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Scalable	and	adaptive	analytics	

Motivation:	
q  Big	Data:	Exabytes...	and	growing!	
q  Analytics:	Create	knowledge	wealth	from	existing	data	
q  Big	impact:	Technology,	Science,	Economics,	Medicine,	Society	

etc	
	

Challenges:	
q  Multiple	engines,	multiple	data	stores,	many	different	people		
q  Applications	connect	multiple	components,	complex	workflows	
q  Applications	are	difficult	to	construct,	maintain,	manage,	

optimize,	execute,	understand,	schedule	etc.	
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Why	is	automatization	needed?	

Do you want to hand-
tune that? 

Verena Kantere 3 14.01.19 

Optimization	of	Workflows	

o “At	high-level”	-	performance	depends	on	the	
experience	of	the	designer	

o “At	low	level”	-	execute	workflow	as	it	is;	hopefully,	
the	optimizer	of	the	DBMS	would	improve	the	
performance	

o But	what	can	be	done	“in	the	middle”?:	
o  optimization	of	specific	workflow	parts	
o  optimization	of	the	whole	workflow	
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The	ASAP	system	

•  Fully	automated,	highly	customizable	system		
•  Development	and	execution	of	arbitrary	

data	analytics	queries		
•  Large	heterogeneous	data	store	
It	offers:	
•  A	general-purpose	task-parallel	

programming	model		
•  Easy	development	of	complex,	irregular	

datacenter	queries	and	applications	
•  A	modeling	framework		

•  Consider	type,	location	and	size	of	data,	
type	of	computation,	and	resources	

•  	Decide	on	store,	execution	pattern	and	
runtime	machine	

•  A	unique	adaptation	methodology		
•  Calibrate	queries	and	workflows	
•  See	intermediate	results	

Adaptive	Scalable	Analytics	Platform		 FP7-ICT-2013-11, `Scalable data analytics' call, 
started March 2014, UniGe budget 535’600 € 
Finished with evaluation “EXCELLENT”! 
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Functionality	of	ASAP		
3	levels	of	abstraction	
-	Analytics	Developer	
-	Analytics	Expert	
-	Analytics	application	user	

Writes	operator/
computation	
Knows	engine,	
language,	data	store	

Constructs	workflow,	
works	with	abstract	
operators	

Visualizes	data,	mines	
information,	takes	
decisions	

ASAP:	platform	for	managing	all	
levels	of	abstraction	
-	Not	a	single	optimal	data	
model,	data	store	
-	Not	a	single	optimal	computing	
model	
-	Not	a	single	optimal	
deployment	on	resources	

Verena Kantere 7 14.01.19 

Platform	for	Analytics	Workflows	(PAW)	

Workflow	Model	
How	to	accommodate	users	with	different	expertise?	

Single	Workflow	Optimization	
How	to	change	the	workflow	to	accelerate	execution?	

Workflow	Recalibration	
How	to	change	workflows	while	they	are	executing?	

Multiple	Workflow	Optimization	
How	to	execute	workflows	in	a	joint	manner?	

Verena Kantere 8 14.01.19 
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Workflow	management	

q  A	workflow	is	created	by	a	user	
q  A	workflow	is	analyzed	

o  	execution	semantics	are	specified	and		
o  	augmentation	with	associative	tasks	and	task	dependencies	

q  A	workflow	is	optimized	

Creation	 Analysis	 Optimization	

Verena Kantere 10 14.01.19 
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Workflow	management	cycle	

Optimize	

Get	system	measurements	

Re-o
ptim

ize	

New 

Workflow	
Pool	

Optimized	
Workflow	

Pool	

Executing	
Workflow	

Pool	

Insert		

Execute	
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Two-stage	optimization	

Both levels need to do scheduling and optimization at different granularities 
Feedback when:  
•  Schedule deviates from goal (2 è 1) 
•  Changes in running workflows – new workflows or calibration (1 è 2) 
 

