due to compression
* Less I/O —read only required columns
* Improved cache utilization
* More efficient vector-wise processing

* Column store technology per se was not the problem

* Old, well understood technology
* Already had a fast in-memory column store (Analysis Services)

* Challenge: How to integrate column store technology into SQL Server

* No changes in customer applications
* Work with all SQL Server features
» Reasonable cost of implementation

Paul Larson, Nov 2013 9

Key design decisions

* Expose column stores as a new index type
* One new keyword in index create statement (COLUMNSTORE)

* No application changes needed!

* Reuse existing mechanisms to reduce implementation cost
* Use Vertipaq column store format and compression
* Use regular SQL Server storage mechanisms
* Use a regular row store for updates and trickle inserts

* Add a new processing mode: batch mode
* Pass large batches of rows between operators

 Store batches column-wise
* Add new operators that process data column-wise

Creating and storing a column store index

| H

Row group 3 |Row group 2 | Row group 1

e =SS S

Encode, \
compress |

9
9

)
Encode,
compress
—

)
Encode,

compress
—

Dictionary Segment Blobs
\ 4 —>aEEED
——— - S
' >
| % |
TEED g’ —SaED
[] g —> I
—— @] >l '
—SaEm
CEE e P
e — — S
— i> —>

11

Update mechanisms

Delete bitmap * Delete bitmap

(B-tree) * B-tree on disk
* Bitmap in memory
aw Row Row |
Group Group Group Delta stores
ERmE= || * Up to 1M rows/store
- _ L N * Created as needed
- * Tuple mover
* Delta store - row group
Detta Delta « Automatically or on demand
Store Store |
—(B=tree) (B-tree) Tuple

mover

Paul Larson, Nov 2013 12

So does it pay off?

* Index compression ratio highly data dependent
e Regular: 2.2X — 23X; archival: 3.6X — 70X

* Fast bulk load: 600GB/hour on 16 core system

* Trickle load rates (single threaded)
* Single row/transaction: 2,944 rows/sec
* 1000 rows/transaction: 34,129 rows/sec

Customer experiences (SQL 2012)

* Bwin
* Time to prepare 50 reports reduced by 92%, 12X
* One report went from 17 min to 3 sec, 340X

* MS People
* Average query time dropped from 220 sec to 66 sec, 3.3X

* Belgacom
* Average query time on 30 queries dropped 3.8X, best was 392X

Where do performance gains come from?

* Reduced I/O

e Read only required columns
* Better compression

* Improved memory utilization
e Only frequently used columns stay in memory
e Compression of column segments

* Batch mode processing
* Far fewer calls between operators
 Better processor cache utilization — fewer memory accesses
» Sequential memory scans
* Fewer instructions per row

Current status

* SQL Server 2012

* Secondary index only, not updateable

* SQL Server 2014

e Updateable column store index

* Can be used as base storage (clustered index)
* Archival compression

* Enhancements to batch mode processing

Hekaton: what and why

* Hekaton is a high performance, memory-optimized
OLTP engine integrated into SQL Server and
architected for modern hardware trends

* Market need for ever higher throughput and lower
latency OLTP at a lower cost

* HW trends demand architectural changes in RDBMS
to meet those demands

Hekaton Architectural Pillars

Main-Memory Designed for High T-SQL Compiled to Integrated into
Optimized Concurrency Machine Code SQL Server

Optimized for in-
memory data

Indexes (hash, range)
exist only in memory

Multi-version optimistic
concurrency control
with full ACID support

Core engine using

» T-SQL compiled to
machine code via C
code generator and
VC

Integrated queries &
transactions
Integrated HA and
backup/restore

Familiar
manageability and
development
experience

No buffer pool
Stream-based storage
(log and checkpoints)

lock-free algorithms
No lock manager,
latches or spinlocks

Invoking a procedure
is just a DLL entry-
point

Aggressive
optimizations @

Steadily declining Many-core Stalling CPU clock
memory price processors rate

Paul Larson, Nov 2013 17

Hekaton does not use partitioning

* Partitioning is a popular design choice
* Partition database by core
* Run transactions serially within each partition
* Cross-partition transactions problematic and add overhead

e Partitioning causes unpredictable performance

* Great performance with few or no cross—partition transactions
* Performance falls off a cliff as cross-partition transactions increase

* But many workloads are not partitionable

* SQL Server used for many different workloads
e Can’t ship a solution with unpredictable performance

