

# CONNECTED DATA

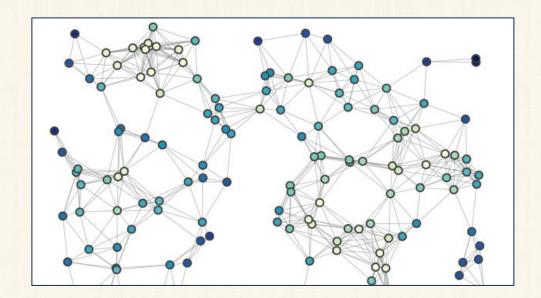
Pushing the Envelope of Data Management Systems

Marco Serafini

UNIVERSITY OF MASSACHUSETTS AMHERST

#### **CONNECTED DATA**

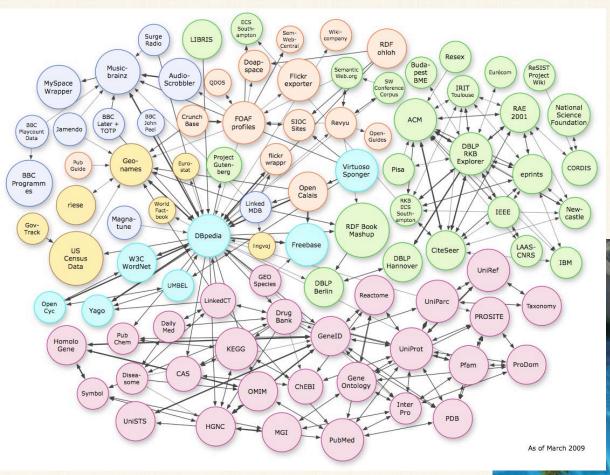
- Entities + Relationships
- Each entity can have an arbitrary number of relationships
  - Extreme skew: huge variance in number of relationships per entity
- Relationships are added on the fly