1. Workflow  
optimization 

2. Intelligent  
scheduling 

Ask about  
data location,  

data migration,  
processing cost 

Send  
cost estimation  
for alternatives 

Send analyzed  
and optimized  
workflow for 

 cost estimation 

Send  
cost corrections  

Send analyzed  
and optimized  
workflow for 

 cost estimation 

Continue  
feedback 
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Workflow	model	

A	workflow	is	a	graph	with	vertices	and	edges	
The	workflow	model:	
q  Enables	the	expression	of	application	logic	by	users	with	

various	roles	and	expertise	
q  By	separating	task	functionalities	and	task	dependencies	
q  Allowing	the	specification	or	the	abstraction	of	execution	

semantics	

Verena Kantere 13 14.01.19 

Vertices	

q  A	vertex	corresponds	to	a	set	of	tasks	
q  A	task	corresponds	to	an	Input,	an	Output	and	an	Operator	

create		
histogram	

histogram 
data 

other 
statistics 

further	
process	

store		
in	log	
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Edges	

q  	An	edge	corresponds	to	a	pair	of	an	input	and	an	output.		
q  The	input	and	the	output	are	pairs	of	data	and	some	

metadata.	
q  The	input	and	output	of	tasks	are	defined	independently	

of	the	inputs	and	outputs	of	edges	

I O edge 

Verena Kantere 15 14.01.19 

Operators	

q  Operators	are	the	core	part	of	tasks	
q  They	are	user-defined	or	instantiated	on	templates	
q  Basic	operators	are	formally	defined	and	complex	ones	are	

stored	procedures	
q Metadata	of	operators	are	expressed	in	JSON	
q  The	operators	can	be	written	with	the	programming	

language	developed	in	ASAP	
	
Examples	of	operators	
q  O(select;	I)	=	{r	|	r								I	∧	SelectPredicate(r)}	
q  O(calc;	I)	=	{r	U	{attr	:	value}	|	r						I	∧	value	:=	CalcExpression(r)}		
q  O(join;	I1;	I2)	=	{	t	U	s	|	t					I1	∧	s				I2	∧	JoinPredicate(t	U	s)	}	∈

∈
∈

∈

Verena Kantere 16 14.01.19 
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Workflow	analysis	

q  Validate	consistency:	
A	workflow	is	checked	for	cycles	and	correspondence	of	
metadata	of	adjacent	vertices	
q  Split	multi-task	vertices	to	several	single-task	vertices	

	

q  Augment	the	workflow	with	associative	tasks	that	convert	
data	flow,	convert	the	data	format,	move	data	etc	

	

Verena Kantere 17 14.01.19 

Splitting	multi-task	vertices	

select	

join	

project	

sort	
O

select	

join	

project	

O

sort	

q  Look	for	such	case	of	multi-task	vertex	in	the	history	
o  If	exist	then	split	that	vertex,	if	not:	

q  Compare	metadata	of	input	and	output	for	all	pairs	of	tasks	
q  Find	possible	links	between	tasks	
q  Propose	variants	of	tasks	linkage	to	user	
q  Save	chosen	linkage	into	the	history	

schemas	

I1	 a1,	a2	
I2	 b1,	b2,	b3	
O	 a1,	a2,	b2	

tasks:	 input	 output	

select	 a1,	a2	 a1,	a2	

join	 a1,	a2;	b1,	b2	 a1,	a2,	b2	

project	 b1,	b2,	b3	 b1,	b2	

sort	 a1,	a2,	b2	 a1,	a2,	b2	

I1 

I2 

I1 

I2 
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Execution	semantics	of	edges	

q  Edges	with	incompatible	input/output	metadata	are	substituted	
by	associative	triples:	
o  An	associative	triple	is	a	new	vertex	with	an	incoming	and	an	outgoing	

edge.	It	holds	a	new	task	that	changes	the	metadata	of	an	edge	

q  Associative	tasks	may	perform:	scheduling,	change	of	availability,	
or	cleaning	