Data structures for high concurrency

1. Avoid global shared data structures
* Frequently become bottlenecks
* Example, no lock manager

2. Avoid serial execution like the plague
« Amdahl’s law strikes hard on machines with 100’s of cores

3. Avoid creating write-hot data
* Hot spots increase cache coherence traffic

» Hekaton uses only latch-free (lock-free) data structures
* Indexes, transaction map, memory allocator, garbage collector,
* No latches, spin locks, or critical sections in sight

* One single serialization point: get transaction commit timestamp
* One instruction long (Compare and swap)

Storage optimized for main memory

Timestamps | Chain ptrs Name City Row format Range index

on City
Hash index an

Name \/

S| e
100, 200 | ¢ John Paris |
9

EETR
-\M\d

0,150 ¢ Susan Beiiingl

| 50, © Jane Prague |
70,90 Susan | Brussels |

D

 Rows are multi-versioned
* Each row version has a valid time range indicated by two timestamps

« Aversion is visible if transaction read time falls within version’s valid time
« A table can have multiple indexes

Paul Larson, Nov 2013 20

What concurrency control scheme?

* Main target is high-performance OLTP workloads
* Mostly short transactions
* More reads than writes
* Some long running read-only queries

e Multiversioning
* Pro: readers do not interfere with updaters
e Con: more work to create and clean out versions
* Optimistic
* Pro: no overhead for locking, no waiting on locks
* Pro: highly parallelizable

e Con: overhead for validation
* Con: more frequent aborts than for locking

Hekaton transaction phases

Txn
events

Begin

Precommit

Commit

Terminat
e

TXn

phases

Normal
processing

Validation

Post-
processing

Get txn start timestamp, set state to Active

Perform normal processing

* remember read set, scan set, and write set
Get txn end timestamp, set state to Validating
Validate reads and scans
If validation OK, write new versions to redo log
Set txn state to Committed

Fix up version timestamps
* Begin TS in new versions, end TS in old versions

Set txn state to Terminated

Remove from transaction map

Paul Larson, Nov 2013 22

Transaction validation

* Read stability
* Check that each version read is still visible as of the end of the transaction

* Phantom avoidance

* Repeat each scan checking whether new versions have become visible since
the transaction began

* Extent of validation depends on isolation level

* Snapshot isolation: no validation required
* Repeatable read: read stability
* Serializable: read stability, phantom avoidance

Details in “High-Performance concurrency control mechanisms for main-memory databases”
VLDB 2011

U

Non-blocking execution

e Goal: enable highly concurrent execution
* no thread switching, waiting, or spinning during execution of a transaction

* Lead to three design choices

* Use only latch-free data structure
* Multi-version optimistic concurrency control
» Allow certain speculative reads (with commit dependencies)

» Result: great majority of transactions run up to final log write without
ever blocking or waiting

* What else may force a transaction to wait?
e Outstanding commit dependencies before returning a result to the user
(rare)

Throughput (tx/sec)

Scalability under extreme contention
(1000 row table, core Hekaton engine only)

3.5 Work load:

(72}
5 | “®-mv/0 80% read-only txns (10 reads/txn)
= 3.0 “B-1V/L 20% update txns (10 reads+ 2 writes/txn)
S 2.5 |
/ Serializable isolation level
2.0 oy
1s Processor: 2 sockets, 12 cores
1.0 Standard locking but
) optimized for main memory
0.5 -
0.0 | | | 1V/L thruput limited by lock thrashing
0 6 12 18 24

Threads

Paul Larson, Nov 2013 25

Effect of long read-only transactions

7]
c
9
g £20 ——1V
<
L;'- =—MV/L
5
H 15 \ MY/
[-1s]
5
o
¢'=.| 10 | 7;-’ -
3 i.'_\li-\
1] -w
2 05 =~
=)

. \’:\!‘
'_\,:\"‘ -
0.0 "”—ﬁ‘ : —— —— 00—\

0 2 4 6 8 10 12 14 16 18 20 22 24

Active long read transactions

Workload:
e Short txns 10R+ 2W
* Long txns: R 10% of rows

24 threads in total
e X threads running short txns

e 24-X threads running long
txns

* Traditional locking: update performance collapses

* Multiversioning: update performance per thread unaffected

Paul Larson, Nov 2013

26

Hekaton Components and SQL Integration

SQL Server
SQL Components} Hekaton
Security UEEREIC Compiler
- | Query optim. >{ |
Metadata p \
\. y, i N
; J| Query interop /> Runtime
Query optimizer |)
> < Transactions\ s N
Query processor l Storage
| . J
L Storage)< Storage, log

\ J C J

Query and transaction interop

* Regular SQL queries can access Hekaton tables like any other table
* Slower than through a compiled stored procedure

* A query can mix Hekaton tables and regular SQL tables
* A transaction can update both SQL and Hekaton tables

* Crucial feature for customer acceptance
» Greatly simplifies application migration
* Feature completeness —any query against Hekaton tables
* Ad-hoc queries against Hekaton tables
* Queries and transactions across SQL and Hekaton tables

When can old versions be discarded?

