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Abstract
Research in concurrent in-memory data structures has focused almost exclusively on models where
processes are either reliable, or may fail by crashing permanently. The case where processes may
recover from failures has received little attention because recovery from conventional volatile
memory is impossible in the event of a system crash, during which both the state of main memory
and the private states of processes are lost. Future hardware architectures are likely to include
various forms of non-volatile random access memory (NVRAM), creating new opportunities to
design robust main memory data structures that can recover from system crashes. In this paper we
advance the theoretical foundations of such data structures in two ways. First, we review several
known variations of Herlihy and Wing’s linearizability property that were proposed in the context
of message passing systems but also apply in our NVRAM-based model, we discuss the limitations
of these properties with respect to our specific goals, and we propose an alternative correctness
condition called recoverable linearizability. Second, we discuss techniques for implementing shared
objects that satisfy such properties with a focus on wait-free implementations. Specifically, we
demonstrate how to achieve different variations of linearizability in our model by transforming
two classic wait-free constructions.
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1 Introduction

Shared data structures are essential building blocks for modern operating systems and
applications, which are empowered almost exclusively by multi-core hardware platforms.
Although the multi-core revolution has propelled research in this area to new heights over the
last decade, questions pertaining to specifying and implementing concurrent data structures
were considered in the literature long before thread-level parallelism became mainstream.
Dijkstra’s pioneering work on concurrent programming dates back to 1965 [10], followed by
a series of seminal papers on inter-process communication, wait-free synchronization, and
linearizability [14, 16, 22, 23]. The fundamental abstractions introduced in this body of work
have been studied widely in the context of various theoretical models of shared memory
computation that capture precise assumptions regarding the synchrony and reliability of
processes, as well as the set of primitive operations available for accessing memory. In
particular, recent research has paid close attention to asynchronous models, in which there is
no bound on the amount of time a process takes to transition to its next step, or to complete
a memory operation. This assumption reflects in a meaningful way the behavior of modern
memory hierarchies, in which different media (e.g., L1 cache vs. L2 cache vs. main memory)
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incur vastly different and often unpredictable access latencies, as well as the effect of the
operating system (e.g., via preemption and interrupts) on the liveness of processes. Aside
from capturing these important aspects of real world performance, asynchrony is also related
to reliability in a precise way: algorithms that provide non-blocking progress properties (e.g.,
lock-freedom and wait-freedom) in an asynchronous environment with reliable processes
continue to provide the same progress properties if crash failures are introduced. Informally
speaking, this property holds because a process that crashes permanently at an arbitrary
point in the execution of its algorithm is indistinguishable to the other processes from one
that is merely very slow.

Owing to its simplicity and intimate relationship with asynchrony, the crash failure
model is almost ubiquitous in the treatment of non-blocking shared memory algorithms and
message passing protocols [4, 7, 11, 14, 20]. In comparison, much less attention has been
paid to crash-recovery models, in which a failed process may be resurrected after a crash
failure. For example, in the message passing paradigm a process may crash and recover
state information either from its private stable storage or from another process on a different
node [3]. Although similar techniques are in principle applicable in the shared memory
paradigm of computation, they are poorly matched to modern multi-core architectures with
volatile SRAM-based caches and DRAM-based main memories [29]. Any state stored in
main memory is lost entirely in the event of a system crash or power loss, and recording
recovery information in non-volatile secondary storage (e.g., on a hard disk drive or solid
state drive) imposes overheads that are unacceptable for performance-critical tasks, such as
synchronizing threads inside the operating system kernel.

In this paper, we consider correctness properties and implementation techniques for
data structures intended for future shared memory architectures that incorporate non-
volatile random-access memory (NVRAM)—a form of main memory that promises to marry
performance comparable to DRAM with the high density and persistence of secondary
storage. We assume that NVRAM is accessed using memory operations (e.g., reads, writes,
and read-modify-write primitives), similarly to ordinary DRAM, and that such operations
can be made both atomic and durable through appropriate extensions to conventional
caching and memory ordering mechanisms [9, 18, 25, 28, 30]. Under these assumptions,
concurrent data structures such as stacks, queues, and trees may reside directly in NVRAM
and algorithms for accessing them may follow conventional techniques for synchronization.
However, conventional techniques do not address the problem of recovering such structures
following a failure, such as may occur when a multiprocessor suffers a power outage, leading
to the loss of all volatile state including the program counter and other vital CPU registers.

Our technical contributions with respect to robust shared objects for multiprocessors that
incorporate NVRAM are the following:

1. We refine the conventional abstract model of a shared memory multiprocessor by introdu-
cing non-volatility.

2. We survey known correctness properties proposed for shared objects in models with crash
and crash-recovery failures, discuss their limitations, and propose an alternative property
we call recoverable linearizability (or R-linearizability for short).