Scheduling	example:	

batch	stream	 batch	stream	
average	

data	
filter	

edge 
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Execution	semantics	of	edges	

q  Edges	with	incompatible	input/output	metadata	are	substituted	
by	associative	triples:	
o  An	associative	triple	is	a	new	vertex	with	an	incoming	and	an	outgoing	

edge.	It	holds	a	new	task	that	changes	the	metadata	of	an	edge	

q  Associative	tasks	may	perform:	scheduling,	change	of	availability,	
or	cleaning	

Availability	example:	

PostgreSQL	
algorithm	

data	 Hive	
algorithm	

edge 
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Execution	semantics	of	edges	

q  Edges	with	incompatible	input/output	metadata	are	substituted	
by	associative	triples:	
o  An	associative	triple	is	a	new	vertex	with	an	incoming	and	an	outgoing	

edge.	It	holds	a	new	task	that	changes	the	metadata	of	an	edge	

q  Associative	tasks	may	perform:	scheduling,	change	of	availability,	
or	cleaning	

Availability	example:	

PostgreSQL	
algorithm	

data	 Hive	
algorithm	

Move_Hive_	
PostgreSQL	
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Towards	workflow	optimization	

q  A	workflow	is	optimized	so	that	it	can	be	executed	more	
efficiently	that	originally	designed	

q  The	final	outputs	should	remain	the	same	after	optimization	
q  Optimization	is	performed	employing	transitions	

	

Verena Kantere 23 14.01.19 

Operator	characteristics		

Workflow	optimization	can	be	
performed	selectively	depending	
on	characteristics	of	operators:	

o  Blocking	operators	require	
knowledge	of	the	whole	dataset	

o  Non-blocking	operators	that	
process	each	tuple	separately	

o  Restrictive	operators	output	
smaller	than	incoming	data	
volume	

Operator	 Blocking	 Non-blocking	 Restrictive	

Filter	 x	 x	

Calc	 x	

groupBy	Sort	 x	

Wind_DataFilter	 x	

Wind_PeakDet	 x	

Wind_KMeans	 x	

Wind_Stereotype_	
Classification	 x	

Wind_Distribution_	
Computation	 x	

Wind_User_Profiling	 x	

Filter_Join	 x	 x	

Filter_Calc	 x	 x	

TF-IDF	 x	

lr_train	 x	

lr_classify	 x	

Move_Hive_Postgres	 x	

Move_Postgres_Hive	 x	

w2v_train	 x	

w2v_vectorize	 x	

grep	 x	

Join	 x	

Join4	 x	

Left_Outer_Join	 x	

Projection	 x	 x	Verena Kantere 24 14.01.19 
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Operator	characteristics	cont’d	

In	order	to	apply	transitions,	apart	from	the	input	and	output	schema,	
each	task	is	characterized	by	the	following	schemas:	
q  Functionality	schema	(fs):	is	a	list	of	attributes	that	are	processed	

by	the	task.	They	are	a	subset	of	(the	union	of)	the	input	schemas	
q  Generated	schema	(gs):	is	a	list	of	all	the	output	attributes	that	are	

generated	by	the	task	
q  Projected-out	schema	(pos):	is	a		list	of	attributes	that	belong	to	

the	input	schema,	but	are	not	output	by	the	task	

filter	
(a	>	val)	

projection	
(a,	b)	

data	
(a,	b,	c)	

schemas	 filter	 projection	

functionality	 a	 ⌀	
generated	 ⌀	 ⌀	

projected-out	 ⌀	 c	

input	 a,b,c	 a,b,c	

output	 a,b,c	 a,b	

Verena Kantere 25 14.01.19 

Optimization	via	graph	reconfiguration	

Transitions	generating	equivalent	workflow	versions:	

A	 B	

B	 A	

swap 

projection	 filter	

filter	 projection	

A	 B	

A	+	B	

decompose 
compose 

filter	 calc	

filter_calc	

B	 A	

B	

factorize 
distribute 

filter	

filter	

join	 filter	

join	

A1	

A2	
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Functionality	of	transitions	

•  Allows	for	pushing	highly	selective	operators	towards	the	root	
of	the	workflow	

•  Swapping	is	not	relational	algebra	pushing	down	because	of	the	
presence	of	functions		