Txn: Bob transfers S50 to Alice
Transaction object

. Old versions
Write set

100 @ 150 Bob $250

Txn ID: 250
End TS: 150

State: Terminated

50 | 150 @ Alice $150

New versions
150 oo Bob S200

RN

150 | oo Alice $200

* Can discard the old versions as soon as the read time of the oldest active
transaction is over 150

* Old versions easily found — use pointers in write set
* Two steps: unhook version from all indexes, release record slot

Paul Larson, Nov 2013 29

Hekaton garbage collection

* Non-blocking — runs concurrently with regular processing

* Cooperative — worker threads remove old versions when
encountered

* Incremental - small batches, can be interrupted at any time
* Parallel -- multiple threads can run GC concurrently
* Self-throttling — done by regular worker threads in small batches

* Overhead depends on read/write ratio
* Measured 15% overhead on a very write-heavy workload

e Typically much less

Durability and availability

* Logging changes before transaction commit
* All new versions, keys of old versions in a single IO
* Aborted transactions write nothing to the log

* Checkpoint - maintained by rolling log forward
* Organized for fast, parallel recovery
e Require only sequential 10

* Recovery — rebuild in-memory database from checkpoint and log

» Scan checkpoint files (in parallel), insert records, and update indexes
* Apply tail of the log

 High availability (HA) — based on replicas and automatic failover
* Integrated with AlwaysOn (SQL Server’s HA solution)
* Up to 8 synch and asynch replicas
* Can be used for read-only queries

CPU efficiency for lookups

size in Interpreted Compiled

#lookups
1 0.734 0.040 10.8X

10 0.937 0.051 18.4X
100 2.72 0.150 18.1X

1,000 20.1 1.063 18.9X
10,000 201 9.85 20.4X

* Random lookups in a table with 10M rows
* All data in memory
* Intel Xeon W3520 2.67 GHz

* Performance: 2.7M lookups/sec/core

Paul Larson, Nov 2013

CPU efficiency for updates
—— speedup

size in Interpreted Compiled
#updates

0.910 0.045 20.2X

1.38 0.059 23.4X

8.17 0.260 31.4X

1,000 41.9 1.50 27.9X
10,000 439 14.4 30.5X

 Random updates, 10M rows, one index, snapshot isolation
* Log writes disabled (disk became bottleneck)
* Intel Xeon W3520 2.67 GHz

* Performance: 1.9M updates/sec/core

Paul Larson, Nov 2013

33

Throughput under high contention

System throughput
40,000

©
c 35,000
]
Q 30,000
(72
S
g: 25,000
" 20,000
c
K] 15,000
k3]
© 10,000
e
G 5,000
=
B Number of cores 2 4 6 8 10 12
® SQL with contention 984 1,363 1,645 1,876 2,118 2,312

SQL without contention 1,153 2,157 3,161 4,211 5,093 5,834
H Interop 1,518 2,936 4,273 5,459 6,701 7,709
B Native 7,078 13,892 20,919 26,721 32,507 36,375

 Workload:

* Read txn (50%): read last inserted batch of rows

Throughput improvements

e Converting table but using
interop

* 3.3X higher throughput

* Converting table and stored proc
e 15.7X higher throughput

read/insert into a table with a unique index
* Insert txn (50%): append a batch of 100 rows

Paul Larson, Nov 2013

34

Initial customer experiences

* Bwin — large online betting company

* Application: session state
* Read and updated for every web interaction

e Current max throughput: 15,000 requests/sec
* Throughput with Hekaton: 250,000 requests/sec

* EdgeNet — provides up-to-date inventory status information

» Application: rapid ingestion of inventory data from retailers

* Current max ingestion rate: 7,450 rows/sec

* Hekaton ingestion rate: 126,665 rows/sec

* Allows them to move to continuous, online ingestion from once-a-day batch ingestion

 SBI Liquidity Market — foreign exchange broker

* Application: online calculation of currency prices from aggregate trading data
e Current throughput: 2,812 TPS with 4 sec latency

* Hekaton throughput: 5,313 TPS with <1 sec latency

Status

* Hekaton will ship in SQL Server 2014
* SQL Server 2014 to be released early in 2014

* Second public beta (CTP2) available now

Thank you for your attention.

Questions?

