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Scalable and adaptive analytics

Motivation:
O Big Data: Exabytes... and growing!
O Analytics: Create knowledge wealth from existing data

O Big impact: Technology, Science, Economics, Medicine, Society
etc

Challenges:
Q Multiple engines, multiple data stores, many different people
Q Applications connect multiple components, complex workflows

Q Applications are difficult to construct, maintain, manage,
optimize, execute, understand, schedule etc.
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Why is automatization needed?
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Optimization of Workflows

o “At high-level” - performance depends on the
experience of the designer

o “At low level” - execute workflow as it is; hopefully,
the optimizer of the DBMS would improve the
performance

o But what can be done “in the middle”?:

o optimization of specific workflow parts
o optimization of the whole workflow
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The ASAP system

FP7-1CT-2013-11,

‘Scalable data analytics' call,

Adaptive Scalable Analytics Platform

started March 2014, UniGe budget 535’600 €
Finished with evaluation “EXCELLENT”!

* Fully automated, highly customizable system
- 4 b ~, * Development and execution of arbitrary
ul . .
Query Description Tool data analytlcs querles
| e e * Large heterogeneous data store
- foati i) It offers:
e nteligent Management Platiorm @ A general-purpose task-parallel
ASAP Intelligent Query Engine N
— otz programming model
* Easy development of complex, irregular
datacenter queries and appllcatlons
| pr— ‘ Roime e * A modeling framework
* Consider type, location and size of data,
type of computation, and resources
Runtime 1 Runl\ms 2 Runtime i . .
S fladocp * Decide on store, execution pattern and
Con oy runtime machine
| 5 oz Sy * A unique adaptation methodology
QP 9 @@Q * Calibrate queries and workflows
C Data ontor * See intermediate results
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The ASAP system

Adaptive Scalable Analytics Platform

- = = N

ul

Query Description Tool
Query Cockpit

. icati t/

/ Intelligent Management Platform\

| Visualization Cockpit

ASAP Intelligent Query Engine

MR
n jine

Compute

M del

Decision Making Module

Runtime Inspector
Deployment

Runtime 1 Runume 2
Myrmics Hadoop Ruitned

Compule Monitor

Stors 7 Siore 2 torel

C Data Mnnlmr

Job Parser

Data Model

‘ ASAP Scheduler ‘

FP7-ICT-2013-11, "Scalable data analytics' call,
started March 2014, UniGe budget 535600 €
Finished last week with evaluation “EXCELLENT”!
e Fully automated, highly customizable system
* Development and execution of arbitrary
data analytics queries
e Large heterogeneous data store
It offers:
* A general-purpose task-parallel
programming model
* Easy development of complex, irregular
datacenter queries and applications
* A modeling framework
* Consider type, location and size of data,
type of computation, and resources
e Decide on store, execution pattern and
runtime machine
* A unique adaptation methodology
e (Calibrate queries and workflows
e See intermediate results
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Writes operator/

Visualizes data, mines Constructs workflow,
information, takes works with abstract I t‘/ (
decisions operators

computation
Knows engine,
language, data store

3 levels of abstraction
 J " - Analytics Developer

(‘

i

Application Management

- Analytics Expert

Analync Expert
- Analytics application user

Developer

ASAP: platform for managing all
levels of abstraction
- Not a single optimal data
- model, data store
s i - Not a single optimal computing
- model
- Not a single optimal
g deployment on resources

pera
Workflow Operators

Data Stores

Platform for Analytics Workflows (PAW)

Workflow Model

How to accommodate users with different expertise?

Single Workflow Optimization

How to change the workflow to accelerate execution?

Multiple Workflow Optimization

How to execute workflows in a joint manner?

Workflow Recalibration

How to change workflows while they are executing?
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Platform for Analytics Workflows (PAW)

Workflow Model

How to accommodate users with different expertise?

Single Workflow Optimization

How to change the workflow to accelerate execution?

Multiple Workflow Optimization

How to execute workflows in a joint manner?

