s >
zﬁ&i‘!ﬁj‘f ——

CONNECTED DATA
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CONNECTED DATA

* Entities + Relationships

* Each entity can have an arbitrary number of relationships
* Extreme skew: huge variance in number of relationships per entity

* Relationships are added on the fly
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SOCIAL NETWORKS
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FINANCIAL DATA / FRAUDS
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INFRASTRUCTURE/loT MONITORING
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DATA LINAGE / PROVENANCE




BIOLOGY
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LEARNING OVER CONNECTED DATA

* Leverage structural properties of data

In [3]:

gLogCpmData = as.matrix(read.table(paste0(
gWorkingDir, "heatmap_test_matrix.txt")))

gLogCpmData

Sample1 | Sample2 ed4 S S S 10 47 48 (S 49 | €
GeneA |30 67 34 98 32 3 79 15 6 18 97 49 12 €
GeneB |80 70 28 51 74 76 85 98 7 64 45 69 1 €
GeneC |43 36 41 24 71 76 91 50 81 57 21 10 75 <
GeneD |88 66 57 8 11 91 7 84 89 63 12 16
GeneE |90 57 73 51 86 32 22 78 84 31 37 40
GeneF |31 87 65 36 64 15 28 89 94 58 58 32
GeneG |1 93 70 64 98 28 65 96 83 2 51 83
GeneH |27 18 37 85 59 61 85 3 16 7 38 14
Genel (85 35 24 73 21 25 45 80 20 94 34 10
GeneK | 16 55 76 60 40 48 85 90 24 44 66 53

France

Knowledge
Graph



MODELING
CONNECTED DATA

GRAPH VS. RELATIONAL



GRAPH vs. RELATIONAL DATA
MANAGEMENT




CONVENTIONAL WISDOM

“You should not reinvent the wheel” “When you have a
hammer everything
looks like a nail”



A PRAGMATIC APPROACH

* |t is not about graph vs. relational data

* It is about graph vs. relational workloads
* Diverse applications and algorithms
* Diverse data structures and APIs

* Graph DBMSs should extend not reinvent
* Eventual convergence of implementations is possible and desirable



OPEN ISSUE: REAL-TIME

* Real-time analytics and queries on dynamic graphs
* User likes product = gets real-time contextual recommendations
* Failure/attack on system = immediate reaction
* Fraud is attempted > blocked before financial loss

* Challenges
* Graph algorithms are complex
* Hopping edges requires random access

* Sophisticated indexing, compression, and partitioning works only on read-only
data



OPEN ISSUE: SCALE-UP ANALYTICS

* Advanced graph analytics are hard to scale out
* Impossible to cleanly partition

* SIMD hardware offers massive scale-up parallelism
* E.g. GPUs, Intel AVX, Intel Phi

* Challenge: hard to leverage SIMD for graph algorithms
* Same problems as before: random access, poor caching, branching, ...
* But on an even larger scale



VISION
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STORING
CONNECTED DATA

AN EVOLUTIONARY APPROACH
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VISION

Transactions, snapshots

Gr'aph Sto rage Graph data structure



RELATIONAL MODEL

* Connected data = dynamic relationships
* New relationships among entities added all the time
* Extreme skew: variance in # of relationships per entity

* Needed: flexible physical schema
* Avoid frequent schema changes!

* Solution: Entity table + Relationship table

Entity 1D Properties Source Entity ID Destination Entity 1D Properties

ENTITY (VERTEX) RELATIONSHIP (EDGE)



WORKLOADS

* Pattern/path based queries Fundamental operation:
* Pattern queries

- Gl EDGE TRAVERSAL,

* Random walks that is,
* Subgraph-based queries JOINS ON EDGE TABLE

* Frequent subgraphs
* Densest subgraphs

* Frontier-based queries
* Shortest path

* Message passing
* PageRank




HASH-JOINING EDGE TABLE

* Build: hash table from edge table

* Probe: Scan through partial results and join/extend

* Typically, after the join scan (traverse) the joined edges

PROBE

Partial results

(e.g. partial query match)

-

JOIN

SCAN

>

Source ID Dest| Prop | Destn Prop n

vl

Source ID Dest| Prop | Dest k  Prop k
v2

(e.g.add vertices to partial match) BUILD HASH TABLE



ADJACENCY LIST REPRESENTATION

* Adjacency lists = edge table optimized for joins

* Graph storage systems: optimized for adjacency lists

SCAN

>

Source ID Dest | Prop | Destn Propn

vl vl
v2 Source ID Dest| Prop | Dest k  Prop k

v2

ADJACENCY LISTS



REAL-TIME WORKLOADS

* Real-time workloads
* Dynamic data: Entities and relationships are added continuously
* Queries and analytics on real-time data

