s >
zﬁ&i‘!ﬁj‘f ——

CONNECTED DATA

Pushing the Envelope of
Data Management Systems

Marco Serafini
UNIVERSITY OF MASSACHUSETTS AMHERST

CONNECTED DATA

* Entities + Relationships

* Each entity can have an arbitrary number of relationships
* Extreme skew: huge variance in number of relationships per entity

* Relationships are added on the fly

o
° o
GO&OO @ ®
°® oA o) . ® ®]
o, © o ®o %o
o) e o] o) o)
o © o
») & ¥ A o
e ® o ot
06) 0® o (o) 00:
r 8 o 9 o
s o 28 A
o R ®5 ¥ 500 e ®
e © 8 o) ®
a\l)

SOCIAL NETWORKS

nlj . ‘el

Q
ﬂL 1 l-“.p

KNOWLEDGE GRAPHS

- - o
/ /Sem\ (Wik"'\\ =
el “@ RDF
Central
A0 — 2 onlon - | Resex
/ -
[Doap- - . /Buda \ u
\ Space Eurécon

[Fickr

| : e
\exporter lCon'erence
KJ i
> ; / " ﬂAE ﬂationel
: % ’ : ‘_’__i_’_,__. 2001 Sc:ence

Audio-
Scrobbler

MySpace
Wrapper

[“ g / v
- : ‘ Ve
/ Pub \. [Geo- i g’:g:ﬁ _ /
\ Guide ‘e) names stat fHersi Virtuoso Pisa | corpis
BBC Sponger |

Programm

P ™
es » %
World ‘ /
Fact-
Magna- 000k /g e
tune S
DBpedia
S Freebase 5
uUs - i) CiteSeer |
Census w3c \ .
Data WordNet NG —_— Hannover
GEO -
UMBEL Species DBLP
Berlin
Open LinkedCT
Cyc Yago Drug
Daily Bank
Pub Meo G D
- enel
Homolo Chem "
Gene KEGG NG v UniProt

\ 'S 1 Pfam ProDom

-
L ntolo:
. OMIM ChEBI gy

Inter

Pro PDB
UniSTS s /

MGI
PubMed

As of March 2009

RECOMMENTADIONS &
PERSONALIZATION

FINANCIAL DATA / FRAUDS

. SYNTHETIC

‘ BANK
ACCOUNT
UNSECURED PERSON 1
CREDIT LOAN
CARD
SYNTHETIC
PERSON 2

D ACCOUNT '
HOLDER 1
PHONE e ,

NUMBER

PHONE
NUMBER

SSN 2

ACCOUNT ADDRESS ACCOUNT
HOLDER 2 HOLDER 3

CREDIT BANK BANK UNSECURED
CARD ACCOUNT ACCOUNT LOAN

INFRASTRUCTURE/loT MONITORING

username:

&
User
Email
username:
Email Bob SENT Rety
SEN" .
Reply S id: 8
7 10 content; ...
id: 10 User 3
content: ... To o
username: < =
7o Davina -
B 3
3 A 3
> & o Z, User To
s Email
Email username:
i TO :
Reply s SENT Charlie id: 6
id: content: ...
content: ... Re Q E?V‘ 10
P
“’7‘0 R
id: 7 Email

content: ...| Reply

DATA LINAGE / PROVENANCE

BIOLOGY

BNLF2b

BSRF1 0
BzLF2 BBRF1 p BDLF1,”
roui O BaLFa
-~ I
TRF1 ~~__4 _-O
BGLF5 ¢EBNA3B
C ‘.