3. We explore techniques for transforming ordinary linearizable implementations into R-
linearizable ones, with a special focus on wait-freedom. Our discussion uses as examples
Herlihy’s universal wait-free construction [14] and a classic wait-free implementation of
MRSW registers from SRSW registers [15].
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2 Related Work

Constructing robust shared objects for NVRAM requires two ingredients: a correctness
property that provides meaningful guarantees in the presence of failures, and a set of
algorithmic techniques that leverage the non-volatility of the storage medium for recovery.
Conventional relational databases provide both, namely serializability for correctness and
write-ahead logging for recovery (e.g., ARIES [26]), but perform orders of magnitude slower
than main memory data structures owing to their internal complexity as well as their use
of a centralized recovery log in secondary storage. Coburn et al. propose NV-Heaps as
an alternative method of providing transactional access to persistent shared objects [8].
NV-Heaps use NVRAM directly to store both object state and recovery information in the
form of operation descriptors, which are similar to recovery logs but more fine-grained. Like
conventional databases, NV-Heaps use locks for concurrency control and perform recovery
by analyzing the operation descriptors while execution of new transactions is temporarily
suspended. Mnemosyne is another transactional interface to NVRAM that uses lock-based
concurrency control and log-based recovery [35]. Venkataraman et al. define Consistent and
Durable Data Structures (CDDSs), which provide lock-free access to readers but rely on
mutual exclusion to synchronize writers [33]. These structures are linearizable in failure-free
executions, and any updates that are interrupted by a crash failure are discarded on recovery.

Aside from techniques targeted specifically at NVRAM, related work includes methods
for recovering process state from stable storage and for dealing with unreliable memory.
Schlichting and Schneider consider the problem of restarting a process that halts due to
a processor failure by defining fault-tolerant actions that leverage stable storage to persist
program state [32]. This work focuses on fault tolerance and considers limited interprocess
communication through multi-reader single-writer shared state variables. Several papers
consider computation with unreliable memory: Afek et al. consider the consensus problem
in this general context [1], Moscibroda and Oshman focus on mutual exclusion [27], and
Jayanti et al. propose implementations of shared objects from unreliable base objects [20].
In contrast to these techniques, which break if the number of corruptions exceeds a specified
bound, Hoepman et al. [17] as well as Johnen and Higham [21] propose self-stabilizing shared
objects that can tolerate any number of memory failures. These objects guarantee wait-free
progress, and also ensure that operations return correct values except possibly during the
period of instability immediately following a failure.

p.write(X, 1)

time

p.write(X, 2)

crash

p.read(X)  2

Figure 1 Example execution in which process p writes 1
to object X, then begins writing 2 to X, fails due to a system
crash before the write returns, and then reads 2 from X.

As regards correctness proper-
ties, specifically consistency prop-
erties, the dominant ideas in re-
search have long been serializab-
ility in the context of databases
[5], and linearizability in the con-
text of in-memory shared objects
[16]. Informally speaking, both re-
quire that actions—transactions
or operations on objects—appear
to take effect instantaneously in
some serial order. Linearizability
further constrains this order so
that if operation op1 happens before operation op2 (i.e., op1 ends before op2 begins), then op1
should precede op2 in the serial order. Strict serializability imposes an analogous constraint



4 Robust Shared Objects for Non-Volatile Main Memory

on the serial order of transactions. Serializability naturally accommodates crash-recovery
failures in the following sense: a transaction interrupted by a failure can simply be aborted
and excluded from the serial order. In contrast, linearizability (defined formally in Section 3)
has no notion of an aborted or failed operation, and requires that a process finish one
operation before it invokes the next. Figure 1 illustrates an execution that is outside the
scope of such a model because a process fails in the middle of an operation, then recovers
and invokes another operation without completing the previous one.

Frølund et al. address the technicality illustrated in Figure 1 by treating the crash
of a process as a response, either successful or unsuccessful, to the interrupted operation
[12]. A successful response means that the operation takes effect at some point between its
invocation and the crash failure, and an unsuccessful response means that the operation does
not take effect at all. This correctness property is stated in [12] as an extension of Lamport’s
atomicity property for read/write registers [22, 23], and generalized to arbitrary object types
by Aguilera and Frølund as strict linearizability [2]. The same idea is used by Saito et al. in
FAB, a fault-tolerant distributed storage system [31].

Aguilera and Frølund show that strict linearizability has an interesting property in the
context of shared memory: it precludes wait-free implementations of multi-reader single-writer
(MRSW) registers from single-reader single-writer (SRSW) registers [2]. Intuitively, this is
because the effect of a write operation on the implemented object can only be made visible
to other processes by a non-atomic series of operations on the single-reader base objects. As
a result, when a write is interrupted by a crash, it is sometimes possible for a subsequent
read to return either the old or the new value of the implemented object, depending on the
identity of the reader. This leads to a scenario where the write appears to take effect after
the crash because one read returns the old value and a later read returns the new value.

Guerraoui and Levy propose two correctness properties for read/write registers simulated
using message passing in a crash-recovery model [13]. Persistent atomicity is similar to
strict linearizability, but allows an operation interrupted by a failure to take effect before the
subsequent invocation of the same process, possibly after the failure. Transient atomicity
relaxes this criterion even further and allows an interrupted operation to take effect before
the subsequent write response of the same process. Although the intent underlying Guerraoui
and Levy’s definitions was to explore trade-offs between performance and consistency, their
properties are quite relevant in the context of shared objects for NVRAM, particularly
wait-free implementations that employ helping mechanisms whereby an operation invoked by
a process p may take effect by the action of another process q after p fails. In contrast, strict
linearizability forbids this behavior. Censor-Hillel, Petrank and Timnat recently formalized
the concept of helping and showed that without it, certain types of objects lack wait-free
linearizable implementations in a conventional shared memory model [6].

