
Noname manuscript No.
(will be inserted by the editor)

Recoverable Mutual Exclusion

Wojciech Golab · Aditya Ramaraju

Received: September 2016 / Revision 1: September 2018 / Revision 2: September 2019 / Accepted: October 2019

Abstract Mutex locks have traditionally been the most

common mechanism for protecting shared data struc-

tures in concurrent programs. However, the robustness

of such locks against process failures has not been stud-

ied thoroughly. The vast majority of mutex algorithms

are designed around the assumption that processes are

reliable, meaning that a process may not fail while ex-

ecuting the lock acquisition and release code, or while

inside the critical section. If such a failure does occur,

then the liveness properties of a conventional mutex

lock may cease to hold until the application or op-

erating system intervenes by cleaning up the internal

structure of the lock. For example, a process that is at-

tempting to acquire an otherwise starvation-free mutex

may be blocked forever waiting for a failed process to

release the critical section. Adding to the difficulty, if
the failed process recovers and attempts to acquire the

same mutex again without appropriate cleanup, then

the mutex may become corrupted to the point where

it loses safety, notably the mutual exclusion property.

We address this challenge by formalizing the problem

of recoverable mutual exclusion, and proposing several

solutions that vary both in their assumptions regarding

hardware support for synchronization, and in their ef-
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ficiency. Compared to known solutions, our algorithms

are more robust as they do not restrict where or when

a process may crash, and provide stricter guarantees in

terms of efficiency, which we define in terms of remote

memory references.
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1 Introduction

Concurrent programs running on multi-core architec-

tures empower essential applications and services to-

day, ranging from mundane desktop computing to mas-
sive back-end infrastructures that drive web search, e-

commerce, and online social networks. Mutex locks have

traditionally been the most popular mechanism for pro-

tecting shared data structures in concurrent programs

owing to their simplicity: any sequential data struc-

ture can be made thread-safe by protecting operations

on the data structure using a critical section. Mutual

exclusion is therefore one of the oldest problems ad-

dressed in the literature on shared memory synchro-

nization, starting with Dijkstra’s seminal paper [12].

Over decades of research, locks have evolved from sim-

ple two-process algorithms to scalable mechanisms that

provide elaborate correctness properties, such as fair-

ness and local spinning [4]. One technical aspect of mu-

tual exclusion, however, has remained nearly constant:

a typical mutex lock cannot survive the failure of even

one process while it is accessing the lock.

Failures in concurrent programs are an increasingly

important reality, and may arise in several ways. For

example, individual processes or threads of control in a
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Sec. Algorithm Failure-Free Worst-Case Synchronization
RMR Complexity RMR Complexity Primitives Used

3.1 two out of N processes O(1) O(1) reads and writes
3.3 N -process arbitration tree O(logN) O(logN) reads and writes
4.1 N -process base mutex (conventional) same as grows with the same as base mutex

−→ base mutex number of failures +
N -process target mutex (recoverable) (unbounded) reads and writes

4.2 target mutex from Sec. 4.1 same as O(N) when base mutex same as base mutex
−→ base mutex from Sec. 4.1 incurs from Sec. 4.1

N -process recoverable mutex in Sec. 4.1 O(N) RMRs and + reads, writes, and
with bounded RMR complexity uses O(N) space Compare-And-Swap

Fig. 1 Summary of recoverable mutual exclusion algorithms with respect to remote memory reference (RMR) complexity and
required synchronization primitives.

program may terminate abruptly due to software bugs

or deadlock resolution mechanisms. Similarly, processes

may be affected by a loss of electrical power or faulty

interconnect, especially in large-scale multiprocessor ar-

chitectures that incorporate multiple system boards con-

nected by a complex network of electronic and opti-

cal components. The straightforward approach to deal-

ing with such failures is to shut down the entire pro-

gram and restart it, which destroys all in-memory data

structures in the program’s address space, forcing re-

covery from slow secondary storage. In comparison, re-

covery by repairing in-memory data structures directly,

as opposed to rebuilding them, is potentially much less

disruptive as it bypasses secondary storage altogether.

This style of recovery is especially well suited to forth-

coming hardware architectures that incorporate non-

volatile main memory (NVRAM) [16,41,42,44], which

allows in-memory data structures to survive power fail-

ures. NVRAM collapses main memory and secondary

storage into a single layer in the memory hierarchy, and

makes it possible to use data structure repair to deal

with both system-wide failures arising from power loss

and partial failures arising from software bugs or hard-

ware faults. In contrast, conventional systems with dy-

namic random-access memory (DRAM) must fall back

on secondary storage to recover from power loss even if

they implement data structure repair to deal more ef-

ficiently with partial failures, which increases software

complexity.

Restoring a data structure protected by a mutex

lock following a failure entails solving two technical

problems: (1) completing or rolling back any actions

in the critical section that may have been interrupted

by the failure; and (2) repairing the internal state of the

lock, if needed, to preserve safety and liveness. The first

problem is arguably much easier because the critical

section entails sequential reading and writing, and can

be solved using database systems techniques [22]. The

second problem involves more intricate lock acquisition

and release code that deals with race conditions. If a

process crashes while executing this code, then the live-

ness properties of a conventional mutex lock may cease

to hold until the lock is repaired. For example, a process

that is attempting to acquire an otherwise starvation-

free mutex lock may be blocked forever, waiting for a

crashed process to release the critical section. Adding to

the difficulty, if the failed process recovers and attempts

to acquire the same mutex again without appropriate

cleanup, then the mutex may be corrupted to the point

where it loses safety, particularly the mutual exclusion

property.

Prior work on recoverable locking overcomes the in-

herent technical difficulty of the problem by introducing

simplifying assumptions into the model of computation.

Lamport and Taubenfeld define models where a process

failure affects the values of shared variables in well-

defined ways, for example by resetting any single-writer

shared registers owned by the failed process [34,48]. Bo-

hannon, Lieuwen, and Silberschatz, as well as Bohan-

non, Lieuwen, Silberschatz, Sudarshan, and Gava, focus

instead on algorithms with multi-writer variables, and

assume that the operating system provides failure de-

tection [8,9]. In their approach, the internal state of the

lock is repaired carefully by a reliable centralized recov-

ery process that executes concurrently with the lock ac-

quisition and release protocols. Our approach similarly

allows multi-writer variables, but deals with failure de-

tection and recovery in a more abstract way by assum-

ing that a failed process is revived eventually and given

an opportunity to participate in recovery. Specifically,

recovery actions are integrated into the lock acquisition

code, where they are exposed to both concurrency and

failures.

The contributions in this paper begin with a formal

definition of recoverable mutual exclusion with respect

to our crash-recovery failure model. We then present a

collection of recoverable mutex algorithms, whose prop-

erties are summarized in Figure 1. We start with a

two-process solution in Section 3.1 that uses atomic

read and write operations only, then progress to an
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N -process solution in Section 3.3 also using reads and

writes, and finally present a pair of algorithms in Sec-

tions 4.1–4.2 that can transform any conventional mu-

tex (“base mutex”) into a recoverable mutex (“target

mutex”) while preserving efficiency in the absence of

failures. The latter transformation can be used to add

recoverability to efficient queue-based locks (e.g., MCS

[39]).

2 Model

We consider N asynchronous unreliable processes, la-

beled p1, p2, . . . , pN , that communicate by accessing vari-

ables in shared memory. These processes compete for an

exclusive lock (mutex), which can be used to protect a

shared resource, by following the execution path illus-

trated in Algorithm 1. At initialization, as well as im-

mediately after crashing, a process is in the remainder

section (RS), where it does not access the lock. Upon

leaving the RS, a process always executes the recovery

section, denoted by the procedure Recover(). This is

where the process cleans up the internal structure of the

lock, if needed, following a crash failure. Next, a pro-

cess attempts to acquire the lock in the entry section,

denoted by the procedure Enter(). The entry section

is sometimes modeled in two parts: a bounded1 section

of code called the doorway that determines the order

in which processes acquire the lock, followed by a wait-

ing room, where processes wait for their turn.2 Upon

completing the entry section, a process has exclusive

accesses to the critical section (CS). A process subse-

quently releases the lock by executing the exit section,

denoted by the procedure Exit(), and finally transitions

back to the RS.

Our model intentionally defines a sequential flow

of control in which processes always execute code in

the order prescribed by Algorithm 1: RS, Recover(),

Enter(), CS, and Exit(). This convention follows nat-

urally from the assumption that Recover(), Enter()

and Exit() are procedures that are called by an applica-

tion and punctuated by application-specific code (e.g.,

the RS and CS), rather than sections of a contiguous

algorithm.3 Branches from the code of one procedure

1 The term bounded in reference to a piece of code means
that there exists a function f of the number of processes N
such that the code performs at most f(N) shared memory
operations in all executions of the algorithm instantiated for
N processes.
2 As explained later on in the model near the discussion of

First-Come-First-Served fairness, we assume that the door-
way is well-defined and bounded only in a subset of execution
histories that are relevant to our weaker notion of FCFS.
3 In a practical implementation, the code of Recover() and

Enter() can be packaged in a single procedure for simplicity.

to the code of a different procedure are not permitted

because in practice one procedure must return control

to the application (i.e., pop a stack frame) before the

application invokes the next procedure in the sequence.

For example, a process that has no recovery actions to

perform can branch from the beginning of Recover()

to the end, skipping the body of the recovery section,

but a process that is recovering from a failure in Exit()

cannot branch from Recover() directly to Exit() and

skip the application-specific CS code.

The boundary between the recovery and entry sec-

tions in Algorithm 1 is determined by the position of

the doorway within an algorithm. That is, the recov-

ery section ends prior to the first step of the doorway,

which defines the start of the entry section. The sepa-

ration of code into explicit recovery and entry sections

makes it possible to define the doorway as a prefix of

the entry section, as in conventional mutual exclusion.

On the other hand, the recovery section has no formal

significance in algorithms that lack doorways entirely.

loop forever

Remainder Section (RS)

Recover()

Enter()

{
Doorway
Waiting Room

Critical Section (CS)

Exit()

Algorithm 1: Execution path of a process partici-

pating in recoverable mutual exclusion. A crash fail-

ure reverts a process back to the RS.

Correctness properties for mutex algorithms are ex-

pressed in reference to histories that record the actions

of processes as they execute the pseudo-code of Algo-

rithm 1. Formally, a history H is a sequence of steps

that come in two varieties: ordinary steps and crash

steps. An ordinary step is a shared memory operation

combined with local computation such as arithmetic op-

erations, accessing one or more private variables, and

advancing the program counter. A crash step denotes

a process failure that resets the private variables of a

process to their initial values. Each process has a pro-

gram counter, which is a private variable that identifies

the next ordinary step a process is poised to take. The

program counter points to the RS initially, and is up-

dated in each step. We say that a process is at line X

of an algorithm if its program counter identifies an or-

dinary step corresponding to line X of the algorithm’s

pseudo-code. One line of pseudo-code may entail mul-

tiple steps.
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The next step a process takes after a crash is ei-

ther another crash step, or the first step of Recover().

A process is said to recover following a crash step by

executing the first step of Recover(). A passage is a se-

quence of steps taken by a process from when it begins

Recover() to when it completes Exit(), or crashes,

whichever event occurs first. We say that a process is in

cleanup if it is executing Recover() following a passage

that ended with a crash step. A passage is called failure-

free if it does not end with a crash step, which includes

all incomplete passages. A super-passage is a maximal

non-empty collection of consecutive passages executed

by the same process where (only) the last passage in

the collection is failure-free. A process is executing a

super-passage if it is either outside the RS or in the RS

following a crash failure. A process may execute the CS

at most once per passage, and possibly multiple times

in one super-passage.

A process that completes the CS and then crashes in

Exit() is required in our model to continue taking steps

until it completes a failure-free passage, which entails

one or more additional and redundant executions of the

CS. Although this behavior is somewhat inefficient, it

simplifies the model conceptually by reducing the num-

ber of possible execution paths. Jayanti and Joshi [29]

propose an alternative model of recovery that permits

additional transitions among the different sections of

a recoverable mutex, and opens the door to recovery

without redundant executions of the CS in some sce-

narios. Their model allows a process that crashes in

Exit() to transition from Recover() directly to the

CS, to Exit(), or even to the RS. Informally speaking,

such transitions might occur if the crash occurs at the

beginning of, in the middle of, and at the end of Exit(),
respectively.

A passage through a recoverable mutex algorithm

may be influenced directly or indirectly by process fail-

ures. We formalize the notion of potential influence by

reasoning precisely about interleaving among passages.

We say that one passage interferes with another if their

super-passages are concurrent, meaning that neither

super-passage ends before the other begins. For any in-

teger k ≥ 0, we call a passage k-failure-concurrent if

and only if:

– k = 0 and the passage ends with a crash or begins

in cleanup (i.e., the previous passage of the same

process ended with a crash); or

– k > 0 and the passage interferes with any passage

(possibly itself) that is (k − 1)-failure-concurrent.4

4 The term cleanup-concurrent defined in the conference
version of this paper [20] is analogous to 1-failure-concurrent
in this model.

It follows easily that if a passage is k-failure-concurrent

then it is also k′-failure-concurrent for any k′ > k. In

general, smaller values of k are preferred when the de-

sired behavior of one process (e.g., a complexity bound)

is conditioned on the absence of a k-failure-concurrent

passage. This is because decreasing k tends to reduce

the number of such k-failure-concurrent passages.

The set of histories generated by possible executions

of a mutex algorithm is prefix-closed. For any finite his-

tory H, we denote the length of H (i.e., number of steps

in H) by |H|. A history H is fair if it is finite, or if it is

infinite and every process either executes zero steps, or

halts in the RS after completing a failure-free passage,

or executes infinitely many steps. We assume for sim-

plicity of analysis that the critical section is bounded.

The correctness properties of our recoverable mu-

tex algorithms are derived from Lamport’s formalism

[36], which considers only permanent crashes (“unan-

nounced death”) and Byzantine failures (“malfunction-

ing”). Differences between our definitions of correctness

properties and Lamport’s are highlighted in italics for

clarity. Note that mutual exclusion, deadlock-freedom,

and terminating exit are the only properties considered

essential for correctness; the others are desirable but

optional [4].

Mutual Exclusion (ME): For any finite history H,

at most one process is in the CS at the end of H.

Deadlock-Freedom (DF): For any infinite fair his-

tory H, if a process pi is in the recovery or entry sec-

tion after some finite prefix of H, then eventually some

process pj (possibly j 6= i) is in the CS, or else there

are infinitely many crash steps in H.

Starvation-Freedom (SF): For any infinite fair his-

tory H, if a process pi is in the recovery or entry section

after some finite prefix of H, then eventually pi itself

enters the CS, or else there are infinitely many crash

steps in H. (SF implies DF.)

Terminating Exit (TE): For any infinite fair history

H, any execution of Exit() by a process pi completes in

a finite number of pi’s steps, or else there are infinitely

many crash steps in H.

Wait-Free Exit (WFE): For any history H, any exe-

cution of Exit() by a process pi completes in a bounded

number of pi’s steps.

The DF and SF properties guarantee progress only

in fair histories with finitely many crash steps, which

allows for histories where every process takes infinitely

many steps and yet no process enters the CS. Such his-

tories must be included in the model because no al-

gorithm can guarantee progress irrespective of the fre-

quency of failures. Jayanti, Jayanti, and Joshi define

a more stringent SF property that prevents starvation

in executions that contain infinitely many failures pro-
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vided that each process crashes only a finite number of

times in each super-passage [30].

The SF and WFE properties are compatible with

the algorithmic techniques introduced in this paper,

and are either guaranteed or preserved by all our al-

gorithms (see Theorems 1,3–6 for Algorithms 2–6, re-

spectively).

Next, we introduce new properties to constrain the

complexity of the recovery section:

Wait-Free Recovery (WFR): For any history H,

any execution of Recover() by a process pi completes

in a bounded number of pi’s steps.

k-Bounded Recovery (k-BR): For any history H,

any execution of Recover() by a process pi completes

in a bounded number of pi’s steps unless pi’s passage is

k-failure-concurrent.5

It is essential for a recoverable mutual exclusion al-

gorithm to satisfy WFR or k-BR for some k ≥ 0, which

ensures that the recovery section is bounded in the ab-

sence of failures. It follows easily that WFR is strictly

stronger than 0-BR, and that for any k ≥ 0 and k′ > k,

k-BR is strictly stronger than k′-BR. In any algorithm

that satisfies WFR, the recovery code can be shifted to

the entry section and joined with the doorway, although

doing so weakens the FCFS and k-FCFS properties de-

fined shortly by lengthening the doorway.

We also propose a pair of properties that simplify

recovery from a crash failure inside the critical section,

and make it possible to nest recoverable mutex locks:

Critical Section Re-entry (CSR): For any history

H and for any process pi, if pi crashes inside the CS then

no other process may enter the CS before pi re-enters

the CS after the crash failure under consideration.

Bounded Critical Section Re-entry (BCSR): For

any history H and for any process pi, if pi crashes inside

the CS then pi incurs a bounded number of steps in each

subsequent execution of the recovery and entry sections

until it re-enters the CS.

Lemma 1 If a recoverable mutex algorithm satisfies

BCSR then it also satisfies CSR.