BN LF2a8

BFRF1 LMP2A

LEARNING OVER CONNECTED DATA

* Leverage structural properties of data

In [3]:

gLogCpmData = as.matrix(read.table(paste0(
gWorkingDir, "heatmap_test_matrix.txt")))

gLogCpmData

Sample1 | Sample2 ed4 S S S 10 47 48 (S 49 | €
GeneA |30 67 34 98 32 3 79 15 6 18 97 49 12 €
GeneB |80 70 28 51 74 76 85 98 7 64 45 69 1 €
GeneC |43 36 41 24 71 76 91 50 81 57 21 10 75 <
GeneD |88 66 57 8 11 91 7 84 89 63 12 16
GeneE |90 57 73 51 86 32 22 78 84 31 37 40
GeneF |31 87 65 36 64 15 28 89 94 58 58 32
GeneG |1 93 70 64 98 28 65 96 83 2 51 83
GeneH |27 18 37 85 59 61 85 3 16 7 38 14
Genel (85 35 24 73 21 25 45 80 20 94 34 10
GeneK | 16 55 76 60 40 48 85 90 24 44 66 53

France

Knowledge
Graph

MODELING
CONNECTED DATA

GRAPH VS. RELATIONAL

GRAPH vs. RELATIONAL DATA
MANAGEMENT

CONVENTIONAL WISDOM

“You should not reinvent the wheel” “When you have a
hammer everything
looks like a nail”

A PRAGMATIC APPROACH

* |t is not about graph vs. relational data

* It is about graph vs. relational workloads
* Diverse applications and algorithms
* Diverse data structures and APIs

* Graph DBMSs should extend not reinvent
* Eventual convergence of implementations is possible and desirable

OPEN ISSUE: REAL-TIME

* Real-time analytics and queries on dynamic graphs
* User likes product = gets real-time contextual recommendations
* Failure/attack on system = immediate reaction
* Fraud is attempted > blocked before financial loss

* Challenges
* Graph algorithms are complex
* Hopping edges requires random access

* Sophisticated indexing, compression, and partitioning works only on read-only
data

OPEN ISSUE: SCALE-UP ANALYTICS

* Advanced graph analytics are hard to scale out
* Impossible to cleanly partition

* SIMD hardware offers massive scale-up parallelism
* E.g. GPUs, Intel AVX, Intel Phi

* Challenge: hard to leverage SIMD for graph algorithms
* Same problems as before: random access, poor caching, branching, ...
* But on an even larger scale

VISION

Graph mining Graph learning

‘ Logical graph
exploration plan

Pattern matching

o iialelWalalulaa =0 Physical execution

Transactions, snapshots

G raph Sto rage Graph data structure

STORING
CONNECTED DATA

AN EVOLUTIONARY APPROACH

VISION

Graph mining Graph learning

‘ Logical graph
exploration plan

Pattern matching

o iialelWalalulaa =0 Physical execution

Transactions, snapshots

G raph Sto rage Graph data structure

VISION

Transactions, snapshots

Gr'aph Sto rage Graph data structure

RELATIONAL MODEL

* Connected data = dynamic relationships
* New relationships among entities added all the time
* Extreme skew: variance in # of relationships per entity

* Needed: flexible physical schema
* Avoid frequent schema changes!

* Solution: Entity table + Relationship table

Entity 1D Properties Source Entity ID Destination Entity 1D Properties

ENTITY (VERTEX) RELATIONSHIP (EDGE)

WORKLOADS

* Pattern/path based queries Fundamental operation:
* Pattern queries

- Gl EDGE TRAVERSAL,

* Random walks that is,
* Subgraph-based queries JOINS ON EDGE TABLE

* Frequent subgraphs
* Densest subgraphs

* Frontier-based queries
* Shortest path

* Message passing
* PageRank

HASH-JOINING EDGE TABLE

* Build: hash table from edge table

* Probe: Scan through partial results and join/extend

* Typically, after the join scan (traverse) the joined edges

PROBE

Partial results

(e.g. partial query match)

-

JOIN

SCAN

>

Source ID Dest| Prop | Destn Prop n

vl

Source ID Dest| Prop | Dest k Prop k
v2

(e.g.add vertices to partial match) BUILD HASH TABLE

ADJACENCY LIST REPRESENTATION

* Adjacency lists = edge table optimized for joins

* Graph storage systems: optimized for adjacency lists

SCAN

>

Source ID Dest | Prop | Destn Propn

vl vl
v2 Source ID Dest| Prop | Dest k Prop k

v2

ADJACENCY LISTS

REAL-TIME WORKLOADS

* Real-time workloads
* Dynamic data: Entities and relationships are added continuously
* Queries and analytics on real-time data