Correctness properties for shared objects are easier to reason about when they are local,
meaning that a collection of objects satisfy a given property P if and only if every object
in the collection individually satisfies P [16]. Locality makes it possible to implement and
verify shared objects independently, which benefits modularity and concurrency. It is known
that linearizability, strict linearizability, and strict serializability are local properties, while
ordinary serializability is not. As we explain in Section 4, persistent and transient atomicity
are also not local. Vitenberg and Friedman formulate a number of general theorems that can
be used to deduce the locality (or lack thereof) of various correctness properties for shared
objects [34], however these theorems are proved in a conventional model similar to Herlihy
and Wing’s, in which a process must complete one operation before it invokes another. Hence,
these theorems are not applicable directly in our more general model.
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3 Model

Our model is closely based upon Herlihy and Wing’s [16].
Processes and objects. We consider N asynchronous processes, denoted p0, p1, ..., pN−1,

that communicate by applying operations on shared base objects that support atomic
operations such as reads, writes, and read-modify-write primitives. Base objects can be used
to construct more complex implemented objects, such as queues and stacks, by defining access
procedures that simulate each operation on the implemented object using operations on base
objects. Base objects can be volatile or non-volatile, which determines their behavior during
a failure. The state of a process is a collection of private variables, including a program
counter. We consider only one type of failure, called a system crash (or crash for short),
which resets all volatile base objects as well as the private variables of all processes to their
initial values, but preserves the values of all non-volatile base objects. Following a crash a
process may either halt permanently or resume its execution (i.e., recover).

Steps and histories. We model the interaction of processes with implemented objects
using steps and histories. There are three types of steps: (1) an invocation step, denoted
(INV, p, X, op), represents the invocation by process p of operation op on implemented object
X; (2) a response step, denoted (RES, p, X, ret), represents the completion by process p

of the last operation it invoked on object X, with response ret; (3) a crash step, denoted
(CRASH), denotes a system crash. We include explicit crash steps to accommodate strict
linearizability (defined formally in Section 4), but we do not use explicit recovery steps; a
process recovers implicitly following a crash by taking an invocation step.

A history H is a sequence of steps, possibly involving multiple processes and implemented
objects. For a given history H, we denote by H|p the projection of H onto the steps of process
p. Similarly, we denote by H|O the projection of H onto the steps involving implemented
object O. We adopt the convention that both H|p and H|O retain all crash steps in H. A
response step is matching with respect to an invocation step s by a process p on object X in
a history H if it is the first response step by p on X that follows s in H, and it occurs before
p’s next invocation (if any) in H.

Operations. For any history H and any process p, an operation by p in H comprises
an invocation step and its matching response, if it exists. An operation is complete if it
has a matching response step, and pending otherwise. Given two operations op1 and op2
in a history H, we say that op1 happens before op2, denoted by op1 <H op2, if op1 has a
matching response that precedes the invocation step of op2 in H. If neither op1 <H op2 nor
op2 <H op1 holds then we say that op1 and op2 are concurrent in H.

Properties of histories. A history H is sequential if no two operations in it are concurrent.
Two histories H and H ′ are equivalent if for every process p, H|p = H ′|p holds. Every
history H must be well-formed, meaning that for each process p two conditions hold: (1) each
response step in H|p is immediately preceded by an invocation step for which the response is
matching, and (2) each invocation step in H|p, except possibly the last one, is immediately
followed by a matching response or by a crash step. Note that p may have multiple pending
operations in H|p, in contrast to Herlihy and Wing’s model, where at most the last operation
may be pending.

Sequential specifications. Every implemented object O has a sequential specification that
defines its allowed behaviors and is expressed as a set of possible sequential histories over
O. A sequential history H is legal if for every implemented object O accessed in H, H|O
belongs to the sequential specification of O.
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4 Correctness Properties

In this section we consider correctness properties for shared objects in NVRAM. Our goal is
to identify a small set of candidate properties that could describe the behavior of a variety
of shared object implementations. Specifically, we are interested in variations of Herlihy and
Wing’s linearizability property as it is widely adopted for shared objects in conventional
shared memory models. We will give formal definitions of some of the properties discussed
in Section 2, discuss their limitations, and then propose an alternative correctness property.

Linearizability itself, as defined by Herlihy and Wing [16], can be formalized in our model
but only for histories that are free of crash steps. Given such a history H, we first define
its completion H ′ by appending matching responses for a subset of pending operations, and
finally removing any remaining pending operations. Appending the responses rather than
inserting them between steps of H ensures that H and H ′ share the same “happens before”
relation (i.e., <H=<H′).

▶ Definition 1 (Linearizability). A finite history H that does not contain any crash steps is
linearizable if it has a completion H ′ and there exists a legal sequential history S such that:

L1 H ′ is equivalent to S; and
L2 <H⊆<S (i.e., if op1 <H op2 and both ops. appear in S then op1 <S op2).