Proof Suppose that process pi crashes inside the CS

in step c of some history H of the mutex algorithm.

Suppose for contradiction that H has a prefix G that

includes c, and at the end of which some other process

pj has entered the CS, and yet pi has not yet re-entered

the CS after c in G. By the BCSR property, if pi contin-

ues to takes steps after G then it re-enters the CS in a

bounded number of its own steps by completing the re-

covery and entry sections. Let G′ denote the extension

5 The Bounded Recovery property defined in the conference
version of this paper [20] is analogous to 1-BR in this model.

of G where pi has done so. Then G′ is a finite history

of the mutex algorithm at the end of which both pi and

pj are in the CS simultaneously. This contradicts the

mutual exclusion property of the algorithm, which is

required for correctness. ut

Finally, we present definitions related to first-come-

first-served (FCFS) fairness. The standard definition of

FCFS is given first for completeness:

First-Come-First-Served (FCFS): For any history

H, suppose that process pi completes the doorway in

its `i-th passage before process pj begins the doorway

in its `j-th passage. Then pj does not enter the CS in

its `j-th passage before pi enters the CS in its `i-th

passage.

The above FCFS property is incompatible with the

CSR property in the sense that a process may bypass

the doorway and waiting room entirely while recover-

ing from a failure in the CS, and so we introduce an

alternative fairness property called k-FCFS.

k-First-Come-First-Served (k-FCFS): For any his-

tory H, suppose that process pi begins its `i-th passage

and pj begins its `j-th passage. Suppose further that

neither passage is k-failure-concurrent, and that pro-

cess pi completes the doorway in its `i-th passage be-

fore process pj begins the doorway in its `j-th passage

in H. Then pj does not enter the CS in its `j-th passage

before pi enters the CS in its `i-th passage.

Intuitively, k-FCFS is a weakening of FCFS that

ignores k-failure-concurrent passages, where processes

may enter the CS out of order with respect to their ex-

ecution of the doorway. In fact, the doorway can be un-

defined or unbounded in such passages since it is not rel-

evant. (We adopt this approach in the transformations

presented in Section 4.) It follows easily that FCFS is

strictly stronger than 0-FCFS, and that for any k ≥ 0

and k′ > k, k-FCFS is strictly stronger than k′-FCFS.

Aside from fundamental safety and liveness proper-

ties, we are interested in the efficiency of mutex algo-

rithms, particularly with respect to the number of re-

mote memory references (RMRs) executed by a process

per passage. The precise definition of RMRs depends on

the shared memory hardware architecture, and in this

paper we consider both the cache-coherent (CC) and

distributed shared memory (DSM) models [4], which

are illustrated in Figure 2. In the CC model, any mem-

ory location can be made locally accessible to a process

by creating a copy of it in the corresponding processor’s

cache. A distributed coherence protocol ensures that

when a memory location is overwritten by one proces-

sor, cached copies held by other processors are either in-

validated or updated. In contrast, the DSM model lacks

(coherent) caches but allows each processor to locally
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access a portion of the address space corresponding to

its attached memory module.6

P

M

interconnect

P

M

P

M

P

M

C C

interconnect

Legend:

processor memory cache

module
CMP

Fig. 2 Abstract models of shared memory architectures—
DSM (left) and CC (right).

Loosely speaking, an RMR in the CC or DSM model

is any memory operation that traverses the intercon-

nect shown in Figure 2. In the CC model, we (conser-

vatively) count each shared memory operation as an

RMR with the exception of an in-cache read, which oc-

curs when a process pi reads a variable v that it has

already read in an earlier step, following which step no

process has accessed v except by a read operation. In

the DSM model, each shared variable is local to exactly

one process (assuming a one-to-one mapping between

processes and processors), which is determined stati-

cally at initialization. A mutex algorithm is called local

spin if its worst-case RMR complexity per passage is
bounded.

3 Solutions Using Atomic Reads and Writes

Although modern multiprocessors support a variety of

powerful read-modify-write primitives, algorithms that

use only atomic reads and writes can be made recov-

erable more easily if they rely partially or wholly on

single-writer shared variables. This is because updates

to such variables are idempotent. Therefore, we first

present two such algorithms, and then use them in Sec-

tion 4 as building blocks of more advanced solutions

that attain better RMR complexity in the absence of

6 Despite the prevalence of cache-coherent architectures,
the DSM model remains important in practice because of its
inherent scalability. Intel’s Single-chip Cloud Computer, for
example, sacrifices cache-coherence “to simplify the design,
reduce power consumption and to encourage the exploration
of datacenter distributed memory software models” [26].

failures by leveraging read-modify-write operations. No-

tably, the N -process algorithm described shortly in Sec-

tion 3.3 is used to protect the recovery section of the

algorithms presented later on in Section 4. We also

present a transformation in Section 3.2 that adds the

BCSR property to any recoverable mutex.

3.1 Algorithm for Two-of-N -Processes

Shared variables:
– T : long process ID or ⊥, initially ⊥
– C[...]: associative array indexed by left and right, each

element a tuple of the form
〈long process ID or ⊥, integer〉, each element initially
〈⊥, 0〉

– P [1..N ]: array of integer spin variables, element P [i]
local to process pi in the DSM model, initially all
elements zero

Definitions:

– other(side) =

{
left if side = right

right if side = left

Procedure Recover(side) for process pi

1 if C[side] = 〈i, 1〉 then
2 〈rival, ...〉 := C[other(side)]
3 if rival 6= ⊥ then
4 P [rival] := 2

5 else if C[side] = 〈⊥, 2〉 then
6 execute lines 19–22 of Exit()

Procedure Enter(side) for process pi

7 C[side] := 〈i, 1〉
8 T := i
9 P [i] := 0

10 〈rival, ...〉 := C[other(side)]
11 if rival 6= ⊥ then
12 if T = i then
13 if P [rival] = 0 then
14 P [rival] := 1

15 await P [i] ≥ 1
16 if T = i then
17 await P [i] = 2

Procedure Exit(side) for process pi

18 C[side] := 〈⊥, 2〉
19 rival := T
20 if rival 6∈ {i,⊥} then
21 P [rival] := 2

22 C[side] := 〈⊥, 0〉

Algorithm 2: Recoverable extension of Yang and

Anderson’s two-process mutex.
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Our first algorithm is obtained by transforming Yang

and Anderson’s two-process local-spin mutex [49]. Like

Yang and Anderson’s algorithm, ours is designed for

participation by two out ofN processes at a time, mean-

ing that at most two processes at a time execute a

super-passage through the mutex. The execution paths

of the two processes are distinguished by a special argu-

ment side ∈ {left, right} of the procedures Recover(),

Enter(), and Exit(), which is used internally as the

index of an associative array (e.g., see line 1). The rules

regarding the values of the argument are two-fold:

1. A process must use the same value of side consis-

tently in each super-passage; and

2. If two processes are executing super-passages con-

currently then they must use distinct values of side.

We will use the notation sidei in reference to the value

of the argument side for process pi that is executing a

super-passage at the end of a given finite history. The

shorthand notation other(side) defined for convenience

in Algorithm 2 denotes the “opposite side” to the one

being used by a given process.

The recoverable two-process mutex is presented as

Algorithm 2 for process pi. There are three shared vari-

ables: T is used to break symmetry at line 8; C is an

associative array used to track the progress of a pro-

cess at lines 7, 18, and 22; and P is an array of spin

variables used for busy-waiting at lines 15 and 17. The

entry and exit sections generally follow the structure of

Yang and Anderson’s algorithm, but there are impor-

tant differences: (i) the elements of array C, which hold

the IDs of processes competing for the CS in the origi-

nal algorithm, are augmented with an integer tag that

indicates progress through a passage; and (ii) an addi-

tional write to C is added at line 22 of Exit() so that a

recovering process can detect whether it crashed in the

exit section. In the body of Enter(), starting at line 7,

a process proceeds directly to the CS unless it encoun-

ters a rival at line 11, in which case the busy-wait loop

at line 15 ensures that both processes have progressed

past line 8, and the second busy-wait loop at line 17

gives priority to the process that executed line 8 the

earliest. Exit() checks for a rival at line 19, and hands

over the critical section at line 21, if required.

The recovery section at lines 1–6 is a new addi-

tion, and is executed whenever a process transitions

out of the RS. If process pi is not in cleanup then

C[side(i)] = 〈⊥, 0〉 holds while it executes Recover(),

and so the conditions tested at lines 1 and 5 are both

false. In that case, pi proceeds directly to Enter(),

which ensures bounded recovery. Otherwise, pi tries to

determine where it failed. Lines 1–4 handle a crash in-

side Enter() or the CS, in which case pi determines

at line 2 whether it has a rival pj . If so, then pi as-

signs P [j] := 2 at line 4 to ensure that the rival is not

stuck at line 15 or 17, and then repeats the entry sec-

tion. Lines 5–6 handle a crash inside Exit(), in which

case pi repeats the body of the exit section and then

proceeds to the entry section.

The remainder of this section presents the analysis

of Algorithm 2. Theorem 1 asserts the main correctness

properties: ME, SF, 0-BR, and O(1) worst-case RMR

complexity in the CC and DSM models.

Lemma 2 Algorithm 2 satisfies mutual exclusion.

Proof Suppose for contradiction that distinct processes

pi and pj are in the CS simultaneously at the end of

some finite history H. Consider the order in which pi
and pj execute line 8, where they write their ID into T

in their final passages prior to entering the CS. With-

out loss of generality, suppose that pj executes line 8

first (the other case is symmetric). Then pj has already

completed line 7 by the time pi executes line 8. This

implies that pi later reads 〈j, 1〉 from C[other(side)] at

line 10. Therefore, pi subsequently executes lines 12 and

16, where it reads i from T , and hence pi proceeds to

line 17, where it waits for P [i] = 2. Since we assume

that pi eventually enters the CS, pj must write P [i] := 2

at some point after pi resets P [i] := 0 at line 9 and be-

fore pi completes line 17. This is a contradiction because

pj completes line 8 before pi, then completes Enter()

and remains in the critical section up to the end of H.

In particular, pj does not execute line 4 of Recover()

or line 21 of Exit() after pi completes line 9, and these

are the only two lines where pj may write P [i] := 2. ut

Lemma 3 Let H be a finite history of Algorithm 2. If

process pi is executing a super-passage at the end of H

and C[other(sidei)] = 〈j, ...〉 then i 6= j.

Proof A process pi writes its own ID into C[sidei] at

line 7, and sidei does not change until pi completes a

super-passage, which entails executing the exit section

and erasing i from C[side] at line 18. Since elements of

C are initialized to 〈⊥, 0〉, this implies that only C[sidei]

may contain i while pi is executing a super-passage. As

a result, if C[other(sidei)] contains the ID j 6= ⊥ then

j 6= i. ut

Lemma 4 Let H be a history of Algorithm 2 and let

pi be any process. Let S be any contiguous subhistory

of H in which pi does not execute line 9. Then there is

no step in S that decreases the value of P [i].

Proof In general P [i] only takes on the values 0, 1 and

2. Furthermore, only process pi may assign P [i] := 0,

which occurs at line 9. Therefore, if pi does not execute
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line 9 in S then P [i] can only decrease if it transitions

from 2 down to 1 by the action of some rival process

pj . This may only happen at line 14, and only after pj
reads P [i] = 0 earlier at line 13. Since we assume that

P [i] = 2 immediately before pj assigns P [i] := 1, it

follows that another process pk assigns P [i] := 2 after

pj ’s read at line 13 and before pj ’s write at line 14. This

can only occur at line 21 of Exit() after pk reads T = i

at line 19. Since the mutex is accessed by at most two

processes at a time and since we assume that pj is at

line 14 at this point, either pj or pk is the last process

to write T , and so pi must be one of these two processes

since T = i. It follows from line 20 that k 6= i, which

implies that j = i. Thus, pj reads its own ID from

C[other(sidej)] at line 10, which contradicts Lemma 3.

ut

Lemma 5 Algorithm 2 satisfies starvation-freedom.

Proof Let H be a fair history with finitely many crash

steps, and suppose for contradiction that some process

pi is in the recovery or entry section after some finite

prefix of H, and does not subsequently enter the CS.

Then in its final passage, pi becomes stuck at line 15

or at line 17, where it busy-waits on P [i]. Without loss

of generality, assume that pi is the first such process to

write T at line 8.

Since pi reaches line 15 or line 17 in its last pas-

sage in H, pi reads the ID of a rival process pj from

C[other(sidei)] at line 10, where i 6= j by Lemma 3.

Then C[other(sidei)] = C[sidej ] = 〈j, 1〉, and so pj is

either executing a passage or is in the RS following a

crash failure. Let s be the first step in the correspond-

ing super-passage of pj . Then C[sidej ] = 〈⊥, 0〉 holds
immediately after s, either by initialization or by the

most recent execution of line 22 prior to s by a pro-

cess that accessed the mutex with the same side as

pj ’s. Subsequently, sidej does not change and either

C[sidej ] = 〈⊥, 0〉 or C[sidej ] = 〈j, 1〉 holds until pj
reaches line 18. Since H is fair and contains finitely

many crash steps, this implies that pj eventually exe-

cutes line 8 where it writes T := j. Let wj be the last

write of T at line 8 by pj after s and before pj completes

a failure-free passage, and let wi be the last write of T

at line 8 by pi, which occurs in pi’s final passage where

it becomes stuck.

Next, we show that pj does not crash after wj and

before reaching line 18, which assigns C[sidej ] := 〈⊥, 2〉
and erases pj ’s ID from C[sidej ]. Suppose otherwise,

and note that on recovery pj assumes the same side

as before the failure. Then C[sidej ] = 〈j, 1〉 holds on

recovery by pj ’s earlier execution of line 7, and contin-

ues to hold no matter how many times pj crashes, until

pj reaches line 18. Since H is fair and contains finitely

many crash steps, pj eventually executes lines 7–8. In

other words, pj writes T again before completing a

failure-free passage, which contradicts the definition of

wj . Thus, pj does not crash before reaching line 18.

Case A: wj occurs before wi. Then by our careful choice

of pi as the first process to execute line 8 and then get

stuck, pj either crashes or enters the CS after wj , but

does not become stuck in this passage. As explained

earlier, pj does not crash after wj and before reaching

line 18, and so pj completes Enter() without crash-

ing. From this point onward, pj proceeds to line 18 of

Exit(). Thus, pj eventually assigns C[side] := 〈⊥, 2〉 at

line 18. Subsequently, pj executes lines 19–22 of Exit(),

either directly or by crashing, recovering, and execut-

ing line 6 of Recover(). Now recall from the definition

of steps s and wj that pi discovers pj at line 10 in its

final passage, and so it follows that pi executes line 10

before pj reaches line 18 of Exit(), which erases pj ’s ID

from C[sidej ]. As a result, wi occurs before pj reads T

in Exit(), which ensures that pj discovers pi at line 19.

At this point pi has already executed line 9 for the last

time, and so when pj eventually assigns P [i] := 2 at

line 21, it follows from Lemma 4 that the value of P [i]

does not decrease in the remainder of H. This contra-

dicts pi busy-waiting forever for P [i] ≥ 1 at line 15 or

P [i] = 2 at line 17.

Case B: wj occurs after wi. As explained earlier, pj does

not crash after wj and before reaching line 18. Thus,

pj either reaches line 18 or becomes stuck in Enter()

without crashing, in contrast to Case A where we know

it does not become stuck by our careful choice of pi.

Now consider pj ’s execution of Enter() following step

wj at line 8.

Subcase B1: pi is stuck at line 15 waiting for P [i] ≥ 1.

In this case pi must read T = i at line 12 before wj , as

otherwise wj overwrites T with j 6= i. As a result, pi
assigns P [i] := 0 at line 9 also before wj , and this is the

last such write in H. Next, pj performs wj at line 8 and

reads T = j at line 12 since wj occurs after wi. Then,

either pj reads P [i] 6= 0 at line 13 or it reads P [i] = 0

and then assigns P [i] := 1 at line 14. In both cases

P [i] ≥ 1 holds, and the value of P [i] does not decrease

in the remainder of H by Lemma 4. This contradicts

the hypothesis of Subcase B1.

Subcase B2: pi is stuck at line 17 waiting for P [i] = 2.

In this case pi reads P [i] ≥ 1 earlier at line 15 after

assigning P [i] := 0 at line 9, which is the last such write

in H. Thus, another process pk, k 6= i, overwrites P [i]

with a positive value between pi’s final executions of

lines 9 and 15. Let wk be pk’s write to T at line 8 in this

passage. It follows that wk precedes wi, as otherwise

pi would not observe T = i at line 16 after completing

line 15 and before reaching line 17 because wi is the last
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step in H where pi assigns T := i. Thus, wk precedes

wj as well under the hypothesis of Case B, and so pk is

either pj or some process that returns to the RS before

pj begins its passage leading to wj . Since pk’s write to

P [i] occurs after pi discovers pj at line 10 in its final

passage, it follows in fact that k = j and that wk is part

of pj ’s super-passage that starts at step s.