* Examples: monitoring, real-time recommendations

* Graph storage requirements
* Low-latency concurrent (transactional) updates
* Low-latency reads from graph snapshots

TYPICAL PIPELINE

TRANSACTIONAL
SYSTEM

ANALYTICAL
SYSTEM

LOAD
= s RESUIERS

UPDATES —

READ-ONLY
DATA STRUCTURE

DYNAMIC
DATA STRUCTURE +

TRANSACTIONS NO TRANSACTIONS

E.g.: B-Tree, LSMT E.g.: CSR

LIVEGRAPH

REAL-TIME GRAPH
DATA MANAGEMENT

Updates -
Real time queriess ——> —> Results
Snapshot queries _/

TRANSACTIONAL
EDGE LOG

LIVEGRAPH

* Features
* Embedded graph store
* ACID transactions
* Real-time reads on the live data (no data loading)
* Snapshot isolation: wait-free reads
* Multi-versioned (temporal/incremental queries)

* Key design choices

* Sequential adjacency list scans
e Fast insertions in constant time

DATA STRUCTURE COMPARISON

B+ Trees
« LMDB
* Typical RDBMS data structure

* Log-Structured Merge Trees

* RocksDB
* Skip-list + compressed runs

* Linked lists
* Neo4|

* Transactional Edge Log

aa A W N B O

GRAPH REPRESENTATIONS

Graph

Vertices

(x

2 3

Edges

0,1

0,2

0,3

0,4 0,5

4,0

4,5

<E,./ S <4> z 3) [23

Input graph

_ s {z]

| " Nu"

13 |

e o Null Null

0,3]0,5

0,2

0,4

2,3

4,0

MAO|WIW[(N|F|&~OC
@ N O O W N PO

m o A WO N = O
oo | O

CSR (read-only)

lo,2] 02| 03] [04]| |05] (23] [40]45)|

{0 {5 |

: * Null

Linked list

B+ tree

MemTable 0,5
Levell [0,1]|0,3 (0,4
Level2 | 0,2 | 0,4 | 2,3 | 0,5
LSMT

MICRO-BENCHMARK

* Seek & scan adjacency list
* Seek: find adjacency list
* Scan: get next edge in the adjacency list

* Data: Kronecker graph that fits in memory of one socket

EDGE SCAN

ns/edge (scan)

1000 -

100

10-

O TEL ¢ B+Tree

LSMT x Linked List

==

. ———%

141

t

|

4 ¢ ¢ ¢ ¢

-1 -1 =] — D

E =

L —

720 2'21

2|22 2|23 2|24 2|25 2|26
graph scale, V

CACHE MISSES

cache miss/edge

o

—i
o

o ©

A A
LLLlll

O TEL ¢ B+Tree
E ® | SMT x Linked List

1 -1 | | 1
- | - |
] = 5—-8 o—7F

I2|2O 2l21 2|22 2|23 2IT2I4 2172.5 226
graph scale, V

BENEFITS OF SEQUENTIAL SCANS

* Better locality
* Cache utilization

* Sequential execution flow

* Leverages CPU pipelining and prefetching
* Reduces the likelihood of branch mispredictions

* Huge gap between pointer-based and sequential data structures

* Total latency improvement
e 20% over LSMT
e |8% over linked list
* 45x% over B+ tree.

