
CONNECTED DATA
Pushing the Envelope of

Data Management Systems
Marco Serafini

UNIVERSITY OF MASSACHUSETTS AMHERST

CONNECTED DATA

• Entities + Relationships
• Each entity can have an arbitrary number of relationships

• Extreme skew: huge variance in number of relationships per entity

• Relationships are added on the fly

SOCIAL NETWORKS

KNOWLEDGE GRAPHS

RECOMMENTADIONS &
PERSONALIZATION

FINANCIAL DATA / FRAUDS

INFRASTRUCTURE/IoT MONITORING

DATA LINAGE / PROVENANCE

BIOLOGY

LEARNING OVER CONNECTED DATA

• Leverage structural properties of data

MODELING
CONNECTED DATA

GRAPH VS. RELATIONAL

GRAPH vs. RELATIONAL DATA
MANAGEMENT

CONVENTIONAL WISDOM

“You should not reinvent the wheel” “When you have a
hammer everything

looks like a nail”

A PRAGMATIC APPROACH

• It is not about graph vs. relational data
• It is about graph vs. relational workloads

• Diverse applications and algorithms
• Diverse data structures and APIs

• Graph DBMSs should extend not reinvent
• Eventual convergence of implementations is possible and desirable

OPEN ISSUE: REAL-TIME

• Real-time analytics and queries on dynamic graphs
• User likes product à gets real-time contextual recommendations
• Failure/attack on system à immediate reaction
• Fraud is attempted à blocked before financial loss

• Challenges
• Graph algorithms are complex
• Hopping edges requires random access
• Sophisticated indexing, compression, and partitioning works only on read-only

data

OPEN ISSUE: SCALE-UP ANALYTICS

• Advanced graph analytics are hard to scale out
• Impossible to cleanly partition

• SIMD hardware offers massive scale-up parallelism
• E.g. GPUs, Intel AVX, Intel Phi

• Challenge: hard to leverage SIMD for graph algorithms
• Same problems as before: random access, poor caching, branching, …
• But on an even larger scale

VISION

Graph Storage

Execution runtime

Transactions, snapshots

Graph data structure

Pattern matching Graph mining Graph learning

Logical graph
exploration plan

Physical execution

STORING
CONNECTED DATA

AN EVOLUTIONARY APPROACH

VISION

Graph Storage

Execution runtime

Transactions, snapshots

Graph data structure

Pattern matching Graph mining Graph learning

Logical graph
exploration plan

Physical execution

VISION

Graph Storage

Execution runtime

Transactions, snapshots

Graph data structure

Pattern matching Graph mining Graph learning

Logical graph
exploration plan

Physical execution

RELATIONAL MODEL

• Connected data = dynamic relationships
• New relationships among entities added all the time
• Extreme skew: variance in # of relationships per entity

• Needed: flexible physical schema
• Avoid frequent schema changes!

• Solution: Entity table + Relationship table

Entity ID Properties Source Entity ID Destination Entity ID Properties

ENTITY (VERTEX) RELATIONSHIP (EDGE)

WORKLOADS

• Pattern/path based queries
• Pattern queries
• Reachability
• Random walks

• Subgraph-based queries
• Frequent subgraphs
• Densest subgraphs

• Frontier-based queries
• Shortest path

• Message passing
• PageRank

Fundamental operation:
EDGE TRAVERSAL,

that is,
JOINS ON EDGE TABLE

Hop = Join

HASH-JOINING EDGE TABLE

• Build: hash table from edge table

• Probe: Scan through partial results and join/extend
• Typically, after the join scan (traverse) the joined edges

Source ID Dest 1 Prop 1 … … Dest n Prop n

v1

Source ID Dest 1 Prop 1 … … Dest k Prop k

v2

BUILD HASH TABLE

Partial results

(e.g. partial query match)

…

…

JOIN
(e.g. add vertices to partial match)

P
R

O
B

E

SCAN

ADJACENCY LIST REPRESENTATION

• Adjacency lists = edge table optimized for joins
• Graph storage systems: optimized for adjacency lists

Source ID Dest 1 Prop 1 … … Dest n Prop n

v1

Source ID Dest 1 Prop 1 … … Dest k Prop k

v2

ADJACENCY LISTS

SCAN

Vertex index

v1

v2

…

REAL-TIME WORKLOADS

• Real-time workloads
• Dynamic data: Entities and relationships are added continuously
• Queries and analytics on real-time data

• Examples: monitoring, real-time recommendations
• Graph storage requirements

• Low-latency concurrent (transactional) updates
• Low-latency reads from graph snapshots