Thus, we have shown that pj writes T at line 8 at

least twice in the super-passage starting at step s: first

in wk, which occurs before wi, and then in wj , which oc-

curs after wi. Since both writes occur in the same super-

passage, this implies that pj crashes outside the RS

with C[sidej ] = 〈j, 1〉 or C[sidej ] = 〈⊥, 2〉, and returns

to Enter() after recovering. Next, consider pj ’s write

of P [i] in the passage containing step wk, where we ar-

gued that pj assigns a positive value to P [i]. This write

must occur at line 14, as otherwise it assigns P [i] := 2

and this value does not decrease in the remainder of

H by Lemma 4. Moreover, this write occurs between

pi’s final executions of lines 9 and 15, hence after pi’s

write wi to T at line 8. Therefore, pj ’s passage contain-

ing pj ’s second write wj begins after wi, and also after

pi writes its ID to C[sidei] at line 7. Now consider pi’s

execution of Recover() in the latter passage, in which

C[sidej ] = 〈j, 1〉 or C[sidej ] = 〈⊥, 2〉 holds initially. If

pj recovers with C[sidej ] = 〈j, 1〉 then it reads pi’s ID

from C[sidei] at line 2, and then assigns P [i] := 2 at

line 4. Otherwise, if pj recovers with C[sidej ] = 〈⊥, 2〉
then pj executes line 5, which in turn executes lines 19–

22 of Exit(). Here process pj reads the ID of pi from T ,

and then assigns P [i] := 2 at line 19. In both cases, pj ’s

write to P [i] occurs after pi’s last execution of line 8,

and so it follows from Lemma 4 that the value of P [i]

does not decrease in the remainder of H, which contra-

dicts the hypothesis of Subcase B2. ut

Lemma 6 Algorithm 2 satisfies wait-free recovery and

wait-free exit.

Proof Since the recovery and exit sections do not con-

tain any loops, it follows that in any history, any execu-

tion of Recover() and Exit() by a process pi completes

in a bounded number of pi’s steps. ut

Lemma 7 Algorithm 2 has worst-case RMR complex-

ity O(1) per passage in the CC and DSM models.

Proof It suffices to prove that a process incurs O(1)

RMRs at lines 15 and 17 because there are no other

loops. The lemma follows easily in the DSM model since

process pi only spins on P [i], which is defined at initial-

ization as local to pi.

In the CC model the spin loops must be analyzed

in greater detail to account for possible cache invalida-

tions. The spin loops occur at lines 15 and 17, where pi

waits for P [i] ≥ 1 and P [i] = 2, respectively. A write

operation on P [i] by another process pj can only occur

at lines 4, 14, or 21. If such a write occurs at line 14 or

line 21 then it ensures that P [i] = 2, which holds until

pi’s next execution of line 9 by Lemma 4. As a result,

pi’s spin loop ends after one RMR to read P [i] = 2 into

its local cache. On the other hand, if a write of P [i]

by another process pj occurs at line 14 then it ensures

that P [i] ≥ 1, which holds until pi’s next execution of

line 9 by Lemma 4. As a result, P [i] is not written at

line 14 again until pi executes line 9 due to the condi-

tion P [i] = 0 tested at line 13 and because the mutex

is accessed by at most two processes at a time. Thus,

line 14 contributes at most one RMR to any execution

of a spin loop by pi.

Process, pi incurs at most two RMRs at line 15: one

to read P [i] into its local cache, if P [i] is not already

cached after line 15, and at most one due to a write at

line 4, 14, or 21. Next, pi incurs at most three RMRs

at line 17: one to read P [i] into its local cache, if P [i]

is not already cached after line 15, at most one due to

line 14, and one more when pi first reads P [i] = 2 due

to a write at line 4 or 21. ut

Theorem 1 Algorithm 2 satisfies ME, SF, WFR, and

WFE. Furthermore, its worst-case RMR complexity per

passage is O(1) in the CC and DSM models.

Proof Properties ME, SF, WFR, and WFE follow im-

mediately from Lemmas 2, 5, and 6. The RMR com-

plexity bound is established in Lemma 7. ut

3.2 Adding Bounded Critical Section Re-entry

A recoverable mutual exclusion algorithm can be aug-

mented easily with the BCSR property using only O(N)

additional shared variables and O(1) additional RMRs

per passage in the CC and DSM models. Algorithm 3

presents a transformation that achieves this goal by

tracking CS ownership using an array C[1..N ] of bits. A

process pi assigns C[i] := 1 shortly before entering the

CS at line 27, and resets this variable at line 28 shortly

after clearing the CS. If pi crashes in the CS, which im-

plies C[i] = 1, then it bypasses the body of the recovery

and entry sections in each subsequent passage until it

re-enters the CS and reaches the exit section. We apply

this transformation to the two-process algorithm from

Section 3.1 before using it as a building block of an

N -process algorithm in Section 3.3.

The analysis of Algorithm 3 is straightforward with

the exception of one detail: the execution path following

a failure in the CS omits the recovery and entry sections



10 Wojciech Golab, Aditya Ramaraju

Shared variables:
– mtxB: base mutex, recoverable
– C[1..N ]: array of integer, all elements initially zero

Procedure Recover() for process pi

23 if C[i] = 0 then
24 mtxB.Recover()

Procedure Enter() for process pi

25 if C[i] = 0 then
26 mtxB.Enter()
27 C[i] := 1

Procedure Exit() for process pi

28 C[i] := 0
29 mtxB.Exit()

Algorithm 3: Transformation from recoverable

base mutex to recoverable BCSR target mutex.

of mtxB, which goes against the sequential flow of con-

trol defined in our model (see Algorithm 1). We first

justify this misuse of the base mutex in Lemma 8.

Lemma 8 For any history H of Algorithm 3, let H ′ be

the projection of H onto steps internal to mtxB, as well

as all crash steps except where a process pi fails while

C[i] = 1 holds. Then H ′ is a history of the algorithm

that implements mtxB.

Proof A process pi executes the base recovery, entry,

and exit sections in H ′ in the correct order for each pas-

sage of the target algorithm, as required, except when

C[i] = 1 holds upon leaving the RS. The latter situation

arises when a process pi crashes after completing line 26

and before completing line 28. In that case pi’s last ac-

cess to mtxB is a call to Enter() at line 26, and its

next access is either a call to Exit() if it reaches line 29

and does not crash after resetting C[i] at line 28, or a

call to Recover() if it completes line 28 and crashes

before calling Exit() at line 29. In the former case, the

correct calling sequence with respect to Algorithm 1

is preserved since all crash steps by pi occurring while

C[i] = 1 are omitted from H ′. In the latter case, the

crash step is recorded in H ′ and pi begins a new pas-

sage through mtxB, as required. ut

Theorem 2 Algorithm 3 satisfies BCSR.

Proof Suppose that a process pi crashes in the CS of

the target mutex. Then C[i] = 1 holds at the time of

failure due to line 27, and so pi completes the target

recovery and entry sections in a bounded number of its

own steps in each subsequent passage until it re-enters

the target CS and then completes line 28. ut

Theorem 3 Algorithm 3 preserves the following cor-

rectness properties of mtxB: ME, DF, SF, WFR, k-

BR, TE, WFE, k-FCFS, and asymptotic worst-case

RMR complexity per passage in the CC and DSM mod-

els.

Proof Let H be a history of Algorithm 3, and let H ′

be the projection defined in the statement of Lemma 8.

We make the following observations: (i) H ′ is a history

of mtxB by Lemma 8; (ii) if H is fair then H ′ is also

fair; (iii) if a passage in H ′ is k-failure-concurrent then

all passages in the corresponding super-passage through

the target mutex in H are also k-failure-concurrent be-

cause H contains all the crash steps of H ′. The correct-

ness properties of mtxB are therefore preserved by the

following arguments.

ME: The target CS is protected by mtxB.

DF and SF: The target algorithm has no loops, and so

a process may be stuck on the way to the CS only inside

the recovery or entry section of mtxB.

WFR and k-BR: These properties follow from the sim-

ple structure of the recovery section.

TE and WFE: These properties follow from the simple

structure of the exit section. The target algorithm has

no loops, and so a process may be stuck in Exit() only

if it is stuck inside mtxB.Exit().

k-FCFS: This property follows from the structure of

the entry section assuming that the doorway of the

target algorithm is defined as the code from the be-

ginning of Enter() until the last step of the doorway

of mtxB executed at line 26. Note that although the

BCSR mechanism may disrupt the order of entry into

the CS prescribed by mtxB, passages in which a pro-

cess pi bypasses the body of Enter() with C[i] = 1 are

0-failure-concurrent, and hence irrelevant to the defini-

tion of k-FCFS for all k ≥ 0.

RMR complexity: Each passage through the target al-

gorithm entails at most one execution of the base re-

covery, entry, and exit sections, as well as a constant

number of additional steps. The transformation there-

fore introduces O(1) additional RMRs per passage in

the worst case in the CC and DSM models. ut

3.3 An Algorithm for N Processes

Our N -process solution is modeled after Yang and An-

derson’s N -process algorithm [49], which is based on

the arbitration tree of Kessels [33]. The algorithm is

structured as a binary tree of height O(logN) where

each node is a two-process mutex implemented using

the algorithm described in Section 3.1. Each process is

mapped statically to a leaf node in the tree as follows:

process pi enters at leaf node number di/2e counting
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from 1. Furthermore, side = left at leaf level if i is odd

and side = right if i is even.

Shared variables:
A complete binary tree containing at least dN/2e
and fewer than N leaf nodes, numbered starting at 1,
and where each node is an instance of Algorithm 2
from Section 3.1 augmented with BCSR using the
transformation from Section 3.2.

Procedure Recover() for process pi

30 (empty)

Procedure Enter() for process pi

31 node := leaf node di/2e
32 if i is odd then
33 side := left
34 else
35 side := right

36 while node 6= ⊥ do
37 node.Recover(side)
38 node.Enter(side)
39 if node is the root then
40 node := ⊥
41 else if node is a left child then
42 side := left
43 node := parent of node

44 else
45 side := right
46 node := parent of node

Procedure Exit() for process pi

47 node := ⊥
48 repeat
49 if node = ⊥ then
50 node := root node
51 else
52 node := child of node on the path to leaf

node di/2e
53 if node is a leaf and i is odd, or if leaf node di/2e

is in the left subtree of node then
54 side := left
55 else
56 side := right

57 node.Exit(side)

58 until node is a leaf

Algorithm 4: Recoverable extension of Yang and

Anderson’s N -process mutex.

The recoverableN -process mutex is presented as Al-

gorithm 4 for process pi. Detailed pseudo-code is anal-

ogous to the non-recoverable N -process algorithm in

[49] except that the two-process instances are imple-

mented using our recoverable two-process mutex. The

recovery section is empty since no additional recovery

actions are required beyond those performed internally

by the two-process mutex instances. The entry section

entails executing the recovery and entry section (back

to back) of each two-process mutex on the path from

the designated leaf node of a process to the root, in that

order. The exit section releases the two-process mutex

instances in the opposite order, namely from root to

leaf.

The remainder of this section presents the analysis

of Algorithm 4. Theorem 4 asserts the main correctness

properties: ME, SF, WFR, WFE, and O(logN) worst-

case RMR complexity in the CC and DSM models.

As the first step towards proving the correctness

properties of the N -process mutex, we first establish

that the two-process instances satisfy their safety prop-

erties when used inside Algorithm 4 (see Lemma 9).

The safety properties of Algorithm 4 will then follow

easily, and liveness (SF) will be established by a sepa-

rate proof in Lemma 13.

Lemma 9 For any finite history H of Algorithm 4,

and for any two-process mutex instance M2 in the ar-

bitration tree, let H ′ be the projection of H onto steps

executed inside M2 as well as all crash steps. Then H ′

is a history of Algorithm 2 augmented with BCSR using

Algorithm 3, and hence M2 satisfies its safety properties

(ME, WFR, WFE, and RMR complexity) in H ′.

Proof The safety properties of M2 in H ′ follow from

Theorem 1 provided that H ′ is indeed a possible history

of Algorithm 2. To that end, we must show that M2

is accessed correctly by processes, particularly that the

following properties hold with respect to super-passages

through M2:

1. at most two processes at a time are executing a

super-passage; and

2. if two processes at a time are executing a super-

passage then they ascended to the tree node corre-

sponding to M2 from distinct subtrees; and

3. the side parameter used by a process is fixed in any

given super-passage; and

4. if two processes are executing super-passages con-

currently then their side parameters are distinct.

The proof proceeds by induction on the height h of M2

above leaf level in Algorithm 4, which generates H. In

the base case, h = 0, at most two processes are mapped

statically to M2, with one process (having the smaller

ID) always accessing with side = left and the other

always with side = right. Thus, clauses 1–4 follow im-

mediately. Next, suppose for induction that the lemma

holds for all two-process instances up to and including

some height h ≥ 0, and consider an instance M2 at

height h+ 1, if one exists.
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Clause 1 and 2: Each process ascending to M2 from one

of the subtrees occupies the critical section of a mutex

at height h at the root of the subtree, and so it follows

from the induction hypothesis, Theorem 1, and Theo-

rem 3 that this critical section is executed in mutual

exclusion. Thus, at most two processes at a time (one

per subtree of M2’s tree node) may be outside the RS

of M2. This observation and the BCSR property of the

mutex at the root of the subtree (see Theorem 2) fur-

ther ensure that at most two processes at a time (one

per subtree) are executing a super-passage through M2,

as required.

Clause 3: Next, consider the side of a process pi exe-

cuting a super-passage through M2. Since the path of

nodes traversed by pi through the arbitration tree is

determined uniquely by i, it follows that pi always ac-

cesses M2 with the same side: left if it ascends from

the left subtree (see lines 42 and 54), and right if it as-

cends from the right subtree (see lines 45 and 56) of the

corresponding tree node.

Clause 4: If processes pi and pj execute super-passages

through M2 concurrently then they ascend from dis-

tinct subtrees by clause 2. In particular, if i < j, then

pi and pj ascend to M2 from the left and right sub-

trees, respectively. As explained in the proof of clause 3,

this implies that sidei = left and sidej = right. Thus,

sidei 6= sidej . ut

Lemma 10 Algorithm 4 satisfies mutual exclusion.

Proof A process enters the CS of Algorithm 4 only

while it is in the CS of the two-process instance at the

root node of the arbitration tree. This two-process in-

stance satisfies mutual exclusion by Lemma 9. ut

Lemma 11 Algorithm 4 satisfies wait-free recovery and

wait-free exit.

Proof The recovery section of Algorithm 4 is empty,

and the exit section performs O(logN) iterations of a

loop that invokes the wait-free exit protocol of Algo-

rithm 2 (see Theorem 1) with O(1) additional steps

introduced by the BCSR transformation described in

Algorithm 3 (see Theorem 3). ut

Lemma 12 Algorithm 4 satisfies bounded critical sec-

tion re-entry.

Proof Suppose that process pi crashes inside the CS in

some historyH. We must show that pi incurs a bounded

number of steps in each subsequent execution of the re-

covery and entry sections until it re-enters the CS. The

number of steps pi incurs in Recover() is always zero,

since Algorithm 4 has a trivial recovery section. The

number of steps pi incurs in each execution of Enter()

is bounded until pi re-enters the CS because in that case

it is re-entering the CS of every two-process mutex on

the bounded path from its designated leaf to the root

(even if pi crashes repeatedly), and each such execution

of Recover() and Enter() of the two-process mutex

incurs a bounded number of pi’s steps by the BCSR

property (see Theorem 2). Thus, pi incurs a bounded

number of steps in each subsequent execution of Re-

cover() and Enter() of Algorithm 4 until it re-enters

the CS, as required. ut

Lemma 13 Algorithm 4 satisfies starvation-freedom.

Proof Let H be an infinite fair history of Algorithm 4

and suppose that H contains finitely many crash steps.

Let pi be a process that leaves the RS in H. We must

show that pi subsequently enters the CS. Suppose for

contradiction that pi does not, which implies that pi
never completes the super-passage through Algorithm 4

in which we suppose it leaves the RS. Then pi takes in-

finitely many steps in H, and in particular it becomes

stuck in some two-process mutex instance M2 in the ar-

bitration tree, as otherwise it would eventually ascend

to the CS of Algorithm 4. Let H ′ be the projection of

H onto steps taken inside M2. Then H ′ is a history of

Algorithm 2 augmented with BCSR using Algorithm 3

by Lemma 9, and it contains finitely many crash steps

because it is a subsequence of H. Since pi is stuck for-

ever in M2 in H, it also follows that H ′ is infinite as pi
is equally stuck in H ′. To complete the proof, we will

show that H ′ is fair, in which case pi’s lack of progress

in H ′ contradicts the SF property of M2 (see Theorem 1

and Theorem 3).

