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ABSTRACT
Research on multi-core algorithms is adapting rapidly to the new

opportunities and challenges posed by persistent memory. One of

these challenges is the fundamental problem of formalizing the

behaviour of concurrent objects in the presence of crash failures,

and giving precise meaning to the semantics of recovery from such

failures. Li and Golab (DISC’21) recently proposed a sequential spec-

ification for such recoverable objects, called the detectable sequential
specification or DSS. Building on their work, we explore examples of

how DSS-based objects can be used by a sample application, and ex-

amine more closely the division of labour between the application’s

environment, the application code, and the recoverable object used

by the application. We also propose an alternative formal definition

of correctness, called the unified detectable sequential specification
(UDSS), that simplifies both the object’s interface and the appli-

cation code. Using a black box transformation, we show how a

UDSS-based object can be implemented from one that conforms

to Li and Golab’s specification. Finally, we present experiments

conducted using Intel Optane persistent memory to quantify the

performance overhead of our transformation.
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• Theory of computation→ Sharedmemory algorithms;Con-
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1 INTRODUCTION
Research on multi-core algorithms is adapting rapidly to the new

opportunities and challenges posed by persistent memory, which of-

fers the combined benefits of main memory and secondary storage.

One of these challenges is the fundamental problem of formalizing

the behaviour of concurrent objects in the presence of crash fail-

ures, and giving precise meaning to the semantics of recovery from

such failures. This paper continues the study of detectable objects,
introduced by Friedman, Herlihy, Marathe, and Petrank [16], which

provide special interfaces that make it possible for an application

to determine the effect of an operation that was interrupted by a

failure. The forensic information obtained through such interfaces

is then used to decide the correct recovery actions for a given appli-

cation, for example re-invoking (or not re-invoking) the interrupted

operation to ensure that it takes effect exactly once.

Li and Golab [24] recently proposed a sequential specification

for detectable objects, called the detectable sequential specification
or DSS, which conceptually follows the execution pattern described

in [16]: a thread first announces its intent to apply a detectable

operation (i.e., prepares it), and then executes it. The DSS explicitly

separates these two phases of execution, meaning that two distinct

operations and state transitions must be applied on a detectable

object to apply one operation on the underlying shared object type.

For example, enqueuing an element into a DSS-based queue en-

tails calling 𝑝𝑟𝑒𝑝-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 followed by 𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 . A resolution

procedure called 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 is then used to determine whether the

enqueue operation was actually executed, only prepared, or neither.

Using a FIFO queue as an example, Li and Golab partly bridged the

gap between theory and practice by showing that the DSS is simple

enough to implement on the current generation hardware [23, 24],

and yet powerful enough to enable correct recovery in a simple

producer-consumer synchronization application [25].

Despite initial success in solving a non-trivial and practically-

motivated synchronization problem, relatively little is known about

the strengths and weaknesses of the DSS as a specification for the

building blocks of crash-tolerant software systems. Several specific

scientific questions come to mind: (1) Can the DSS be simplified by

combining the prepare and execute phases into a single operation,

making it more similar to other specifications of correctness [3, 5]?

(2) Is the DSS sufficiently powerful to enable recovery in more
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complex applications than the one described by Li and Golab [25]?

(3) What are the practical performance implications of the design

choices underlying the answers to the first two questions?

This paper makes the following contributions with respect to

the open research questions. To answer Question 1, we first con-

sider variations on the producer-consumer problem discussed in

[25], and exhibit a scenario where a solution is impossible unless

application-managed state is saved to persistent memory between

the prepare and execute phases of an operation on a DSS-based

object; this proves that the prepare and execute phases of the DSS

cannot always be combined. Next, we show that this impossibil-

ity result breaks down when a more elaborate form of the DSS

described in Section 2.1 of [24], which we call the augmented de-
tectable sequential specification (ADSS), is applied instead. In other

words, an application that uses an ADSS-based object in our sce-

nario no longer needs to record additional recovery state outside

the detectable object, and this observation yields a partial answer

to Question 2. We then return to Question 1 and introduce an

alternative definition of correctness called the unified detectable
sequential specification (UDSS), which collapses the prepare and

execute phases into a single operation that appears to take effect

instantaneously at one point, which simplifies the application code

even further. We also propose a black box technique that trans-

forms an ADSS-based object into a UDSS-based object of the same

underlying type. For Question 3, we implement both DSS-based and

UDSS-based versions of Li and Golab’s recoverable lock-free queue

(code available online [27]), and demonstrate that they offer com-

parable scalability by conducting experiments on a multiprocessor

equipped with Intel Optane persistent memory.

2 RELATEDWORK
Persistent memory has embedded itself firmly into the scientific

literature. In particular, software techniques for persistent memory

have been intensely researched for over a decade, and there is a sub-

stantial body of practical work in this area that deals with both con-

currency control and recovery [7, 8, 10–12, 20, 22, 26, 28, 29, 33, 34].

These activities inspired a number of recent theoretical contribu-

tions that address issues of complexity, computability, and correct-

ness [2–6, 9, 13, 16–18, 21, 24, 32]. The question of correctness is

most closely related to our paper, particularly in the context of

detectability, which was introduced recently by Friedman, Herlihy,

Marathe, and Petrank [15, 16]. Informally speaking, detectability is

the notion that an application can interact with a shared object to

determine the outcome of an operation whose execution was (or

may have been) interrupted by a crash failure, which is difficult in

the absence of transactions.