TRANSACTIONAL EDGE LOG

* Fixed-size “dynamic” array
* Adapts to skew

* Append-only log

* O(l)

insertion

* Multi-versioning: snapshots and temporal analytics

HEADER
(source

vertex
Vs)

PROPERTY ENTRIES

PROPERTIES
of edge
<Vs VD>

(versionT/)

|
PROPERTIES
of edge
<Vs VD>
(versionT;)
l

EDGE LOG ENTRIES

A

|
I free space

fixed-size

size = S,

tail

fixed-size

FORMAT: EDGE LOG ENTRY
Destination vertex ID
Creation TS

Invalidation TS

Properties size

TRANSACTIONS + SEQUENTIAL SCANS

e Reads do not need locks

* Writes: double timestamps
* Atomic timestamp access
* 64-bit cache-aligned words

W2: append new entry with W3t scan from tail and search
CreationTS = -TID for previous version of <VsVp>

W : get lock (in index) I il W4: set Ir;va:lidgtic;lnjrs =.TID
I atomically

HEADER
(source
vertex
Vs)

R3: read entry, since TRE > T, and

RIl: dti TRE
get read timestamp InvalidationTS either NULL or negative

from transaction manager R2: . il
(assume TRE >T)) s scan from tai

TRANSACTIONAL WORKLOAD

* LinkBench benchmark
* Facebook’s back-end graph storage workload

* RocksDB: Facebook’s back-end storage

* LiveGraph is a good match for latency-sensitive workloads
* Sub-millisecond tail latency

Storage Optane SSD NAND SSD
System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB
mean 0.0450 0.1278 1.6735 0.0915 0.1804 1.7495
P99 0.2598 0.6423 35.041 0.5995 0.9518 36.783
P999 0.9800 3.5190 74.610 1.2558 4.0214 77.906

Latency (ms)

FRONT-END WORKLOAD

* Nano-second latencies!

Storage Optane SSD NAND SSD

System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB

mean 0.0039 0.0328 0.0109 0.0041 0.0330 0.0110
P99 0.0065 0.0553 0.0162 0.0066 0.0581 0.0162
P999 0.6763 4.8716 2.0703 0.6510 4.8776 2.1120

Latency (ms)

Throughput (req/s)

SCALABILITY

10M -
1M -
100K -
10K -
1K+

-
-
-
-
-
/’
-

of Clients

1 4 24 64 256

REAL-TIME ANALYTICS

* LDBC Social Network Benchmark (SNB), in-memory
* Short reads, transactional updates (possibly involving multiple objects)

* Complex reads: multi-hop traversals and analytical processing including filters,
aggregations, and joins

System LiveGraph Virtuoso PostgreSQL TigerGraph
Complex-Only 9,106 292 3.79 185
Overall 9,420 259 52.4 — \

Throughput (ops/s)

717 without Query |4

TRUE REAL-TIME

* Interactive/web analytics must be in the millisecond range!

System LiveGraph Virtuoso PostgreSQL
Complex read 1 7.00 23.101 371
Complex read 13 0.53 2.47 10,419
Short read 2 0.22 3.11 3.31
Updates 0.37 0.93 2.19

Average request latency (ms)

VERTEX-CENTRIC COMPUTATION

* Comparison between
* Running in-database computation with LiveGraph
* Export to Gemini, dedicated system using compressed read-only storage (CSR)

* Longer running time but no data export delay

System LiveGraph Gemini

ETL - 1520
PageRank 266 156
ConnComp 254 62.6

Running time (ms)

FUTURE WORK

* Scale out to distributed system
* Multi-hop locality/partitioning
* Improved property indexing

QUERYING
CONNECTED DATA

CPU-EFFICIENT PHYSICAL EXECUTION

VISION

.. : Real-time &
Graph mining Graph learning Ioi; rZ:Sing

‘ Logical graph
exploration plan

Pattern matching

Execution runtime Physical graph exploration

Transactions, snapshots

G raph Sto rage Graph data structure

VISION

Execution runtime Physical execution

GRAPH PATTERN QUERIES

* Each “hop” is a join in the edge table
* Many graph queries are multi-hop

* This makes query optimization hard
* Cardinality estimation gets harder at every join
* Skew: few vertices have very high degree

* Large intermediate results (e.g. structural or
point-to-point path queries)

WORST-CASE OPTIMALITY (WCO)

* WCO: query complexity is the same as the size of the results
« Example: triangle query should have complexity O(|E|*?)