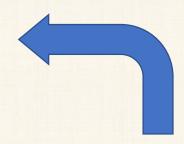


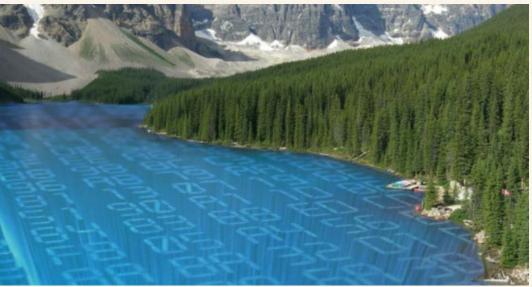
# **SOCIAL NETWORKS**



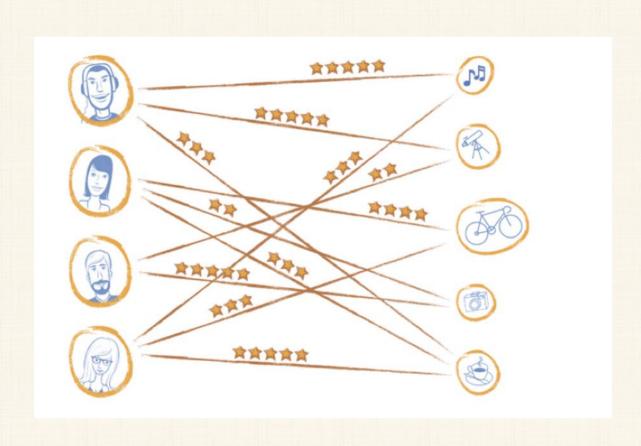
#### **KNOWLEDGE GRAPHS**



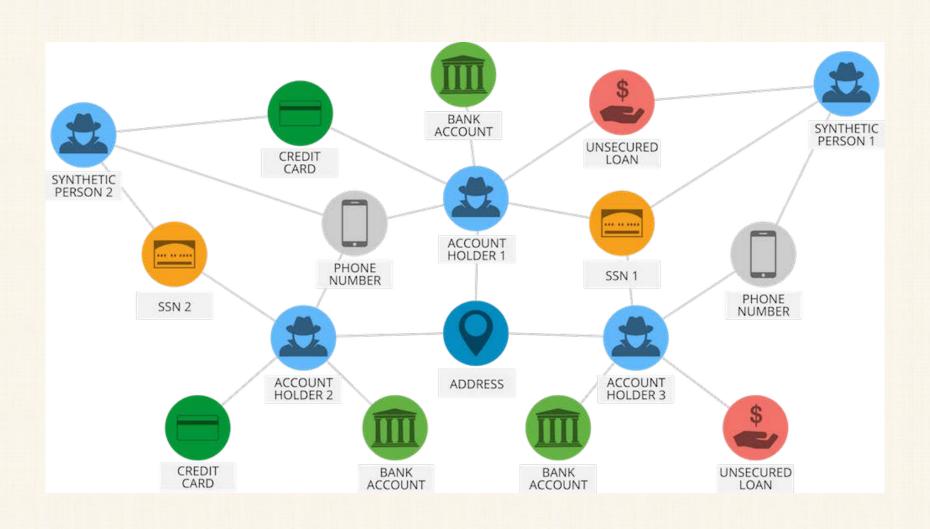




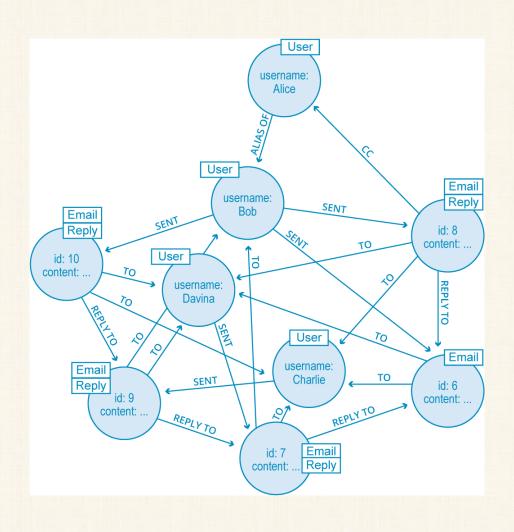
# RECOMMENTADIONS & PERSONALIZATION



#### FINANCIAL DATA / FRAUDS



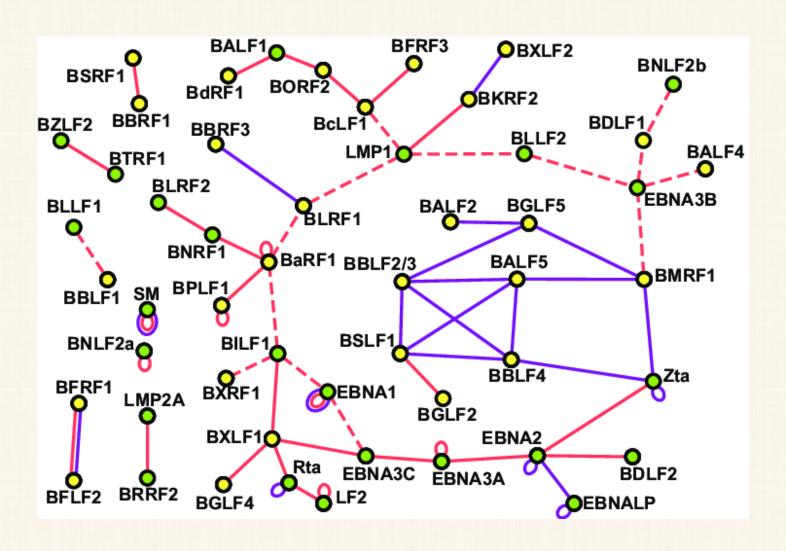
#### INFRASTRUCTURE/IoT MONITORING



### DATA LINAGE / PROVENANCE

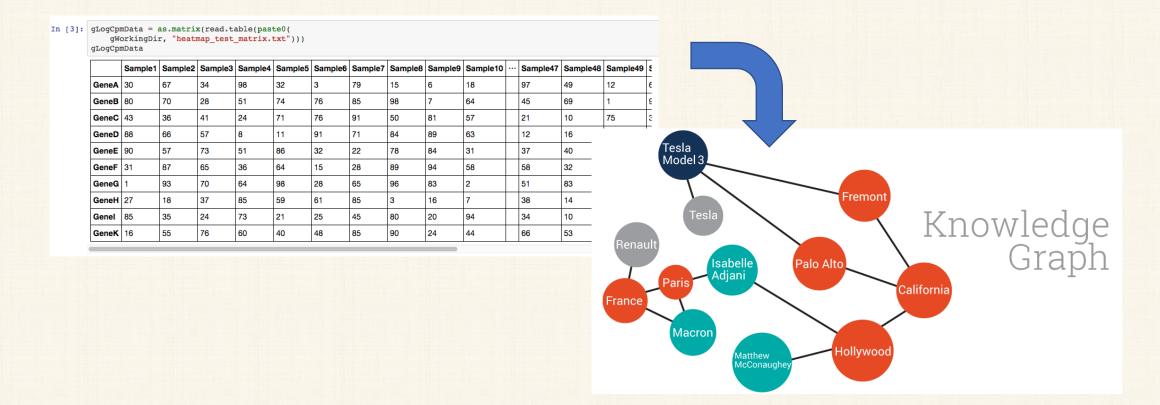


#### **BIOLOGY**



#### LEARNING OVER CONNECTED DATA

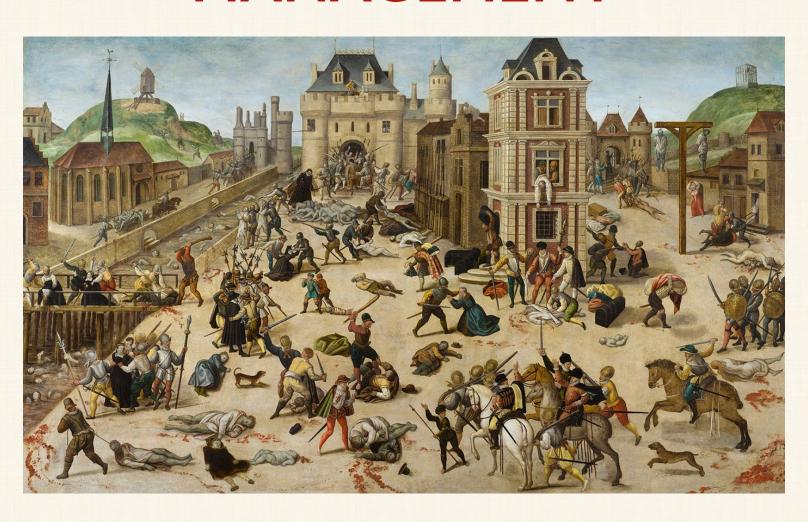
• Leverage structural properties of data



# MODELING CONNECTED DATA

**GRAPH VS. RELATIONAL** 

# GRAPH vs. RELATIONAL DATA MANAGEMENT



#### **CONVENTIONAL WISDOM**



"You should not reinvent the wheel"



"When you have a hammer everything looks like a nail"

#### A PRAGMATIC APPROACH

- It is not about graph vs. relational data
- It is about graph vs. relational workloads
  - Diverse applications and algorithms
  - Diverse data structures and APIs
- Graph DBMSs should extend not reinvent
  - Eventual convergence of implementations is possible and desirable

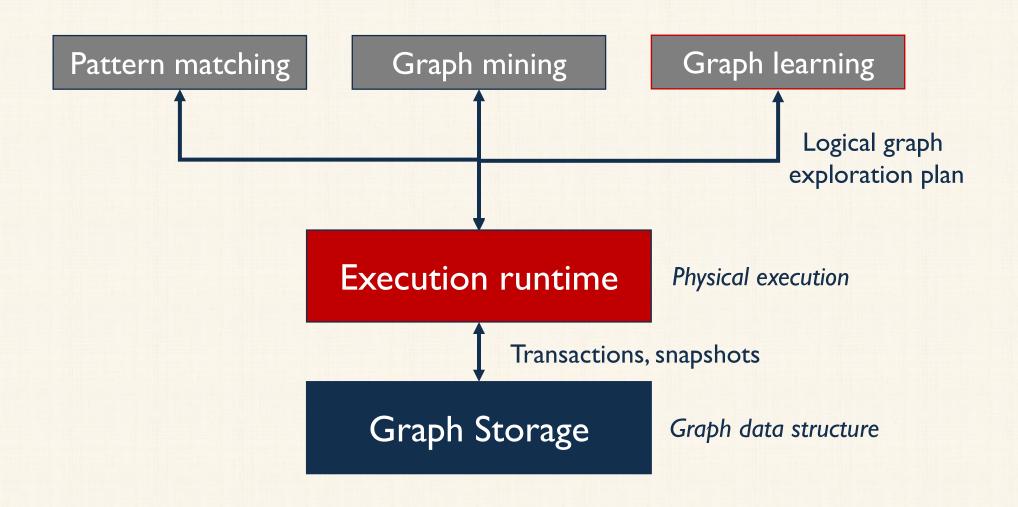
#### **OPEN ISSUE: REAL-TIME**

- Real-time analytics and queries on dynamic graphs
  - User likes product → gets real-time contextual recommendations
  - Failure/attack on system → immediate reaction
  - Fraud is attempted → blocked before financial loss
- Challenges
  - Graph algorithms are complex
  - Hopping edges requires random access
  - Sophisticated indexing, compression, and partitioning works only on read-only data

#### **OPEN ISSUE: SCALE-UP ANALYTICS**

- Advanced graph analytics are hard to scale out
  - Impossible to cleanly partition
- SIMD hardware offers massive scale-up parallelism
  - E.g. GPUs, Intel AVX, Intel Phi
- Challenge: hard to leverage SIMD for graph algorithms
  - Same problems as before: random access, poor caching, branching, ...
  - But on an even larger scale

