S-Store: Streaming meets
Transaction Processing

Nesime Tatbul (Intel Labs & MIT)
joint work with
John Meehan, Stan Zdonik, Cansu Aslantas, Ugur Cetintemel, Tim Kraska (Brown)
Mike Stonebraker, Sam Madden, Hao Wang (MIT)
Kristin Tufte, Dave Maier (PSU)
Andy Pavlo (CMU)

n ® —a—- @ C
intel) Mk % Viellore Portland State
BN University UNIVERSITY




ISTC for Big Data

* One of Intel’s 4 current Science and Technology Centers in
the US (+6 similar ones world-wide)

* MIT as main hub + 8 other universities
* Launched in 2012, 3+2 years of funding

 Research themes:
— Data analytics & processing platforms
— Scalable math & algorithms
— Visualization
— Architecture
— Benchmarks & testbeds
— Integration across multiple data processing systems 1. gispawG
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S-Store: BigDAWG’s Streaming Data Store

* Reliable, real-time ingest of
streaming data

* In-memory processing of all
streaming analytics ...
workloads

* Support for transactional

state management and
relational OLTP workloads

* Real-time ETL of new data
into other BigDAWG stores w
e Critical enabler for joining

current data with past data real-time loading
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The Big Velocity Challenge

e Data is coming too fast!

— Sensors, Smart phones, Internet of Things, Web clicks,
Stock tickers, Social media feeds, News feeds, ...

* Applications need:
— scalable data ingest, processing, and storage
— real-time, complex data analytics
— high-throughput, transactional processing
— data-driven, continuous, incremental processing models
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State of the Art & Recent Trends

: j 7881 server
* Stream processing mg?eg%ase o StrQeamInsight

— in-memory, low-latency processing Spaiks
— fine-grained batching of inputs, complex

Streaming
datafl What 3 bOUt utations

— scalak

streams + transactions?

* Transaction processing H -Store|

— disk-based OLTP -> main-memory OLTP ﬁ
— multi-core, shared-nothing

HEKATON
Microsoft* N
SQL Server

VOLTDB

— NewSQL architectures (scalable SQL and ACID) SAR(]
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Shared Mutable State in Streaming

A Real- World Example: Financial Order Routing
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[Source: StreamBase, Inc.]
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S-Store in a Nutshell

* Asingle system for transaction & stream processing

* A novel computational model for supporting hybrid
workloads with well-defined correctness guarantees
— ACID guarantees for individual transactions (OLTP + streaming)
— ordered execution guarantees for dataflow graphs of streaming transactions
— exactly-once processing guarantees for streams (no loss or duplication)

e Aflexible and expressive programming interface
— transactions as user-defined stored procedures (Java) w/ SQL-based data access
— support for dataflow graphs and nested transactions

* Scalable software architecture and implementation
— distributed main-memory OLTP system as foundation (H-Store)
— clean and general architectural extensions (e.g., triggers, windowing)
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Hybrid Computational Model

Batch-id’s are used to Dataflow Graphs of Push outputs to an
track lineage and order Streaming Transactions external sink
(or store in a Table)

Stream as a Sq S, S,
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Definition
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Transaction 7
Execution (TE) _s_t;E;"""\“"" A N Ve U
X | alternative
stream s, || window w, || stream s, table for s; EESUNENGY

_______________

Three kinds of state: Streams, Windows, and Tables

: . Nested Transactions
- All physically kept as in-memory tables ¢

- Tables can be publicly shared among all transactions (OLTP or Streaming) 'ord "

- Streams & Windows are not publicly shareable SeEREE e Sl R
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Example Uses for Nested Transactions

Use 1: To protect parts of a dataflow graph from
other OLTP or Streaming transactions

Nested Transaction

------------- | :
:_ S S I Use 2: To protect one instance of a dataflow graph from
1 parent ERe AN : its subsequent instances (e.g., Leaderboard Benchmark)
|
: T : >
S Window boards .
T (s4,p) 20T (s,,p) l Transaction
1| 11451,P S0P D S N
| : - ¢ 1 \ :
tTT t - |::> Validate Vote | N Update Remove Lowest | |
update read x I Record Vote [ Leaderboards Cont. & Votes :
xtoy I

update x to z

OLTP
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Triple Correctness Guarantees

e ACID from traditional OLTP

— Failure recovery (Atomicity and Durability)
— Concurrency control (Consistency and Isolation)

* Ordered execution from Streaming

— Atomic batches of a stream must be processed in order (stream order
constraint)