Workflow Recalibration

How to change workflows while they are executing?
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Workflow management

Creation Analysis Optimization

Q A workflow is created by a user
Q A workflow is analyzed

o execution semantics are specified and

o augmentation with associative tasks and task dependencies
Q A workflow is optimized
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Workflow management cycle

Rl L

Optimized
Workflow
Pool

Workflow

Executing

il =2

Get system measurements Workflow
Evaluate Pool
optimization og
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Two-stage optimization

Ask about

data location,
1. Workflow data migration,

Send analyzed
and optimized
workflow for

Send analyzed
and optimized
workflow for

optimization processing cost  cost estimation

| T | cost esltimation T

v I v I v v

Send Send Continue
cost estimation cost corrections feedback
for alternatives

2. Intelligent
scheduling

Both levels need to do scheduling and optimization at different granularities
Feedback when:

» Schedule deviates from goal (2 2 1)

* Changes in running workflows — new workflows or calibration (1 = 2)
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Workflow model

A workflow is a graph with vertices and edges
The workflow model:

O Enables the expression of application logic by users with
various roles and expertise

Q By separating task functionalities and task dependencies

Q Allowing the specification or the abstraction of execution
semantics

14.01.19 Verena Kantere 13

Q A vertex corresponds to a set of tasks
Q A task corresponds to an Input, an Output and an Operator

. ‘ | 1 further
hlStOgI'a;"I /7' ' process

create
histogram

N
other

t
statistics | L 4 inlog
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O An edge corresponds to a pair of an input and an output.

Q The input and the output are pairs of data and some
metadata.

Q The input and output of tasks are defined independently
of the inputs and outputs of edges

| edge o)
e
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O Operators are the core part of tasks
Q They are user-defined or instantiated on templates

Q Basic operators are formally defined and complex ones are
stored procedures

O Metadata of operators are expressed in JSON

Q The operators can be written with the programming
language developed in ASAP

Examples of operators

Q Of(select;1)={r | r € | A SelectPredicate(r)}

O O(calc; I) = {r U {attr : value} | r € I A value := CalcExpression(r)}
Q O(join; I; L) ={tUs | tEIl; A s€Il, A JoinPredicate(t Us) }

14.01.19 Verena Kantere 16




Workflow analysis

Q Validate consistency:

A workflow is checked for cycles and correspondence of
metadata of adjacent vertices

O Split multi-task vertices to several single-task vertices

1| ARt
__O->¢'_:__~l_ojo —)O— -1-)—)— ->- O
O'IIZ 02

O Augment the workflow with associative tasks that convert

data flow, convert the data format, move data etc
1

~O Pl o Pl pO

02
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Splitting multi-task vertices

O Look for such case of multi-task vertex in the history
o If exist then split that vertex, if not:

O Compare metadata of input and output for all pairs of tasks
Q Find possible links between tasks

Q Propose variants of tasks linkage to user

O Save chosen linkage into the history

L _1>/

IZ bl! bZI b3

Lo ot Can ) S
L L (sort )
— select a,, a, a,a, |=P>
join ajay; by, b, ajayb,

project by, b,, by b,, b,
sort a;, a, b, ay, a, b,
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Execution semantics of edges

Q Edges with incompatible input/output metadata are substituted
by associative triples:

o An associative triple is a new vertex with an incoming and an outgoing
edge. It holds a new task that changes the metadata of an edge

O Associative tasks may perform: scheduling, change of availability,
or cleaning

Scheduling example:

data stream stream edge batch batch
- Fr—— — —D— == average
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Execution semantics of edges

Q Edges with incompatible input/output metadata are substituted
by associative triples:
o An associative triple is a new vertex with an incoming and an outgoing
edge. It holds a new task that changes the metadata of an edge
O Associative tasks may perform: scheduling, change of availability,
or cleaning

Scheduling example:

data stream stream batch batch
- Fr—D>— — —> —|= average
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Execution semantics of edges

Q Edges with incompatible input/output metadata are substituted
by associative triples:

o An associative triple is a new vertex with an incoming and an outgoing
edge. It holds a new task that changes the metadata of an edge