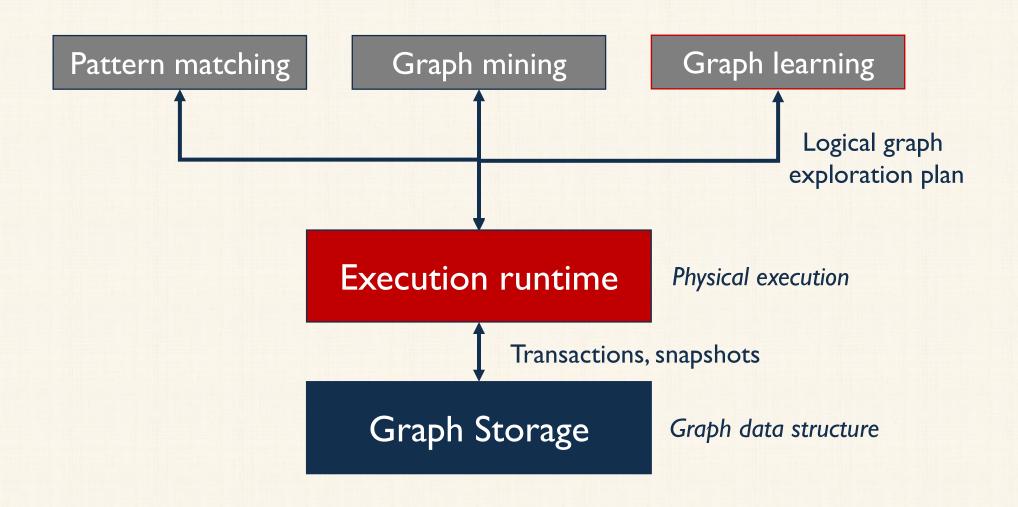
#### **VISION**



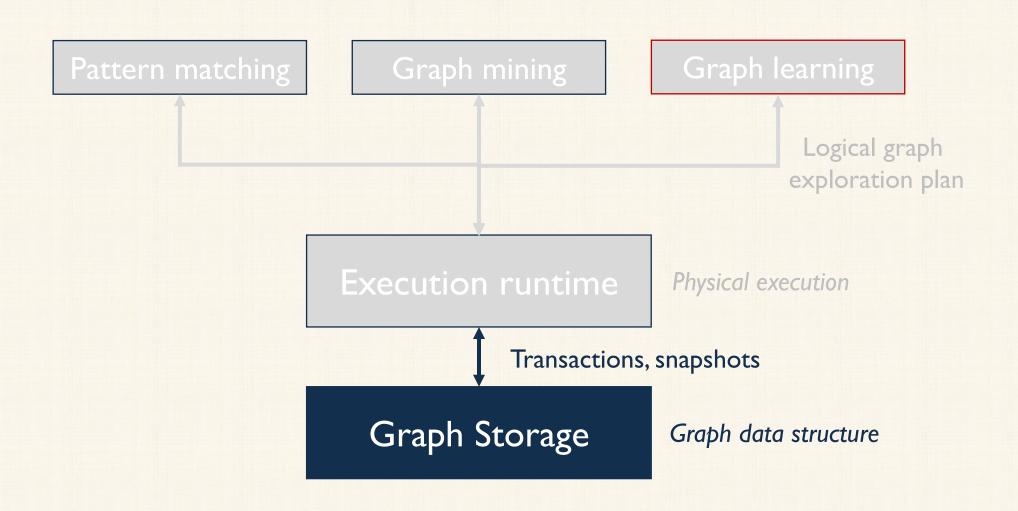
# STORING CONNECTED DATA

AN EVOLUTIONARY APPROACH

#### **VISION**



#### **VISION**



#### RELATIONAL MODEL

- Connected data = dynamic relationships
  - New relationships among entities added all the time
  - Extreme skew: variance in # of relationships per entity
- Needed: flexible physical schema
  - Avoid frequent schema changes!
- Solution: Entity table + Relationship table

| Entity ID | Properties |  |
|-----------|------------|--|
|           |            |  |
|           |            |  |

| Source Entity ID | Destination Entity ID | Properties |
|------------------|-----------------------|------------|
|                  |                       |            |
|                  |                       |            |

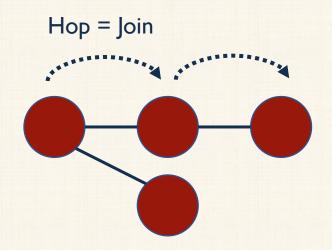
**ENTITY (VERTEX)** 

**RELATIONSHIP (EDGE)** 

#### **WORKLOADS**

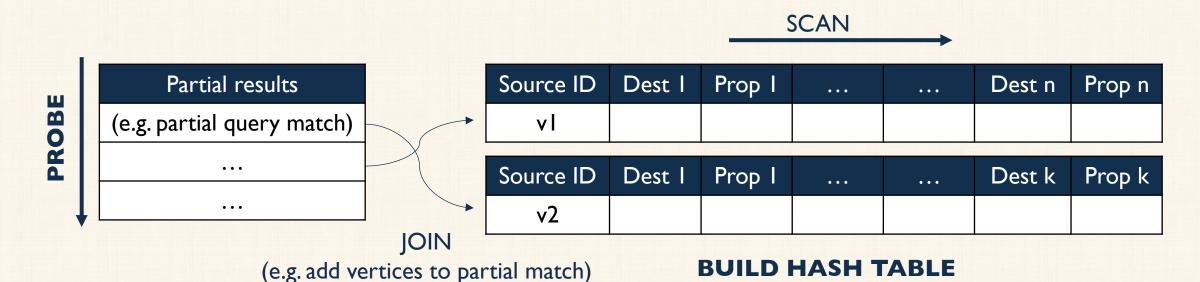
- Pattern/path based queries
  - Pattern queries
  - Reachability
  - Random walks
- Subgraph-based queries
  - Frequent subgraphs
  - Densest subgraphs
- Frontier-based queries
  - Shortest path
- Message passing
  - PageRank

Fundamental operation:
EDGETRAVERSAL,
that is,
JOINS ON EDGETABLE



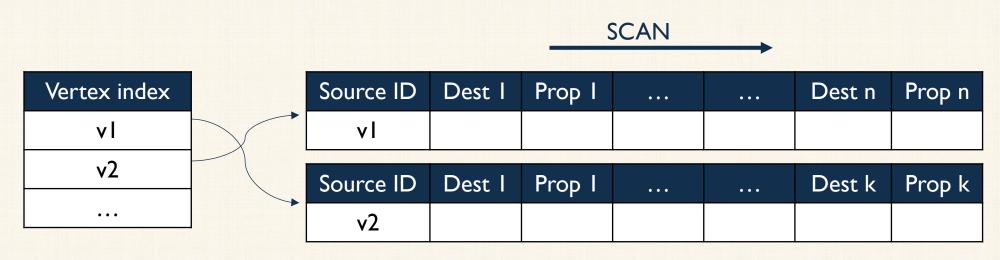
# HASH-JOINING EDGE TABLE

- Build: hash table from edge table
- Probe: Scan through partial results and join/extend
- Typically, after the join scan (traverse) the joined edges