Following the publication of Friedman et al.’s detectable queue

[15], several research endeavours have sought formal definitions of

the interface by which applications can resolve the outcome of in-

terrupted operations. Attiya, Ben-Baruch, and Hendler [3] defined

nesting-safe recoverable linearizability (NRL), which is a framework

that not only defines how interrupted operations are resolved, but

also explains the manner in which nested objects are recovered. In

an attempt to create a practical implementation of NRL, Ben-David,

Blelloch, Friedman, andWei [5] redefined the semantics of recovery

to weaken the required system assumptions, and reduced NRL to a

simpler sequential specification that relies on monotonic sequence

numbers to identify a particular operation. Such a sequential spec-

ification is used in conjunction with an off-the-shelf correctness

property, such as Aguilera and Frølund’s strict linearizability [1],

to define an object’s correct behaviour under concurrent access. In

contrast, NRL introduces its own novel variation of linearizability

[19], and cannot be expressed as a sequential specification in an

axiomatic style that defines states and state transitions without re-

ferring to failures. Li and Golab [24] generalized Ben-David et al.’s

approach, which was formalized in [5] specifically for a recoverable

Compare-And-Swap object, by introducing the detectable sequential
specification (DSS). The DSS can be instantiated for an arbitrary

object type, and is also more implementation-independent in the

sense that it does not prescribe the use of monotonic sequence

numbers. Following the terminology of [24], we will refer to the

revised NRL definition from [5] as NRL+.

An interesting scientific question surrounding formal notions of

detectability concerns assumptions regarding the detectable object’s

environment. Ben-Baruch, Hendler, and Rusanovsky [4] proved

that objects conforming to an NRL-like specification, which as-

sumes that execution is restarted following a failure at the most

deeply nested recoverable operation, fundamentally require not

only linear space but also helpful input from the environment in

the form of auxiliary state. Such state can be provided to the object

either through specialized operation arguments, or through shared

memory operations that bypass the object’s abstract interface and

directly access the object’s internal state. Li and Golab [24] showed

that a DSS-based implementation of the FIFO queue can evade this

requirement, which intuitively follows from their weaker system

assumptions. Specifically, the recovery of detectable objects in their

work is entirely application-managed, and the application is always

restarted from the beginning rather than from the point of failure.
1

Thus, an application that uses DSS-based objects labours more heav-

ily during recovery to determine the correct course of action, as

compared to an NRL-based application, but also carries a lighter

load in the sense that the execution does not need to restart at (or

even near) the point of failure as long as user-defined requirements

are ultimately met.

3 MODELLING ASSUMPTIONS AND THE
PRODUCER-CONSUMER PROBLEM

We consider a collection of asynchronous threads (sometimes also

called processes) that communicate through persistent shared mem-

ory. The memory hierarchy includes a volatile cache layer, and

special persistence instructions are used to force updates from

the cache to the persistent memory. Threads may fail by crashing,

which restarts them from the beginning of their program. Crash

failures are system-wide, meaning that all threads fail simultane-

ously. Threads may recover independently, or by the execution of

a centralized recovery procedure by the system during recovery.

Most of our discussion applies to both styles of recovery.

The algorithmic problem considered in this paper is the im-

plementation of a detectable concurrent object, and its use in an

application subject to some high-level user-defined requirements,

1
In practical terms, execution resumes from the program’s entry point, such as the

main function in a C/C++ program.



A Closer Look at Detectable Objects for Persistent Memory ApPLIED ’22, July 25, 2022, Salerno, Italy

such as “at least once” semantics of execution. We consider strict

linearizability [1] the gold standard for the correctness of such an

object, and treat detectability as a feature of the object’s sequential

specification, as prescribed by [5, 24]. Informally speaking, strict

linearizability states that operations on a shared object appear to

take effect instantaneously at some point between their invocation

and response, and that operations interrupted by a crash either take

effect before the crash event or not at all.

Examples of how detectable objects may be used in practice by

applications are scarce in the research literature on this topic. Li and

Golab [25] introduced a simple producer-consumer synchronization

problem that demonstrates the use of a DSS-based concurrent object,

and we reproduce their algorithm
2
for completeness in Figure 1.

In Li and Golab’s fault-tolerant synchronization problem, a pair of

Shared variables:
• 𝑄 : queue object based on DSS, as defined formally in [24]

Procedure producer

1 ⟨𝑜𝑝, 𝑟𝑒𝑠⟩ := 𝑄.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ()
2 if 𝑜𝑝 = ⊥ then
3 𝑠𝑡𝑎𝑟𝑡 := 1

4 else if 𝑟𝑒𝑠 = ⊥ then
5 𝑠𝑡𝑎𝑟𝑡 := argument of 𝑜𝑝

6 else
7 𝑠𝑡𝑎𝑟𝑡 := argument of 𝑜𝑝 + 1

8 for 𝑖 from 𝑠𝑡𝑎𝑟𝑡 to∞ do
9 𝑄.𝑝𝑟𝑒𝑝-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖)

10 𝑄.𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖)

Procedure consumer

11 ⟨𝑜𝑝, 𝑟𝑒𝑠⟩ := 𝑄.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ()
12 if 𝑜𝑝 ≠ ⊥ ∧ 𝑟𝑒𝑠 ≠ ⊥ ∧ 𝑟𝑒𝑠 ≠ EMPTY then
13 print(𝑟𝑒𝑠)

14 while true do
15 𝑄.𝑝𝑟𝑒𝑝-𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
16 𝑣𝑎𝑙 := 𝑄.𝑒𝑥𝑒𝑐-𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
17 if 𝑣𝑎𝑙 ≠ EMPTY then
18 print(𝑣𝑎𝑙 )

Figure 1: Producer-consumer example with a DSS-based
queue and consecutive elements.

asynchronous threads communicate using a single instance of a

FIFO queue, and no other shared variables. One thread is a producer

that enqueues integer elements, and the other thread is a consumer

that repeatedly dequeues elements and prints their values to the

screen.
3
Enqueue and dequeue operations are applied in two phases

– prepare and execute (lines 9 to 10 and lines 15 to 16) – which

the DSS defines for each operation on the underlying object type

(or base type). In the absence of failures, each positive integer is

2
Our rendition of their algorithm explicitly accounts for dequeues that return EMPTY.

3
It is assumed for simplicity that the print statement is failure-atomic.

eventually enqueued exactly once, then dequeued exactly once by

the producer, and also printed to the screen exactly once at line 18.