Consider any process pj and suppose that pj begins

a super-passage through M2 by leaving the RS of M2 in

H ′. Since H ′ is infinite and contains finitely many crash

steps, we must show that pj continues to take steps in

H ′ until it completes this super-passage through M2 or

becomes stuck forever. This certainly holds if j = i since

pi becomes stuck in M2, so consider j 6= i. Anytime pj
begins a passage through M2, it either completes this

passage, becomes stuck, or crashes. Thus, we must show

that if pj crashes then it eventually leaves the RS of M2

again, possibly after a finite number of additional crash

steps, and resumes its ongoing super-passage. The cor-

responding crash step s in H causes pj to transition

from the recovery, entry or exit section to the RS with

respect to Algorithm 4, and also from the CS to the

RS with respect to every two-process mutex pj has ac-

quired during its traversal of the arbitration tree. On

recovery, pj leaves the RS of Algorithm 4, and until

it re-enters the CS of Algorithm 4, pi is able to com-

plete Recover() and Enter() in a bounded number of

steps by the BCSR property of the two-process mutex
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at each tree node (see Theorem 2) on the bounded path

from pi’s leaf to the root. SinceH contains finitely many

crash steps, this implies that eventually pj ascends back

to M2 without crashing, and hence leaves the RS of M2

in H ′, as required. ut

Lemma 14 Algorithm 4 has worst-case RMR complex-

ity O(logN) per passage in the CC and DSM models.

Proof The lemma follows directly from Lemma 9, the

constant worst-case RMR complexity per passage of Al-

gorithm 2 (see Theorem 1), the worst-case RMR com-

plexity preservation property of Algorithm 3 (see The-

orem 3), and the logarithmic height of the arbitration

tree. ut

Theorem 4 Algorithm 4 satisfies ME, WFR, WFE,

BCSR, and SF. Furthermore, its worst-case RMR com-

plexity per passage is O(logN) in the CC and DSM

models.

Proof Properties ME, WFR, WFE, BCSR, and SF fol-

low immediately from Lemmas 10, 11, 12, and 13. The

RMR complexity bound is established in Lemma 14.

ut

3.4 Discussion of Space Complexity

Burns and Lynch [10] proved a lower bound of Ω(N)

on the space complexity (i.e., the requirement of at

least N shared variables) of deadlock-free mutual exclu-

sion algorithms that use only reads and writes. Our N -

process algorithm from Section 3.3 as well as Yang and

Anderson’s algorithm [49], on which ours is based, ex-

ceed this bound because they require one spin variable

per process per level of the arbitration tree, for a to-

tal of Θ(N logN) shared variables. The space complex-

ity of Yang and Anderson’s algorithm can be reduced

to Θ(N) using a transformation proposed by Kim and

Anderson [32]. It is not clear whether the same trans-

formation works correctly for our recoverable algorithm

because of the additional execution paths by which a re-

covering process may overwrite its rival’s spin variable,

namely at line 4 or at line 21 by way of line 6. In the

CC model, our two-process algorithm can be simplified

similarly to Yang and Anderson’s so that only two spin

variables are required per instance, which reduces the

space complexity of the N -process solution to Θ(N).

4 General Solutions

In this section we develop recoverable mutual exclu-

sion algorithms that improve on the N -process solu-

tion from Section 3 in terms of RMRs in the absence

of failures. Such algorithms necessarily require synchro-

nization primitives other than atomic reads, writes, and

Compare-And-Swap (CAS), as otherwise they are sub-

ject to the lower bound of Ω(logN) for worst-case RMR

complexity per passage [6]. In asynchronous failure-free

models, the best known solutions in terms of RMRs are

queue locks [4] such as Mellor-Crummey and Scott’s al-

gorithm (MCS) [39], which has O(1) RMR complexity

in the CC and DSM models, and uses both CAS and

Fetch-And-Store (FAS) in addition to atomic reads and

writes.

The high-level idea underlying our constructions in

this section is to augment an ordinary mutex with a

recovery procedure that restores the internal structure

of the lock, such as the process queue in MCS, in the

event of a failure. To our knowledge, the recoverable

MCS lock of Bohannon, Lieuwen, and Silberschatz [8]

was the first to follow this approach. Their solution

makes two assumptions: crash failures are permanent

and detectable by the operating system, and the recov-

ery section is executed in a single dedicated process that

is itself reliable. That is, the operating system invokes

the recovery code automatically when a failure occurs,

and there is no need to synchronize multiple processes

recovering in parallel. Their algorithm achieves O(1)

RMR complexity per passage in the CC and DSM mod-

els, but only when the passage does not overlap with

the execution of the recovery process, and does not re-

quire any synchronization primitives beyond those used

in MCS.

Our initial attempt to generalize the approach of

Bohannon, Lieuwen, and Silberschatz to crash-recovery

failures [45] led to an algorithm that has O(1) RMR
complexity in the CC and DSM models in a failure-free

passage and Θ(N) RMRs in the worst case, but requires

a powerful Fetch-And-Store-And-Store (FASAS) prim-

itive that is not supported by modern multiprocessors

except through transactional memory. Note that [8] and

[45] both require Ω(N) RMRs in the worst case to ex-

ecute the recovery section alone (ignoring the cost of

interacting with the operating system to detect failures

in [8]) due to some form of interaction with every other

process. In [8], this entails checking if the other pro-

cesses are attempting to acquire the lock, and in [45],

it entails traversing the queue structure to test whether

the recovering process is already in it. In comparison,

the composition of our constructions in Sections 4.1 and

4.2 transforms the MCS lock (among other algorithms)

into a recoverable mutex that incurs O(1) RMRs in the

DSM and CC models in a passage that is not 2-failure-

concurrent, O(N) RMRs in the DSM and CC models

per passage in the worst case, and uses only widely-

supported synchronization primitives.



14 Wojciech Golab, Aditya Ramaraju

4.1 Transformation for Recoverability

Our first construction, presented in Algorithm 5, is a

general transformation of ordinary mutex algorithms

(base algorithms) into recoverable ones (target algo-

rithms), and therefore operates in a fundamentally dif-

ferent way from the recoverable MCS locks discussed

earlier. Specifically, our construction is agnostic with

regard to the internal structure of the base algorithm

in that we deal with failures by resetting the base algo-

rithm to its initial state, rather than by attempting del-

icate repairs. We assume that the base mutex algorithm

provides a procedure Reset() for this purpose that can

be executed by any process as long as no other process

is accessing the base mutex concurrently. For example,

this method can loop over the objects internal to the

base mutex and overwrite each with its initial value.

Resetting the base mutex is a disruptive action that

requires careful synchronization between processes ex-

ecuting the recovery section (i.e., processes in cleanup)

and other processes that may be accessing the base al-

gorithm. We simplify this task by protecting the core

of the recovery section using an auxiliary recoverable

mutex, namely the one described in Section 3.3, which

incurs additional RMRs for a process in cleanup but

does not affect the RMR complexity in the absence of

failures. In the critical section of the auxiliary mutex,

the process in cleanup first “breaks” the base mutex in

a manner that allows other processes to leave the base

entry and exit sections in a bounded number of their

own steps. It then waits for every other process to either

arrive at a gating mechanism that prevents further ac-

cess to the base mutex, or to crash and recover, in both

cases raising a signal by writing a spin variable. Finally,

the process in cleanup resets the base mutex, opens the

gate, and releases the auxiliary mutex.

Algorithm 5 uses an array C[1..N ] of integer vari-

ables to record the progress of each process in a super-

passage, similarly to the way Algorithm 2 embeds in-

teger tags into elements of its own array C. In the ab-

sence of failures, a process executing the target mutex

bypasses the recovery section at line 59, executes the

body of the target entry section where it acquires the

base mutex at line 82, completes the critical section,

and finally releases the base mutex in the target exit

section at line 85. If a failure occurs, the execution path

is steered carefully using the gating mechanism, which

is implemented using an array Gate[1..N ] of spin vari-

ables. The gate is controlled in the core of the recovery

section at lines 66–73, which are protected by mtxA,

the recoverable auxiliary mutex. A process in cleanup

first closes the gate at line 66, and then reopens it at

line 72. The base mutex is reinitialized at line 71, which

is only executed while the gate is closed.

One of the technical challenges in implementing the

recovery section of the target algorithm is to suspend

access to the base mutex, denoted mtxB, without sac-

rificing liveness. Consider for example the problematic

scenario where process p1 waits inside mtxB.Enter()

for process p2 to release mtxB, then p2 crashes, closes

the gate while in cleanup, and waits for p1 to release

mtxB so that it can be reset safely. To prevent dead-

lock, executions of mtxB.Enter() at line 82 and base

exit section at line 85 are modified as follows: process

pi repeatedly checks Gate[i] while accessing mtxB, and

returns immediately to the target entry or exit section

if it observes Gate[i] 6= ⊥, meaning that the gate is

closed. In this context, “repeatedly checks” means that

pi reads Gate[i] after executing each step of the base

mutex code (or at least after each step of a busy-wait

loop). Thus, when the gate is closed by a process in

cleanup, pi is able to leave the base mutex code in a

bounded number of its own steps, allowing the recov-

ery section to make progress.

The recovery section only deals with crash failures

that occurred outside the RS and CS, excluding crashes

at lines 75–79 of the entry section. These scenarios are

detected at line 59, including cases where recovery itself

was interrupted by a crash. After assigning C[i] := 4 at

line 60, process pi reads Gate[i] at line 61 to determine

whether the gate is already closed, either by pi itself

prior to failure or by another process in cleanup. If it

is closed, then Gate[i] holds the ID of the process in

cleanup, and pi signals this process at line 63. This step

is required to prevent deadlock, as explained earlier,

if pi crashed while holding the base mutex. Next, pi
acquires the auxiliary mutex at lines 64–65, closes the

gate at line 66, waits at lines 67–70 for other processes

to drain out of the base mutex code, resets mtxB at

line 71, opens the gate at line 72, and finally releases

the auxiliary mutex at line 73.

In the target entry section, process pi first assigns

C[i] := 1 at line 75, then checks whether the gate is

closed at lines 76–77, and waits at line 79 until the gate

is opened, if required. Prior to busy-waiting, pi signals

the process in cleanup at line 78 to prevent deadlock.

When the gate is released, pi updates its status by as-

signing C[i] := 2 at line 80 and then checks the gate

again at line 81. If the gate is once again closed, pi
must restart the entry section to ensure that it does

not access mtxB at line 82 concurrently with a pro-

cess in cleanup. Note that checking the gate earlier at

line 76 does not suffice for this purpose because at that

point pi has a different status (i.e., C[i] = 1 then vs.

C[i] = 2 now), which is inspected in the recovery section
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Shared variables:
– mtxA: auxiliary mutex implemented using Algorithm 4

from Section 3.3
– mtxB: base mutex
– C[1..N ]: array of integer, element C[i] local to

process pi in the DSM model, initially zero
– P [1..N ][1..N ]: array of Boolean, elements P [i][1..N ]

local to process pi in the DSM model, initially false
– Gate[1..N ]: array of proc. ID or ⊥, element Gate[i]

local to process pi in DSM model, initially ⊥

Procedure Recover() for process pi

59 if C[i] 6∈ {0, 1} then
60 C[i] := 4

// signal process in cleanup

61 incleanup := Gate[i]
62 if incleanup 6= ⊥ then
63 P [incleanup][i] := true

// clean up the base mutex

64 mtxA.Recover()
65 mtxA.Enter()

// close the gate

66 for z ∈ 1..N do Gate[z] := i
// wait for processes to clear base mutex

67 for z ∈ 1..N do
68 P [i][z] := false
69 if z 6= i ∧ C[z] ∈ {2, 3} then
70 await P [i][z] = true

71 mtxB.Reset()
// reopen the gate

72 for z ∈ 1..N do Gate[z] := ⊥
73 mtxA.Exit()
74 C[i] := 0

Procedure Enter() for process pi

75 C[i] := 1
// wait at gate if needed

76 incleanup := Gate[i]
77 if incleanup 6= ⊥ then

// signal process in cleanup

78 P [incleanup][i] := true
// wait for gate to reopen

79 await Gate[i] = ⊥
80 C[i] := 2
81 if Gate[i] 6= ⊥ then goto line 75
82 execute steps of mtxB.Enter() interleaved with

reads of Gate[i] until done or Gate[i] 6= ⊥
83 if Gate[i] 6= ⊥ then goto line 75

Procedure Exit() for process pi

84 C[i] := 3
85 execute steps of mtxB.Exit() interleaved with reads

of Gate[i] until done or Gate[i] 6= ⊥
86 C[i] := 0

// signal process in cleanup

87 incleanup = Gate[i]
88 if incleanup 6= ⊥ then
89 P [incleanup][i] := true

Algorithm 5: Transformation from N -process base

mutex to N -process recoverable target mutex.

at line 69. On the other hand, if the gate is still open

at line 81, then pi executes mtxB.Enter() at line 82

until it either acquires the base critical section or de-

tects that another process has closed the gate. The lat-

ter detection is accomplished by reading Gate[i] after

each step of mtxB.Enter() at line 82. Upon execut-

ing mtxB.Enter() to completion, process pi checks the

gate yet again at line 83 and restarts the entry sec-

tion of the target mutex if required, which prevents

unsafe progress into the target critical section. As we

show later on in Lemma 18, executing mtxB.Enter()

repeatedly in the same passage through the target mu-

tex is safe because in that scenario mtxB is reset be-

tween two consecutive calls to mtxB.Enter(). Once pi
enters and leaves the CS of the target mutex, it exe-

cutes mtxB.Exit() at line 85 until it either succeeds or

detects that another process has closed the gate. The

gate is checked after each step of mtxB.Exit(), as in

the earlier execution of mtxB.Enter(). Process pi then

checks the gate yet again at lines 87–88, and if the gate

is closed, pi signals the process in cleanup at line 89.

The remainder of this section presents the analysis

of Algorithm 5. Theorem 5 asserts the main correct-

ness properties, which include preservation of ME and

SF with respect to the base algorithm, as well as preser-

vation of RMR complexity in the absence of failures.

One of the difficulties in analyzing Algorithm 5 is

that while the gate is closed, mtxB no longer ensures

the mutual exclusion property of the target algorithm

because a process executing the base entry or exit sec-

tion does not follow the usual execution path prescribed

by the base algorithm. Specifically, a process may break

out of the base entry or exit section when it detects that

the gate is closed. To facilitate discussion of mtxB in

the proofs of correctness, we will first establish several

technical lemmas.

Lemma 15 For any history H of Algorithm 5, and for

any processes pi and pj, if pi is at lines 67–72 then

Gate[j] = i holds continuously until pi itself assigns

Gate[j] := ⊥ at line 72, and Gate[j] = ⊥ holds contin-

uously after pi does so.

Proof Process pi assigns Gate[z] := i at line 66 prior to

reaching lines 67–72, and this value can only be over-

written by another execution of line 66 or by an execu-

tion of line 72. Such a step can only be applied by pi
itself because lines 66–72 are protected by mtxA, which

provides BCSR by Theorem 4. ut
Lemma 16 For any history H of Algorithm 5, and for

any processes pi and pj, if pi is at line 71, or at line 72

with Gate[j] 6= ⊥, then pj is not at lines 82–85.

Proof Suppose that at the end of H, pi is at line 71, or

at line 72 with Gate[j] 6= ⊥, and consider process pj . If
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i = j then this follows from the assumption on pi, so

consider j 6= i. Observe that earlier in its execution of

Recover(), pi assigns P [i][j] := false at line 68. Since

only pi writes false to this array element and only at

line 68, it follows from pi’s completion of lines 67–70

that either pi reads C[j] 6∈ {2, 3} at line 69, or else

some process assigns P [i][j] := true after pi completes

line 68. The latter assignment can only happen by the

action of pj , namely at line 63, 78, or 89.

Case A: pi reads C[j] 6∈ {2, 3} at line 69. Furthermore,

Gate[j] = i holds continuously from when pi reads C[j]

at line 69 until pi assigns Gate[j] := ⊥ at line 72 by

Lemma 15. Now consider pj ’s steps after pi reads C[j] 6∈
{2, 3}, at which point pj is not at lines 81-86. No matter

what execution path pj follows, it cannot reach lines 82–

85 without first executing line 81. However, pj cannot

progress beyond this line until pi assigns Gate[j] := ⊥
at line 72, as otherwise Gate[j] = i holds continuously,

causing pj to branch back to line 75 from line 81.

Case B: pj executes line 63 after pi completes line 68.

If pj continues to take steps then it either crashes in-

finitely often or eventually attempts to execute lines 60–

74 of Recover() because C[j] = 4 holds continuously

by line 60 until pj reaches line 74. If pj attempts to

execute lines 60–74 then it waits for mtxA at line 65

until pi releases it at line 73. Thus, pj does not execute

lines 82–85 until pi leaves lines 71–72 entirely.

Case C: pj executes line 78 or line 89 after pi com-

pletes line 68. No matter what execution path pj fol-

lows, it cannot reach lines 82–85 without first executing

line 81 after executing line 78 or line 89. It follows from

Lemma 15 that Gate[j] = i holds continuously after

pi completes line 68 until it opens the gate for pj at

line 72, and so pj cannot progress beyond line 81 until

pi is at line 72 with Gate[j] 6= ⊥. ut

Lemma 17 For any history H of Algorithm 5, and for

any processes pi and pj, if pi crashes at line 71 in some

step c of H, then pj is not at lines 82–85 between c and

the next step where pi returns to line 71 on recovery.

Proof First, note that Gate[1..N ] = i holds immedi-

ately before step c by Lemma 15, hence immediately

after step c as well. Furthermore, Gate[1..N ] = i con-

tinues to hold until pi reaches line 72 on recovery from

the crash in step c because all write operations on Gate

are protected by mtxA, which pi holds from line 66

to line 73, and because mtxA provides BCSR (Theo-

rem 4). Thus, Gate[1..N ] = i holds continuously from

immediately before c until pi reaches line 71 on recov-

ery. Now let pj be any process and note that pj is out-

side of lines 82–85 immediately after c by Lemma 16.