# ADJACENCY LIST REPRESENTATION

- Adjacency lists = edge table optimized for joins
- Graph storage systems: optimized for adjacency lists

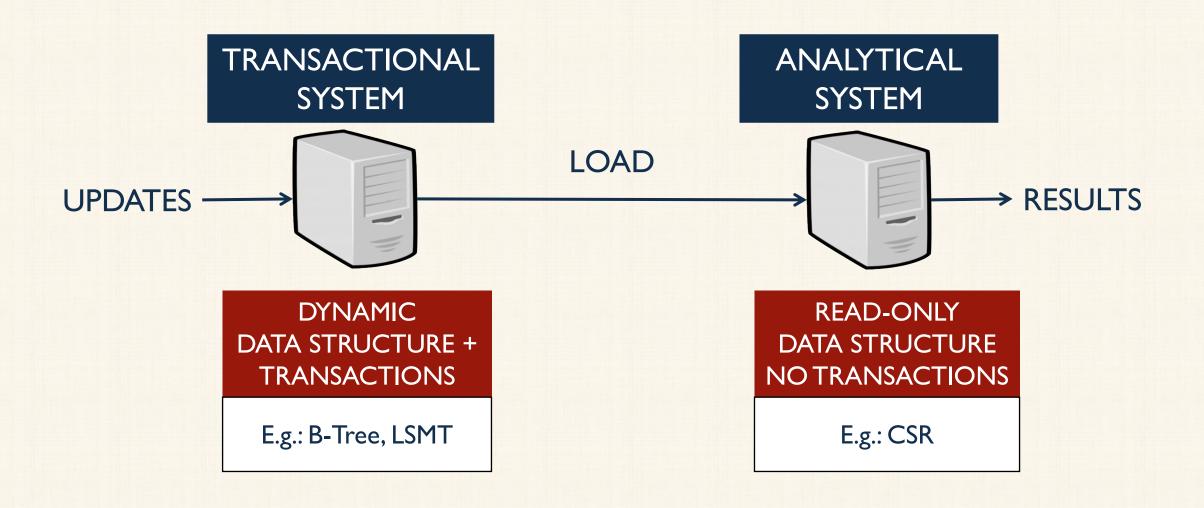


**ADJACENCY LISTS** 

#### **REAL-TIME WORKLOADS**

- Real-time workloads
  - Dynamic data: Entities and relationships are added continuously
  - Queries and analytics on real-time data
- Examples: monitoring, real-time recommendations
- Graph storage requirements
  - Low-latency concurrent (transactional) updates
  - Low-latency reads from graph snapshots

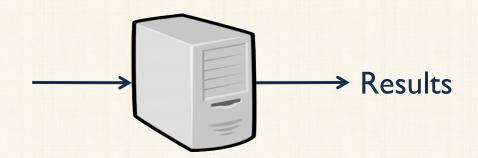
#### TYPICAL PIPELINE



#### **LIVEGRAPH**

REAL-TIME GRAPH
DATA MANAGEMENT

Updates
Real time queries
Snapshot queries



TRANSACTIONAL EDGE LOG

#### LIVEGRAPH

#### Features

- Embedded graph store
- ACID transactions
- Real-time reads on the live data (no data loading)
- Snapshot isolation: wait-free reads
- Multi-versioned (temporal/incremental queries)

#### Key design choices

- Sequential adjacency list scans
- Fast insertions in constant time

#### DATA STRUCTURE COMPARISON

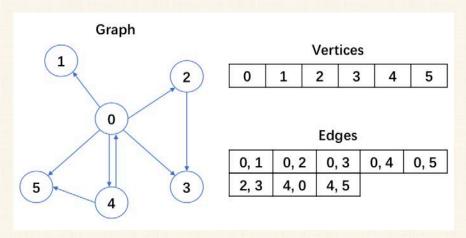
- B+ Trees
  - LMDB
  - Typical RDBMS data structure
- Log-Structured Merge Trees
  - RocksDB
  - Skip-list + compressed runs
- Linked lists
  - Neo4J
- Transactional Edge Log



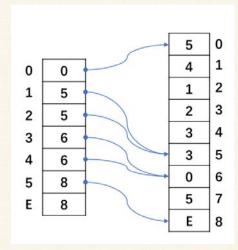




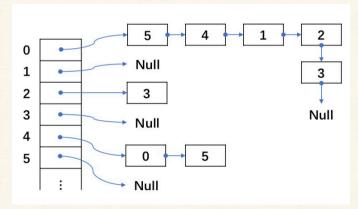
#### **GRAPH REPRESENTATIONS**



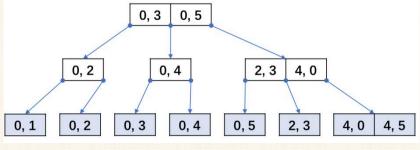
Input graph



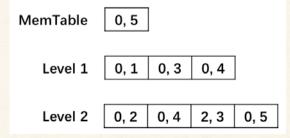
**CSR** (read-only)