For recovery, both the producer and the consumer determine

what integer value they most recently acted on, and attempt to

resume execution of their loops from the point of failure. The algo-

rithm achieves “at least once” semantics in the following sense: each

integer value is eventually enqueued and dequeued only once, but

may be printed more than once if it is the last value dequeued prior

to a particular crash failure. This is accomplished by careful analysis

of the forensic information returned by the call to 𝑄 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒() dur-

ing recovery (line 1 and line 11), which describes the outcome of the

most recently prepared operation by the recovering thread. For the

producer, this call returns (⊥,⊥) if no element has been enqueued,

(𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖),⊥) if 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖) was prepared but not executed, and

(𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖),𝑂𝐾) if 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖) was both prepared and executed.

The producer then chooses to resume from iteration 1, 𝑖 , or 𝑖 + 1,

respectively. The consumer’s call to 𝑄 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒() similarly returns

(⊥,⊥) if no element has been dequeued, (𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (),⊥) if a de-

queue operation was prepared but not executed, and (𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (), 𝑖)
if a dequeue was prepared and executed with response 𝑖 . The con-

sumer prints 𝑖 in the third case (if the response was not EMPTY),
which may be redundant if the failure occurred immediately after

line 18, and resumes its loop.

The producer-consumer example demonstrates that the DSS is

sufficiently powerful to enable recovery in a simple application,

though not quite in the sense of always resuming execution from

the exact point of failure. We considered whether similar behaviour

is also achievable using NRL and NRL+, and we fell short of finding

a concrete solution using either framework.

One drawback of NRL with respect to the problem at hand is the

assumption that a program is structured as a collection of recover-

able objects. For example, [3] states that when a process 𝑝 crashes,

“the system may eventually resurrect process 𝑝 by invoking the

recovery function of the inner-most recoverable operation that

was pending when 𝑝 failed.” On the other hand, the semantics of

recovery are less clear when a crash occurs while 𝑝 is outside of

any recoverable operation on a shared object, such as at the top

of the loop (immediately before line 9) in the producer’s mainline

in Figure 1. Even if the producer’s algorithm is restarted from the

beginning in this case, it is not clear how the producer would de-

termine where to resume its loop given that NRL recovery yields

only the response of an operation, which is trivial for enqueue.

For NRL+, we found that the sequential specification of the re-

covery operation is somewhat loose. More concretely, the response

of the recovery operation is stated using two cases, where only the

first case uniquely identifies the last operation by process 𝑝 that

took effect prior to a crash [5]:

“Each 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 (𝑖) operation 𝑅 returns a sequence num-

ber 𝑠𝑒𝑞 and a flag 𝑓 with the following properties:

• If 𝑓 = 1, then 𝑠𝑒𝑞 is the sequence number of the

last successful CAS operation with process id 𝑖 .

• If 𝑓 = 0, all successful CAS operations before 𝑅

with process id 𝑖 have sequence number less than

𝑠𝑒𝑞.”

Since the detectable object’s implementation decides which of

the two cases applies, the above specification theoretically allows
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𝑅𝑒𝑐𝑜𝑣𝑒𝑟 (𝑖) to default to the second case (𝑓 = 0) and return a very

large 𝑠𝑒𝑞 that is not useful for recovery. Even if the implementation

defaulted to the first case (𝑓 = 1), it is not obvious how to generalize

NRL+ from CAS objects to FIFO queues since the sequence number

returned by 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 (𝑖) is insufficient to obtain the value returned

by the consumer’s most recent dequeue operation.

The code in Figure 1 also highlights a drawback of the DSS,

namely that each enqueue and dequeue requires two separate op-

erations on the shared queue for the prepare and execute phases,

even though the natural pattern appears to be that these phases

are invoked back-to-back. This observation inspired our Question 1

from Section 1. In other words, if calls to 𝑝𝑟𝑒𝑝-𝑜𝑝 and 𝑒𝑥𝑒𝑐-𝑜𝑝 for

some operation 𝑜𝑝 are always made in pairs, then can the prepare

and execute phases be coalesced into a single operation for sim-

plicity? In the next section, we answer Question 1 in the negative

by considering a more realistic version of the producer-consumer

problem in which the enqueued values may not be consecutive inte-

gers. After all, if the producer always generates values by counting

from 1 onward, then Li and Golab’s producer-consumer problem

has a trivial solution in which the consumer does not communicate

with the producer at all, and there is no need for a shared queue.
4

4 PRODUCER-CONSUMER PROBLEMWITH
ARBITRARY DATA ELEMENTS

In our version of Li and Golab’s synchronization problem, the pro-

ducer computes the 𝑖’th element to be enqueued by calling a special

function getData(𝑖) that maps Z+ to Z+, and is known a priori to

the producer but not the consumer. The semantics of producer-

consumer synchronization can then be formalized as stated below.

Definition 4.1. The producer and consumer must satisfy the fol-

lowing behaviours:

• Safety 0: The producer may enqueue but not dequeue, and

the consumer may dequeue but not enqueue.

• Safety 1: For any 𝑘 ≥ 1, if the producer enqueues at least 𝑘

times, then the 𝑘’th value enqueued is getData(𝑘).
• Safety 2: For any 𝑘 ≥ 1, if the consumer dequeues at least 𝑘

times, then the 𝑘’th value dequeued is getData(𝑘).
• Liveness: In any fair infinite executionwith finitelymany fail-

ures, and for any 𝑘 ≥ 1, the consumer eventually dequeues

successfully (i.e., removes an element from a non-empty

queue) at least 𝑘 times and prints each dequeued value at

least once.