To formalize strict linearizability we introduce a strict completion H ′, which is obtained
from H by inserting matching responses for a subset of pending operations after the operation’s
invocation and before the next crash step (if any), and finally removing any remaining pending
operations and crash steps. Inserting responses in this manner may alter the “happens before”
relation but guarantees that <H⊆<H′ (i.e., if op1 <H op2 then op1 <H′ op2).

▶ Definition 2 (Strict linearizability). A finite history H is strictly linearizable if it has a
strict completion H ′ and there exists a legal sequential history S such that:

SL1 H ′ is equivalent to S; and
SL2 <H′⊆<S (i.e., if op1 <H′ op2 and both ops. appear in S then op1 <S op2).

Referring to H ′ in clause SL2 ensures that any operation invoked before a crash in H

and completed in H ′ happens before any operation invoked after the crash. As an example,
consider the history H corresponding to Figure 1, where ⊥ denotes the response of a write:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, X, write(2)), (CRASH),
(INV, p, X, read()), (RES, p, X, 2)

A strict completion H ′ of H can be obtained by inserting a matching response for the write
of 2 immediately before the crash step, and then removing the crash step:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, X, write(2)), (RES, p, X, ⊥),
(INV, p, X, read()), (RES, p, X, 2)

The legal sequential history S that satisfies Definition 2 with respect to H and H ′ is H ′

itself, and thus H is strictly linearizable.
Although strict linearizability is an attractive property, Aguilera and Frølund show that

it is somewhat restrictive as it forbids wait-free implementations of multi-reader single-
writer (MRSW) registers from single-reader single-writer (SRSW) registers [2]. In contrast,
linearizability does allow such an implementation, which we discuss further in Section 5.2.
Guerraoui and Levy’s definitions are less restrictive in comparison as they allow operations
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interrupted by a failure to take effect after the failure, for example by the action of another
process executing a helping mechanism in a wait-free implementation.

Persistent atomicity, which we refer to later on as persistent linearizability, can be
formalized in our model as follows. Given a history H, a persistent completion H ′ is
obtained from H by inserting matching responses for a subset of pending operations after the
operation’s invocation and before the next invocation step of the same process, and finally
removing any remaining pending operations and crash steps.

▶ Definition 3 (Persistent linearizability). A finite history H is persistently linearizable if
it has a persistent completion H ′ and there exists a legal sequential history S such that
conditions SL1 and SL2 from Definition 2 hold.

Defining transient atomicity formally in our model presents two technical difficulties,
both related to Guerraoui and Levy’s definition of a weak completion in which a matching
response can be added for a pending operation anywhere after the invocation and “before the
subsequent write reply of the same process.” First, it is not obvious how to generalize this
concept to arbitrary object types, which may not even support a write operation. Second,
the weak completion may contain complete operations invoked by the same process that
overlap, even if we restrict our attention to a single object. This not only violates the well-
formedness property defined in Section 3 for histories, but also allows operations executed by
the same process to take effect in an order different from the order of invocation. (The model
in [13] uses a slightly different well-formedness property but the same issues arise.) This
anomaly, which we call program order inversion, complicates reasoning about the behavior of
implemented objects and goes against the intuition underlying Herlihy and Wing’s model, in
which one process may have at most one pending operation at any given point in time. On
the other hand, some reordering among operations may be justifiable in our crash-recovery
model for the following reason: if an operation op by process p on object X is interrupted
by a crash failure, process p should be free to resume execution and invoke an operation
on some other object Y independently of any steps on X, by p or any other process, that
may cause p’s interrupted operation to take effect later on. We refer to this requirement as
independent recovery, and suggest that it follows naturally from the nonblocking property of
linearizability: “processes invoking totally-defined operations are never forced to wait” [16].

p.write(X, 1)

time

p.write(X, 2)

crash

p.read(X)  2

q.read(X)  1

p.write(Y, 1)

Figure 2 Example execution involving processes p, q and
objects X, Y . A failure interrupts p’s second write operation
before it returns a response.

A more fundamental draw-
back of both persistent and
transient atomicity is the lack
of locality, which we consider es-
sential. In both cases the place-
ment of a matching response
for a pending operation is con-
strained by other operations
in a manner that may become
more restrictive when single-
object histories are merged to
create a history in which mul-
tiple objects are accessed. Fig-
ure 2 illustrates a specific example of this problem. Letting H denote the illustrated history,
H|X satisfies persistent atomicity because when p’s write(Y, 1) is out of the picture, the
remaining operations are permitted to take effect in the following order:

p.write(X, 1), q.read(X) → 1, p.write(X, 2), p.read(X) → 2
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In particular, p’s write(X, 2) is permitted to take effect after q’s read(X) as long as it takes
effect before the invocation of p’s read(X). Similarly H|Y satisfies persistent atomicity
because it comprises only a single write operation, namely p’s write(Y, 1). However, H itself
lacks persistent atomicity because p’s write(X, 2) would be forced to take effect before p’s
write(Y, 1), and hence before q’s read(X), which returns 1. An analogous argument shows
that transient atomicity is not local because p’s write(X, 2) would be forced to take effect
before the response of p’s write(Y, 1), and hence before q’s read(X).