Swap	

•  Allow	for	the	replacement	of	complex	operators	with	simpler	
ones	and	vice	versa	

•  Create	optimization	opportunities	adaptive	to	the	
environment:	available	machines,	engines,	current	workload,	
size	of	data	etc	

Composition	
and	

decomposition	

•  Factorization	allows	for	the	replacement	of	multiple	identical	
operators	with	one	performed	on	the	sum	of	the	datasets:	
operation	is	performed	only	once	on	an	aggregated	dataset	

•  Distribution	allows	for	the	opposite:	it	parallelizes	execution	
and/or	reduces	the	input	data	size	

Factorization	
and	

distribution	

Verena Kantere 27 14.01.19 

Applicability	of	transitions	

s w a p f i l t e r c a l c j o i n f i l t e r _ c a l c f i l t e r _ j o i n p r o j e c t i o n 

f i l t e r I f 
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I f 

o r 
I f 

o r 
I f 

o r 
I f 

o r 
I f 

o r 
I f 

a n d 
o r 

p r o j e c t i o n 

Applicability table for swap and other operators 

Applicability of transitions in based on the schemas 
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Workflow	optimization	

q  Workflow	manipulation	is	used	for	workflow	optimization	
towards	efficient	execution	

q  Transitions	transform	a	workflow	graph	into	equivalent	
versions	

q  Single-workflow	optimization	is	a	state	search	problem	
q  Heuristics	can	lead	to	the	optimal	solution	quickly	
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Figure 4. Categorization of operators

that exist in the processing environment. This action results
possibly in the matching of parts of the workflow to different
machines or different engines (that reside in the same or
different machines). In order to achieve the execution of the
workflow as a whole by executing its parts in the matched
machines and engines, we need to transfer data from one
machine/engine to another. This can be achieved with the
infusion of associative implemented operators that move data
(as described in Section VI). If such operators do not exist,
then the creation of the execution plan fails. If they exist,
they are used as intermediaries between the execution of two
parts of the workflow that are connected, i.e. the output of
a workflow part is the input to the other.

B. Cost estimation of an execution plan

As mentioned, the cost of each execution plan We created
by the process of Section VII-A is the summation of the cost
of every implemented operator and all infused associative
operators: c(We) =

P
c(ve) +

P
c(ae). The cost c(ve) is

based on: (a) existing cost functions of the implemented
operator ve (e.g. given by the user), and (b) statistical

summaries of the outputs of operators, i.e. empirical graphs
of execution time versus data input size that are produced by
test runs or history logs of runs of the implemented operator
ve.

The cost function (a) of an implemented operator ve
involves measures like CPU, memory (e.g., buffer sizes),
I/O, and communication costs. Naturally, different imple-
mentations of a logical operator (including implementations
for different engines) have different cost functions. In most
cases, the developer or provider of an implemented operator
ve does not disclose a cost function (and the source code of
the operator may not be available either). In such frequent
cases, we treat the operator as a ‘black box’ and we run a
series of micro-benchmarks to study the operator’s behavior
under different configurations. Based on the results of micro-
benchmarking, we build a cost function for an implemented
operator. As an extra, but optional, step, we enable users
to run their workflows with a sample of their data and we
use the obtained statistics to fine-tune the cost functions of
employed implemented operators, before using them in cost
estimation of execution plans of workflows.

The statistical summaries of the outputs of operators, (b),
show, essentially, the selectivity of the operator with respect
to the size of the input data. Once more, if these summaries
are not given with the registration of a logical operator in
the library, we create them by running micro-benchmarks
using available implementations of the logical operator.

The cost c(ae) of an associative operator ae that moves
data captures different costs involved in the data moving
process, like data shipping cost, the cost of initializing the
target engine, the monetary cost of such an action, network
bandwidth etc. Naturally c(ae) is always a function that
increases with the size of the data (frequently linearly);
therefore, as the data to be moved from one engine to the
other increases, the respective moving cost increases too,
making execution plans that include such an associative
operator very expensive.