As a result, pj can only reach lines 82–85 after c by

completing line 81 first and then proceeding to access

mtxB at 82. However, this does not happen because

we showed that Gate[j] = i holds continuously until pi
returns to line 71 on recovery. Thus, pj remains outside

of lines 82–85 in this part of the history H, as required.

ut

Lemma 18 For any history H of Algorithm 5, let G

be any maximal contiguous subhistory of H such that

no process is at line 71 immediately before any step of

G. Then processes access mtxB in G according to the

following rules:

1. at the beginning of G, each process is outside of

lines 82–85, and in the RS of mtxB; and

2. if a process pj breaks out of the base entry or exit

section because Gate[j] 6= ⊥, then pj does not ex-

ecute any additional steps of the base entry or exit

section of mtxB later on in G; and

3. each process executes calls to mtxB.Enter() and

mtxB.Exit() in G in an alternating sequence start-

ing with a call to mtxB.Enter().

Proof Clause 1: It suffices to show that each process is

outside of lines 82–85 at the beginning of G, as this

implies that every process is in the RS or mtxB. If G

begins at the start of H then each process is in the RS

of both the target mutex and mtxB, hence outside of

lines 82–85, as required. Otherwise, G begins immedi-

ately after some process pi completes line 71, or crashes

while at line 71. Let s be the step in H by which this

happens. Then pi is at line 71 immediately before s,

and so no process pj is at lines 82–85 by Lemma 16.

The same holds immediately after s whether pi crashes

or not, hence at the beginning of G, as required.

Clause 2: Suppose that a process pj breaks out of ex-

ecuting mtxB.Enter() at line 82, or mtxB.Exit() at

line 85, because Gate[j] 6= ⊥. Then some process pi as-

signsGate[j] := i at line 66 earlier inH, andGate[j] = i

holds by Lemma 15 until pi resets it back to⊥ at line 72.

However, in that case pi does not reset Gate[j] in G be-

cause it has to complete line 71 between lines 66 and

72. Thus, Gate[j] = i holds continuously in G after pj
breaks out of mtxB.Enter() or mtxB.Exit().

If pj breaks out of mtxB.Enter() at line 82, then

it either branches to line 75 from line 83, or crashes.

It both cases, it does not execute mtxB.Enter() or

mtxB.Exit() again in G due to line 81 because we

showed earlier that Gate[j] = i holds until the end of

G.

If pj breaks out of mtxB.Exit() at line 85, then it

does not execute mtxB.Enter() or mtxB.Exit() again

in the same passage. In subsequent passages, it cannot

reach mtxB.Enter() or mtxB.Exit() again in G due

to line 81 because we showed earlier that Gate[j] = i

holds until the end of G.
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Clause 3: If no process fails outside the RS of mtxB

then clause 3 follows from clauses 1-2 and from the or-

der of lines 82 and 85, except possibly if a process pj
completes mtxB.Enter() at lines 82 and then branches

back to line 75 from line 83 after reading Gate[j] 6= ⊥.

Then some process pi assigns Gate[j] := i at line 66

earlier in H, and Gate[j] = i holds by Lemma 15 until

pi resets it back to ⊥ at line 72. As in the analysis of

clause 2, this does not happen in G because it requires

pi to complete line 71, and so Gate[j] = i holds contin-

uously in G after pj reads Gate[j] 6= ⊥. Then pj does

not access mtxB again in G due to line 81. ut

Lemma 19 For any history H of Algorithm 5, let G

be any maximal contiguous subhistory of H such that

no process is at line 71 immediately before any step of

G. Then the projection of G onto steps of mtxB is a

history of the base mutex algorithm, and mtxB satisfies

its safety properties (ME, WFE, FCFS) before and after

each step of G.

Proof Case 1: G = H. It follows that mtxB is in its

initial state at the beginning of G by the initialization of

Algorithm 5. Then Lemma 18 implies thatG is a history

of the base mutex algorithm in which this algorithm

satisfies its safety properties.

Case 2: G begins immediately after a process pi that is

in cleanup completes line 71. It follows from Lemma 16

that no process pj is at lines 82–85 while pi is at line 71,

and so no other process executes steps of the procedures

mtxB.Enter() or mtxB.Exit() while pi is at line 71.

This implies that the Reset() operation pi executes at

line 71 correctly resets mtxB to its initial state immedi-

ately before the first step of G, and that mtxB remains

in this state at the start of G. Then Lemma 18 im-

plies that G is a history of the base mutex algorithm in

which this algorithm satisfies its safety properties, as in

Case 1.

Case 3: G begins immediately after a process pi takes

a crash step c while at line 71. Then it follows from

Lemma 17 that every process pj remains outside of

lines 82–85 from c, which happens before the begin-

ning of G, until pi reaches line 71 again, which happens

after the last step of G. Furthermore, inside Recover(),

mtxB can only be accessed at line 71, which can only

occur outside of G by construction of G. Thus, G is

empty since no process at all accesses mtxB in G. It

follows trivially that G is a history of the base mu-

tex algorithm in which this algorithm satisfies its safety

properties. ut

Lemma 20 Algorithm 5 satisfies mutual exclusion.

Proof First, note that to enter the target CS, a process

p` must execute lines 82–83, where mtxB is acquired at

line 82 unless Gate[l] becomes closed (i.e., Gate[l] 6= ⊥).

It follows from Lemma 16 that if Gate[l] becomes closed

while p` is executing mtxB.Enter() then the gate can-

not be opened at line 72 while p` is at lines 82–83.

Thus, if p` completes these lines then it does so with

Gate[l] = ⊥, as otherwise it would branch back to

line 75 from line 83. Completion of lines 82–83 there-

fore implies execution of mtxB.Enter() at line 82 to

completion. In other words, a process p` that is in the

target CS is simultaneously in the CS of mtxB.

Now suppose for contradiction that distinct pro-

cesses pj and pk are in the CS of the target algorithm si-

multaneously at the end of some finite history H. With-

out loss of generality, assume that |H| is minimal, and

observe that by Lemma 16 there can be no process pi
at line 71 at the end of H, or immediately before the

last step of H, in which either pj or pk enters the CS.

Therefore, H has a non-empty suffix G such that no

process is at line 71 immediately before any step of G.

Let G be maximal so that Lemma 19 applies to the

chosen H and G. Then Lemma 19 implies that mtxB

provides mutual exclusion after each step of G. This is

a contradiction because at the end of G, distinct pro-

cesses pj and pk are not only in the CS of the target

algorithm but also in the CS of the mtxB, as shown in

the first paragraph of this proof. ut

Lemma 21 For any fair history H of Algorithm 5 con-

taining finitely many failures, if a process becomes stuck

forever in some passage then this occurs in a single ex-

ecution of mtxB.Enter() or mtxB.Exit().

Proof Let H be an infinite fair history with finitely

many failures. Suppose for contradiction that some pro-

cess pi is stuck forever in a passage but not inside a sin-

gle execution of mtxB.Enter() or mtxB.Exit(). Then

one of the following cases applies to pi in its final super-

passage in H.

Case 1: pi is stuck waiting for some process pj at line 70

of Recover(). Since C[j] ∈ {2, 3} during pi’s most re-

cent execution of line 69 for j, pj has reached line 80

at least once in some step of H. Since H is fair, pj con-

tinues to take steps from this execution of line 80 and

onward until it crashes or completes is super-passage.

Next, we will show that pj eventually assigns P [i][j] :=

true in this super-passage, which contradicts pi being

stuck at line 70.

First, observe that by Lemma 15, Gate[j] = i holds

continuously from pi’s most recent execution of line 69

for j prior to it becoming stuck at line 70. This has two

implications. First, pj cannot become stuck forever in

mtxB.Enter() at line 82 or mtxB.Exit() at line 85. As

a result, pj eventually either crashes or overwrites C[j]

with a new value by branching to line 75 from line 81
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or line 83 of Enter() (C[j] transitions from 2 to 1), by

completing line 80 of Exit() (C[j] transitions from 2

to 3), or by completing line 86 of Exit() (C[j] transi-

tions from 3 to 0). Second, if pj crashes or overwrites

C[j] at line 75, 80, or 86, then Gate[j] = i holds from

immediately prior to this step and onward.

Now, consider the steps of pj after pi’s most recent

execution of line 69 for j. If pj continues to take steps

without crashing, then it eventually executes line 75, 80,

or 86. In this case all execution paths lead eventually

to pj assigning P [i][j] := true at line 78 of Enter() or

at line 89 of Exit(). This is because Gate[j] = i holds

continuously, which activates the branches at line 81

and line 83 of Enter(), and because pj cannot be stuck

in mtxB.Enter() or mtxB.Exit() while Gate[j] = i.

Otherwise, suppose that pj crashes after pi’s most

recent execution of line 69 for j before reaching a step

that assigns P [i][j] := true. Then Gate[j] = i holds im-

mediately after this crash step and onward in H. Each

time pj attempts another passage in the same super-

passage, it either follows a path leading to line 63 of

Recover() in a bounded number of pj ’s own steps, or

a path that bypasses the body of Recover() at line 59

and leads to line 78 of Enter(), also in a bounded

number of pj ’s own steps. Since H is fair and contains

finitely many failures, it follows that pj eventually exe-

cutes line 63 or line 78 where it assigns P [i][j] := true,
as required.

Case 2: pi is stuck in mtxA at lines 64–65 or line 73 of

Recover(). We will show that the projection of H onto

steps of mtxA is fair, which follows from two points.

First, the code between mtxA.Recover()/Enter() at

lines 64–65 and mtxA.Exit() at line 73 is bounded, ex-

cept for the busy-wait loop at line 70, which terminates

eventually by our analysis in Case 1. Second, if some

process pk crashes while outside the RS of mtxA, then

this occurs with C[k] = 4 (see line 60) and so pk can

reach mtxA.Recover() at line 64 in a bounded number

of its own steps on recovery. Thus, if pj leaves the RS

of mtxA in H then it continues to take steps of mtxA

until it either completes its passage through mtxA or

crashes. In other words, H is fair with respect to mtxA.

Since H contains finitely many failures, the hypothe-

sis of Case 2 contradicts Theorem 4, which states that

mtxA provides wait-free recovery, starvation freedom,

and wait-free exit.

Case 3: pi is stuck waiting for the gate to reopen at

line 79 of Enter(). Since H is fair and since Cases 1–

2 prove that no process may be stuck forever in Re-

cover(), it follows that every process pj that closes

Gate[i] at line 66 reopens it eventually at line 72 in

the absence of failures. If such a process fails after clos-

ing the gate and before reopening it, then C[j] = 4

holds by line 60, and so on recovery pj is confined to

lines 60–74 by the branch at line 59 until it completes

Recover(), even if it fails repeatedly. Since H contains

finitely many crash steps, it follows that pj eventually

assigns Gate[i] := ⊥ at line 72. Thus, Gate[i] = ⊥ holds

continuously in some suffix of H, which contradicts pi
waiting forever at line 79.

Case 4: pi repeatedly branches back to line 75 from

line 81 or from line 83. This implies that Gate[i] 6= ⊥
holds infinitely often in H, and so either some process

pk closes the gate at line 66 and never reopens it at

line 72, or there are infinitely many complete executions

of line 66–72. If pk crashes after assigning Gate[i] := k

at line 66 and before assigning Gate[i] := ⊥ at line 72,

then it does so with C[i] = 4 by line 60, and so it must

complete the body of Recover() before progressing to

Enter() due to line 59, even if it crashes again. Since

H is fair and contains finitely many failures, this en-

sures that pk eventually completes lines 66–72 because

Cases 1 and 2 show that pk cannot become stuck in

Recover(). This rules out the possibility that pk closes

the gate for pi and never reopens it. Since H is fair and

contains finitely many failures, it also follows that in

some suffix of H, each new execution of Recover() by

a process pk begins with C[k] = 0 and returns imme-

diately after line 59. This rules out the possibility of

infinitely many complete executions of line 66–72 in H.

Thus, we reach a contradiction. ut

Lemma 22 Let H be any infinite fair history of Algo-

rithm 5 with finitely many failures. Then H has a suffix

S where mtxB begins in its initial state, and satisfies

its safety (ME, WFE, FCFS) liveness properties (DF,

SF, TE).

Proof Let H be an infinite fair history of Algorithm 5

with finitely many failures. Consider the maximal suf-

fix G of H after the last crash failure, and let G = H

if H is failure-free. Since G is failure-free and since

Lemma 21 implies that no process may be stuck for-

ever in Recover(), H has a non-empty suffix S in which

no process is at lines 59–74 of Recover(). In particu-

lar, no process is at line 71 immediately before or after

any step of S. Assume without loss of generality that

S is maximal with respect to the latter property so

that Lemma 19 applies, meaning that mtxB satisfies

its safety properties (ME, WFE, FCFS) before and af-

ter each step of S. Furthermore, note that S is fair with

respect to mtxB because Lemma 21 rules out the pos-

sibility that a process is stuck forever outside of mtxB.

Lemma 18 and fairness of S with respect to mtxB im-

ply that mtxB satisfies its liveness properties in S (DF,

SF, TE). ut
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Lemma 23 Algorithm 5 satisfies deadlock-freedom (re-

spectively starvation-freedom) if mtxB satisfies the same

property.

Proof Let H be an infinite fair history of Algorithm 5

with finitely many failures. Suppose that mtxB satisfies

deadlock-freedom (respectively starvation-freedom). Sup-

pose for contradiction that some process pi is in the

recovery or entry section after some finite prefix of H,

and no process subsequently enters (respectively pi does

not subsequently enter) the CS of Algorithm 5. This im-

plies that no process subsequently enters (respectively

pi does not subsequently enter) the CS of mtxB. It fol-

lows from Lemma 21 that pi may only become stuck

in a single execution of mtxB.Enter() at line 82 or

mtxB.Exit() at line 85, and so pi is outside the RS

of mtxB while it is stuck. In particular, pi must be

stuck in mtxB.Enter() since we assume that it became

stuck before entering the CS of mtxB. Thus, pi is stuck

in mtxB.Enter(), and for each step of pi in this final

execution of mtxB.Enter(), no process subsequently

enters (respectively pi does not subsequently enter) the

CS of mtxB.

Now consider the suffix of S of H whose existence is

guaranteed by Lemma 22. It follows that mtxB satisfies

its deadlock-freedom (respectively starvation freedom)

property in S, which contradicts the conclusion of the

first paragraph of this proof. ut

Lemma 24 Algorithm 5 satisfies terminating exit (re-

spectively wait-free exit) if mtxB satisfies the same prop-

erty.

Proof Terminating exit: Suppose that mtxB satisfies

terminating exit. Let H be an infinite fair history of Al-

gorithm 5 with finitely many failures. Suppose for con-

tradiction that some process pi becomes stuck forever

in Exit(). This implies that pi is stuck in mtxB.Exit()

at line 85 since the rest of the target exit section is wait-

free. Now consider the suffix of S of H whose existence

is guaranteed by Lemma 22. It follows that mtxB satis-

fies its terminating exit property in S, which contradicts

the observation that pi is stuck forever in mtxB.Exit().

Wait-free exit: Suppose that mtxB satisfies wait-free

exit. Then there exists a function f(N) of the maximum

number of processes that bounds the number of steps

incurred in any call to mtxB.Exit(). Let H be any

finite history of Algorithm 5 and consider an execution

of mtxB.Exit() by some process pi, which can only

occur at line 85 of Exit(). It follows from Lemma 16

that no process is at line 71 while pi is at line 85. Now

let G be the maximal contiguous subhistory of H where

the latter property holds and pi performs its call to

mtxB.Exit() under consideration. Then mtxB satisfies

its safety properties before and after each step of G by

Lemma 19, including wait-free exit in at most f(N)

steps. Since Exit() comprises mtxB.Exit() and O(1)

additional steps, it follows that the number of steps pi
takes in Exit() is also bounded by a function f ′(N) =

f(N) +O(1). Thus, the target mutex satisfies wait-free

exit. ut

Lemma 25 Algorithm 5 satisfies 0-bounded recovery.

Proof Let H be any history of Algorithm 5 and consider

an execution of Recover() by a process pi. Suppose

that pi is not in cleanup while it executes Recover(),

meaning that it is either executing its first passage in

H, or the next passage following a failure-free passage.

In either case, C[i] = 0 holds at the beginning of Re-

cover(), either by initialization or by pi’s most recent

execution of line 86 in Exit(). As a result, the condition

at line 59 is false and so pi bypasses the remainder of

the recovery section. Thus, pi completes Recover() in

a bounded number of its own steps, as required. ut

Lemma 26 Suppose that mtxB in Algorithm 5 has

O(f(N)) worst-case RMR complexity per passage in the

CC and DSM models for some function f(N), and uses

V shared variables internally. Then for any history H

of Algorithm 5 and any process pi, the number of RMRs

pi incurs in the CC and DSM models in one passage is

as follows:

– Recover(): O(N + V ) if pi is in cleanup after re-

covering with C[i] /∈ {0, 1} at line 59, and O(1) oth-

erwise.