— For a given atomic batch, transactions in a dataflow graph must be processed
in topological order (dataflow order constraint)

— Nested transactions require strict serial ordering

* Exactly-once processing from Streaming
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» S-Store provides efficient scheduling and recovery
mechanisms to ensure these guarantees.
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H-Store as System Foundation

* main-memory OLTP system developed at Brown & MIT
* base design for the VoltDB NewSQL database system
e programming model: stored procedures (Java + SQL)

* database partitioned across multiple sites in a way to
minimize the number of distributed transactions

* single-threaded transaction execution per partition
* recovery via checkpointing + command-logging
e anti-caching to disk if all data does not fit in memory
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S-Store’s Extended Architecture

Client

A 1

[} [}

1 1

1 1

! _
" :S'Store Eng,ine transaction management
S ; | .
3 : : Partition query .plannlng
) . v . _ statistics management
S Stored Procedure (Java) > = =7>1 Stored Procedure (Java) Engine input management
.S " s K A A K (PE) dataflow graph management
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» ! o | ! J : : PE triggers
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S-Store vs. H-Store: EE Triggers

Stored Procedure
» ; A : 4  PE
: I : .
| \ ' v EE
\ 4 : INSERTINTO S2 INSERTINTO S3
INSERTINTO S1 SELECT * FROM S1; SELECT * FROM S2;
VALUES (...);  feeeeeeeeeeeees >| DELETE * FROM S1; |----eeeeveenses DELETE * FROM S2;
/ /
3
--------------- > EE trigger (S-Store) — write

------- > PE-EEround-trip (H-Store) <«— read & write
———> PE-EE round-trip (both)
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S-Store vs. H-Store: EE Triggers
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S-Store vs. H-Store: PE Triggers

Client
A ! A ! A
: ’ ' ’
. : I :
J 1 | I I
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PE
--=-=-> PE trigger (S-Store)
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S-Store vs. H-Store: PE Triggers
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Fault Tolerance in S-Store

Check-pointing + Command-logging + Upstream backup

* Periodic check-pointing of in-memory tables to disk

* Strong recovery
— Log all committed transactions (OLTP + streaming)
— Upon failure, log replay reproduces the exact pre-failure state
— To avoid redundancy, must turn off triggers during recovery

 Weak recovery
— Log transactions selectively (all OLTP + “border” streaming)
— Upon failure, log replay may lead to a different, but correct state
— No need to turn off triggers

e Upstream backup for streaming inputs that have not yet
been accounted for in downstream logs

u ® N . = / fé\:ﬂo \C\‘Q'ﬂ% \ Carn ie
ineed Mt & O A Y Portland State




Weak Recovery vs. Strong Recovery
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S-Store vs. State of the Art

Better Correctness Guarantees & Better Performance

Correctness Guarantees

Exactly- | Max Tput

v System | ACID | Order Once (batches/sec)
5| H-Store
5| (asyno v X X 5300
= H-Store -
o (sync) \/ \/ X 210
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Leaderboard Benchmark on a single-node Intel® Xeon® E7-4830 at 2.13 GHz

B "S-Store: Streaming Meets Transaction Processing",
Research Track, PVLDB Vol. 8 No. 13, September 2015.
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Current Work in Progress

Scaling to Multiple Nodes

* Three basic primitives to partition a streaming workload:
— Move: Move a stream from one node to another (distributed transaction)
— Demux: Split a stream into multiple partitions
— Mux: Merge multiple streams into one

* Both pipelined (Move) & partitioned parallelism (Demux+Move)

* Research question #1: Given a dataflow graph and a set of processing
nodes, where to place Move/Demux/Mux + how to partition public
Tables in order to maximize performance and load balance?

 Research question #2: How to ensure correct and efficient scheduling

and recovery at all nodes?
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Future Directions

* Extend our support for streaming analytics

* Tighter integration with BigDAWG (e.g., optimizing
cross-system workloads)

 Hardware-aware S-Store (NVM, many-core, fast
networks)

 Handling mixed and dynamic workloads
* Building novel and challenging use cases
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S-Store In Action

The MIMIC Demo
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S-Store In Action
The MIMIC Demo
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S-Store In Action

The Canadian Dreamboat Demo
<>

Trending | CEL [

Window | T F11: 5
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S-Store In Action

The Canadian Dreamboat Demo
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S-Store In Action

The BikeShare Demo

BikeStatus
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Total Bikes 70
Total Stations 7
Total Bikers 15
Bikes in use 6
Average Bikes/Station 10

S-Store in Action
The BikeShare Demo
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