**Linked list** 



B+ tree

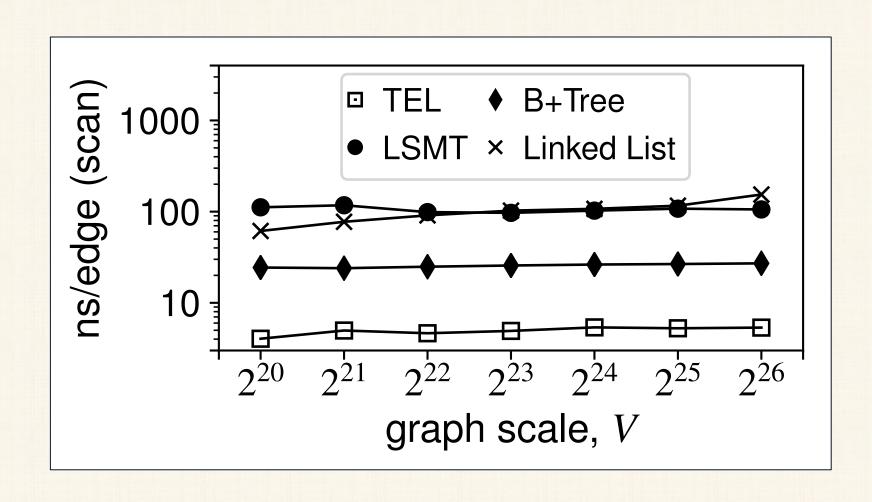


**LSMT** 

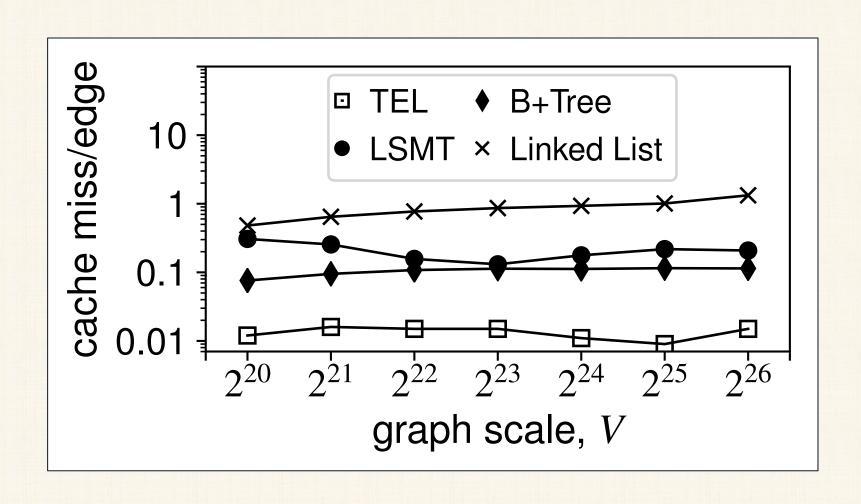
#### MICRO-BENCHMARK

- Seek & scan adjacency list
  - Seek: find adjacency list
  - Scan: get next edge in the adjacency list
- Data: Kronecker graph that fits in memory of one socket

#### **EDGE SCAN**



#### **CACHE MISSES**

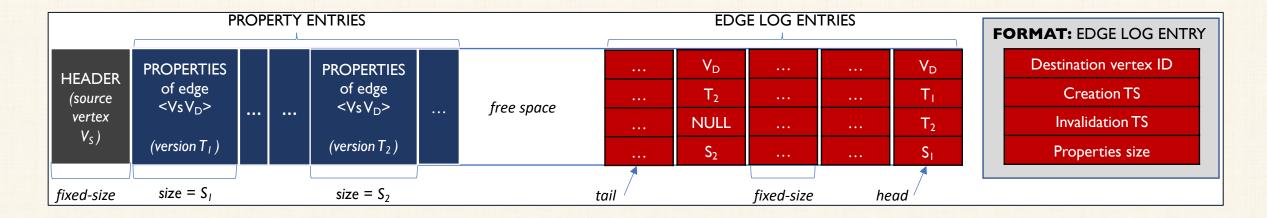


### BENEFITS OF SEQUENTIAL SCANS

- Better locality
  - Cache utilization
- Sequential execution flow
  - Leverages CPU pipelining and prefetching
  - Reduces the likelihood of branch mispredictions
- Huge gap between pointer-based and sequential data structures
- Total latency improvement
  - 20× over LSMT
  - 18× over linked list
  - 4.5× over B+ tree.

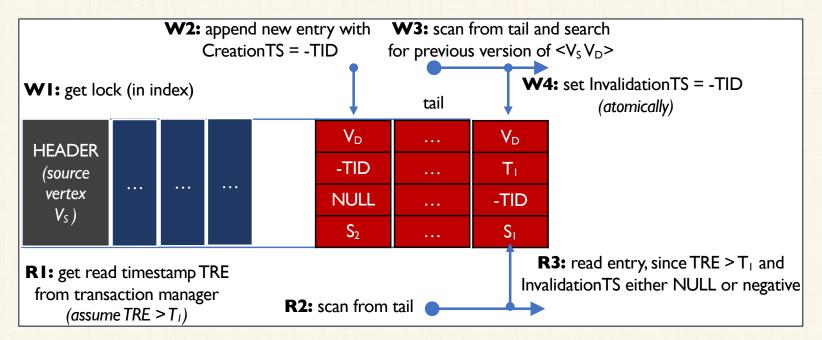
#### TRANSACTIONAL EDGE LOG

- Fixed-size "dynamic" array
  - Adapts to skew
- Append-only log
  - O(I) insertion
  - Multi-versioning: snapshots and temporal analytics



# TRANSACTIONS + SEQUENTIAL SCANS

- Reads do not need locks
- Writes: double timestamps
  - Atomic timestamp access
  - 64-bit cache-aligned words



### TRANSACTIONAL WORKLOAD

- LinkBench benchmark
  - Facebook's back-end graph storage workload
  - RocksDB: Facebook's back-end storage
- LiveGraph is a good match for latency-sensitive workloads
  - Sub-millisecond tail latency

| Storage | Optane SSD |         | NAND SSD |           |         |        |
|---------|------------|---------|----------|-----------|---------|--------|
| System  | LiveGraph  | RocksDB | LMDB     | LiveGraph | RocksDB | LMDB   |
| mean    | 0.0450     | 0.1278  | 1.6735   | 0.0915    | 0.1804  | 1.7495 |
| P99     | 0.2598     | 0.6423  | 35.041   | 0.5995    | 0.9518  | 36.783 |
| P999    | 0.9800     | 3.5190  | 74.610   | 1.2558    | 4.0214  | 77.906 |

#### Latency (ms)

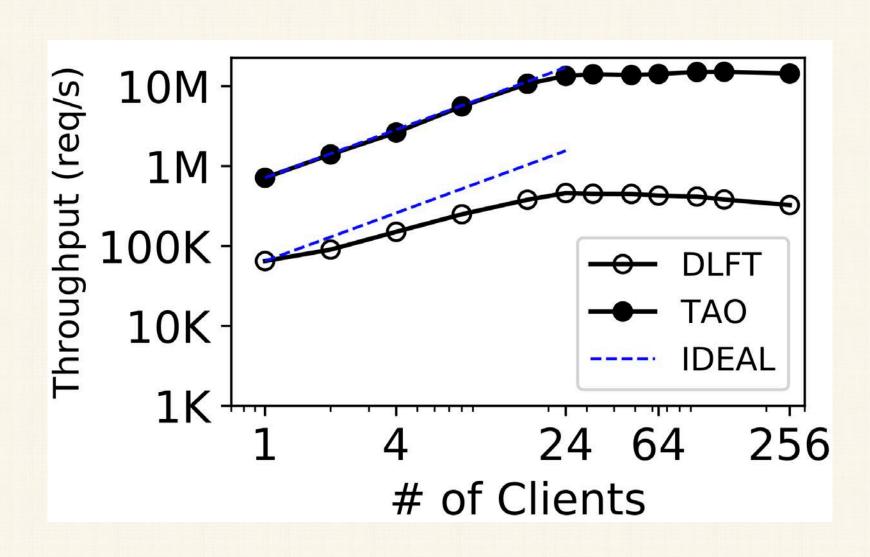
## FRONT-END WORKLOAD

#### Nano-second latencies!

| Storage | Optane SSD |         | NAND SSD |           |         |        |
|---------|------------|---------|----------|-----------|---------|--------|
| System  | LiveGraph  | RocksDB | LMDB     | LiveGraph | RocksDB | LMDB   |
| mean    | 0.0039     | 0.0328  | 0.0109   | 0.0041    | 0.0330  | 0.0110 |
| P99     | 0.0065     | 0.0553  | 0.0162   | 0.0066    | 0.0581  | 0.0162 |
| P999    | 0.6763     | 4.8716  | 2.0703   | 0.6510    | 4.8776  | 2.1120 |