O Associative tasks may perform: scheduling, change of availability,
or cleaning

Availability example:

data . edge
—_ Hive > — - > —|=3 PostgreSQL
-> > > algorithm
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Execution semantics of edges

Q Edges with incompatible input/output metadata are substituted
by associative triples:
o An associative triple is a new vertex with an incoming and an outgoing
edge. It holds a new task that changes the metadata of an edge
O Associative tasks may perform: scheduling, change of availability,
or cleaning

Availability example:

data
— 1S Hive >— — Move_Hive_ > —|=3 PostgreSQL
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Towards workflow optimization

14.01.19

Verena Kantere

Q A workflow is optimized so that it can be executed more
efficiently that originally designed

O Optimization is performed employing transitions

QO The final outputs should remain the same after optimization

23

Operator characteristics

Workflow optimization can be
performed selectively depending
on characteristics of operators:

o Blocking operators require
knowledge of the whole dataset

o Non-blocking operators that
process each tuple separately

o Restrictive operators output
smaller than incoming data
volume

14.01.19 Verena

Operator
Filter
Calc
groupBy Sort
Wind_DataFilter
Wind_PeakDet
Wind_KMeans

Wind_Stereotype_
Classification

Wind_Distribution_
Computation

Wind_User_Profiling
Filter_Join
Filter_Calc

TF-IDF
Ir_train
Ir_classify

Move_Hive_Postgres

Move_Postgres_Hive
w2v_train

w2v_vectorize
grep
Join
Join4

Left_Outer_Join

[<antePeojection

Blocking Non-blocking

X X X X X X X X X X X

Restrictive

24
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Operator characteristics cont’d

In order to apply transitions, apart from the input and output schema,

each task is characterized by the following schemas:

O Functionality schema (fs): is a list of attributes that are processed
by the task. They are a subset of (the union of) the input schemas

O Generated schema (gs): is a list of all the output attributes that are
generated by the task

O Projected-out schema (pos): is a list of attributes that belong to
the input schema, but are not output by the task

schemas projection

. L functionality a 2]
filter | projection _
= ”1 generated 2] °
(a>val) (a, b)

projected-out [2] c
input a,b,c a,b,c

output a,b,c a,b
14.01.19 Verena Kantere 25

Optimization via graph reconfiguration

Transitions generating equivalent workflow versions:

-
—La e
swap ‘ decompose ‘ factorize
compose t distribute

filter

filter

—'{ projection H filter }—*
—fiter — projecion —

14.01.19 Verena Kantere 26
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Functionality of transitions

¢ Allows for pushing highly selective operators towards the root
of the workflow

¢ Swapping is not relational algebra pushing down because of the
presence of functions

e ¢ Allow for the replacement of complex operators with simpler
Com pOSItIOI"I ones and vice versa
and * Create optimization opportunities adaptive to the

e environment: available machines, engines, current workload,
decompOS|t|0n size of data etc

F . . ¢ Factorization allows for the replacement of multiple identical
actorization operators with one performed on the sum of the datasets:
and operation is performed only once on an aggregated dataset
. : . ¢ Distribution allows for the opposite: it parallelizes execution
distribution and/or reduces the input data size

14.01.19 Verena Kantere 27

Applicability of transitions

Applicability of transitions in based on the schemas

swap filter calc join filter_calc filter_join projection
filter v v v v v AR50
projection.pos = @
| If calc.gs N Ifcalcl.gs n If calc.gs N If calc.gsn Ifcalc.gs N Ifcalc.fsn
calc filter.fs= @ cale2.fs= @ join.fs= @ filter_calc.fs = @ filter_join.fs = @ projection.pos = @
If join.fs N
IfFilenifsic iflcale fsic If joinl. fs © If filter_calc.fsc  |f filter_join. fs € projection.pos = @
ofi 5o A PP Jjoin2.ils or Jjoin.ils or Jjoin.ils or and projection.pos ©
join join.ils or join.ils or i q " P L
[T 5 © et S | GOl 7S @ 3t 6 joinl. fsc filter_calc.fs c filter_join.fs c join.ils or
: Join. : Jom. join2.i2s join.i2s join.i2s projection.pos ©
join.i2s
filt | If filter_calc.gs N |If filter_calc.gs N If filter_calc.gs N If filter_calcl.gs N If filter_calc.gs N If filter calc.fsnN
flter_calc filter.fs = @ calc.fs= 0 join.fs= @ filter_calc2.fs= @ filter_join.fs = @ projection.pos = @
If filter_join. fs N
If filter.fs c Ifcalc.fsc If join.fs c If filter_calc.fs c |f filter_joinl.fs c projection.pos = @
filter joi filter_join.ilsor  filter_join.ilsor filter_join.ilsor  filter_join.ilsor  filter_join2.ilsor and projection.pos ¢
fiter_join filter.fs c calc.fs © join.fs c filter_calc.fs c filter_joinl.fs c filter_join.ils or
filter_join.i2s filter_join.i2s filter_join.i2s filter_join.i2s filter_join2.i2s projection.pos
filter_join.i2s
projection v v v v v v