* Examples: monitoring, real-time recommendations

* Graph storage requirements
* Low-latency concurrent (transactional) updates
* Low-latency reads from graph snapshots



TYPICAL PIPELINE

TRANSACTIONAL
SYSTEM

ANALYTICAL
SYSTEM

LOAD
= s RESUIERS

UPDATES —

READ-ONLY
DATA STRUCTURE

DYNAMIC
DATA STRUCTURE +

TRANSACTIONS NO TRANSACTIONS

E.g.: B-Tree, LSMT E.g.: CSR




LIVEGRAPH

REAL-TIME GRAPH
DATA MANAGEMENT

Updates -
Real time queriess ——> —> Results
Snapshot queries \_/

TRANSACTIONAL
EDGE LOG




LIVEGRAPH

* Features
* Embedded graph store
* ACID transactions
* Real-time reads on the live data (no data loading)
* Snapshot isolation: wait-free reads
* Multi-versioned (temporal/incremental queries)

* Key design choices

* Sequential adjacency list scans
e Fast insertions in constant time



DATA STRUCTURE COMPARISON

B+ Trees
« LMDB
* Typical RDBMS data structure

* Log-Structured Merge Trees

* RocksDB
* Skip-list + compressed runs

* Linked lists
* Neo4|

* Transactional Edge Log
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GRAPH REPRESENTATIONS
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MICRO-BENCHMARK

* Seek & scan adjacency list
* Seek: find adjacency list
* Scan: get next edge in the adjacency list

* Data: Kronecker graph that fits in memory of one socket



EDGE SCAN
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CACHE MISSES

cache miss/edge
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BENEFITS OF SEQUENTIAL SCANS

* Better locality
* Cache utilization

* Sequential execution flow

* Leverages CPU pipelining and prefetching
* Reduces the likelihood of branch mispredictions

* Huge gap between pointer-based and sequential data structures

* Total latency improvement
e 20% over LSMT
e |8% over linked list
* 45x% over B+ tree.



TRANSACTIONAL EDGE LOG

* Fixed-size “dynamic” array
* Adapts to skew

* Append-only log

* O(l)

insertion

* Multi-versioning: snapshots and temporal analytics

HEADER
(source

vertex
Vs)

PROPERTY ENTRIES

PROPERTIES
of edge
<Vs VD>

(versionT/ )

|
PROPERTIES
of edge
<Vs VD>
(versionT;)
l

EDGE LOG ENTRIES

A

|
I free space

fixed-size

size = S,

tail

fixed-size

FORMAT: EDGE LOG ENTRY
Destination vertex ID
Creation TS

Invalidation TS

Properties size




TRANSACTIONS + SEQUENTIAL SCANS

e Reads do not need locks

* Writes: double timestamps
* Atomic timestamp access
* 64-bit cache-aligned words

W2: append new entry with W3t scan from tail and search
CreationTS = -TID for previous version of <VsVp>

W : get lock (in index) I il W4: set Ir;va:lidgtic;lnjrs =.TID
I atomically

HEADER
(source
vertex
Vs)

R3: read entry, since TRE > T, and

RIl: dti TRE
get read timestamp InvalidationTS either NULL or negative

from transaction manager R2: . il
(assume TRE >T)) s scan from tai




TRANSACTIONAL WORKLOAD

* LinkBench benchmark
* Facebook’s back-end graph storage workload

* RocksDB: Facebook’s back-end storage

* LiveGraph is a good match for latency-sensitive workloads
* Sub-millisecond tail latency

Storage Optane SSD NAND SSD
System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB
mean 0.0450 0.1278 1.6735 0.0915 0.1804 1.7495
P99 0.2598 0.6423 35.041 0.5995 0.9518 36.783
P999 0.9800 3.5190 74.610 1.2558 4.0214 77.906

Latency (ms)



FRONT-END WORKLOAD

* Nano-second latencies!

Storage Optane SSD NAND SSD

System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB

mean 0.0039 0.0328 0.0109 0.0041 0.0330 0.0110
P99 0.0065 0.0553 0.0162 0.0066 0.0581 0.0162
P999 0.6763 4.8716  2.0703 0.6510 4.8776 2.1120

Latency (ms)



Throughput (req/s)

SCALABILITY

10M -
1M -
100K -
10K -
1K+

-
-
-
-
-
/’
-

# of Clients

1 4 24 64 256



REAL-TIME ANALYTICS

* LDBC Social Network Benchmark (SNB), in-memory
* Short reads, transactional updates (possibly involving multiple objects)

* Complex reads: multi-hop traversals and analytical processing including filters,
aggregations, and joins

System LiveGraph Virtuoso PostgreSQL  TigerGraph
Complex-Only 9,106 292 3.79 185
Overall 9,420 259 52.4 — \

Throughput (ops/s)

717 without Query |4




TRUE REAL-TIME

* Interactive/web analytics must be in the millisecond range!