Latency (ms)

## **SCALABILITY**



### **REAL-TIME ANALYTICS**

- LDBC Social Network Benchmark (SNB), in-memory
  - Short reads, transactional updates (possibly involving multiple objects)
  - Complex reads: multi-hop traversals and analytical processing including filters, aggregations, and joins

| System       | LiveGraph | Virtuoso | PostgreSQL | TigerGraph |
|--------------|-----------|----------|------------|------------|
| Complex-Only | 9,106     | 292      | 3.79       | 185        |
| Overall      | 9,420     | 259      | 52.4       | - 1        |

Throughput (ops/s)

## **TRUE REAL-TIME**

• Interactive/web analytics must be in the millisecond range!

| System          | LiveGraph | Virtuoso | PostgreSQL |
|-----------------|-----------|----------|------------|
| Complex read 1  | 7.00      | 23,101   | 371        |
| Complex read 13 | 0.53      | 2.47     | 10,419     |
| Short read 2    | 0.22      | 3.11     | 3.31       |
| Updates         | 0.37      | 0.93     | 2.19       |

Average request latency (ms)

#### VERTEX-CENTRIC COMPUTATION

- Comparison between
  - Running in-database computation with LiveGraph
  - Export to Gemini, dedicated system using compressed read-only storage (CSR)
- Longer running time but no data export delay

| System   | LiveGraph | Gemini |
|----------|-----------|--------|
| ETL      | -         | 1520   |
| PageRank | 266       | 156    |
| ConnComp | 254       | 62.6   |

Running time (ms)

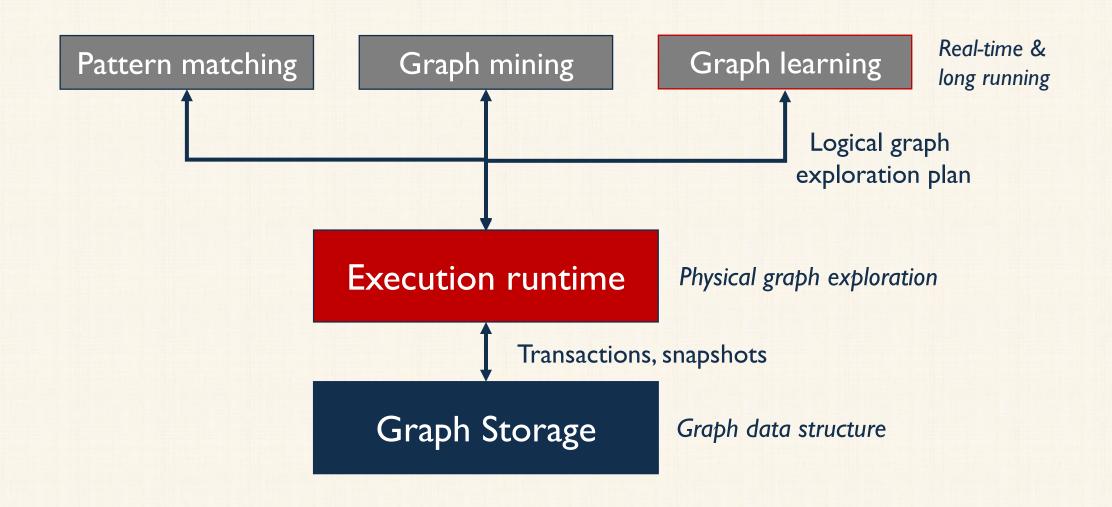
## **FUTURE WORK**

- Scale out to distributed system
- Multi-hop locality/partitioning
- Improved property indexing

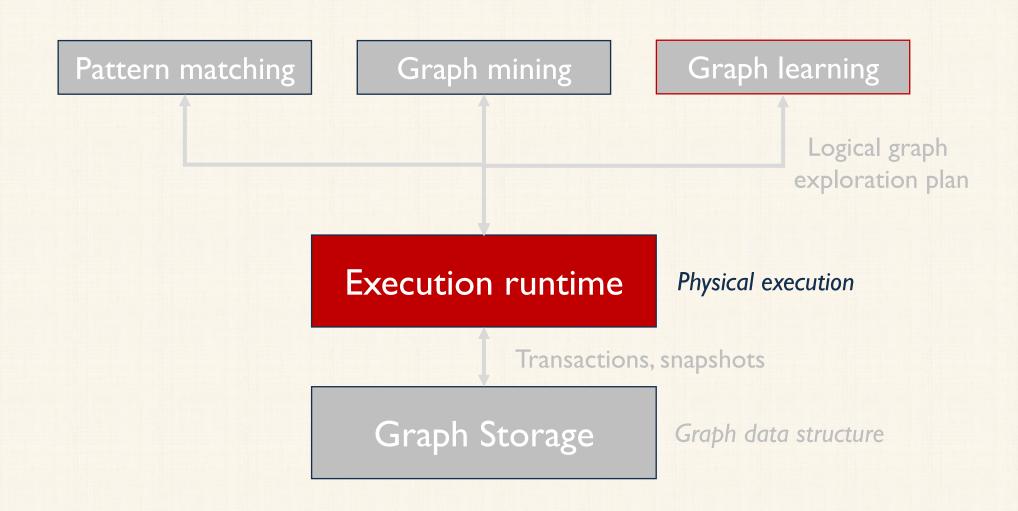
## QUERYING CONNECTED DATA

CPU-EFFICIENT PHYSICAL EXECUTION

#### VISION

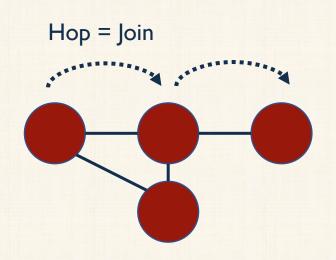


### **VISION**



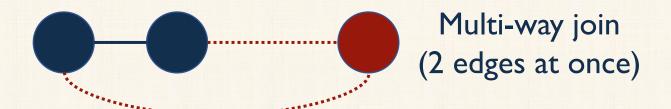
## **GRAPH PATTERN QUERIES**

- Each "hop" is a join in the edge table
- Many graph queries are multi-hop
- This makes query optimization hard
  - Cardinality estimation gets harder at every join
  - Skew: few vertices have very high degree
  - Large intermediate results (e.g. structural or point-to-point path queries)