0110 Applicability table for swap_.and other operators

28
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Workflow optimization

ons
5
r g

O Workflow manipulation is used for workflow optimization
towards efficient execution

QO Transitions transform a workflow graph into equivalent
versions

Q Single-workflow optimization is a state search problem
O Heuristics can lead to the optimal solution quickly

>

Equivalent workflow versions using transitions

minimize c(We) = > c(ve) + 3 c(ace)

inter-dependent
dimensions
"7@0 Alternative operator implementati
6,}7
s

> ) . ‘
zf alternative cost of existing  cost of associative
& execution plan operator operator
qf”o CPU, memory, 10, data shipping,
,;;@ communication etc initializing engine,
&é‘ bandwidth etc
® 14.01.19 Verena Kantere 29

Improving search performance

Using heuristics:

O Composing is used where it is applicable, it provides more
opportunities for micro-optimization on engines

e

O Finding of homologous tasks accelerates the generation of a
search space, because it eliminates unnecessary attempts of
factorizing

14.01.19 Verena Kantere 30
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Pruning the search space

Using heuristics:

O Restrictive operators are moved to the root of the workflow
to reduce the data volume

—+ calc H filter }—’ “ —+ filter H calc }—'

O Non-blocking operators are placed together and separately
from blocking operators in order to parallelize non-blocking
operators (Split-Merge Partitioning)

Heuristics may lead to near-optimal version
in absence of some cost metrics!

14.01.19 Verena Kantere
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Telecommunication analytics application

Q Analysis of telecommunication data:
o detection peaks in mobile calls

COR_ Wind_DataFilter Wind_PeakDet — Wlpd_Pea kTDetec
data tion_Publisher

antennas \ /

_data Wind_DistrComp

Q It involves processing anonymised Call Detail Records (CDR)
data for Rome, from 01/01/2015 until 31/12/2015
o CDR_data(call_id, timestamp, user_id, antenna_id)
o antennas(antenna_id, region_id)

14.01.19
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Alternative and optimized workflow

DataFilter PeakDet

| filter_test H LO_join H filter_region |—-|calc_test_sum
1

¥

-| extract_ts H calc_num | '| joind H calc_ratio H filter_peaks I-
¥ t N~

| filter_train H LO_join H filter_region |—-|ca|c_train_sum|

I | week_aggr |

DistrComp|

Workflow on PostgreSQL

extract_ts filter_test @
LO_jom H filter reglon week_aggr joind H calc_ratio filter_peaks I»@

calc_train_sum|

Optimized workflow on PostgreSQL
In the optimized workflow:
- LO_join and filter_region are swapped with filter_test and filter_train
- LO_join and filter_region are factorized over calc_num
- HS and ES produce the same version: HS composes LO_join and filter_region;

the comPosed is a restrictive operator pushed towards the root and then decomposed
14.01.19 Verena Kantere

calc_num

filter_train

Alternative and optimized workflow

DataFilter PeakDet

| filter_test H—| LO_join H ﬁlter_regionl—

—_——

calc_test_sum

t ¥
-| extract_ts H calc_num | '| joind H calc_ratio H filter_peaks |-
¥ 1 N~

| filter_train |—-| LO_join H filter_regionl— icalc_train_sum|
1
I

| week_aggr

DistrComp

Workflow on PostgreSQL

| extract_ts | filter_test

~ 1 t
LO_join H filter_region | week_aggr H joind H calc_ratio filter_peaks I»@
calc_train_sum)