Our problem formulation intentionally excludes solutions where

the iteration number 𝑖 is embedded into the value enqueued by the

producer to simplify recovery. This decision reflects a separation

of concerns, which is essential for understanding the division of

labour between the application and the shared object in terms

of tracking recovery state. A relaxed version of the problem that

admits cross-layer optimization between the consumer’s algorithm

and the producer’s is discussed later on in this section.

We present a solution to our more elaborate version of Li and

Golab’s producer-consumer problem in Figure 2 using a DSS-based

4
The trivial solution we have in mind is that the producer prints the integers in a

loop, saves the iteration number in a persistent variable, and is able to resume at the

appropriate iteration without any interaction with the producer.

shared FIFO queue and two process-local persistent variables for

checkpointing the producer’s progress. The operation PERSIST
is used to flush the updated values of these variables from the

volatile cache to persistent memory, and includes any memory

barrier required for this purpose.

Shared variables:
• 𝑄 : queue object based on DSS, as defined formally in [24]

Private variables (persistent):
• 𝐴: checkpoint variable, initially 0

• 𝐵: checkpoint variable, initially 0

Procedure producer

19 ⟨𝑜𝑝, 𝑟𝑒𝑠⟩ := 𝑄.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ()
20 if 𝑜𝑝 = ⊥ then
21 𝑠𝑡𝑎𝑟𝑡 := 1

22 else if 𝑟𝑒𝑠 = ⊥ then
23 𝑠𝑡𝑎𝑟𝑡 := 𝐴

24 else
25 𝑠𝑡𝑎𝑟𝑡 := 𝐵 + 1

26 for 𝑖 from 𝑠𝑡𝑎𝑟𝑡 to∞ do
27 𝑣𝑎𝑙 := getData(𝑖)
28 𝐴 := 𝑖

29 PERSIST(&𝐴)

30 𝑄.𝑝𝑟𝑒𝑝-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣𝑎𝑙)
31 𝐵 := 𝑖

32 PERSIST(&𝐵)

33 𝑄.𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣𝑎𝑙)

Procedure consumer

34 ⟨𝑜𝑝, 𝑟𝑒𝑠⟩ := 𝑄.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ()
35 if 𝑜𝑝 ≠ ⊥ ∧ 𝑟𝑒𝑠 ≠ ⊥ ∧ 𝑟𝑒𝑠 ≠ EMPTY then
36 print(𝑟𝑒𝑠)

37 while true do
38 𝑄.𝑝𝑟𝑒𝑝-𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
39 𝑣𝑎𝑙 := 𝑄.𝑒𝑥𝑒𝑐-𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
40 if 𝑣𝑎𝑙 ≠ EMPTY then
41 print(𝑣𝑎𝑙 )

Figure 2: Producer-consumer example with a DSS-based
queue and arbitrary data elements.

The algorithm for the consumer is identical to Figure 1, but the

producer now relies crucially on the checkpoint variables𝐴 and 𝐵 to

determine where to restart its loop because the operation signature

returned by𝑄 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒() is no longer sufficient to distinguish any two

enqueue operations. Checkpoints are taken twice in each iteration

of the loop: using 𝐴 at lines 28 to 29 before the prepare phase

of enqueue, and using 𝐵 at lines 31 to 32 between the prepare

phase and execute phase. During recovery, if the failure occurred

between the prepare phase and execute phase of the same iteration

𝑖 , then 𝐴 is used to determine 𝑖 and execution resumes at iteration 𝑖
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(line 23). Otherwise, the failure occurred between the execute phase

of iteration 𝑖 and the prepare phase of iteration 𝑖 + 1, 𝐵 is used to

determine 𝑖 , and execution resumes at iteration 𝑖 + 1 (line 25).

On first impression, it may seem that the checkpoint variable

𝐴 is sufficient to enable recovery, but its value cannot distinguish

between a failure immediately before the call to𝑄 .𝑝𝑟𝑒𝑝-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 in

iteration 𝑖 and a failure immediately after the call to𝑄 .𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒

of the same iteration. This is problematic because, in both cases,

𝑄 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒 may return the same response ⟨𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣𝑎𝑙),𝑂𝐾⟩ where
𝑣𝑎𝑙 = getData(𝑖 − 1) = getData(𝑖). Similarly, checkpoint variable

𝐵 by itself is not sufficient as its value cannot distinguish between

a failure immediately before 𝑄 .𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 in iteration 𝑖 and a

failure immediately after𝑄 .𝑝𝑟𝑒𝑝-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 in iteration 𝑖 +1, which is

problematic if getData(𝑖) = getData(𝑖 +1). Thus, two checkpoints
per iteration are, informally speaking, necessary. We formalize this

observation in Theorem 4.2 below.

Theorem 4.2. Any algorithm that solves the producer-consumer
problem formalized in this section (Definition 4.1) using a DSS-based
FIFO queue, requires that the producer can access persistent variables
in addition to the shared queue. Furthermore, there is at least one
execution of the algorithm where such a variable is accessed between
the prepare and execute phases of some enqueue operation, and at
least one execution of the algorithm where such a variable is accessed
between the execute phase of some enqueue operation and the prepare
phase of the next enqueue operation.