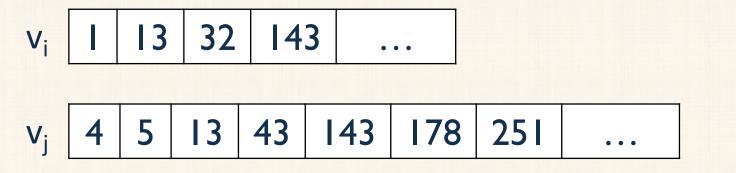
## WORST-CASE OPTIMALITY (WCO)

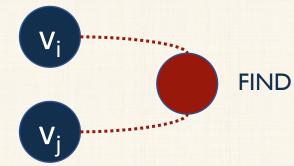
- WCO: query complexity is the same as the size of the results
  - Example: triangle query should have complexity  $O(|E|^{3/2})$
- Multi-way joins
  - Extend partial match by one vertex (not edge) at a time
  - Perform two joins at once
- Set intersection



## SET INTERSECTION BOTTLENECK

- Set intersection dominates running time
  - Frequent comparisons -> frequent branch mispredictions
  - Need to fetch lots of data to cache → poor caching

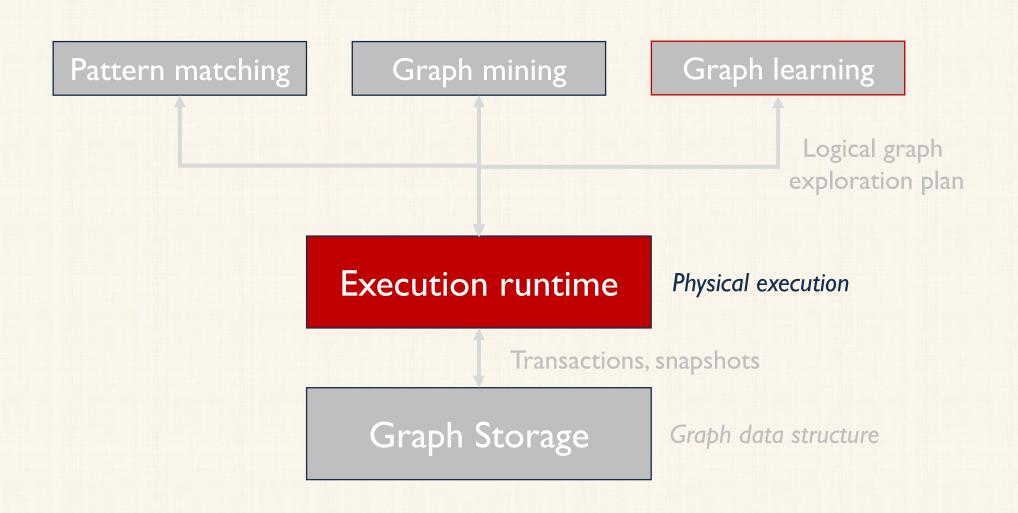




#### **VECTORIZER**

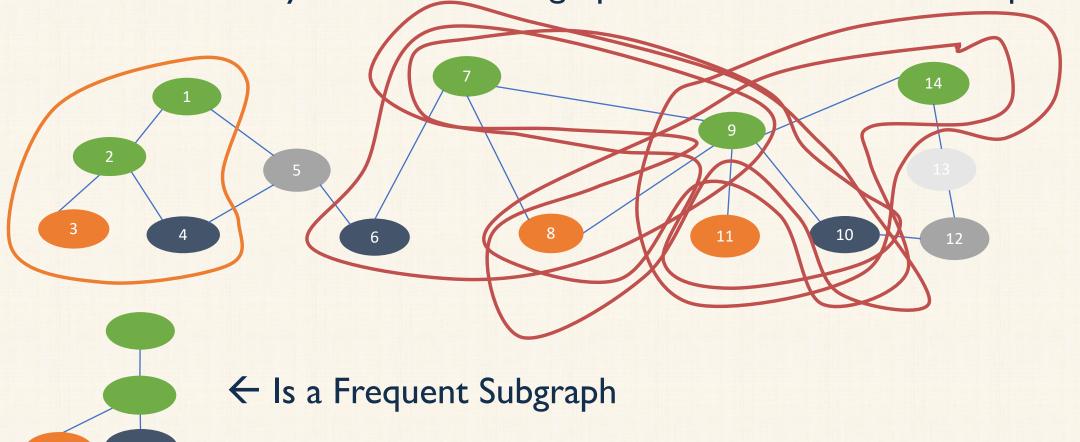
- Goal: optimize CPU efficiency
  - Cache efficiency: Data compression
  - Avoid branch mispredictions
  - SIMD operations
- Dynamic data: Cannot afford expensive pre-processing
- Vectorizer: On-the-fly vectorization
  - SIMD friendly data structures
  - Materialization and reuse of these data structures
  - > 3x speedup compared to state of the art graph tools
  - > IOx speedup compared to RDBMS

## **BEYOND GRAPH QUERIES?**



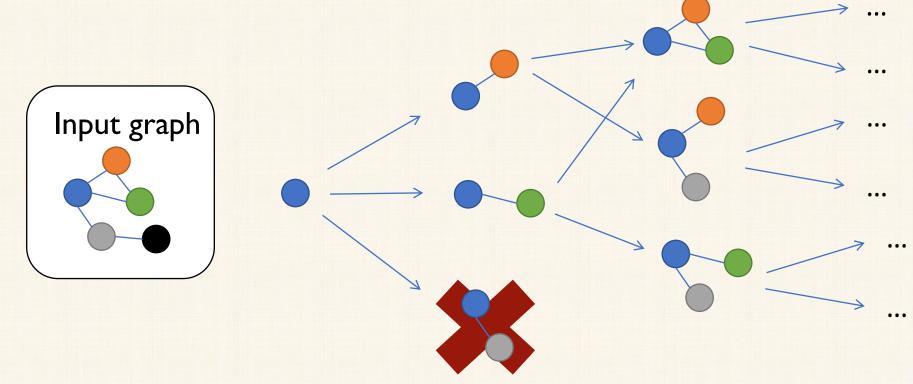
## FREQUENT SUBGRAPH MINING

• Search for initially unknown subgraphs that turn out to be frequent



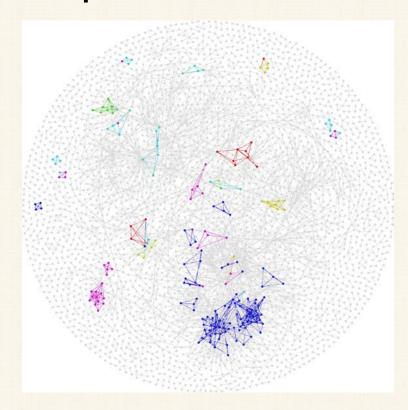
## **GRAPH EXPLORATION PROCESS**

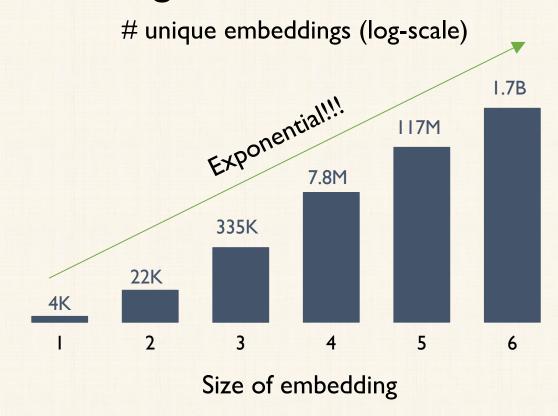
- Enumerate (& prune) embeddings
- Aggregate (e.g. count) by pattern