VIII. OPTIMIZATION OF WORKFLOWS

In this section we describe the optimization of workflows.
We describe how we create the search space of the optimiza-
tion and the search algorithms.

Search space The search space of possible execution
plans for a workflow is multi-dimensional. It includes 3
dimensions: (a) the dimension that represents the set of
possible equivalent versions of the original workflow, (b)
the dimension that represents the set of alternative imple-
mentations of logical operators, and (c) the dimension that
represents the execution of implemented operators on dif-
ferent machines and engines. Dimension (a) is independent
from (b) and (c), whereas (b) and (c) are inter-dependent, as
a specific implemented operator may run on a specific type
of engine, and on machines where this engine is installed
and the input data are stored locally. Taking the original

minimize 

alternative 
execution plan 

cost of existing 
operator 

CPU, memory, IO, 
communication etc  

cost of associative 
operator 

data shipping, 
initializing engine, 

bandwidth etc 
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Improving	search	performance	
Using	heuristics:	
q  Composing	is	used	where	it	is	applicable,	it	provides	more	

opportunities	for	micro-optimization	on	engines	

	
q  Finding	of	homologous	tasks	accelerates	the	generation	of	a	

search	space,		because	it	eliminates	unnecessary	attempts	of	
factorizing		

filter	 join	 filter_join	

B	
E	

B	 D	

A	 F	
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Pruning	the	search	space	

Using	heuristics:	
q  Restrictive	operators	are	moved	to	the	root	of	the	workflow	

to	reduce	the	data	volume	

	
q  Non-blocking	operators	are	placed	together	and	separately	

from	blocking	operators	in	order	to	parallelize	non-blocking	
operators	(Split-Merge	Partitioning)	

Heuristics	may	lead	to	near-optimal	version		
in	absence	of	some	cost	metrics!	

calc	 filter	 filter	 calc	

A	 B	 split	 merge	C	

A B	 C	

A B	 C	

A B	 C	
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Telecommunication	analytics	application	

q  Analysis	of	telecommunication	data:		
o  detection	peaks	in	mobile	calls	

q  It	involves	processing	anonymised	Call	Detail	Records	(CDR)	
data	for	Rome,	from	01/01/2015	until	31/12/2015	
o  CDR_data(call_id,	timestamp,	user_id,	antenna_id)	
o  antennas(antenna_id,	region_id)	

Wind_DataFilter	CDR_	
data	 Wind_PeakDet	

Wind_DistrComp	

Wind_Peak_Detec
tion_Publisher	

antennas
_	data	

Verena Kantere 32 14.01.19 



15.01.19 

17 

Alternative	and	optimized	workflow	

cdr resultextract_ts calc_num

filter_test

filter_regionfilter_train LO_join

antennas

LO_join filter_region

calc_train_sum

calc_test_sum

join4 calc_ratio filter_peaks

DataFilter PeakDet

Di
st
rC
om

p

week_aggr

cdr result

extract_ts

calc_num

filter_test

filter_region

filter_train

LO_join

antennas

calc_train_sum

calc_test_sum

week_aggr join4 calc_ratio filter_peaks

Workflow on PostgreSQL 

Optimized workflow  on PostgreSQL 
In the optimized workflow: 
-  LO_join and filter_region are swapped with filter_test and filter_train  
-  LO_join and filter_region are factorized over calc_num 
-  HS and ES produce the same version: HS composes LO_join and filter_region;  
 the composed is a restrictive operator pushed towards the root and then decomposed 
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filter_train

LO_join

antennas

calc_train_sum

calc_test_sum

week_aggr join4 calc_ratio filter_peaks

Workflow on PostgreSQL 

Optimized workflow  on PostgreSQL 
In the optimized workflow: 
-  LO_join and filter_region are swapped with filter_test and filter_train  
-  LO_join and filter_region are factorized over calc_num and extract_ts 
-  HS and ES produce the same version: HS composes LO_join and filter_region;  
 the composed is a restrictive operator pushed towards the root and then decomposed 
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Example	use	case	from	marketing	