Optimized workflow on PostgreSQL
In the optimized workflow:
- LO_join and filter_region are swapped with filter_test and filter_train
- LO_join and filter_region are factorized over calc_num and extract_ts
- HS and ES produce the same version: HS composes LO_join and filter_region;

the comPosed is a restrictive operator pushed towards the root and then decomposed
14.01.19 Verena Kantere

calc_num |

filter_train
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Example use case from marketing

select convert “ampaign
product time&coord =
| buffer |—-| calcsent&tag

filter by

Analyzed version of the original workflow
product palg prod&reg
. joinl by join2 by
buffer H filter by reg |—>| calc&conv | calcavgSent H prod&re prod8£g_|_'.
filter by
@ orod&reg calctotalSales

Optimized version of the analyzed workflow

In the optimized workflow:

- select_product and convert_time&coord are swapped

- convert_time&coord and calc_sent&tag are composed

- filter_by_prod&reg is broken down to filter_by_prod&reg and filter_by_reg
- filter_by_reg is pushed towards tweets reviews

- filtr_ by _req is composed with selegt_prodyet, -

Example use case from marketing

select convert ampaian
product time&coord paig
T l b by filter by
joinl by join2 by ilter by
| i CElBEEat H prod&reg H prod&reg H prod&reg
@ calctotalSales
Analyzed version of the original workflow
@ select&filter filter by
product I prod&reg
joinl by join2 by
et H prod&reg prod&reg
filter by
@ TPr calctotalSales

Optimized version of the analyzed workflow

In the optimized workflow:

- select_product and convert_time&coord are swapped

- convert_time&coord and calc_sent&tag are composed

- filter_by_prod&reg is broken down to filter_by_prod&reg and filter_by_reg
- filter_by_reg is pushed towards tweets reviews

-

’| calcsent&tag

calc&conv

!

buffer H filter by reg |—>

- filteg1by_reg is composed with select.\product ic c 36
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Example use case from marketing

select convert
product time&coord
| buffer |—-| calcsent&tag | calcavgSent H

calctotalSales

Analyzed version of the original workflow
[ | G = H R
G| pmaay |fcassse]

Optimized version of the analyzed workflow

In the optimized workflow:

- select_product and convert_time&coord are swapped

- convert_time&coord and calc_sent&tag are composed

- filter_by_prod&reg is broken down to filter_by_prod&reg and filter_by_reg

- filter_by_reg is pushed towards tweets reviews

- filtes1by_reg is composed with select,product,ic e 37

filter by @
rod&re

Experimental results for real workflows

IS
o

100
—*—Original —*-Optimized | —*—Original —*—Optimized |

80

w
o

60

40

Execution Time (s)
N
o

—
o
Execution Time (s)

20

S}

0 2000 4000 6000 8000 10000 0
Input Size (thousands of rows) 0 2000 4000 6000 8000 10000
Input Size (thousands of rows)

Original and optimized Peak
Detection workflow

Original and optimized marketing
campaign workflow

12
‘ —*—Original —*—Optimized ‘
=z 10
g 8
E
c 6
2
g ? Original and optimized User
o2 Profiling workflow
0
0 2000 4000 6000 8000 10000
Input Size (thousands of rows)
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The architecture of PAW and its interaction

PAW

IRES

14.01.19
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PAW

IRES
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Benchmarking

Q Benchmark produces synthetic workflows

O Synthetic workflows are based on graph patterns and “filled”
with queries generated using TPC-DS.

O

O
O
O
O

14.01.19

Q Experimental parameters:

the size of the workflow

the structure of the workflow

the percentage of operators of specific type

size of common part (testing MWO)

number of common parts (testing MWO)

Verena Kantere
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Workflow graph patterns

Q Butterfly:

task3
—{  task [

~al
v

join

T
_' task2 taskd —.