– Enter(): O(f(N) × (1 + F )) where F denotes an

upper bound on the number of passages that begin in

cleanup after recovering with C[i] 6∈ {0, 1} at line 59

and are concurrent with pi’s passage.7

– Exit(): O(f(N)).

Proof In Recover(), if pi is in cleanup after recover-

ing with C[i] /∈ {0, 1} at line 59, then the condition

at line 59 is true. Then pi executes lines 60–74, where

it performs O(N) RMRs accessing spin variables and

O(V ) RMRs resetting mtxB at line 71. Note that in

the CC model, each execution of the busy-wait loop at

line 70 by pi takes at most two RMRs, namely one to

read P [i][j] = false and one more to read P [i][j] = true,
as only pi assigns P [i][j] := false and pi has already

done so at line 68 prior to entering the busy-wait loop.

Otherwise, if pi is not in cleanup, or is in cleanup but

after recovering with C[i] ∈ {0, 1} at line 59, then the

condition at line 59 is false. In that case pi completes

7 The RMR complexity of Enter() is unbounded if F does
not exist for a given history H.
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the recovery section in O(1) steps and hence in O(1)

RMRs.

In Enter(), process pi executes lines 75–83 zero or

more times, as well as O(1) additional steps. In each it-

eration of lines 75–83, it completes the busy-wait loop

at line 79 at most once, then executes mtxB.Enter()

at line 82 at most once, and executes O(1) other steps.

First, we will bound the number of RMRs incurred in

mtxB.Enter(). Note that while pi is at lines 82–85, no

other process can be at line 71 by Lemma 16. Therefore,

pi’s steps inside mtxB during the passage under con-

sideration are contained in some non-empty contiguous

subhistory G of H such that no process is at line 71

immediately before any step of G. Assume that G is

maximal so that Lemma 19 applies. Then it follows

that mtxB satisfies its safety properties in G, including

worst-case RMR complexity, and so pi incurs O(f(N))

RMRs accessing mtxB.Enter() at each execution of

line 82. It is possible that pi executes line 82 multiple

times due to lines 81 and 83, which requires that Gate[i]

is first closed and then reopened so that pi can progress

past lines 77–79. The number of additional executions

of line 82 is therefore bounded by the number of concur-

rent passages that begin in cleanup with C[i] 6∈ {0, 1},
in other words F . Thus, pi incurs O(f(N) + f(N)×F )

RMRs executing line 82. Next, consider the busy-wait

loop at line 79. In the DSM model, the loop incurs

zero RMRs since Gate[i] is declared local to pi. In the

CC model, the loop incurs at most one RMR every

time some process in cleanup writes its ID to Gate[i]

at line 66, as well as one more RMR when pi finally

reads Gate[i] = ⊥. Thus, the total number of RMRs pi
incurs at line 79 across all repetitions of lines 75–83 in

one passage is O(F ) in the CC model. The RMR com-

plexity of Enter() is therefore O(f(N) × (1 + F )), as

required.

In Exit(), process pi executes mtxB.Exit() and

O(1) other steps. As in the analysis of Enter(), it fol-

lows that mtxB meets its RMR complexity guarantee,

and hence the cost of mtxB.Exit() is O(f(N)) RMRs.

Thus, the target exit section incurs O(f(N)) RMRs in

total, as required. ut

Theorem 5 Algorithm 5 satisfies ME and 0-BR, and

also preserves DF, SF, TE, and WFE. Furthermore,

supposing that mtxB has O(f(N)) worst-case RMR

complexity per passage in the CC and DSM models for

some function f(N), and uses V shared variables in-

ternally, the number of RMRs a process pi incurs in

one passage through Algorithm 5 is as follows: O(N +

V + f(N)× (1 +F )) RMRs if pi’s passage is 1-failure-

concurrent, where F denotes an upper bound on the

number of passages that begin in cleanup and are con-

current with pi’s, and O(f(N)) RMRs otherwise.

Proof Properties ME and 0-BR follow directly from

Lemmas 20 and 25 respectively. Preservation of DF,

SF, TE, and WFE follows from Lemmas 23 and 24, re-

spectively. The worst-case RMR complexity in the CC

and DSM models follows from Lemma 26. ut

We complete the analysis by discussing FCFS fair-

ness in Algorithm 5. On first impression, it may appear

that if mtxB provides FCFS then Algorithm 5 does

as well, provided that we define the doorway of Algo-

rithm 5 in the natural way: from the first statement of

Enter() at line 75 to the end of mtxB’s doorway at

line 82. However, on closer inspection we discover two

subtle technicalities. First, the proposed doorway of Al-

gorithm 5 is not always bounded. Second, the end of the

doorway is not specified clearly because the target en-

try section may execute mtxB.Enter() at line 82 zero

times in one passage, such as when a process is recov-

ering from a crash in the CS, or multiple times in one

passage, such as when the gate is closed and reopened

repeatedly by one or more processes in cleanup. We cir-

cumvent both issues by focusing on passages that are

not 1-failure-concurrent, and proving 1-FCFS.

Lemma 27 If the base mutex used by Algorithm 5 sat-

isfies First-Come-First-Served (FCFS) fairness then Al-

gorithm 5 satisfies 1-FCFS.

Proof Let H be a history of Algorithm 5, and suppose

that process pi enters the CS in its `i-th passage and

pj enters the CS in its `j-th passage in H. Suppose

that neither passage is 1-failure-concurrent, which im-

plies that the condition at line 59 of Recover() holds

and that line 82 of Enter() is executed exactly once.

Suppose for contradiction that pi completes the door-

way in its `i-th passage before pj begins the doorway

in its `j-th passage, and yet pj enters the CS in its `j-

th passage before pi enters the CS in its `i-th passage.

Consider the contiguous subhistory G of H starting im-

mediately after pi begins the base doorway in its `i-th

passage and ending in the step where pi enters the CS

in the same passage. Then by Lemma 16, no process

is at line 71 immediately before or after any step in

G since pi is at lines 82–85 in G. Now extend G to a

maximal contiguous subhistory G′ of H such that no

process is at line 71 immediately before any step of

G′. Then all processes are outside the RS of mtxB at

the beginning of G′ by Lemma 18, and mtxB satisfies

its safety properties before and after each step of G′

by Lemma 19. In particular, mtxB provides ME and

FCFS. Now consider the order of entry into the base

CS versus the order of execution of the base doorway

in G′ in the passages under consideration. By definition

of H, pi completes the base doorway in its `i-th passage
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through Algorithm 5 before pj begins the base doorway

in its `j-th passage through Algorithm 5. On the other

hand, pj enters the target CS before pi enters the tar-

get CS, and so pj enters the base CS before pi enters

the base CS by the ME property of mtxB and since a

process that is in the target CS is simultaneously in the

base CS. This contradicts the FCFS property of mtxB.

ut

4.2 Transformation for Bounding RMR Complexity

The construction presented earlier in Section 4.1, when

instantiated with a local-spin base mutex, has bounded

RMR complexity in failure-free histories. However, the

number of RMRs a process executes per passage in

the worst case may be arbitrarily large as it depends

on the number of crash failures in the history. In this

section, we describe an additional transformation that

bounds RMR complexity in the worst case, and in the

absence of failures matches (up to a constant factor)

the RMR complexity of the base mutex internal to Al-

gorithm 5. Our technique is inspired by two ideas: Scott

and Scherer’s abortable mutual exclusion [47], in which

a process that is waiting in the entry section may give

up its interest in the critical section; and Lamport’s fast

path mechanism [37], which improves the efficiency of

a mutex algorithm in the absence of contention.

The new transformation, illustrated conceptually in

Figure 3, uses the construction from Section 4.1 (Algo-

rithm 5) as its base mutex. By default, processes use

the base mutex, denoted mtxC, to protect the target

critical section. However, executions of mtxC.Enter()

must be terminated early if another process in cleanup

is detected as otherwise the RMR complexity of the tar-

get entry section would be unbounded. This is accom-

plished by breaking out of mtxC.Enter(), similarly to

how a process gives up interest in the critical section in

an abortable mutual exclusion algorithm by executing

an abort protocol. Such a process is diverted away from

the default path and into a bounded path that guar-

antees bounded RMR complexity. The bounded path

is slower than the default path in the absence of con-

tention, and so it is engaged only when needed.

To ensure mutual exclusion, both the bounded path

and the default path are protected by an auxiliary re-

coverable mutex implemented using the algorithm from

Section 3.3. In the absence of failures, the auxiliary mu-

tex is accessed only along the default path where it is

already protected by the base mutex, and so contention

is minimal. Therefore, augmenting the auxiliary mutex

with a suitable fast path ensures that the target mutex

has the same RMR complexity asymptotically as the

base mutex in the absence of failures.

Breaking out of mtxC.Enter() is a delicate opera-

tion as it can lead to a penalty in terms of RMRs when

the process executes mtxC.Recover() during its next

passage through the target algorithm. We avoid this

by leveraging a feature of Algorithm 5 stated earlier in

Lemma 26: the number of RMRs a process pi incurs

while executing mtxC.Recover() in a passage that be-

gins with C[i] = 1 (i.e., pi is in cleanup after a crash

early on in mtxC.Enter()) is the same as in a passage

that begins with C[i] = 0 (i.e., pi is in cleanup after

a crash late in mtxC.Exit() or pi is not in cleanup

at all). Thus, the RMR penalty due to execution of

mtxC.Recover() can be avoided entirely if pi breaks

out of mtxC.Enter() before line 80, where it assigns

C[i] := 2. An explicit abort protocol is not required

to give up interest in the target CS, and therefore our

analysis does not refer to abortability.

Adding a fast path to the recoverable auxiliary mu-

tex is more challenging as the natural approach of gen-

eralizing a known fast path implementation to crash-

recovery failures leads to some undesirable technicali-

ties. Lamport’s use of the fast path [37], for example,

leads to unbounded RMR complexity. Yang and An-

derson’s adaptation of Lamport’s mechanism to local-

spin algorithms [49] bounds the RMR complexity but

only at Θ(N) in the worst case. Finally, Anderson and

Kim’s mechanism [2] bounds the RMR complexity at

Θ(logN) in the worst case, but introduces identifiers

that grow without bound. We avoid these issues alto-

gether by using Compare-And-Swap (CAS) to open and

close the fast path instead of relying on atomic reads

and writes only. This is a reasonable design choice be-

cause the two transformations presented in Section 4

are intended to be used with RMR-efficient base algo-

rithms that already rely on atomic read-modify-write

primitives. Note that the RMR-efficient simulation of

CAS from reads and writes of Golab, Hendler, Hadzi-

lacos, and Woelfel is not applicable in this context as it

assumes reliable processes [17].

The pseudo-code for the target algorithm is pre-

sented in Algorithm 6. The construction uses three mu-

texes as building blocks: mtxC is the base mutex ob-

tained by instantiating the construction from Section 4.1;

mtxAN is the N -process auxiliary mutex that protects

the critical section in the default and bounded paths,

as explained earlier; and mtxA2 is an additional two-

process auxiliary mutex used to synchronize mtxAN

with the fast path. Both mtxAN and mtxA2 are imple-

mented using the algorithms presented earlier in Sec-

tion 3. The forthcoming analysis also refers in some

places to the base mutex internal to Algorithm 5 (i.e.,

mtxB), which affects the RMR complexity of mtxC but

is not referenced explicitly in Algorithm 6.
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Shared variables:
– mtxA2: two-process recoverable mutex implemented

using Algorithm 2 from Section 3.1, and augmented
with BCSR using Algorithm 3 from Section 3.2

– mtxAN : N -process recoverable mutex implemented
using Algorithms 4 from Section 3.3, respectively, and
augmented with BCSR using Algorithm 3 from
Section 3.2

– mtxC: recoverable base mutex implemented using
Algorithm 5 from Section 4.1, and augmented with
BCSR using Algorithm 3 from Section 3.2

– F : holds process ID or ⊥, initially ⊥
Private variables:

– Bounded[1..N ]: array of Boolean, initially all
elements false

– Breakout[1..N ]: array of Boolean, element i private
to process pi, initially all elements false

Procedure Recover() for process pi

90 mtxC.Recover()

Procedure Enter() for process pi

91 if Breakout[i] = false then
92 execute steps of mtxC.Enter(), break out

immediately after the second completion of
lines 75–79 of Algorithm 5

93 if broke out of mtxC.Enter() at line 92 then
94 Breakout[i] := true

95 else
96 Breakout[i] := false

// try to capture the fast path using CAS

97 if Bounded[i] = false ∧ CAS(F , ⊥, i) ∈ {⊥, i} then
98 mtxA2.Recover(left)
99 mtxA2.Enter(left)

100 else
101 Bounded[i] := true
102 mtxAN .Recover()
103 mtxAN .Enter()
104 mtxA2.Recover(right)
105 mtxA2.Enter(right)

Procedure Exit() for process pi

106 if F = i then
107 mtxA2.Exit(left)

// release the fast path

108 F := ⊥
109 else
110 mtxA2.Exit(right)
111 mtxAN .Exit()
112 Bounded[i] := false

113 if Breakout[i] = false then
114 mtxC.Exit()

115 else
116 Breakout[i] := false

Algorithm 6: Transformation for bounding worst-

case RMR complexity in the algorithm from Sec-

tion 4.1.

bounded
path

base mutex
recovery/entry

auxiliary mutex recovery/entry

base mutex
exit

auxiliary mutex exit

entry

exit from default path

exit from
bounded path

critical section

fast path

fast path

Fig. 3 Conceptual structure of the target algorithm with
default (left) and bounded (right) paths.

The default path in Algorithm 6 refers to the pseudo-

code statements executed in a failure-free history. In

the absence of failures, a process pi begins by executing

mtxC.Recover() at line 90 of Recover(), then exe-

cutes mtxC.Enter() to completion at line 92 of En-

ter(), and then attempts to steer around the auxiliary

mutex mtxAN by executing a Compare-And-Swap op-

eration (denoted CAS) at line 97.8 The code after an

execution of line 97 in Enter() where the CAS suc-

ceeds (or F = i holds already prior to the CAS) and

Bounded[i] = false holds, and before the write oper-

ation at line 108 in Exit(), is called the fast path of

Algorithm 6.

Since the base mutex protects lines 97–113 in the

absence of failures, there is no contention on the fast

path and so pi successfully swaps its ID into F . Next,

pi acquires mtxA2 at lines 98–99, completes the tar-

get critical section, releases mtxA2 at line 107, and re-

leases the fast path by overwriting F with ⊥ at line 108.

Finally, pi releases mtxC at line 114. Thus, the fast

path entails acquiring mtxC, F , and the auxiliary mu-

tex mtxA2, and then releasing all three components in

the opposite order.

In the presence of failures by other processes, pi may

break out of mtxC.Enter() at line 92. This event is

recorded in Breakout[i] at line 94 so that pi remem-

bers not to execute mtxC.Exit() later on at line 114,

as that would be unsafe given the incomplete execu-

tion of mtxC.Enter(). (On the other hand, it is safe

for pi to execute mtxC.Recover() in its next passage

through the target mutex, similarly to the case when pi
crashes in mtxC.Enter() instead of breaking out volun-

8 The “∧” operator at line 97 should be interpreted like &&
in C++, meaning that the right operand is evaluated only if
the left operand is true.



Recoverable Mutual Exclusion 23

tarily.) Moreover, pi may skip mtxC.Enter() entirely

(see line 91), which is necessary to avoid deadlock in

the scenario where pi breaks out and then crashes after

acquiring mtxA2, while another process cleans up and

acquires mtxC. The rest of the target entry and exit

sections is executed similarly to the failure-free case,

except that mtxC no longer protects attempts to ac-

quire the fast path, leading to the possibility that pi
fails to capture the fast path at line 97 due to con-

tention. In that case, pi acquires mtxAN at lines 102–

103, acquires mtxA2 at lines 104–105, completes the

target critical section, releases mtxA2 at line 110, and

finally releases mtxAN at line 111. The code after an

execution of line 97 in Enter() where the CAS fails or

Bounded[i] = true holds, and before the write operation

at line 112 in Exit(), is called the bounded path of Al-

gorithm 6. The variable Bounded[i] is used at lines 101

and 112 to record pi’s presence in the bounded path for

recovery.

If pi itself crashes, then on recovery it executes Re-

cover() and Enter() up to line 97, as described earlier.

If pi failed inside the bounded path (i.e., Bounded[i] =

true), then by the test at line 97 it proceeds to line 101

where it re-enters the bounded path. In this case, pi
cannot enter the fast path at line 97 as otherwise it

will acquire mtxA2 with side = left at lines 98–99 be-

fore it has a chance to recover its prior passage through

mtxA2 from lines 104–105 with side = right, break-

ing the assumptions stated in Section 3 for accessing

the two-process mutex. Otherwise, if pi failed outside

the bounded path (i.e., Bounded[i] = false), then it at-

tempts to capture the fast path, and falls back on the

bounded path only if necessary. If pi was already in the

fast path when it crashed, then F = i holds and the

response of the CAS at line 97 indicates that it is safe

for pi to re-enter the fast path. After completing the

target critical section, pi releases the auxiliary mutexes

and completes the fast path in the target exit section

at lines 106–112.