tweets result

select	
product

convert	
time&coord

calc sent&tag calc avgSentbuffer

products

join1	by	
prod&reg

calc totalSales

join2	by	
prod&reg

filter	by	
prod&reg

campaign

sales

Analyzed version of the original workflow 

tweets result

select&filter
product

calc&conv calc avgSentbuffer

products

join1	by	
prod&reg

calc totalSales

join2	by	
prod&reg

campaign

sales filter	by	
prod&reg

filter	by	
prod&reg

filter	by	reg

Optimized version of the analyzed workflow 
In the optimized workflow: 
-  select_product and convert_time&coord are swapped 
-  convert_time&coord and calc_sent&tag are composed 
-  filter_by_prod&reg is broken down to filter_by_prod&reg  and filter_by_reg 
-  filter_by_reg is pushed towards tweets reviews 
-  filter_by_reg is composed with select_product Verena Kantere 35 14.01.19 
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Experimental	results	for	real	workflows	

Original	and	optimized	marketing	
campaign	workflow	

Original	and	optimized	Peak	
Detection	workflow	

Original	and	optimized	User	
Profiling	workflow	
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The	architecture	of	PAW	and	its	interaction	
with	IRES	

IRES 

IRES 

PAW PAW 
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Benchmarking	

q  Benchmark	produces	synthetic	workflows	
q  Synthetic	workflows	are	based	on	graph	patterns	and	“filled”	

with	queries	generated	using	TPC-DS.	
q  Experimental	parameters:	

o  the	size	of	the	workflow	
o  the	structure	of	the	workflow	
o  the	percentage	of	operators	of	specific	type	
o  size	of	common	part	(testing	MWO)	
o  number	of	common	parts	(testing	MWO)	
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Workflow	graph	patterns	

q Butterfly:	

	
	

q Line:	

Butterflies are used to create ETL processes, typically:  
•  Left wing performs the extraction and transformation, and loads data to the body 
•  Body merges parallel data flows 
•  Right wing supports reporting and analysis – materializes views, creates reports 

Lines are single data flows 
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Patterns	cont’d		

q Tree:	

	
	
q Fork:	

•  Forks and trees are used to create memory-intensive workflows, by including 
sorting and aggregating operators 

•  Combined with lines they can be employed to study, also, pipelining  
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Benchmark	details	

q  two	tables:	web	sales	and	customers	from	TPC-DS	
q  30+	query	templates	
q  benchmark	parameters:	

q  300+	queries	of	four	combinations	of	operator	types:	blocking	and	
restrictive,	non-blocking	and	restrictive,	blocking	and	non-restrictive,	non-
blocking	and	non-restrictive	
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Questions	answered	in	experiments	

q  How	fast	does	the	algorithm	produce	an	optimized	version	of	a	workflow?	
q  What	is	the	performance	gain	of	the	optimized	version	with	respect	to	the	

performance	of	the	original	workflow?	
q  How	large	is	the	search	space	generated	by	the	algorithms?	
q  What	is	the	impact	of	workflow	characteristics	(workflow	size,	structure,	

percentage	of	blocking,	non-blocking	and	restrictive	operators,	input	data	
size)?	

q  Do	the	algorithms	produce	the	same	solutions?	
q  How	does	optimization	cope	with	operators	of	agnostic	cost?	
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Experimental	results		for	synthetic	workflows	
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Platform	for	Analytics	Workflows	(PAW)	

Workflow	Model	
How	to	accommodate	users	with	different	expertise?	

Single	Workflow	Optimization	
How	to	change	the	workflow	to	accelerate	execution?	

Workflow	Recalibration	
How	to	change	workflows	while	they	are	executing?	