Butterflies are used to create ETL processes, typically:
» Left wing performs the extraction and transformation, and loads data to the body
» Body merges parallel data flows

* Right wing supports reporting and analysis — materializes views, creates reports

QLine:

» taskl task2 » task3 —>

Lines are single data flows

14.01.19 Verena Kantere 41

Patterns cont’d

. — taskl
QTree:
“" task2 |— Join [~ task4 —>

— task3

asis [ (ouo)

_. task! |—» task2 |—» taské —>
tasks —>

Forks and trees are used to create memory-intensive workflows, by including
sorting and aggregating operators
Combined with lines they can be employed to study, also, pipelining

Q Fork:

14.01.19 Verena Kantere 42
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Benchmark details

O two tables: web sales and customers from TPC-DS

Q 30+ query templates : :
define YEAR=random(1996,2001,uniform);

Q benchmark parameters: define RANGE=random(1,4,uniform)
define LISTPRICE=ulist(random(0,190,uniform) ,2);
define _LIMIT=random(1,rowcount(web_sales) ,uniform);

Parameter rangé | constant
Workflow size | 10-200 | 20-50 [ .LIMITA] select [.LIMITB] x
Workflow structure from web_sales
butterfly 10-70% 25% where YEAR(ws_sold_date) between [YEAR]—[RANGE]
line 10-70% | 25% and [YEAR] —[RANGE]
Tork 10-70% 25% and ws_list_price between [LISTPRICE.1]
tree 10-70% 25% and [L|STPR|CE.2]
Operators . order by ws_order_.number
blocking | 0-100% [ 25-75% | L--MITCL:
non-blocking | 0-100% | 25-75%
restrictive 0-100% | 25-75%

Q 300+ queries of four combinations of operator types: blocking and
restrictive, non-blocking and restrictive, blocking and non-restrictive, non-
blocking and non-restrictive

14.01.19 Verena Kantere 43

Questions answered in experiments

O How fast does the algorithm produce an optimized version of a workflow?

O What is the performance gain of the optimized version with respect to the
performance of the original workflow?

O How large is the search space generated by the algorithms?

O What is the impact of workflow characteristics (workflow size, structure,
percentage of blocking, non-blocking and restrictive operators, input data
size)?

O Do the algorithms produce the same solutions?

O How does optimization cope with operators of agnostic cost?

14.01.19 Verena Kantere 44
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Experimental results for synthetic workflows

80% M 1200 | ° butterfly © fork ° tree Iine|
60% | e < 31000
] o & ° SECRE AL S 800 o8
540% ° ... . .. : Q 600 ooozo%
T20% [3h3lta ti vyt ,e00d gy B 40 ogggéasé 4
S oo e ggec e 9 200 8 °
0% i‘&i*::’:‘!!‘ !*‘.":0: . 0 Les nmaoege%g
0 40 80 120 160 200 0 40 80 120 160 200
Workflow Size Workflow Size
[o)
8% _ 0o AT IR
-60% . ~ 3 5 i ‘,-,."’ Y
5 . £ 400 . ";- . o o
LD40% Exo | “f&" me,
082%%e 8°
= 20% £ £ 200 - LI c
& 100 8°
0% o
0% 20% 40% 60% 80% 100¢ 0 200 400 600 800 1000 1200
% of restrictive operators Versions Space Size
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Platform for Analytics Workflows (PAW)
Workflow Model
How to accommodate users with different expertise?
Single Workflow Optimization
How to change the workflow to accelerate execution?
Multiple Workflow Optimization
How to execute workflows in a joint manner?
Workflow Recalibration
How to change workflows while they are executing?
14.01.19 Verena Kantere 46
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Motivating example

Joint workflow of two “Peak detection” workflows with
different analysed regions

filter_test |——>|ca|c_test_sum w,

filter_region1

filter_test Hcalc_test_sum

i
=
e | ?\

filter_train |—+a|c_train_sum| w,

14.01.19 Verena Kantere 47

| week_aggr |———| joind H calc_ratio H filter_peaks

1ﬁ|ter_region2| | week_aggr |—-| join4 |—-| calc_ratio |—o| filter_peaks

Multi-workflow optimization

O Our main approach is to find similar graph parts between
workflows

o Topological comparison: finding common sub-graphs
o Tasks/metadata comparison: data scheme, operator details