Proof. We will first show that the producer must write a per-

sistent variable between the prepare and execute phases of some

enqueue operation in some execution. Suppose for contradiction

that this is not true, meaning that a solution to the problem ex-

ists such that the producer’s algorithm never writes a persistent

variable between the prepare and execute phases of any enqueue

operation. Let the mapping getData(𝑖) be defined as follows:

getData(𝑖) =
{

1 if 𝑖 = 1 or 𝑖 = 2

𝑖 otherwise

(1)

We know from safety property 1 in Definition 4.1 that the producer

must enqueue values in the order 1, 1, 3, 4, 5, 6, 7, . . .. Now consider

the following two execution histories: in 𝐻 , a crash occurs imme-

diately before the prepare phase of the second enqueue operation;

and in 𝐻 ′
, a crash occurs immediately after the execute phase of

the second enqueue operation.
5
Now let 𝑆 be an extension of 𝐻 in

which the producer and consumer run without crashing, and where

their steps are scheduled fairly. It follows from safety property 1 and

the liveness property in Definition 4.1 that the producer enqueues

1, 3, 4, 5, 6, 7, . . . in this extension. Similarly, let 𝑆 ′ be an extension

of 𝐻 ′
in which the producer and consumer run without crashing,

and note that the producer enqueues 3, 4, 5, 6, 7, . . . in this extension.

Since we assume that the producer does not access any persistent

variables between the prepare and execute phases of enqueue, and

since the producer is not allowed to dequeue by safety property 0 in

Definition 4.1, it follows that the states of the system at the end of

𝐻 and 𝐻 ′
are indistinguishable to the producer irrespective of the

actions of the consumer. As a result, the producer must enqueue

5
If the prodcuer calls 𝑝𝑟𝑒𝑝-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 more than once between the first and second

𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 , we treat the last such 𝑝𝑟𝑒𝑝-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 as the prepare phase of the

second 𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 .

the same elements in 𝑆 as in 𝑆 ′, and this contradicts our earlier

observation regarding these execution fragments.

Next, we will show that the producer must write a persistent

variable between the execute phase of some enqueue operation and

the prepare phase of the next enqueue operation in some execution.

Suppose for contradiction that this is not true. The analysis is similar

to the first part of the proof, and we assume the same definition of

getData(𝑖). We know from safety property 1 in Definition 4.1 that

the producer must enqueue values in the order 1, 1, 3, 4, 5, 6, 7, . . ..

Now consider the following two execution histories: in 𝐻 , a crash

occurs immediately before the execute phase of the first enqueue

operation; and in 𝐻 ′
, a crash occurs immediately after the prepare

phase of the second enqueue operation. Let 𝑆 and 𝑆 ′ be extensions
of 𝐻 and 𝐻 ′

, respectively, in which the producer and consumer

run without crashing, and where their steps are scheduled fairly. It

follows from safety property 1 and the liveness property in Defi-

nition 4.1 that the producer enqueues 1, 1, 3, 4, 5, 6, 7, . . . in 𝑆 , and

1, 3, 4, 5, 6, 7, . . . in 𝑆 ′. As before, it follows that the states of the

system at the end of𝐻 and𝐻 ′
are indistinguishable to the producer

irrespective of the consumer, and so the producer must enqueue

the same elements in 𝑆 as in 𝑆 ′, leading to a contradiction. □

Our analysis of Figure 2 shows that the prepare and execute

phases of the DSS cannot always be combined because the appli-

cation may need to save additional recovery state, external to the

DSS-based object, between these phases. This, in turn, implies that

the DSS is not sufficiently powerful to enable correct recovery with-

out additional application-managed recovery state. The necessity

of such additional state is reminiscent of Ben-Baruch, Hendler, and

Rusanovsky’s observation regarding the necessity of auxiliary state
in NRL-like implementations [4], but is required in our case only

for the correctness of application, and not for the correct behaviour

of the detectable object used by the application.

The impossibility result stated in Theorem 4.2 can be defeated

by relaxing the specification of the producer-consumer synchro-

nization problem. One solution, introduced by Li and Golab in

Section 2.1 of [24], is to store an additional numerical tag during

the prepare phase to distinguish operations with identical signa-

tures and argument values. We refer to this variation of the DSS

as the augmented sequential specification (ADSS). Another solution,

suggested by an anonymous reviewer, is to use the DSS without any

modifications, but redefine the semantics of the elements stored in

the queue. Specifically, instead of appending getData(𝑖) in iteration
𝑖 , the producer appends the tuple ⟨𝑖, getData(𝑖)⟩, and the consumer

discards the first component of the tuple. Both solutions make the

problem solvable without application-managed checkpoints, and

this observation yields a partial answer to our Question 2 from

Section 1.

5 THE UNIFIED DETECTABLE SEQUENTIAL
SPECIFICATION

Drawing inspiration from our earlier examples, we now propose

a novel unified detectable sequential specification (UDSS) that com-

bines the prepare and execute phases of the DSS/ADSS into a single

operation. This design choice further simplifies application code

and, as we show later on in Section 6, has little impact on perfor-

mance.
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5.1 Formal Definition
We beginwith a formal definition of the UDSS. Given a conventional

object type 𝑇 = (𝑆, 𝑠0,𝑂𝑃, 𝑅, 𝛿, 𝜌) representing a set of states 𝑆 ,

initial state 𝑠0, set of operation signatures 𝑂𝑃 , set of responses 𝑅,

state transition function 𝛿 , and response function 𝜌 , the UDSS of

𝑇 is a sequential specification𝑈𝐷 ⟨𝑇 ⟩ = (𝑆, 𝑠0,𝑂𝑃, 𝑅, ¯𝛿, 𝜌) obtained
from 𝑇 by the following transformation:

• Each state 𝑠 ∈ 𝑆 is a tuple (𝑠,A,T ,R), as in the ADSS, where
𝑠 ∈ 𝑆 and the components A/T /R map threads to operation

signatures, tags, and responses, respectively. In the initial

state 𝑠𝑜 , 𝑠 = 𝑠0 and A/T /R map each thread to ⊥.
• 𝑂𝑃 comprises all the operations of 𝑂𝑃 , as well as new auxil-
iary operations: 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝 for each 𝑜𝑝 ∈ 𝑂𝑃 , and 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 .

• The state transition function
¯𝛿 , response function 𝜌 , and

response set 𝑅 are described in Figure 3 using an axiomatic

style modelled after [19, 24].