* Multi-way joins
* Extend partial match by one vertex (not edge) at a time
* Perform two joins at once

* Set intersection

Multi-way join
¥ (2 edges at once)

SET INTERSECTION BOTTLENECK

* Set intersection dominates running time
* Frequent comparisons = frequent branch mispredictions
* Need to fetch lots of data to cache = poor caching

v |1 13]32) 143

v, |4|5/(13|43|143|178| 251

VECTORIZER

* Goal: optimize CPU efficiency
* Cache efficiency: Data compression
* Avoid branch mispredictions
* SIMD operations

* Dynamic data: Cannot afford expensive pre-processing

* Vectorizer: On-the-fly vectorization
e SIMD friendly data structures
* Materialization and reuse of these data structures
* > 3x speedup compared to state of the art graph tools
* > |0x speedup compared to RDBMS

BEYOND GRAPH QUERIES?

Execution runtime Physical execution

FREQUENT SUBGRAPH MINING

L

1

* Search for initially unknown subgraphs that turn out to be frequent
1 's 14
2 A~“$ > \
: 4 U(// 11 10 YN
i) / '

2\
=
\.—k/)
‘E < Is a Frequent Subgraph

6 12

GRAPH EXPLORATION PROCESS

* Enumerate (& prune) embeddings

* Aggregate (e.g.count) by pattern
/

s
Input graph e g
N y 1D g

CHALLENGES

Exponential number of embeddings

unique embeddings (log-scale)

Size of embedding

55

ARABESQUE

* New execution model & system
* Think Like an Embedding
* Purpose-built for distributed graph mining
* Hadoop-based

e Contributions

* Simple & Generic API

* High performance
* Distributed & Scalable by design

OoOoONOULTD WN B

Y Sy
N RO

APl EXAMPLE: CLIQUE FINDING

boolean filter(Embedding e) {
return isClique(e);

Previous

state of the art

J . . (Mace, centralized)
void process(Embedding e) {

output(e); 4,621 LOC
}

boolean shouldExpand(Embedding embedding) {
return embedding.getNumVertices() < maxsize;

}
boolean isClique(Embedding e) {

return e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;
}

57

FREQUENT SUBGRAPH MINING

* First distributed implementation

* 280 lines of java code
* ... Of which 212 compute frequency metric

* Baseline (Grami): 5,443 lines of Java code

58

Previous step

ARABESQUE ARCHITECTURE

Input
Embeddings
size n

split 1

split 4

split 7

split 2

split 1

split 4

split 7

split 5

split 8

split 3

split 2

— | split5

split 8

split 6

split9

split 3

split 6

split 9

59

ClhEDbop

Output
Embeddings size
Worker 1 n+1

dajs 1xeN

KEY FUNCTIONALITIES

* Avoiding redundant work
* Compression and management of huge intermediate state
* Load balancing

* Efficient pattern aggregation

LIMITATIONS OF API

* Limited control over exploration
* Not ideal when looking for a specific pattern

* No support for sampling/random traversals

e Related APIs
* NScale, G-Miner, ASAP, Fractal, ...

* Finding the right API is still an active research topic

PARALLEL GRAPH EXPLORATION

* Can we leverage parallel hardware like GPUs!?

* Example: graph learning
* Training uses standard GPU tools for neural networks
* But mining graph features on GPUs is an open problem

* Challenges
* Limited CPU-GPU bandwidth
* Scalability to large graphs
* Random access and skew make SIMD operations ineffective

VISION

.. : Real-time &
Graph mining Graph learning Ioi; rZ:Sing

‘ Logical graph
exploration plan

Pattern matching

Execution runtime Physical graph exploration

Transactions, snapshots

G raph Sto rage Graph data structure

PICK THREE?

* Fresh results on dynamic data

* Complex data exploration
* Random access
* Query optimization hard

* Low-latency results