° @ @ ° Joint workflow
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Multi-workflow optimization cont’d

— W
_ — W,
|_ : W3
asa a e e e t
0,tf, tg tg tf ts t§
@Synchronize similar parts and compute once
—- - - - —wW
} | W,
|_ : W3
a sa a e e e t
0,titd  t§ ty tf t$
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Finding common parts

* Execution state ES(W):
+ some of the vertices are assumed to have been executed and no
vertices are being executed
* Independently executable subgraph S w.r.t. ES(W):
+ S can be executed without executing any vertex in W\ {ES(W)}
* (Not) independently executable subgraph A:

The creation of a joint workflow W_ of a set W={W,, ..., W}
that have one common part CP, is possible if CP is independently
executable for some execution state for every workflow in W
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Combining by several common parts

* Mutual arrangement of subgraphs A and B

* Depending on their mutual arrangement in the set of
workflows, a pair of common parts can be selected for
the construction of the joint workflow or not.
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Combining by a common part

» Common part at the beginning of workflows

Py
Py

Ve N
l A Ve N
. f
\ /\\‘» A ¢ A/l‘\.,,N\
{

W1 ,\’_‘,\ L B 7 \’—‘ B 1
l CP - l, \\)\_/, A
S 1 CP/,\J,—~\ Wj
Py — ~- D !

w2 ce Y p ) \\_/,

+ Common part in the middle of workflows consisting only

of non-blocking operators P

TN T TN T TN adiiilin. o\ AN
wil A —lcp)—l B}  a" < B )

- splitterft CP ,*lmerger| -~

l,—s\ ,f\\ ,f\\‘ l/ C \‘ :=: l/ D \‘
w2 \ c 7 \CP 7\ D / \\_/, CP) \\_/,

S_~7 ~_~7 ~S_~7 N -
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Execution cost for joint workflows

Q The processing cost of of a joint workflow W of
workflows W ={W,, ..., W_} with common parts

{CP,,...,CP_}is:
C(Wyo..oW,) = c(w,) — ((l; — DHC(CP) — C(syncy))
1 )

where |, is the number of occurences of
common part CP,in W and sync; is the cost of
syncronization of execution of common parts.
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Workflow management cycle
E%. » Workflow
Pool

Arriving
continuously

aziwndo

Optimized
Workflow
Pool

=74

Analyze &
Evaluate
optimization

iz Re.

Executing Executed
Workflow Workflow
Pool Pool
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Online multi-workflow optimization

Q Online multi-workflow optimization re-optimizes currently running

O

workflows on each addition of a new workflow
Current non-executed workflow parts are taken as an input

Q Online multi-workflow optimization is done w/o aborting the

execution of workflows

Q If new optimized joint workflow is produced then PAW aborts

current runs and executes re-optimized system of workflows

Q As an improvement, we can estimate the remaining time of

executing tasks. Then, based on this we decide to add a task to a
partial workflow or not.

executing ~ TT----7
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Results (multi-workflow optimization)

Time gain

30%

9 nore . T1: common part at the beginning
20% \ ¢, T2: common part in the middle
10% N |

’ $ : L4 °
0,
o% it
( ° 5 10
-10%
-20%

common part size

200 sets of workflows automatically generated of the following configuration:
One common part of 1-10 nodes; Number of workflows in a set - 2-5;
Workflow size - 20-50 vertices; Common part operators [blocking, non-
blocking, restrictive] - [25-75%, 25—-75%, 25—-75%].
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Results (multi-workflow optimization)

There is a total 12 regions in the input dataset CDR. In this run both
workflows limit their analyzed area in 8 regions

filter_test |——>|ca|c_test_sum
inlter_region1| | week_aggr |—>| join4 |—>| calc_ratio H filter_peaks