TYPICAL PIPELINE

UPDATES

TRANSACTIONAL
SYSTEM

ANALYTICAL
SYSTEM

RESULTS
LOAD

DYNAMIC
DATA STRUCTURE +

TRANSACTIONS

READ-ONLY
DATA STRUCTURE

NO TRANSACTIONS

E.g.: B-Tree, LSMT E.g.: CSR

LIVEGRAPH

Updates
Real time queries
Snapshot queries

REAL-TIME GRAPH
DATA MANAGEMENT

Results

TRANSACTIONAL
EDGE LOG

LIVEGRAPH

• Features
• Embedded graph store
• ACID transactions
• Real-time reads on the live data (no data loading)
• Snapshot isolation: wait-free reads
• Multi-versioned (temporal/incremental queries)

• Key design choices
• Sequential adjacency list scans
• Fast insertions in constant time

DATA STRUCTURE COMPARISON

• B+ Trees
• LMDB
• Typical RDBMS data structure

• Log-Structured Merge Trees
• RocksDB
• Skip-list + compressed runs

• Linked lists
• Neo4J

• Transactional Edge Log

GRAPH REPRESENTATIONS

Input graph
CSR (read-only)

Linked list

B+ tree LSMT

MICRO-BENCHMARK

• Seek & scan adjacency list
• Seek: find adjacency list
• Scan: get next edge in the adjacency list

• Data: Kronecker graph that fits in memory of one socket

EDGE SCAN

220 221 222 223 224 225 226

graph scale, V

10

100

1000
ns

/e
dg

e
(s

ca
n) TEL

LSMT
B+Tree
Linked List

CACHE MISSES

220 221 222 223 224 225 226

graph scale, V

0.01

0.1

1

10
ca

ch
e

m
is

s/
ed

ge TEL
LSMT

B+Tree
Linked List

BENEFITS OF SEQUENTIAL SCANS

• Better locality
• Cache utilization

• Sequential execution flow
• Leverages CPU pipelining and prefetching
• Reduces the likelihood of branch mispredictions

• Huge gap between pointer-based and sequential data structures
• Total latency improvement

• 20× over LSMT
• 18× over linked list
• 4.5× over B+ tree.

TRANSACTIONAL EDGE LOG

• Fixed-size “dynamic” array
• Adapts to skew

• Append-only log
• O(1) insertion
• Multi-versioning: snapshots and temporal analytics

HEADER
(source
vertex
VS)

VD

T2

NULL

S2

Destination vertex ID

Creation TS

Invalidation TS

Properties size

EDGE LOG ENTRIES

PROPERTIES
of edge
<VsVD>

(version T1)

… … …

PROPERTIES
of edge
<VsVD>

(version T2)

fixed-sizefixed-size size = S2

free space

headtail

FORMAT: EDGE LOG ENTRY

VD

T1

T2

S1

PROPERTY ENTRIES

…

…

…

…

…

…

…

…

…

…

…

…

size = S1

TRANSACTIONS + SEQUENTIAL SCANS

• Reads do not need locks
• Writes: double timestamps

• Atomic timestamp access
• 64-bit cache-aligned words

W4: set InvalidationTS = -TID
(atomically)

R3: read entry, since TRE > T1 and
InvalidationTS either NULL or negative

HEADER
(source
vertex
VS)

VD

-TID

NULL

S2

…

VD

T1

-TID

S1

…

…

…

…

…

write-edge(<VS VD>)

…

get-neigh(VS)

W2: append new entry with
CreationTS = -TID

W3: scan from tail and search
for previous version of <VS VD>

tail
W1: get lock (in index)

R2: scan from tail

R1: get read timestamp TRE
from transaction manager

(assume TRE > T1)

TRANSACTIONAL WORKLOAD

• LinkBench benchmark
• Facebook’s back-end graph storage workload
• RocksDB: Facebook’s back-end storage

• LiveGraph is a good match for latency-sensitive workloads
• Sub-millisecond tail latency

Latency (ms)

FRONT-END WORKLOAD

• Nano-second latencies!

Latency (ms)

SCALABILITY

REAL-TIME ANALYTICS

• LDBC Social Network Benchmark (SNB), in-memory
• Short reads, transactional updates (possibly involving multiple objects)
• Complex reads: multi-hop traversals and analytical processing including filters,

aggregations, and joins

717 without Query 14Throughput (ops/s)

TRUE REAL-TIME

• Interactive/web analytics must be in the millisecond range!