To remedy the technical issues surrounding persistent and transient atomicity, we propose
an alternative property called recoverable linearizability (or R-linearizability for short) that
accommodates arbitrary object types and guarantees locality. Our property is formalized
by first defining an appropriate completion procedure, similarly to strict linearizability and
persistent atomicity, but deals with the “happens before” relation differently. Given a history
H, a recoverable completion H ′ is obtained from H in exactly the same manner as a strict
completion. As we discuss shortly, the strictness of the completion does not prevent an
operation from taking effect after a failure that interrupts it. However, it does simplify the
proof of Theorem 6 later on. Next, we define a precedence order on operations to prevent
program order inversion for operations applied to the same object.

▶ Definition 4. Given a history H, the invoked before relation over pairs of operations in H,
denoted ≪H , is an irreflexive partial order defined as follows: if op1 and op2 are operations
invoked by the same process p on the same object X, and the invocation step of op1 precedes
the invocation step of op2 in H, then op1 ≪H op2.

We use both <H and ≪H to constrain the order in which operations appear to take effect:

▶ Definition 5 (Recoverable linearizability). A finite history H is R-linearizable if it has a
recoverable completion H ′ and there exists a legal sequential history S such that:

RL1 For every object X in H ′, H ′|X is equivalent to S|X;
RL2 <H⊆<S (i.e., if op1 <H op2 and both ops. appear in S then op1 <S op2); and
RL3 ≪H⊆<S (i.e., if op1 ≪H op2 and both ops. appear in S then op1 <S op2)

Note that clause RL2 refers to H and not H ′, in contrast to clause SL2 in Definition 2.
This ensures that the placement of matching responses in the construction of the recoverable
completion, which preserves well-formedness, does not impose undesirable constraints on the
order in which operations may appear to take effect. Clause RL3 compensates for this by
disallowing program order inversion at the level of individual objects. Two operations invoked
by the same process on different objects may still take effect in an order different from their
invocation order, which enables independent recovery. As we show later on in Theorem 7
and Section 5.2, R-linearizability is a local property similarly to strict linearizability, and
yet is weak enough to permit a wait-free implementation of MRSW registers from SRSW
registers in contrast to strict linearizability.

To illustrate R-linearizability in action, a recoverable completion H ′ for the history H

shown in Figure 2 can be constructed as follows:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, X, write(2)), (RES, p, X, ⊥),
(INV, p, Y , write(1)), (RES, p, Y , ⊥), (INV, q, X, read()), (INV, p, X, read()),
(RES, q, X, 1), (RES, p, X, 2)

The precedence constraints imposed by clause RL2 on the legal sequential history S are the
transitive closure of the following:
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p.write(X, 1) <S p.write(X, 2), p.write(X, 1) <S p.write(Y, 1)
p.write(Y, 1) <S q.read(X), p.write(Y, 1) <S p.read(X)

Clause RL3 imposes the additional constraint p.write(X, 2) <S p.read(X). The legal
sequential history S that satisfies Definition 5 with respect to H and H ′ is the following:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, Y , write(1)), (RES, p, Y , ⊥),
(INV, q, X, read()), (RES, q, X, 1), (INV, p, X, write(2)), (RES, p, X, ⊥),
(INV, p, X, read()), (RES, p, X, 2)

Thus, the history H shown in Figure 2 is recoverably linearizable or R-linearizable.
In our model it can be shown that strict linearizability is strictly stronger than persistent

linearizability, which is strictly stronger than R-linearizability.

▶ Theorem 6. Let H be a history. If H is strictly linearizable (Definition 2) then H is
also persistently linearizable (Definition 3), and if H is persistently linearizable then H

is also recoverably linearizable (Definition 5). Furthermore, there exists a history that is
R-linearizable but not persistently linearizable, and there exists a history that is persistently
linearizable but not strictly linearizable.

Finally, we consider locality in Theorem 7, whose detailed proof is omitted due to lack of
space.

▶ Theorem 7 (locality). A history H is R-linearizable if and only if, for every object X

accessed in H, H|X is R-linearizable.

Proof sketch. The “only if” direction follows easily, and so we focus on the “if” direction.
Informally speaking, it suffices to define for each object X a linearization point for each
operation in H|X, such as a base object step at which the operation appears to take effect,
and then order the operations in H according to the same linearization points. The main
technicality is to show that the linearization points chosen initially are still applicable after
the projections H|X are merged together. This point follows easily as long as the definitions
of the linearization points are independent of operations on other objects—a property that
holds by design in R-linearizability. For a complete operation, clause RL2 of Definition 5
restricts the linearization point to occur between its own invocation and response, and does
not refer to any other operation. For a pending operation, clause RL3 of Definition 5 restricts
the linearization point to occur between its own invocation and the response of the next
operation by the same process on the same object (see Definition 4), and also does not refer
to operations on any other object. ◀

5 Implementations

In this section we consider techniques for implementing shared objects that are robust against
failures in our crash-recovery model in the sense of providing non-blocking progress guarantees
in addition to one (or more) of the safety properties formalized in Section 4. A very general
but naive technique for constructing such implementations is to take an algorithm designed
for the conventional shared memory model, make all program variables non-volatile, and have
each process adopt a new and distinct ID on recovery after a crash failure. This approach
circumvents enough of the technical issues discussed in Section 4 to make Herlihy and Wing’s
linearizability property applicable directly, but suffers from two problems. First, it opens
the door to program order inversion among operations applied by the same process under
different IDs. Second, unless the number of crash failures in a history is bounded, the process
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IDs grow without bound, leading to a blowup in space complexity for algorithms that store
process IDs in variables or use them to index arrays. Merritt and Taubenfeld show that such
a blowup is unavoidable for many fundamental problems [24].