G e
filter_train |—>|r;alc_train_sum
extract_ts

wy

LO_join |

/ filter_test |—->|ca|c_test_sum

1ﬁ|ter_region2| | week_aggr |—>| join4 |—>| calc_ratio |—>| filter_peaks
\( filter_train |—+a|c_train_sum

w,

Optimal joint workflow of two ‘Peak Detection’ workflows if total
selectivity of filter_region1 and filter_region2 is low
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Results (multi-workflow optimization)

There is a total 12 regions in the input dataset CDR. In this run both
workflows limit their analyzed area in 4 regions

o "
| extract_ts H calc_num | week_aggr |—:| join4 H calc_ratio H filter_peaks

filter_regionl

filter_train alc_train_sum

filter_region2| | filter_test

| extract_ts |—>| calc_num | week_aggr H join4 H calc_ratio |—>| filter_peaks
filter_train w,

Optimal joint workflow of two ‘Peak Detection’ workflows if total
selectivity of filter_region1 and filter_region2 is high

MWO also considers 3 single-vertex common parts: filter_test, filter_train and
filter_peaks. But split-merge only increases the cost of processing.
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Workflow recalibration

Q It enables the analytics to change the workflow by
altering the task parameters or infusing new tasks

Q It entails the following requirements:
o Enable access to intermediate results
o Enable workflow changes at runtime
o Avoid repeated computations

14.01.19 Verena Kantere
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Workflow recalibration

Q It enables the analytics to
change the workflow by
altering the task parameters
or infusing new tasks

Q It entails the following
requirements:

o Enable access to intermediate
results

o Enable workflow changes at
runtime

o Avoid repeated computations

14.01.19 Verena Kantere

Depending on the size of
+—— the test data change filter
test parameters

Depending on the size
<+— of data change filter
region parameters

Depending on the
“interest” of results,
change filter region
parameters
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Motivating example

Peak detection with recovery and monitoring points

DataFilter PeakDet

| filter_train |»| LO_join H N H filter_region |--| RALRAE -|:a|:_train_sum|
point point
week_aggr
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| filter_test H LO_join H ’e"",“” Hfilter_regionl- monlt.onng calc_test_sum
point oint
P S~

Manual technique of recalibration

A technique based on recovery and monitoring points:
* observe intermediate results on monitoring points
* re-run changed workflow from recovery point

input data recovery data filter monitoring output
data preparation point point data

O Recalibration points are displayed only in PAW, and are not
sent to IRES

Q Using these points, PAW performs recalibration: decides
which parts of the workflow and when to execute or re-
execute

Q Three basic monitoring operators, for the visualization of:
numerical, categorical and geographical data
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Automatic techniques of recalibration

A technique for automated re-calibration:
« Conditional statements - “if-then-else' constructions

input data if-then-else
data preparation point

» Goto statements

Gl oto label
preparation g

data goto
processing condition

alternative

14.01.19

input
data branch

output
data
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Recalibration process

GU

Workflow
augmented with
recalibration
points

Visualization of
intermediate
results

N\

Workflow
changed by the
user

Execution
has reached
monitoring
point

Execution has
reached if-
en-else poi

Execution has
reached goto
point

Preparation of
a workflow
part

Planner]

AN
AW
Materialjze Get status
and exepute
Workflow
execution
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Recalibration process

Workflow
augmented with
recalibration
points

Visualization of
intermediate
results

Workflow
changed by the
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Execution
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Preparation o
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Execution has
reached if-

Execution has
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Recalibration process

Workflow
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points
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intermediate
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Recalibration process
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Recalibration process
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Screenshot of PAW

‘Add datastore peak det_x

Add node

Add links.

~
o] A

. © [ ]

Wind_Peak_Detection

_

Wind_User_Profiing

Wind_Kmeans

Wind_Data_Fitter

Wind_Distribution_Computation

Wind_Stereotype_ Giassification
Wind_Peak_Detection_Publisher
Wind_Statistics_Publisher
Wind_Spatio_Temporal_Aggregation
Fiter Join

groupBy Sort

Thdf

fiter

., &%

Monitoring intermediate results of ‘Peak Detection’ in PAW
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Comments and questions?

vkantere@uottawa.ca
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