Multiple	Workflow	Optimization	
How	to	execute	workflows	in	a	joint	manner?	
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Motivating	example	

Joint workflow of two “Peak detection” workflows with 
different analysed regions 
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Multi-workflow	optimization	

q  Our	main	approach	is	to	find	similar	graph	parts	between	
workflows	
o  Topological	comparison:	finding	common	sub-graphs	
o  Tasks/metadata	comparison:	data	scheme,	operator	details	

A B 

G 
E 

D 

C 
Original workflows 

A 

C D 

B 

E G 

CP1 

CP1 

CP2 

CP2 CP1 CP2 

Joint workflow 
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Multi-workflow	optimization	cont’d	

t	

t	

Synchronize	similar	parts	and	compute	once	
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Finding	common	parts	

1

3

2

4A A 

1

3

2

4

The	creation	of	a	joint	workflow	Wo	of	a	set	W	=	{W1,	.	.	.	,	Wm}	
that	have	one	common	part	CP,	is	possible	if	CP	is	independently	
executable	for	some	execution	state	for	every	workflow	in	W	

•  Execution state ES(W): 
•  some of the vertices are assumed to have been executed and no 

vertices are being executed 
•  Independently executable subgraph S w.r.t. ES(W): 

•  S can be executed without executing any vertex in W \ {ES(W)} 
•  (Not) independently executable subgraph A: 

W1 W2 
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Combining	by	several	common	parts	

A	

CP	

CP	 D	

B	​𝑊↓1  

​𝑊↓2  

A	

CP	
D	

B	

​𝑊↓𝑗  

A A A B B B 

1 2 3 

•  Mutual arrangement of subgraphs A and B 

•  Depending on their mutual arrangement in the set of 
workflows, a pair of common parts can be selected for 
the construction of the joint workflow or not.  
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•  Common part at the beginning of workflows 

 

 
 
•  Common part in the middle of workflows consisting only 

of non-blocking operators 
 

Combining	by	a	common	part		

A	
CP	

C	
CP	

D	

B	
splitter	 merger	

CP	

A	

CP	

CP	 D	

B	
A	

CP	
D	

B	

A	 CP	 B	

C	 CP	 D	

W1 

W2 

Wj 

W1 

W2 

Wj 
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Execution	cost	for	joint	workflows	

q The	processing	cost	of	of	a	joint	workflow	Wo	of	
workflows	W	=	{W1,	.	.	.	,	Wm}	with	common	parts	
{CP1,	.	.	.	,	CPnl}	is:	

! !!!… !!!!! = ! !(!!

!

!!!
)− ! ((!! − 1)!(!"!

!

!!!
)− !!(!"#$!))!

where li is the number of occurences of 
common part CPi in W and synci is the cost of 
syncronization of execution of common parts. 
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Workflow	management	cycle	

O
ptim

ize	

Measure	

Re-op
timize	

Arriving  
continuously 

Optimized	
Workflow	

Pool	

Executing	
Workflow	

Pool	

Insert		

Ex
ec
ut
e	

Analyze & 
Evaluate  

optimization 
Timer 

Workflow	
Pool	

Re-optimize	

Executed	
Workflow	

Pool	Finish	
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Online	multi-workflow	optimization	

q  Online	multi-workflow	optimization	re-optimizes	currently	running	
workflows	on	each	addition	of	a	new	workflow	

q  Current	non-executed	workflow	parts	are	taken	as	an	input	
q  Online	multi-workflow	optimization	is	done	w/o	aborting	the	

execution	of	workflows	
q  If	new	optimized	joint	workflow	is	produced	then	PAW	aborts	

current	runs	and	executes	re-optimized	system	of	workflows	
q  As	an	improvement,	we	can	estimate	the	remaining	time	of	

executing	tasks.	Then,	based	on	this	we	decide	to	add	a	task	to	a	
partial	workflow	or	not.	

1

2

3

4

5
6 7

executed 

executing 
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Results	(multi-workflow	optimization)	

200	sets	of	workflows	automatically	generated	of	the	following	configuration:	
One	common	part	of	1–10	nodes;	Number	of	workflows	in	a	set	-	2–5;	
Workflow	size	-	20–50	vertices;	Common	part	operators	[blocking,	non-
blocking,	restrictive]	-	[25–75%,	25–75%,	25–75%].	