Another general strategy for constructing robust objects is to record housekeeping
information in NVRAM as processes execute operations on objects, similarly to write-ahead
logging in a database, and use it on recovery to repair any operation that was interrupted by
a failure. This strategy requires additional writes to NVRAM during failure-free operation,
and in practice relies on a specialized recovery procedure that is executed automatically
upon recovery while ordinary operations on objects are temporarily suspended (e.g., as in
NV-Heaps [8]). Such a recovery procedure is outside the scope of our model, and also implies
the use of mutual exclusion to isolate recovery actions from ordinary operations, which is
counter to our goal of non-blocking progress.

As an alternative to renaming processes and database-style logging, we explore in this
section the following technique: start with a linearizable implementation for ordinary volatile
shared memory, make all variables non-volatile, and then modify the algorithm as needed
to achieve the desired correctness properties. We focus specifically on two known wait-
free implementations: Herlihy’s universal construction [14], and a construction of atomic
multi-reader single-writer (MRSW) registers from atomic single-reader single-writer (SRSW)
registers [15]. In our subsequent discussion of these constructions, we define time complexity
as the number of base object operations executed per implemented operation between its
invocation and either its response or a failure, whichever occurs first.

5.1 Herlihy’s Wait-Free Universal Construction
Herlihy [14] proposes a construction of wait-free linearizable objects that is universal—it can
implement any shared object type. The construction, which we reproduce in Figure 3, works
as follows. Each process, when it wants to apply an operation on the implemented object,
attempts to have a cell structure representing its invocation threaded onto a linked list of
such structures. This list determines both the subset of operations that have taken effect
and their respective linearization order. The invocation is passed to the access procedure
Universal as a structure of type INVOC, which encodes the operation to be applied and its
arguments. At line 2, the process announces its invocation to others by storing a pointer to
the corresponding cell at a dedicated element of the array Announce. Each process also has
a dedicated element in the array Head, and uses a scan of this array at lines 3–5 to identify a
cell near the end of the linked list. The max operator at line 4 compares cell structures by
their seq member, which is a sequence number indicating the position of a cell in the linked
list. Arrays Announce and Head are initialized with all elements pointing to a special anchor
cell, which represents the start of the list and has a sequence number of one.

The universal construction deals with concurrency using two consensus objects per cell:
after is a pointer to the next cell in the list and deals with concurrent attempts to thread
a cell onto the list; new is a structure that holds the state of the implemented object (in
new.state) and the corresponding response (in new.result), and deals with concurrent attempts
to determine the state transition for an invocation when the transition function denoted by
“apply” at line 15 is nondeterministic.

For wait-freedom the construction uses a helping mechanism whereby a process attempting
to thread a new cell onto the linked list at line 14 may act on a cell announced by another
process, which is chosen at lines 8–13. This mechanism ensures that every cell that is
announced is threaded onto the linked list in a bounded number of base object operations,
as long as some process continues to take steps.
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Base objects:
Announce, head: array[0..N -1, 0..N -1] of
pointer to cell, each element initialized to the ad-
dress of the anchor cell

Function Universal(what: INVOC) for
process p

1 mine: cell := [seq: 0, inv: what,
new: consensus object, before: NULL,
after : consensus object]

2 Announce[p] := mine
3 foreach process ID q do
4 Head[p] := max(Head[p], Head[q])
5 end
6 while Announce[p].seq = 0 do
7 c: pointer to cell := Head[p]
8 help: pointer to cell :=

Announce[(c.seq mod N) + 1]
9 if help.seq = 0 then

10 prefer := help
11 else
12 prefer := Announce[p]
13 end
14 d := decide(c.after, prefer)
15 decide(d.new, apply (d.inv,

c.new.state))
16 d.before := c
17 d.seq := c.seq + 1
18 Head[p] := d
19 end
20 Head[p] := Announce[p]
21 return Announce[p].new.result

Figure 3 Herlihy’s universal wait-free construction
for N processes [14].

Let UC denote Herlihy’s universal
construction in our model with all base
objects made non-volatile, and let UC′

denote the same implementation but
with the Announce array made volat-
ile. In the remainder of this section we
show that UC provides R-linearizability
but not persistent or strict linearizability,
and that UC′ provides all three proper-
ties. Detailed proofs of correctness for
Theorems 8–10 are omitted due to lack
of space.

▶ Theorem 8. Every finite history H of
implementation UC is R-linearizable.