Average request latency (ms)

VERTEX-CENTRIC COMPUTATION

• Comparison between
• Running in-database computation with LiveGraph
• Export to Gemini, dedicated system using compressed read-only storage (CSR)

• Longer running time but no data export delay

Running time (ms)

FUTURE WORK

• Scale out to distributed system
• Multi-hop locality/partitioning
• Improved property indexing

QUERYING
CONNECTED DATA

CPU-EFFICIENT PHYSICAL EXECUTION

VISION

Graph Storage

Execution runtime

Transactions, snapshots

Graph data structure

Pattern matching Graph mining Graph learning

Logical graph
exploration plan

Physical graph exploration

Real-time &
long running

VISION

Graph Storage

Execution runtime

Transactions, snapshots

Graph data structure

Pattern matching Graph mining Graph learning

Logical graph
exploration plan

Physical execution

GRAPH PATTERN QUERIES

• Each “hop” is a join in the edge table
• Many graph queries are multi-hop
• This makes query optimization hard

• Cardinality estimation gets harder at every join
• Skew: few vertices have very high degree
• Large intermediate results (e.g. structural or

point-to-point path queries)

Hop = Join

WORST-CASE OPTIMALITY (WCO)

• WCO: query complexity is the same as the size of the results
• Example: triangle query should have complexity O(|E|3/2)

• Multi-way joins
• Extend partial match by one vertex (not edge) at a time
• Perform two joins at once

• Set intersection

Multi-way join
(2 edges at once)

SET INTERSECTION BOTTLENECK

• Set intersection dominates running time
• Frequent comparisons à frequent branch mispredictions
• Need to fetch lots of data to cache à poor caching

1 13 32 143 …

4 5 13 43 143 178 251 …

vi

vj

vi

vj

FIND

VECTORIZER

• Goal: optimize CPU efficiency
• Cache efficiency: Data compression
• Avoid branch mispredictions
• SIMD operations

• Dynamic data: Cannot afford expensive pre-processing
• Vectorizer: On-the-fly vectorization

• SIMD friendly data structures
• Materialization and reuse of these data structures
• > 3x speedup compared to state of the art graph tools
• > 10x speedup compared to RDBMS

BEYOND GRAPH QUERIES?

Graph Storage

Execution runtime

Transactions, snapshots

Graph data structure

Pattern matching Graph mining Graph learning

Logical graph
exploration plan

Physical execution

FREQUENT SUBGRAPH MINING

• Search for initially unknown subgraphs that turn out to be frequent

53

1

2

43

7

8

14

9

1011

13

126

5

ß Is a Frequent Subgraph

GRAPH EXPLORATION PROCESS

• Enumerate (& prune) embeddings
• Aggregate (e.g. count) by pattern

54

Input graph

…

…

…

…

…

…

CHALLENGES

• Exponential number of embeddings

55

Size of embedding

4K
22K

335K

7.8M

117M

1.7B

1 2 3 4 5 6

unique embeddings (log-scale)

Exponential!
!!

ARABESQUE

• New execution model & system
• Think Like an Embedding
• Purpose-built for distributed graph mining
• Hadoop-based

• Contributions
• Simple & Generic API
• High performance
• Distributed & Scalable by design

56

boolean filter(Embedding e) {
return isClique(e);

}
void process(Embedding e) {

output(e);
}
boolean shouldExpand(Embedding embedding) {

return embedding.getNumVertices() < maxsize;
}
boolean isClique(Embedding e) {

return e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;
}

API EXAMPLE: CLIQUE FINDING

57

1
2
3
4
5
6
7
8
9

10
11
12

Previous

state of the art
(Mace, centralized)

4,621 LOC

FREQUENT SUBGRAPH MINING

• First distributed implementation
• 280 lines of java code

• … Of which 212 compute frequency metric

• Baseline (Grami): 5,443 lines of Java code

58

ARABESQUE ARCHITECTURE

59

Input
Embeddings

size n
split 1

split 4

split 7

split 2

split 5

split 8

split 3

split 6

split 9

Worker 2

Worker 1

Worker 3

Output
Embeddings size

n + 1
split 1

split 4

split 7

split 2

split 5

split 8

split 3

split 6

split 9

N
ext step

Pr
ev

io
us

 s
te

p

KEY FUNCTIONALITIES

• Avoiding redundant work
• Compression and management of huge intermediate state
• Load balancing
• Efficient pattern aggregation

LIMITATIONS OF API

• Limited control over exploration
• Not ideal when looking for a specific pattern

• No support for sampling/random traversals
• Related APIs

• NScale, G-Miner, ASAP, Fractal, …

• Finding the right API is still an active research topic

PARALLEL GRAPH EXPLORATION

• Can we leverage parallel hardware like GPUs?
• Example: graph learning

• Training uses standard GPU tools for neural networks
• But mining graph features on GPUs is an open problem

• Challenges
• Limited CPU-GPU bandwidth
• Scalability to large graphs
• Random access and skew make SIMD operations ineffective

VISION

Graph Storage

Execution runtime

Transactions, snapshots

Graph data structure

Pattern matching Graph mining Graph learning

Logical graph
exploration plan

Physical graph exploration

Real-time &
long running

PICK THREE?

• Fresh results on dynamic data
• Complex data exploration

• Random access
• Query optimization hard

• Low-latency results

THANK YOU
MARCO SERAFINI

University of Massachusetts Amherst
marco@cs.umass.edu