The RMR complexity of the target algorithm in the

absence of failures is dominated by mtxC since the aux-

iliary two-process mutex used in the fast path (mtxA2)

requires only O(1) RMRs. Failures affect RMRs in two

ways: (i) the complexity of the base recovery section

may increase, which affects line 90; and (ii) breakouts

at line 92 raise pressure on the fast path and deflect

processes into the bounded path, which incurs an ad-

ditional Θ(logN) RMRs per passage. Note that (i) ap-

plies only while some process is in cleanup with respect

to both mtxC and the target algorithm. In contrast,

contention on the fast path in scenario (ii) lingers on

until the last process drains out of the bounded path,

which could occur long after mtxC has been cleaned

up. As a result, (ii) may affect the RMR complexity

of any passage that is 1-failure-concurrent or interferes

with a 1-failure-concurrent passage (i.e., any 2-failure-

concurrent passage).

The remainder of this section presents the analysis

of Algorithm 6. Theorem 6 asserts the main correctness

properties of the construction. We begin the analysis by

establishing in Lemmas 28–29 that the building blocks

of the target algorithm are accessed correctly.

Lemma 28 For any history H of Algorithm 6, at most

one process at a time is in the fast path.

Proof The fast path is defined as the code after a suc-

cessful CAS operation at line 97 in Enter() and before

the write operation at line 108 in Exit(). A successful

CAS by pi at line 97 is a transition of F from ⊥ to i, and

a write operation at line 108 is a transition of F from

i to ⊥. Thus, if pi is in the fast path then F = i holds

continuously, which implies that at most once process

at a time can be in the fast path. ut

Lemma 29 For any history H of Algorithm 6, the fol-

lowing hold:

1. the projection HN of H onto crash steps and steps

executed inside mtxAN is a history of Algorithm 4;

and

2. the projection H2 of H onto crash steps and steps

executed inside mtxA2 is a history of Algorithm 2;

and

3. the projection HC of H onto crash steps and steps

executed inside mtxC, with an additional crash step

by process pi inserted each time process pi either

bypasses mtxC.Enter() at line 91 or breaks out of

mtxC.Enter() at line 92, is a history of Algorithm 5.

Proof For each clause, we must show that processes fol-

low the execution path described in Algorithm 1 with

respect to the given recoverable mutex in the target al-

gorithm. Furthermore, in clause 1 we must show that

the two-process mutex is accessed by at most two pro-

cesses at a time, and according to the rules stated in

Section 3.1 regarding the special argument side passed

to the procedures Recover(), Enter() and Exit().

Clause 1: Only the bounded path of Algorithm 6 ac-

cesses mtxAN . Executions of mtxAN .Recover() and

mtxAN .Enter() at lines 102–103 are matched by a call

to mtxAN .Exit() at line 111. Furthermore, if a process

pi crashes outside the RS of mtxAN , then its next ac-

cess to this mutex in H (if such an access occurs) is

a call to mtxAN .Recover() at line 102, as required.

Thus, mtxAN is accessed correctly in H, and so HN is

a history of Algorithm 4, as required.

Clause 2: There are several points in Algorithm 6 where

mtxA2 is accessed. Executions of mtxA2.Recover()
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and mtxA2.Enter() at lines 98–99 and lines 104–105

are matched by calls to mtxA2.Exit() at lines 107 and

110, respectively. Furthermore, mtxA2 is only accessed

by two processes at a time: one using side = left in

the fast path at lines 98–99 and 107, where operations

on F at lines 97–108 guarantee mutual exclusion (see

Lemma 28), and one using side = right in the bounded

path at lines 104–105 and 110, where mtxAN guaran-

tees mutual exclusion because it is accessed correctly

at lines 102–111 (see clause 1). Also note that the ID

of a process pi executing the “left” side in the fast path

does not change, even in the event of failure inside

the fast path, until this process completes its super-

passage through mtxA2. This is because no other pro-

cess is able to enter the fast path until pi recovers with

Bounded[i] = false, re-enters the fast path at line 97

when the CAS operation returns pi’s ID, and finally

releases the fast path at line 108. The analogous state-

ment holds for the process executing the “right” side in

the bounded path because lines 104–105 and 110 are

protected by mtxAN , which satisfies its safety proper-

ties because it is accessed correctly by clause 1, and

which we assume is augmented with BCSR using Al-

gorithm 3 from Section 3.2. Thus, mtxA2 is accessed

correctly in H, and so H2 is a history of Algorithm 2,

as required.

Clause 3: There are four places where mtxC is accessed

in Algorithm 6: lines 90, 92, and 114. In the absence

of failures, every call to mtxC.Recover() at line 90 is

matched by a call to mtxC.Enter() at 92 and a call to

mtxC.Exit() at 114, as required. If a process pi breaks

out of line 92, then it assigns Breakout[i] = true at

line 94, and later bypasses the exit section of mtxC at

lines 113–114. Process pi further bypasses the entry sec-

tion of mtxC at line 91 upon recovering from a crash

with Breakout[i] = true, and continues to bypass the

entry and exit sections until it completes a failure-free

passage by writing Breakout[i] := false at line 116. In

that case, the projection defined in clause 3 inserts a

crash step for process pi when it bypasses or breaks out

of mtxC.Enter(), which completes a passage through

mtxC and makes it safe for pi to call mtxC.Recover()

again in its next passage through the target algorithm.

The crash step is introduced for analysis only, and pre-

serves the execution pattern shown in Algorithm 1 with

respect to mtxC even though pi does not actually crash

in the code of the target mutex. Thus, HC is a history

of Algorithm 5, as required. ut

Lemma 30 Algorithm 6 satisfies mutual exclusion.

Proof The critical section of the target algorithm is pro-

tected by mtxA2, which ensures mutual exclusion by

Lemma 29 and Theorem 1. ut

Lemma 31 For any fair history H of Algorithm 6 con-

taining finitely many failures, if a process becomes stuck

forever in some passage then this occurs in a single

execution of mtxB.Enter() or mtxB.Exit() in Algo-

rithm 5, which implements mtxC in Algorithm 6.

Proof Let H be an infinite fair history of Algorithm 6

with finitely many crash steps. Suppose that a process

pi becomes stuck forever in some passage in H. Since

Algorithm 6 does not contain any loops, it suffices to

show that pi does not become stuck inside mtxA2 or

mtxAN , or inside mtxC except while accessing mtxB

at line 82 or line 85 of Algorithm 5. We proceed by a

case analysis.

Case 1: no process becomes stuck in mtxA2. Let H2

be the projection of H onto crash steps and steps of

mtxA2, as defined in Lemma 29. In the absence of fail-

ures, a process pi leaves the RS of mtxA2 at lines 98–

99 or 104–98, where it executes mtxA2Recover() and

mtxA2.Enter(), then proceeds directly to the CS of the

target algorithm, which terminates eventually since H

is fair, and finally executes mtxA2.Exit() at line 107

or 110. It remains to show that if pi crashes along

this path in H then it eventually recovers and reaches

mtxA2.Recover() again in H2. Proving this point es-

tablishes that H2 is fair, and completes Case 1 since

no process may be stuck in mtxA2 given that this al-

gorithm provides starvation-freedom and wait-free exit

(see Theorem 1).

Subcase 1a: pi crashes in the fast path outside the RS

of mtxA2. Then F = i and Bounded[i] = false hold at

the point of failure by pi’s prior execution of line 97.

Therefore, pi is restricted to taking the following ac-

tions on recovery until it reaches mtxA2.Recover() at

line 98, no matter how many times it crashes again: (i)

pi calls mtxC.Recover() at line 90 and some (possi-

bly empty) prefix of mtxC.Enter() at line 92; and (ii)

pi reaches line 97 and re-enters the fast path because

F = i and Bounded[i] = false continue to hold, causing

the CAS operation to return i. Note that in scenario (i),

pi’s steps in the recovery and entry sections of mtxC

are bounded. If pi’s crash occurred in the CS of mtxC

with Breakout[i] = false, this is because pi can re-enter

the CS of mtxC in a bounded number of its own steps

by the BCSR property of mtxC, which holds by the ap-

plication of Algorithm 3 and by Lemma 29. Otherwise,

pi’s crash occurred after breaking out of mtxC with

Breakout[i] = true in Algorithm 6 and C[i] = 1 in Al-

gorithm 5, and so pi subsequently skips the body of the

recovery section of mtxC (see line 59 of Algorithm 5),

and then skips the entry section of mtxC (see line 91

of Algorithm 6). Thus, pi has an unobstructed path

to mtxA2.Recover() in scenarios (i) and (ii). Since H

contains finitely many crash steps, H2 does as well, and
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so eventually pi reaches mtxA2.Recover() at line 98,

as required.

Subcase 1b: pi crashes in the bounded path outside the

RS of mtxA2. Then Bounded[i] = true holds at the

point of failure by pi’s prior execution of line 97 and

line 101. Therefore, pi is restricted to taking the follow-

ing actions on recovery until it reachesmtxA2.Recover()

at line 104, no matter how many times it crashes again:

(i) pi calls mtxC.Recover() at line 90 and some pre-

fix of mtxC.Enter() at line 92 in a bounded num-

ber of its own steps, as in Subcase 1a; (ii) pi reaches

line 97 and fails to enter the fast path again because

Bounded[i] = true continues to hold; and (iii) pi re-

enters the CS of mtxAN at lines 102–103 in a bounded

number of its own steps since mtxAN provides BCSR

by the application of Algorithm 3 and by Lemma 29.

Since H contains finitely many crash steps, H2 does as

well, and so eventually pi reaches mtxA2.Recover() at

line 104, as required.

Case 2: no process becomes stuck in mtxAN . The anal-

ysis is similar to mtxA2 in Case 1. Let HN be the pro-

jection of H onto crash steps and steps of mtxAN , as

defined in Lemma 29. In the absence of failures, process

pi leaves the RS of mtxAN at lines 102–103, where it

calls mtxAN .Recover() and mtxAN .Enter(), then be-

gins a passage through mtxA2 at lines 104–110, which

terminates eventually by Case 1 and since the CS of

the target algorithm terminates eventually, and finally

calls mtxAN .Exit() at line 111. It remains to show that

if pi crashes along this path in H then it eventually

reaches mtxAN .Recover() at line 102 again in HN .

Proving this point establishes that HN is fair, and com-

pletes Case 2 since no process may be stuck in mtxAN

given that this algorithm provides starvation-freedom

and wait-free exit.

If pi fails outside the RS of mtxAN then it fol-

lows that Bounded[i] = true holds at the point of fail-

ure by pi’s prior execution of line 101. Therefore, pi
is restricted to taking the following actions on recov-

ery until it reaches mtxAN .Recover() at line 102: (i)

pi calls mtxC.Recover() at line 90 and some prefix

of mtxC.Enter() at line 92 in a bounded number of

its own steps, as in Subcase 1a and Subcase 1b; and

(ii) pi reaches line 97 and fails to acquire the fast path

because Bounded[i] = true continues to hold. Since H

contains finitely many crash steps, HN does as well, and

so eventually pi reaches mtxAN .Recover() at line 102,

as required.

Case 3: no process becomes stuck in mtxC except while

accessing mtxB at line 82 or line 85 of Algorithm 5.

Let HC be the projection of H onto steps of mtxC, as

defined in Lemma 29. In the absence of failures, pro-

cess pi leaves the RS of mtxC at line 90, where it calls

mtxC.Recover(), and then follows one of two execu-

tion paths. If pi executes a call to mtxC.Enter() com-

pletely at line 92 then it assigns Breakout[i] := false
at line 96. Next, pi executes lines 97–112, which termi-

nate eventually by Cases 1 and 2 and since CS of the

target algorithm terminates eventually. Finally, pi ex-

ecutes lines 113–114 where it calls mtxC.Exit(). Oth-

erwise, if pi breaks out of mtxC.Enter() at line 92,

then it assigns Breakout[i] := true at line 94. In this

case pi does not access mtxC again in the same passage

through the target mutex because it executes lines 97–

112 and then bypasses mtxC.Exit() at lines 113–114.

Accordingly, HC records a crash step for pi in this

scenario, allowing pi to continue in mtxC.Recover()

at line 90. Similarly, if pi bypasses mtxC.Enter() at

lines 91–92, then this occurs with Breakout[i] = true,
and so pi also bypasses mtxC.Exit() at lines 113–114 in

the same passage. As in the case when pi breaks out of

mtxC.Enter(), HC records a crash step for pi when it

bypasses mtxC.Enter(). Finally, if pi fails after break-

ing out of, or bypassing, mtxC.Enter(), then it reaches

mtxC.Recover() at line 90, as required, the next time

it takes a non-crash step.

So far, the analysis of Case 3 has shown that HC

is fair except possibly in cases where a process halts

after completing a failure-free passage through the tar-

get mutex in H and where the corresponding passage

through mtxC is incomplete and not failure-free, hence

requiring another call to mtxC.Recover(). This is a

consequence of introducing a crash step inHC each time

a process breaks out of, or bypasses, mtxC.Enter() in

Algorithm 6, which also means that the finite number

of failures in H does not immediately imply that HC

contains finitely many failures. Thus, we cannot com-

plete the analysis by applying Lemma 21 directly to

HC , even though it is a history of the algorithm that

implements mtxC by Lemma 29. However, the conclu-

sion of Lemma 21 applied to HC , namely that pi must

be stuck in mtxB.Enter() or mtxB.Exit(), still holds.

We arrive at this observation by a re-examination of

the proof of Lemma 21, and how it is affected by the

additional crash steps inserted in the construction of

HC from H.

Recall the case analysis in the proof of Lemma 21,

and consider how the additional crash steps inHC affect

the progress of a process pi in a passage of mtxC. In

Case 1, pi cannot become stuck waiting at line 70 of

mtxC.Recover() for a process pz that executes one

of the additional crash steps, because the crash occurs

after pz reads Gate[z] = ⊥ at line 76 or line 79, which

causes pz to break out of mtxC. This holds even when

pz bypasses mtxC.Enter() with Breakout[z] = true
because it must first break out of mtxC and then assign
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Breakout[z] := true at line 94. Reading Gate[z] = ⊥
indicates that the process holding the auxiliary mutex

in mtxC.Recover() has reached line 72 already after

closing the gate earlier at line 66, and hence completed

the busy-wait loop line 70. In Case 2, pi cannot become

stuck waiting inside mtxA for such a process pz because

pz crashes in the RS of this auxiliary mutex. (Also,

Case 1 rules out the possibility of a process becoming

stuck in the CS of the auxiliary mutex.) In Cases 3-4, pi
cannot become stuck in mtxC.Enter() waiting for such

a pz to open the gate for pi because pz does not have a

pending call to mtxC.Recover() when it crashes, and

so pz did not close the gate in the first place. Thus,

pi can only be stuck in mtxC if it is stuck specifically

in mtxB.Enter() or mtxB.Exit() in Algorithm 5, as

required to conclude Case 3 in this proof. ut

Lemma 32 Let H be an infinite fair history of Algo-

rithm 6 with finitely many crash steps. Let HC be the

projection of H defined in Lemma 29. Then HC has a

suffix S satisfying the following properties:

1. the projection of S onto steps of mtxB in Algo-

rithm 5 (i.e., the base mutex internal to mtxC) is a

fair history of the mutex algorithm that implements

mtxB; and

2. for every process pi that is stuck in a passage of

Algorithm 6 in H, pi is also stuck in a passage of

mtxB in S.

Proof Let H be an infinite fair history of Algorithm 6

with finitely many crash steps. Let HC be the projec-

tion of H defined in Lemma 29. Then HC is a history

of Algorithm 5 by Lemma 29, though not necessarily

one that is also fair and contains finitely many crash
steps. It follows that lines 61–74 of mtxC.Recover()

are executed finitely many times in HC because line 61

is reached in the code of mtxC only when a process

pi begins mtxC.Recover() with C[i] 6∈ {0, 1}, which

occurs only when pi crashes in H, and never when pi
breaks out of, or bypasses, mtxC in Algorithm 6. (The

breakout is from a position in mtxC.Enter() where

C[i] = 1 holds, and continues to hold if mtxC.Enter()

is bypassed.) Therefore, there is a well-defined last exe-

cution of line 71 of Algorithm 5 in H and HC . Now let

S be the suffix of HC beginning immediately after this

last execution of line 71. We will show that S has the

properties claimed in the lemma.

Clause 1. Let SB be the projection of S onto steps of

mtxB. Then SB is a history of mtxB by Lemma 19.

Furthermore, since a process may only become stuck in

HC insidemtxB.Enter() ormtxB.Exit() by Lemma 31,

it follows that SB is fair, as required.

Clause 2. Suppose that pi is stuck in a passage of Al-

gorithm 6 in H. Since H is fair, pi is stuck in a single

execution of mtxB.Enter() or mtxB.Exit() in Algo-

rithm 5 by Lemma 31. Since S records a suffix of the

steps of H taken inside mtxB, this implies that pi is

also stuck in a passage of mtxB in S. ut

Lemma 33 Algorithm 6 satisfies deadlock-freedom (re-

spectively starvation-freedom) if the base mutex internal

to mtxC (i.e., mtxB in Algorithm 5) satisfies the same

property.