Proof sketch. Intuitively, we must show
that when an operation applied by a pro-
cess p is interrupted by a failure, it is
safe for p to abandon this operation and
start executing procedure Universal from
line 1 when it invokes its next operation.
To that end, we prove that p’s abandoned
operation takes effect at most once, and
moreover it never takes effect out of or-
der with respect to any operation that
p invokes after the failure on the same
instance of the universal construction.
The key to the proof is the observation
that each time p executes procedure Uni-
versal, it overwrites its element of the
Announce array at line 2, which has two
implications. First, the cell associated
with p’s interrupted operation becomes
inaccessible to future iterations of the
helping mechanism, unless that cell has
already been threaded onto the linked
list. Second, any iteration of the helping
mechanism that is acting on that cell and has already begun prior to p’s execution of line 2,
is doomed to fail if any other cell is threaded onto the linked list first. The detailed proof
uses both points to establish R-linearizability for all histories of UC. ◀

▶ Theorem 9. Implementation UC for N ≥ 2 processes has a finite history H that is neither
strictly or persistently linearizable.

Proof sketch. We show that when an operation applied by a process p is interrupted by a
failure, this operation may take effect after p’s next invocation step by the action of another
process that is participating in the helping mechanism. ◀

▶ Theorem 10. Every finite history H of implementation UC′ is strictly linearizable.
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Proof sketch. Extending the proof of Theorem 8, we show that when an operation applied
by a process p is interrupted by a failure, its cell is either threaded before the failure or not
at all, since the array Announce is volatile in UC′. ◀

▶ Theorem 11. Implementations UC and UC′ for N processes have time complexity O(N).

Proof. As in the original analysis [14] it can be shown that the while loop has at most
N + 1 iterations during any execution of the procedure Universal. Furthermore, the loop
at lines 3–5 has exactly N iterations. Since each loop iteration applies O(1) base object
operations, this implies the claimed time complexity. ◀

Our discussion of UC and UC′, which are extensions of Herlihy’s universal construction,
shows that any object type can be implemented in a wait-free and R-linearizable manner in
our crash-recovery model using base objects of types read/write register and consensus. Thus,
consensus is universal in our model just as in Herlihy’s [14]. Furthermore, UC′ demonstrates
that it is possible to achieve wait-freedom and strict linearizability (hence freedom from
program order inversion) simultaneously in a construction that depends crucially on a helping
mechanism. Specifically, the use of volatile base objects as elements of the array Announce is
sufficient to ensure a “clean shutdown” of the helping mechanism during a failure.

5.2 Implementation of MRSW Registers from SRSW Registers
As our second example we analyze a wait-free implementation of atomic multi-reader single-
writer (MRSW) registers from atomic single-reader single-writer (SRSW) registers. The
construction, which we refer to as MRSW, is presented in Section 4.2.5 of [15] and is similar
to Israeli and Li’s [19]. We chose this example because it illustrates the case when a known
implementation fails to satisfy R-linearizability “out of the box,” even if we assume that
base objects are non-volatile. Furthermore, as we explain later on, a modified R-linearizable
version of this implementation separates R-linearizability from strict linearizability. For
completeness the pseudo-code for the implementation is included in Figure 4.

Base objects:
A: shared array[0..N -1, 0..N -1] of record

[V : value, T : timestamp] initialized to
(V0, 0) where V0 is the implemented
type’s initial value

Tmax: integer, initially 0

Function write(V : value) for
process pw

22 T := Tmax + 1
23 Tmax := T

24 foreach i: int in 0..N -1 do
25 A[i, i] := (V, T )
26 end

Function read() for process
pi

27 (Vi, Ti) := (NULL, −1)
28 foreach j: int in 0..N -1 do
29 (Vtemp, Ttemp) := A[j, i]
30 if Ttemp > Ti then
31 (Vi, Ti) := (Vtemp, Ttemp)

32 end
33 end
34 foreach j: int in 0..N -1 do
35 if j ̸= i then
36 A[i, j] := (Vtemp, Ttemp)
37 end
38 end
39 return Vtemp

Figure 4 Implementation of atomic MRSW registers from atomic SRSW registers [15].
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The implemented object is represented using an array A[0..N -1, 0..N -1] of SRSW register
base objects. The distinguished writer process, denoted pw for some w ∈ 0..N -1, maintains a
variable Tmax, initially 0, for timestamping write operations. Each process pi is able to read
column i, and write row i with the exception of the diagonal element A[i, i], which is only
written by pw. Each element of A is of the form (V, T ), where V is a value written to the
implemented MRSW register and T is a timestamp assigned by the writer. In the initial state,
V holds the implemented register’s initial value and T = 0 for each array element. To apply
a write(V ) operation, process pw increments Tmax to obtain a timestamp T higher than any
prior timestamp, and writes (V, T ) to the diagonal elements of A. To apply a read operation,
process pi reads the highest timestamp Ti in column i to determine the corresponding latest
value V , then writes (V, Ti) to each element in row i except A[i, i], and finally returns V .
By writing (V, Ti) in row i, pi announces its response to other readers, which ensures that
subsequent reads do not return older values. (Values are ordered naturally in terms of “age”
because there is only one writer.) This register implementation has time complexity O(N)
for N processes, and is linearizable in the absence of failures.

Function write(V :
value) for process pw

40 T := Tmax + 1
41 Tmax := T

42 A[w, w] := (V, T )
43 foreach i: int in 0..N -1

do
44 if i ̸= w then
45 A[i, i] := (V, T )
46 end
47 end

Figure 5 Access procedure for
the write operation of implementa-
tion MRSW′.