T1: common part at the beginning 
T2: common part in the middle 
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Results	(multi-workflow	optimization)	

cdr

result

extract_ts LO_join

filter_train

filter_region2

antennas

filter_region1

filter_test

calc_train_sum

calc_test_sum

week_aggr join4 calc_ratio filter_peaks

result

filter_train

filter_test

calc_train_sum

calc_test_sum

week_aggr join4 calc_ratio filter_peaks

89

8:

calc_num

Optimal joint workflow of two ‘Peak Detection’ workflows if total 
selectivity of filter_region1 and filter_region2 is low 

There is a total 12 regions in the input dataset CDR. In this run both 
workflows limit their analyzed area in 8 regions 
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Results	(multi-workflow	optimization)	

cdr

resultextract_ts calc_num

filter_test

filter_region1 filter_train

LO_join

antennas
calc_train_sum

calc_test_sum

week_aggr join4 calc_ratio filter_peaks

resultextract_ts calc_num

filter_test

filter_train calc_train_sum

calc_test_sum

week_aggr join4 calc_ratio filter_peaks

filter_region2

89

8:

Optimal joint workflow of two ‘Peak Detection’ workflows if total 
selectivity of filter_region1 and filter_region2 is high 

There is a total 12 regions in the input dataset CDR. In this run both 
workflows limit their analyzed area in 4 regions 

MWO also considers 3 single-vertex common parts: filter_test, filter_train and 
filter_peaks. But split-merge only increases the cost of processing. 
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Workflow	recalibration	

q  It	enables	the	analytics	to	change	the	workflow	by	
altering	the	task	parameters	or	infusing	new	tasks	

q  It	entails	the	following	requirements:		
o  Enable	access	to	intermediate	results	
o  Enable	workflow	changes	at	runtime		
o  Avoid	repeated	computations	
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Workflow	recalibration	

q  It	enables	the	analytics	to	
change	the	workflow	by	
altering	the	task	parameters	
or	infusing	new	tasks	

q  It	entails	the	following	
requirements:		
o  Enable	access	to	intermediate	

results	
o  Enable	workflow	changes	at	

runtime		
o  Avoid	repeated	computations	

Depending on the size of 
the test data change filter 
test parameters 

Depending on the size 
of data change filter 
region parameters 

Depending on the 
“interest” of results, 
change filter region 
parameters  
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Motivating	example	

Peak detection with recovery and monitoring points 
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Manual	technique	of	recalibration	

A technique based on recovery and monitoring points: 
•  observe intermediate results on monitoring points 
•  re-run changed workflow from recovery point 

q  Recalibration	points	are	displayed	only	in	PAW,	and	are	not	
sent	to	IRES	

q  Using	these	points,	PAW	performs	recalibration:	decides	
which	parts	of	the	workflow	and	when	to	execute	or	re-
execute	

q  Three	basic	monitoring	operators,	for	the	visualization	of:	
numerical,	categorical	and	geographical	data	
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A technique for automated re-calibration: 
•  Conditional statements - `if-then-else' constructions 

•  Goto statements 

Automatic	techniques	of	recalibration	
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Recalibration	process	
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Recalibration	process	
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Recalibration	process	
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Screenshot	of	PAW	

Monitoring intermediate results of ‘Peak Detection’ in PAW 
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Related	work	

q  Pegasus	(University	of	Southern	California,	ISI)	(2001	–	now)	
q  HFMS,	xPAD	(HP	Labs)	(2002	–	?)	
q  Taverna	(University	of	Manchester,	Cardiff	University,	

University	of	Amsterdam)	(2004	– now)	
q  SQL++,	FORWARD	(UCSD)	(2010	–	now)	
q  Stratosphere	(TU	Berlin)	(2010	–	2015)	
q  Apache	Flink	(TU	Berlin)	(	2014	–	now)	
q  Emma	(TU	Berlin)	(2015	–	now)	
q  BigDAWG	Polystore	System	(UofC,	MIT,	Intel)	(2015	–	now)	
q  Rheem	(QCRI,	HBKU)	(2015	–	now)	
q  ASAP	(FORTH-ICS,	UNIGE,	ICCS,	QUB,	IMR,	WIND,	webLyzard)	
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Comments	and	questions?	
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