{𝑡𝑟𝑢𝑒}
𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝 (𝑡) / 𝑡𝑖 / 𝜌 (𝑠, 𝑜𝑝, 𝑡𝑖 )

{𝑠′ = 𝛿 (𝑠, 𝑜𝑝, 𝑡𝑖 ) ∧ A′ [𝑡𝑖 ] = 𝑜𝑝 ∧ T ′ [𝑡𝑖 ] = 𝑡 ∧ R′ [𝑡𝑖 ] = 𝜌 (𝑠, 𝑜𝑝, 𝑡𝑖 )}
(2)

{𝑡𝑟𝑢𝑒}
𝑟𝑒𝑠𝑜𝑙𝑣𝑒 / 𝑡𝑖 / (A[𝑡𝑖 ],T [𝑡𝑖 ],R[𝑡𝑖 ])

{}
(3)

{𝑡𝑟𝑢𝑒}
𝑜𝑝 / 𝑡𝑖 / 𝜌 (𝑠, 𝑜𝑝, 𝑡𝑖 )
{𝑠′ = 𝛿 (𝑠, 𝑜𝑝, 𝑡𝑖 )}

(4)

Figure 3: Unified detectable sequential specification (UDSS)
of base type 𝑇 , denoted𝑈𝐷 ⟨𝑇 ⟩.

In practical terms, the operations described axiomatically in Fig-

ure 3 behave as follows. For each 𝑜𝑝 ∈ 𝑂𝑃 of type𝑇 , 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝

(Axiom 2) is used to apply 𝑜𝑝 in a detectable way. The tag argument

𝑡 of 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝 is saved in the state of the detectable object but

excluded in the computation of 𝛿 and 𝜌 of the base type 𝑇 , as in

the ADSS. Operation 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 (Axiom 3) returns the operation sig-

nature 𝑜𝑝 , tag 𝑡 , and response 𝑟 of the most recent 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝 ,

or (⊥,⊥,⊥) if 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝 was never applied by the same thread.

Finally, operation 𝑜𝑝 (Axiom 4) simply applies the state transition

prescribed by 𝑜𝑝 in a non-detectable way with no other side-effects.

The UDSS supports detectability in the following sense: if a

thread calls 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 immediately after applying 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝(𝑡 )

with response 𝑟 , then 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 returns (𝑜𝑝, 𝑡, 𝑟 ); and if the thread did
not apply 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝 for any 𝑜𝑝 , then 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 returns (⊥,⊥,⊥).

5.2 Application Examples
Figure 4 shows how to solve the producer-consumer problem with

arbitrary data elements using a UDSS-based queue. Compared to the

ADSS-based algorithm (omitted due to lack of space), the producer’s

recovery code considers two cases instead of three, and the body

of the while loop is shorter by one statement. A more elaborate

version of the algorithm can be derived for the case when the

implementation of 𝑄 restricts the size of the tags to only 𝑘 bits, in

which case the algorithm checkpoints every 2
𝑘−1

iterations.

Shared variables:
• 𝑄 : queue object based on UDSS

Procedure producer

42 ⟨𝑜𝑝, 𝑡𝑎𝑔, 𝑟𝑒𝑠⟩ := 𝑄.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ()
43 if 𝑜𝑝 = ⊥ then
44 𝑠𝑡𝑎𝑟𝑡 := 1

45 else
46 𝑠𝑡𝑎𝑟𝑡 := 𝑡𝑎𝑔 + 1

47 for 𝑖 from 𝑠𝑡𝑎𝑟𝑡 to∞ do
48 𝑣𝑎𝑙 := getData(𝑖)
49 𝑄.𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑒𝑛𝑞(𝑣𝑎𝑙, 𝑖)

Procedure consumer

50 ⟨𝑜𝑝, 𝑡𝑎𝑔, 𝑟𝑒𝑠⟩ := 𝑄.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ()
51 if 𝑜𝑝 ≠ ⊥ ∧ 𝑟𝑒𝑠 ≠ EMPTY then
52 print(𝑟𝑒𝑠)

53 while true do
54 𝑣𝑎𝑙 := 𝑄.𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑑𝑒𝑞(⊥)
55 if 𝑣𝑎𝑙 ≠ EMPTY then
56 print(𝑣𝑎𝑙 )

Figure 4: Producer-consumer example with a UDSS-based
queue and arbitrary data elements.

5.3 Transformation from ADSS to UDSS
In this section, we show that an object that implements the ADSS

for some base type𝑇 (i.e., 𝐴𝐷 ⟨𝑇 ⟩) can be transformed into one that

implements the UDSS for 𝑇 (i.e., 𝑈𝐷 ⟨𝑇 ⟩). The transformation (Fig-

ure 5) uses a single base object 𝐵 of type𝐴𝐷 ⟨𝑇 ⟩, which we assume is

atomic for simplicity of analysis, but can be replaced with a strictly

linearizable one. The transformation preserves wait-freedom, and

yields a strictly linearizable implementation of𝑈𝐷 ⟨𝑇 ⟩.
The core idea underlying the transformation is that thread 𝑡𝑖

saves the result of its most recently completed detectable opera-

tion to 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖] in 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 , and calls 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 inside 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝

before preparing and executing 𝑜𝑝 on the base object 𝐵. The lin-

earization points (LPs) of the implemented operations are as follows:

• The LP of 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝 is the call to 𝐵.𝑒𝑥𝑒𝑐-𝑜𝑝 ().
• The LP of 𝑜𝑝 is the call to 𝐵.𝑜𝑝 ().
• The LP of 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 is the PERSIST at line 64 or the read of

𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖] at line 67.
Theorem 5.1. The transformation presented in Figure 5 maintains

the following invariant:
Let (𝑠,A,T ,R) denote the state of the base object 𝐵 of
type 𝐴𝐷 ⟨𝑇 ⟩. Then the state of the implemented object
of type𝑈𝐷 ⟨𝑇 ⟩ is a tuple (𝑠, ¯A, ¯T , ¯R) such that:
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Shared variables:
• 𝐵: atomic base object of type 𝐴𝐷 ⟨𝑇 ⟩
• 𝐿𝑎𝑠𝑡𝑂𝑝 [1..𝑛]: array of triples, each element initially

(⊥,⊥,⊥)
Procedure 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝(𝑡 : tag)

57 𝑟𝑒𝑠𝑜𝑙𝑣𝑒()

58 𝐵.𝑝𝑟𝑒𝑝-𝑜𝑝(𝑡 )

59 return 𝐵.𝑒𝑥𝑒𝑐-𝑜𝑝()

Procedure 𝑜𝑝()

60 return 𝐵.𝑜𝑝()

Procedure 𝑟𝑒𝑠𝑜𝑙𝑣𝑒()

61 (𝑜𝑝, 𝑡𝑎𝑔, 𝑟𝑒𝑠) := 𝐵.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ()
62 if 𝑜𝑝 ≠ ⊥ ∧ 𝑟𝑒𝑠 ≠ ⊥ then
63 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖] := (𝑜𝑝, 𝑡𝑎𝑔, 𝑟𝑒𝑠)
64 PERSIST(&𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖])
65 return (𝑜𝑝, 𝑡𝑎𝑔, 𝑟𝑒𝑠)
66 else
67 return 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖]

Figure 5: Transformation from 𝐴𝐷 ⟨𝑇 ⟩ to𝑈𝐷 ⟨𝑇 ⟩, thread 𝑡𝑖 .

(1) 𝑠 = 𝑠

(2) for each thread 𝑡𝑖 , ifR[𝑖] = ⊥ then ( ¯A[𝑖], ¯T [𝑖], ¯R[𝑖]) =
𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖]6

(3) for each thread 𝑡𝑖 , ifR[𝑖] ≠ ⊥ then ( ¯A[𝑖], ¯T [𝑖], ¯R[𝑖]) =
(A[𝑖],T [𝑖],R[𝑖])

Theorem 5.2. The transformation presented in Figure 5 is strictly
linearizable and preserves wait-freedom.

Proof. Preservation of wait-freedom follows easily from the

structure of the transformation. For strict linearizability, first note

that by our earlier definition of linearization points, each imple-

mented operation that takes effect does so at a point between its

invocation, and its response or a crash event that interrupts its

execution. To complete the analysis, we must show that the imple-

mented UDSS operations return correct responses with respect to

the chosen linearization points (LPs). We proceed by case analysis.

For each implemented operation, we consider the state immediately

before the execution of the LP, and immediately after. We will use

(𝑠,A,T ,R) and (𝑠, ¯A, ¯T , ¯R) to denote the state of the base object

𝐵 and implemented object, as determined by our choice of LPs, im-

mediately before the LP. Primed symbols will denote the analogous

states immediately after the LP.

Case A: 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒-𝑜𝑝(𝑡 ) by thread 𝑡𝑖 . The LP of this operation is

𝐵.𝑒𝑥𝑒𝑐-𝑜𝑝() at line 59. The actual response of the implemented oper-

ation is the same as the response of 𝐵.𝑒𝑥𝑒𝑐-𝑜𝑝(), which is 𝜌 (𝑠, 𝑜𝑝, 𝑡𝑖 ).
The correct response of the implemented operation is 𝜌 (𝑠, 𝑜𝑝, 𝑡𝑖 )
since 𝐴𝐷 ⟨𝑇 ⟩ and 𝑈𝐷 ⟨𝑇 ⟩ share the same response function 𝜌 . By

6
The notation 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖 ] refers to the value stored in persistent memory, and not the

potentially newer value in the volatile cache.

our invariant (Theorem 5.1), 𝑠 = 𝑠 , and so 𝜌 (𝑠, 𝑜𝑝, 𝑡𝑖 ) = 𝜌 (𝑠, 𝑜𝑝, 𝑡𝑖 ).
Thus, the actual response is correct.

Case B: 𝑜𝑝() by thread 𝑡𝑖 . The LP of this operation is 𝐵.𝑜𝑝() at line 60,

and the analysis is identical to Case A.

Case C: 𝑟𝑒𝑠𝑜𝑙𝑣𝑒() by thread 𝑡𝑖 . The LP of this operation is a PERSIST
at line 64 or a read at line 67. The actual response of the implemented

operation is the value persisted to 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖] at line 64, or the

value read from 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖] at line 67. The correct response of the
implemented operation is ( ¯A[𝑖], ¯T [𝑖], ¯R[𝑖]).

If the condition evaluated earlier at line 62 is true, then the actual

response is equal to the value written to 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖] at lines 63 to 64,
which was returned earlier by the call to 𝐵.𝑟𝑒𝑠𝑜𝑙𝑣𝑒 () at line 61, and
which is therefore equal to (A[𝑖],T [𝑖],R[𝑖]). Since clause 3 of the
invariant (Theorem 5.1) applies and states that ( ¯A[𝑖], ¯T [𝑖], ¯R[𝑖]) =
(A[𝑖],T [𝑖],R[𝑖]), the actual response is correct.

On the other hand, if the condition evaluated earlier at line 62

is false, then the actual response is equal to the value read from

𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖] at line 67, which was written and persisted during an

earlier execution of 𝑟𝑒𝑠𝑜𝑙𝑣𝑒() on the implement object. In this case,

R[𝑖] = ⊥, and so clause 2 of the invariant (Theorem 5.1) applies

and states that ( ¯A[𝑖], ¯T [𝑖], ¯R[𝑖]) = 𝐿𝑎𝑠𝑡𝑂𝑝 [𝑖]. Thus, the actual

response is ( ¯A[𝑖], ¯T [𝑖], ¯R[𝑖]), and this is the correct response. □

6 EXPERIMENTAL EVALUATION
This section presents an experimental performance evaluation com-

paring two strictly linearizable implementations of Li and Golab’s

detectable lock-free FIFO queue [24]: one based on the DSS, and

another obtained by transforming the DSS-based version first to

ADSS and then to UDSS using our transformation from Section 5.