Before analyzing the implementation in the crash-
recovery model, a subtle detail must be settled: we assume
that by default pw writes the diagonal elements in the or-
der specified by the pseudo-code, namely from A[0, 0] to
A[N -1, N -1]. This point is irrelevant in a conventional
asynchronous model with permanent crash failures, but
as we explain shortly, it is crucial for correctness in our
crash-recovery model. Assuming that both A and Tmax are
non-volatile base objects, which is necessary for Tmax to
increase monotonically whenever the implemented register
object is written, the MRSW register construction violates
R-linearizability in our crash recovery model. Thus, the
construction does not work correctly “out of the box,” in
contrast to Herlihy’s construction. This result is stated in
Theorem 12, whose detailed proof is omitted due to lack
of space.

▶ Theorem 12. For any number of processes N ≥ 2,
implementation MRSW has a history that is not R-linearizable.

Proof sketch. Consider N = 2, with p1 being the designated writer. The implementation
has a history where p1 begins a write(1) operation and a crash failure occurs after p1 has
written only one of the diagonal elements of A, namely A[0, 0]. Next, p1 executes a read()
and obtains the initial value, say 0, from A[0, 1] and A[1, 1]. Finally, p0 executes a read()
and obtains the new value, namely 1, from A[0, 0]. Thus, p1’s interrupted write appears to
take effect not only after the failure but also after its subsequent read() operation.1 ◀

▶ Corollary 13. For any number of processes N ≥ 2, implementation MRSW has a history
that is not persistently linearizable or strictly linearizable.

The proof of Theorem 12 not only illustrates a weakness of implementation MRSW with
respect to R-linearizability, but it also suggests a remedy. That is, while executing a write

1 In a conventional crash failure model, there is no need to implement a read() operation for the designated
writer because this process can record the last value written to the implemented register using a private
variable. In contrast, in our model the value of such a private variable would be lost during a failure.
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operation, the distinguished writer process pw should overwrite the diagonal elements of
array A starting with the row and column corresponding to its own process ID. We refer to
the modified implementation as MRSW′, and present the pseudo-code for the modified write
access procedure in Figure 5. The correctness of MRSW′ is established in Theorems 14–16.
The detailed proofs are omitted due to lack of space.

▶ Theorem 14. Every finite history H of implementation MRSW′ is R-linearizable.

Proof sketch. Writing the diagonal elements of A in the modified order addresses the specific
problem described in the proof sketch of Theorem 12 because p1’s read() operation correctly
observes the value assigned by p1’s earlier write(1). Thus, the interrupted write appears
to take effect before the writer’s subsequent operation on the same object. The case of an
interrupted write followed by another write is also dealt with correctly, as the latter operation
overwrites all the base objects accessed by the former. ◀

▶ Theorem 15. For any number of processes N ≥ 2, implementation MRSW′ has a finite
history that is neither persistently nor strictly linearizable.

Proof sketch. Consider N = 2, with p1 being the designated writer. The implementation has
a history where p1 begins a write(1) operation and a crash failure occurs after p1 has written
only one of the diagonal elements of A, namely A[1, 1]. Next, p1 invokes a read() operation
but does not yet access any base objects. Process p0 then races ahead and completes a read()
that obtains the initial value, say 0, from A[0, 0] and A[1, 0]. Finally, p1 completes its read()
and obtains the new value, namely 1, from A[1, 1]. In this history, p1’s interrupted write(1)
operation appears to take effect after p0’s read(), hence after the invocation step of p1’s
read(), which violates both persistent and strict linearizability. ◀

▶ Theorem 16. Implementations MRSW and MRSW′ for N processes have time complexity
O(N).

Theorems 14–15 separate R-linearizability from strict linearizability in the following sense:
whereas a strictly linearizable wait-free implementation of MRSW registers from atomic
SRSW registers is impossible in an asynchronous model with crash failures, an R-linearizable
wait-free implementation is possible in our asynchronous model with crash-recovery failures.

6 Conclusion

In this paper we defined a shared memory model with crash-recovery failures and a com-
bination of volatile and non-volatile main memory. We then surveyed a number of safety
properties inspired by linearizability that address the behavior of operations interrupted
by failures in our model, identified the limitations of these properties, and proposed an
alternative property called R-linearizability. Finally, we discussed implementation techniques.

Our coverage of implementation techniques centers around an approach where a known lin-
earizable implementation designed for a conventional shared memory model is instantiated by
making all base objects non-volatile, and then transformed as needed to yield R-linearizability.
We showed that Herlihy’s construction is R-linearizable “out of the box”, and can be made
strictly linearizable using an additional transformation that prevents the helping mechanism
from acting on operations invoked prior to the most recent failure. In contrast, we showed
that the MRSW register construction is not immediately R-linearizable, but can be made
R-linearizable using a transformation that changes the order in which base objects are
written. As shown by Aguilera and Frølund, a wait-free strictly linearizable MRSW register
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implementation from SRSW registers is impossible [2], and thus our transformed MRSW
construction separates R-linearizability formally from strict linearizability.
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