System LiveGraph Virtuoso PostgreSQL
Complex read 1 7.00 23.101 371
Complex read 13 0.53 2.47 10,419
Short read 2 0.22 3.11 3.31
Updates 0.37 0.93 2.19

Average request latency (ms)



VERTEX-CENTRIC COMPUTATION

* Comparison between
* Running in-database computation with LiveGraph
* Export to Gemini, dedicated system using compressed read-only storage (CSR)

* Longer running time but no data export delay

System LiveGraph  Gemini

ETL - 1520
PageRank 266 156
ConnComp 254 62.6

Running time (ms)



FUTURE WORK

* Scale out to distributed system
* Multi-hop locality/partitioning
* Improved property indexing



QUERYING
CONNECTED DATA

CPU-EFFICIENT PHYSICAL EXECUTION
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VISION

Execution runtime Physical execution




GRAPH PATTERN QUERIES

* Each “hop” is a join in the edge table
* Many graph queries are multi-hop

* This makes query optimization hard
* Cardinality estimation gets harder at every join
* Skew: few vertices have very high degree

* Large intermediate results (e.g. structural or
point-to-point path queries)




WORST-CASE OPTIMALITY (WCO)

* WCO: query complexity is the same as the size of the results
« Example: triangle query should have complexity O(|E|*?)

* Multi-way joins
* Extend partial match by one vertex (not edge) at a time
* Perform two joins at once

* Set intersection

Multi-way join
¥ (2 edges at once)



SET INTERSECTION BOTTLENECK

* Set intersection dominates running time
* Frequent comparisons = frequent branch mispredictions
* Need to fetch lots of data to cache = poor caching

v |1 13]32) 143

v, |4|5/(13|43|143|178| 251




VECTORIZER

* Goal: optimize CPU efficiency
* Cache efficiency: Data compression
* Avoid branch mispredictions
* SIMD operations

* Dynamic data: Cannot afford expensive pre-processing

* Vectorizer: On-the-fly vectorization
e SIMD friendly data structures
* Materialization and reuse of these data structures
* > 3x speedup compared to state of the art graph tools
* > |0x speedup compared to RDBMS



BEYOND GRAPH QUERIES?

Execution runtime Physical execution




FREQUENT SUBGRAPH MINING
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GRAPH EXPLORATION PROCESS

* Enumerate (& prune) embeddings

* Aggregate (e.g.count) by pattern
/

s
Input graph e g
N y 1D g




CHALLENGES

Exponential number of embeddings

# unique embeddings (log-scale)

Size of embedding

55



ARABESQUE

* New execution model & system
* Think Like an Embedding
* Purpose-built for distributed graph mining
* Hadoop-based

e Contributions

* Simple & Generic API

* High performance
* Distributed & Scalable by design
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APl EXAMPLE: CLIQUE FINDING

boolean filter(Embedding e) {
return isClique(e);

Previous

state of the art

J . . (Mace, centralized)
void process(Embedding e) {

output(e); 4,621 LOC
}

boolean shouldExpand(Embedding embedding) {
return embedding.getNumVertices() < maxsize;

}
boolean isClique(Embedding e) {

return e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;
}

57



FREQUENT SUBGRAPH MINING

* First distributed implementation

* 280 lines of java code
* ... Of which 212 compute frequency metric

* Baseline (Grami): 5,443 lines of Java code

58



Previous step

ARABESQUE ARCHITECTURE

Input
Embeddings
size n

split 1

split 4

split 7

split 2

split 1

split 4

split 7

split 5

split 8

split 3

split 2

— | split5

split 8

split 6

split9

split 3

split 6

split 9

59
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Output
Embeddings size
Worker 1 n+1

dajs 1xeN



KEY FUNCTIONALITIES

* Avoiding redundant work
* Compression and management of huge intermediate state
* Load balancing

* Efficient pattern aggregation



LIMITATIONS OF API

* Limited control over exploration
* Not ideal when looking for a specific pattern

* No support for sampling/random traversals

e Related APIs
* NScale, G-Miner, ASAP, Fractal, ...

* Finding the right API is still an active research topic



PARALLEL GRAPH EXPLORATION

* Can we leverage parallel hardware like GPUs!?

* Example: graph learning
* Training uses standard GPU tools for neural networks
* But mining graph features on GPUs is an open problem

* Challenges
* Limited CPU-GPU bandwidth
* Scalability to large graphs
* Random access and skew make SIMD operations ineffective
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PICK THREE?

* Fresh results on dynamic data

* Complex data exploration
* Random access
* Query optimization hard

* Low-latency results