We conduct scalability experiments using an Intel multiprocessor

with genuine Optane persistent memory. The queue prototypes are

implemented using C++ and the Intel Persistent Memory Develop-

ment Kit (PMDK) [31]. Our code is loosely based on Li’s open-source

implementation [23] of the DSS-based queue [24], which itself is

embedded into a fork of the open-source implementation of Wang

et al.’s Persistent Multi-word Compare-And-Swap (PMwCAS) [35].

We have rewritten most of Li’s code to isolate the queue implemen-

tation from PMwCAS, and also transitioned to using the persistent

pointer class from the libpmemobj library to link persistent objects

in a manner that compensates for address space layout randomiza-

tion (ASLR).
7
Despite the overhead of using the persistent pointer

class, which introduces additional method calls, our DSS-based

queue is actually faster than Li’s, mainly due to improved memory

alignment. Our code is publicly accessible on an institutional git

server [27].

One complication we encountered with respect to persistent

pointers is that they cannot be updated in a failure-atomic manner

using basic machine instructions. This is because such pointers

comprise two 64-bit fields – the memory pool identifier and offset –

whereas Intel supports only 64-bit failure-atomic writes [30]. Since

we avoid the transactions provided by the libpmemobj library due

to their high performance overhead, except during the one-time ini-

tialization phase, our workaround is to restrict the memory layout

7
Each time the code is restarted, a persistent object is mapped to a potentially different

virtual address because of ASLR. Thus, pointers between objects must be relative, and

virtual addresses must be calculated by adding the offset to the base address of the

memory-mapped file containing the persistent objects.
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of the data structure to a single memory pool and manipulate only

the offset field of the persistent pointer using 64-bit loads, stores,

and Compare-And-Swap operations.

Our results, presented in Figure 6, evaluate the performance of

the DSS-based and UDSS-based queue implementations in failure-

free runs with up to 20 threads. The workload in our experiments is

similar to [24]. Multiple threads apply detectable enqueue and de-

queue operations repeatedly to a single shared queue. The elements

enqueued by each thread are integers. Since the queue structures

are implemented as linked lists and queue nodes must be dynami-

cally allocated, we use a memory management scheme similar to

[23, 24], where each thread pre-allocates a pool of such nodes and a

variation of epoch-based reclamation (EBR) [14] is used to recycle

nodes. We also include data for a non-detectable DSS-based queue,

where queue operations are applied directly (Axiom 4 in Figure 1

of [24]) rather than via 𝑝𝑟𝑒𝑝-𝑜𝑝 and 𝑒𝑥𝑒𝑐-𝑜𝑝 . In each experiment,

the queue is initialized with 4 queue nodes. Each point plotted

is the mean throughput value (millions of operations per second)

computed over a sample of 6 runs, and in all cases, the sample

standard deviation is less than 2% of the sample mean. The results

in Figure 6a show that the UDSS-based queue performs comparably

to DSS despite differences in the interface.

Figure 6b breaks down the execution latency for the UDSS-based

queue into three components: overhead due to memory manage-

ment, enqueue processing, and dequeue processing. The stacked

bar chart shows that our EBR-based memory management is quite

efficient, and that dequeue operations are slower than enqueues.

The latter observation is consistent with the structure of Li and

Golab’s algorithm [24], where both enqueues and dequeues update

the linked list of nodes, and dequeues additionally mark removed

nodes with the caller’s thread ID.

Next, we consider the producer-consumer application with one

producer and one consumer. Table 1 shows the throughput and the

proportion of time spent by the producer in 𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 . The DSS

column corresponds to the code in Figure 2, and UDSS corresponds

to a variation of Figure 4 that uses 16-bit tags. Each number is the

average of a sample of 6 runs, and the sample standard deviation is

less than 2% of the sample mean. The results presented in the table

demonstrate that the DSS-based producer-consumer implemen-

tation has slightly better performance than the UDSS-based one.

Moreover, the proportion of time spent in 𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 suggests

that the overhead of checkpointing in the DSS-based implementa-

tion of the producer is lower than the overhead introduced by our

UDSS transformation (e.g., line 57, line 61, and line 64 in Figure 5).

Table 1: Analysis of producer-consumer application.

Implementation type DSS UDSS

Throughput (queue ops/s) 641k 618k

Time spent by producer in 𝑒𝑥𝑒𝑐-𝑒𝑛𝑞𝑢𝑒𝑢𝑒 84% 63%

7 CONCLUSION
This paper posed and partially answered a number of fundamental

questions regarding specifications of correctness for detectable

objects, focusing on the detectable sequential specification (DSS)
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Figure 6: Throughput and latency experiments.

formalized recently by Li and Golab [24]. We first asked whether

the separation of a detectable operation into a prepare phase and

execute phase in the DSS is fundamentally necessary, and found that

the answer is affirmative in a simple producer-consumer application.

On the other hand, we reached the opposite conclusion with respect

to Li and Golab’s augmented detectable sequential specification

(ADSS), which uses auxiliary operation arguments in the form of

numerical tags to distinguish operations with identical signatures.

Next, we introduced the unified detectable sequential specification
(UDSS), which combines the prepare and execute phases of the

ADSS into a single operation to simplify application code. Finally,

we proposed a black box transformation from ADSS to UDSS, and

evaluated its practical performance overhead on Li and Golab’s

detectable queue.
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