## **CHALLENGES**

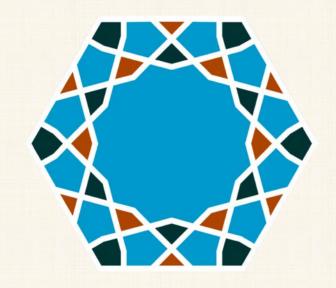
Exponential number of embeddings





## **ARABESQUE**

- New execution model & system
  - Think Like an Embedding
  - Purpose-built for distributed graph mining
  - Hadoop-based
- Contributions
  - Simple & Generic API
  - High performance
  - Distributed & Scalable by design



## API EXAMPLE: CLIQUE FINDING

```
boolean filter(Embedding e) {
                                                                   Previous
        return isClique(e);
                                                                 state of the art
 3
                                                                (Mace, centralized)
   void process(Embedding e) {
        output(e);
                                                                  4,621 LOC
 6
   boolean shouldExpand(Embedding embedding) {
 8
        return embedding.getNumVertices() < maxsize;</pre>
 9
10
   boolean isClique(Embedding e) {
        return e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;
11
12
```

## FREQUENT SUBGRAPH MINING

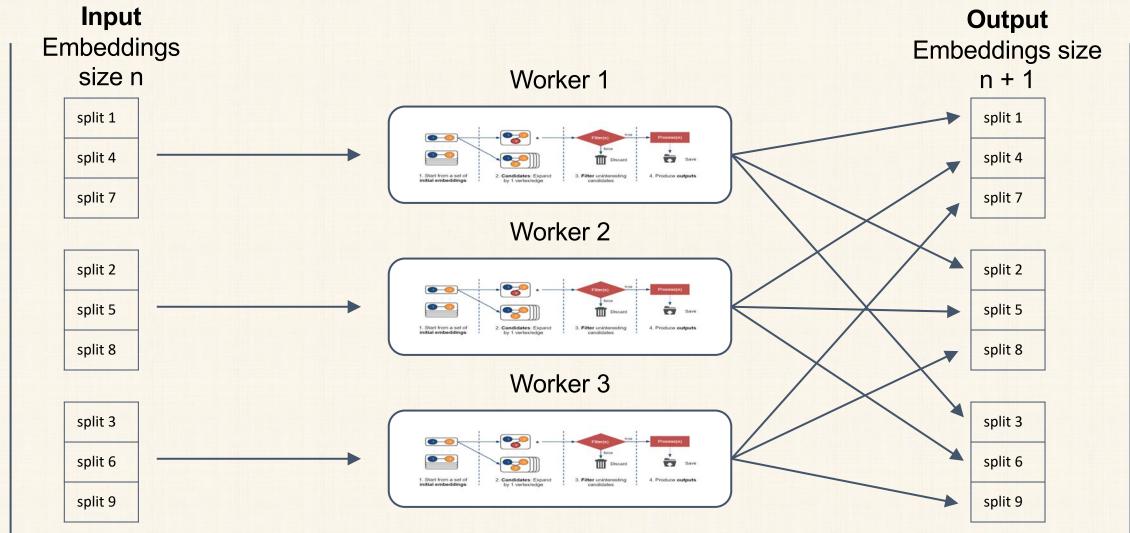
- First distributed implementation
- 280 lines of java code
  - ... Of which 212 compute frequency metric
- Baseline (Grami): 5,443 lines of Java code

# Next step

## ARABESQUE ARCHITECTURE Comp

Previous step





#### KEY FUNCTIONALITIES

- Avoiding redundant work
- Compression and management of huge intermediate state
- Load balancing
- Efficient pattern aggregation

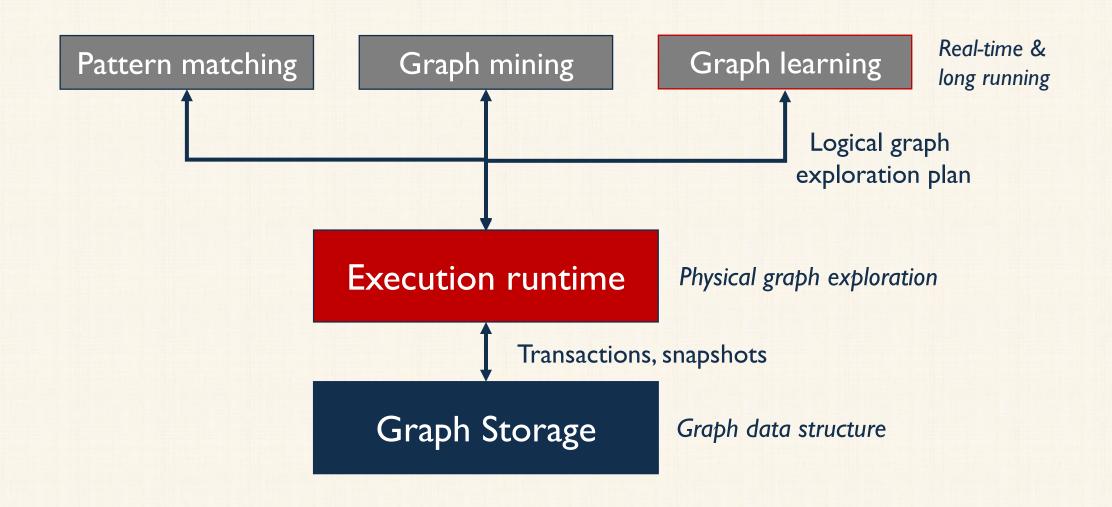
## LIMITATIONS OF API

- Limited control over exploration
  - Not ideal when looking for a specific pattern
- No support for sampling/random traversals
- Related APIs
  - NScale, G-Miner, ASAP, Fractal, ...
- Finding the right API is still an active research topic

#### PARALLEL GRAPH EXPLORATION

- Can we leverage parallel hardware like GPUs?
- Example: graph learning
  - Training uses standard GPU tools for neural networks
  - But mining graph features on GPUs is an open problem
- Challenges
  - Limited CPU-GPU bandwidth
  - Scalability to large graphs
  - Random access and skew make SIMD operations ineffective

#### **VISION**



## PICK THREE?

- Fresh results on dynamic data
- Complex data exploration
  - Random access
  - Query optimization hard
- Low-latency results