Proof Let H be an infinite fair history of Algorithm 6

with finitely many crash steps. Suppose that mtxB

in Algorithm 5 satisfies deadlock-freedom (respectively

starvation-freedom). Suppose also for contradiction that

some process pi is in the recovery or entry section after

some finite prefix of H, and no process subsequently

enters (respectively pi does not subsequently enter) the

CS. LetHC be the projection ofH defined in Lemma 29,

and let S be a suffix of HC whose existence is guaran-

teed by Lemma 32. Let SB be the projection of S onto

steps of mtxB. It follows from Lemma 31 that SB is

a fair history of the mutex algorithm that implements

mtxB, and that any process that is stuck in H is also

stuck in SB . It also follows from the structure of Algo-

rithm 5 and Algorithm 6 that since pi is stuck before

the CS in H (i.e., stuck in Recover() or Enter()) then

the same holds in SB (i.e., stuck in Enter()). Moreover,

if a process executes the CS of mtxB then it executes

the CS of Algorithm 6 as well, or else crashes, because

it cannot be stuck in mtxA2 or mtxAN .

We assumed earlier that some process pi is in the

recovery or entry section of Algorithm 6 in H, and no

process subsequently enters the CS (respectively pi does

not subsequently enter the CS). Thus, pi is stuck before

the CS of Algorithm 6 in H, and there are no additional

executions of the CS (respectively pi does not subse-

quently enter the CS) after pi leaves the RS. This im-

plies that pi is stuck in mtxB.Enter() in SB , and either

there are no additional executions of the CS of mtxB

(respectively pi has no additional executions of the CS

of mtxB), or else one or more processes (different from

pi) enter the CS of mtxB and then crash before enter-

ing the CS of Algorithm 6. In the latter case, processes

can only enter the CS of mtxB finitely many times as

each such entry is associated with a distinct crash, and

we assume that H contains finitely many failures. Thus,

eventually pi remains stuck in mtxB.Enter(), and for

each additional step pi takes, there is no subsequent ex-

ecution of the CS of mtxB by any process. Since SB is

a fair history of mtxB, this contradicts the deadlock-

freedom (respectively starvation-freedom) property of

mtxB. ut

Lemma 34 Algorithm 6 satisfies 0-bounded recovery.
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Proof Let H be any history of Algorithm 6 and consider

an execution of Recover() by a process pi, which corre-

sponds to one execution of mtxC.Recover() at line 90.

Let HC be the projection of H defined in Lemma 29.

Suppose that pi is not in cleanup with respect to Algo-

rithm 6 while it executes Recover(), meaning that it is

either executing its first passage in H, or the next pas-

sage following a failure-free passage. Then pi is either

not in cleanup with respect to mtxC in the correspond-

ing passage in HC , or in cleanup after breaking out of,

or bypassing, mtxC.Enter() in Algorithm 6. In the for-

mer case, pi is able to complete mtxC.Recover() in a

bounded number of its owns steps by the 0-BR property

of Algorithm 5, which holds by Lemma 29 and Theo-

rem 5. In the latter case, pi executes mtxC.Recover()

with C[i] = 1 in Algorithm 5, and so it also com-

pletes mtxC.Recover() in a bounded number of its

owns steps due to line 59 of Algorithm 5. Thus, in

all cases pi completes Recover() of Algorithm 6 in a

bounded number of its own steps, as required. ut

Lemma 35 Algorithm 6 satisfies terminating exit (re-

spectively wait-free exit) if the base mutex internal to

mtxC (i.e., mtxB in Algorithm 5) satisfies the same

property.

Proof The auxiliary mutexes mtxA2 and mtxAN both

satisfy wait-free exit by Lemma 29, Theorem 1 and

Theorem 4. Therefore, busy-waiting in Exit() of Al-

gorithm 6 is limited to mtxC.Exit() at line 114.

Terminating exit: Suppose that mtxB satisfies termi-

nating exit. Let H be an infinite fair history of Algo-

rithm 6 with finitely many failures. Suppose for contra-

diction that some process pi becomes stuck forever in
Exit() of Algorithm 6. Then Lemma 31 implies that pi
is stuck in a single execution of mtxB.Exit() in Algo-

rithm 5, which implements mtxC in Algorithm 6. Let

HC be the projection of H defined in Lemma 29. It

follows from Lemma 32 that HC has a suffix S whose

projection SB onto steps of mtxB in Algorithm 5 (i.e.,

the base mutex internal to mtxC) is a fair history of

the mutex algorithm that implements mtxB. Since pi
is stuck in mtxB.Exit(), it is also stuck in SB , which

contradicts the terminating exit property of mtxB.

Wait-free exit: Suppose that mtxB satisfies wait-free

exit. Then mtxC satisfies wait-free exit by Lemma 24,

and so there exists a function f(N) of the maximum

number of processes that bounds the number of steps

incurred in any call to mtxC.Exit(). Let H be any

finite history of Algorithm 6 and consider an execution

of mtxC.Exit() by some process pi at line 85. It follows

from Lemma 29 and the wait-free exit property ofmtxC

that this call completes in at most f(N) steps. Since

the other code in Exit() of Algorithm 6 is wait-free,

this implies that Algorithm 6 satisfies wait-free exit.

ut

Lemma 36 For any history H of Algorithm 6, for any

process pi, and for any passage through Algorithm 6 by

pi in H:

1. if pi begins this passage with C[i] 6∈ {0, 1} in the

state of mtxC (Algorithm 5) then pi’s passage is

0-failure-concurrent;

2. if pi breaks out of mtxC.Enter() at line 92 of Al-

gorithm 6 then pi’s passage is 1-failure-concurrent;

and

3. if pi bypasses mtxC.Enter() at line 91 with

Breakout[i] = true then pi’s passage is 0-failure-

concurrent.

Proof Consider any H and pi, and any passage by pi
through Algorithm 6. Let HC be the projection of H

defined in Lemma 29.

Part 1: Suppose that pi’s corresponding passage in HC

begins with C[i] 6∈ {0, 1}. Then pi began its passage

with C[i] ∈ {2, 3, 4}, and so pi’s most recent crash

step in HC corresponds to a failure at line 90 of Al-

gorithm 6 inside mtxC.Recover(), or at line 92 inside

mtxC.Enter() but before breaking out, or at line 114

inside mtxC.Exit(). Note that a crash in HC that rep-

resents pi breaking out of mtxC.Enter() at line 92

(see construction of HC in Lemma 29) always occurs

with C[i] = 1 in Algorithm 5, and so it does not apply

here. Similarly, a crash in HC that represents pi by-

passing mtxC.Enter() always occurs with C[i] ∈ {0, 1}
in Algorithm 5 because it follows the completion of

mtxC.Recover() at line 90 of Algorithm 6, and so this

case also does not apply. Thus, pi is in cleanup both

in its passage through Algorithm 5 in HC and in the

corresponding passage through Algorithm 6 in H, as

required.

Part 2: Suppose that pi breaks out of mtxC.Enter() at

line 92. Then pi completes lines 75–79 of Algorithm 5

twice, which implies that it read Gate[i] 6= ⊥ at line 82.

At the time when pi read this value, some process pz
had closed the gate at line 66 and had not yet reopened

it at line 72. In this scenario, pz beganmtxC.Recover()

with C[z] 6∈ {0, 1}, and so pz’s passage through Algo-

rithm 6 in H is 0-failure-concurrent by part 1. More-

over, the latter passage interferes with pi’s, hence pi’s

passage in H is 1-failure-concurrent, as required.

Part 3: Suppose that process pi bypassesmtxC.Enter()

at line 91. Then pi’s passage through Algorithms 6 be-

gins with Breakout[i] = true, which implies that pi be-

gins in cleanup because a failure-free passage through

Algorithm 6 always ends with Breakout[i] = false due

to lines 113–116. In other words, pi’s passage is 0-failure-

concurrent, as required. ut
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Lemma 37 Suppose that the base mutex internal to

mtxC (i.e., mtxB in Algorithm 5) has O(f(N)) worst-

case RMR complexity per passage in the CC and DSM

models, and uses V shared variables internally. Let H

be a history of Algorithm 6. For any process pi, and

for any passage of pi in H, the number of RMRs pi
incurs in the CC and DSM models while executing the

corresponding steps of mtxC is as follows:

– Recover(): O(N +V ) if pi is in cleanup, and O(1)

otherwise.

– Enter() and Exit(): O(f(N)).

Proof Consider a passage by pi in H. Let HC be the

projection of H defined in Lemma 29, and consider pi’s

corresponding passage through mtxC.

For mtxC.Recover(), the worst-case RMR com-

plexity is O(N + V ) by Lemma 26, as required. On

the other hand, if pi’s passage through Algorithm 6 is

not 0-failure-concurrent then it follows from Lemma 36

that pi begins the corresponding passage in HC with

C[i] ∈ {0, 1}. In this case Lemma 26 dictates that

mtxC.Recover() incurs only O(1) RMRs, as required.

For mtxC.Enter(), Lemma 26 states that pi incurs

O(f(N) × (1 + F )) RMRs where F denotes an upper

bound on the number of passages that begin in cleanup

after recovering with C[i] /∈ {0, 1} in Algorithm 5 and

are concurrent with pi’s passage. The (1 + F ) factor in

this formula represents the repetition of line 82 in Al-

gorithm 5 due to branches at lines 81 and 83, which are

executed O(1) times in H due to the breakout mecha-

nism at line 92 of Algorithm 6. As a result, the actual

number of RMRs incurred in mtxC.Enter() at line 82

is O(f(N)) in all passages through Algorithm 6, simi-

larly to the case when F = 0 in Lemma 26.

Finally, the RMR bound for mtxC.Exit() follows

directly from Lemma 26. ut

Lemma 38 Suppose that the base mutex internal to

mtxC (i.e., mtxB in Algorithm 5) has O(f(N)) worst-

case RMR complexity per passage in the CC and DSM

models, and uses V shared variables internally. Then

for any history H of Algorithm 6 and any process pi,

the number of RMRs pi incurs in the CC and DSM

models in one passage is as follows:

– Recover(): O(N +V ) if pi is in cleanup, and O(1)

otherwise.

– Enter() and Exit(): O(f(N)) if pi’s passage is not

2-failure-concurrent, otherwise O(f(N) + logN).

Proof The Recover() procedure of Algorithm 6 com-

prises a call to mtxC.Recover() and no other steps.

Thus, the required RMR bound follows directly from

Lemma 37.

Next, consider Enter() and Exit(). The calls to

mtxC.Enter() and mtxC.Exit() incur O(f(N)) RMRs

by Lemma 37. Furthermore, it follows from Lemma 29

as well as Theorems 1 and 4 that a process incurs

O(logN) RMRs while accessing mtxA2 and mtxAN

at lines 98–99, 102–103, 104–105, 107, 110 and 111.

All other statements in the Algorithm 6 incur O(1)

RMRs. Thus, the target entry and exit sections incur

O(f(N) + logN) RMRs in the CC and DSM models in

the worst case.

Now suppose that process pi executes a passage that

is not 2-failure-concurrent with respect to the target al-

gorithm. Further to the above analysis, we must show

that the RMR complexity of Enter() and Exit() is

reduced from O(f(N) + logN) to O(f(N)). In other

words, we must show that mtxAN is bypassed entirely

in such a passage, since this is the component respon-

sible for the logarithmic term in the RMR complexity

bound established earlier for arbitrary passages.

To prove that pi acquires the fast path, first note

that since pi’s passage is not 2-failure-concurrent in this

part of the analysis, pi does not bypass, or break out of,

mtxC.Enter() by Lemma 36 as otherwise its passage

would be 0-failure-concurrent, or 1-failure-concurrent,

respectively. Thus, pi executes mtxC.Enter() at line 92

to completion, and proceeds to line 97 after acquiring

the CS of mtxC, with Breakout[i] = false. Next, con-

sider pi’s attempt to acquire the fast path at line 97.

Since pi’s passage is not 2-failure-concurrent, it follows

that pi did not begin in cleanup, and so it reaches line 97

with Bounded[i] = false. This holds either by initializa-

tion or by the execution of line 112 after line 101 in pi’s

previous passage, which is failure-free since pi is not in

cleanup in the passage under consideration. It remains

to show that pi enters the fast path, in which case it

bypasses mtxAN , as required.

Suppose for contradiction that pi fails to enter the

fast path, which means that F 6∈ {⊥, i} holds immedi-

ately before the CAS instruction at line 97. This implies

that some other process pj has acquired the fast path

and has not yet released it by the time pi reaches line 97.

Since pi is in the CS of mtxC at this point, it follows

from the mutual exclusion property of mtxC and from

Lemma 29 that pj is not in the CS of mtxC while in

the fast path. As a result, pj either bypassed or broke

out of mtxC.Enter() in its passage. By Lemma 36,

pj ’s passage is either 0-failure-concurrent or 1-failure-

concurrent, hence 1-failure-concurrent in both cases.

Since pj ’s passage interferes with pi’s passage, this im-

plies that pi’s passage is 2-cleanup-concurrent, which

contradicts our earlier supposition. Thus, we have shown

that pi acquires the fast path successfully, as required

to establish that pi incurs O(f(N)) RMRs in a passage
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through Algorithm 6 that is not 2-failure-concurrent.

ut

Theorem 6 Algorithm 6 satisfies ME and 0-BR, and

also preserves the DF, SF, TE, and WFE properties of

the base mutex internal to mtxC (i.e., mtxB in Algo-

rithm 5). Furthermore, supposing that the base mutex

internal to mtxC has O(f(N)) worst-case RMR com-

plexity per passage in the CC and DSM models for some

function f(N), and uses V shared variables internally,

the number of RMRs a process pi incurs in one passage

through Algorithm 6 is as follows: O(N + V + f(N)) if

pi’s passage is 2-failure-concurrent, and O(f(N)) oth-

erwise.

Proof Properties ME and 0-BR follow directly from

Lemmas 30 and 34, respectively. Preservation of DF,

SF, TE and WFE follows from Lemmas 33 and 35. The

RMR complexity in the CC and DSM models follows

from Lemma 38. ut

We complete the analysis by discussing FCFS fair-

ness in Algorithm 6. The target doorway is defined to

be the same as the base doorway, which is executed at

line 92 of Algorithm 6, assuming that a process com-

pletes this line without breaking out of the base entry

section or bypassing it. It follows easily that the door-

way is executed to completion in any passage through

Algorithm 6 that is not 2-failure-concurrent, as this is

the case when the fast path is taken (see RMR bounds

in Lemma 38). With that observation in mind, we now

establish 2-FCFS in Lemma 39.

Lemma 39 If the base mutex used by Algorithm 5 sat-

isfies First-Come-First-Served (FCFS) fairness then Al-

gorithm 6 satisfies 1-FCFS.

Proof If the base mutex of Algorithm 5 satisfies FCFS

then it follows from Lemma 27 that Algorithm 5 sat-

isfies 1-FCFS. Thus, mtxC in Algorithm 6 satisfies 1-

FCFS. Let H be a history of Algorithm 6, and sup-

pose that process pi enters the CS in its `i-th passage

and pj enters the CS in its `j-th passage in H. Sup-

pose that neither passage is 1-failure-concurrent. This

implies that both processes acquire mtxC at line 92

prior to entering the CS, as otherwise their passages

would be 0-failure-concurrent or 1-failure-concurrent by

Lemma 36, hence 1-failure-concurrent in either case.

Thus, both processes enter the CS of mtxC in addi-

tion to the CS of Algorithm 6. Suppose for contradic-

tion that pi completes the target doorway in its `i-th

passage before pj begins the target doorway in its `j-th

passage, and yet pj enters the target CS in its `j-th pas-

sage before pi enters the target CS in its `i-th passage.

Now consider pi’s corresponding `i-th passage and pj ’s

corresponding `j-th passage through mtxC, noting that

one passage through the target mutex maps to exactly

one passage through the base mutex in this case. Then

the order of execution of the doorway of mtxC is anal-

ogous in the corresponding passages through mtxC: pi
completes the doorway of mtxC in its `i-th passage be-

fore pj begins the doorway of mtxC in its `j-th passage.

Similarly, pj enters the CS of mtxC in its `j-th passage

before pi enters the CS of mtxC in its `i-th passage

because the base and target algorithms both provide

ME by Theorems 5 and 6, and because the target CS

is nested inside the base CS in any passage that is not

1-failure-concurrent. This contradicts the 1-FCFS prop-

erty of Algorithm 5. ut

4.3 Discussion of Space Complexity

The space complexity of the Algorithm 5 from Sec-

tion 4.1 is O(g(N) + N2), where O(g(N)) denotes the

space complexity of the base mutex. The N2 term is

due to the two-dimensional array of spin variables, and

can be reduced to O(N) in the CC model. Algorithm 6

in Section 4.2 adds O(N logN) space for the auxiliary

N -process mutex, which can be reduced to O(N) in the

CC model, as discussed in Section 3.4.

5 Related Work

Literature on mutual exclusion begins with Dijkstra’s

seminal paper [12], although the first known solution

to the problem is credited to Dekker, who proposed a

two-process algorithm that uses one-bit read/write reg-

isters. Lamport advanced the state of the art by formal-

izing the correctness properties of mutual exclusion [35,

36], and also introduced the famous Bakery algorithm

as an example of first-come-first-served (FCFS) fairness

[34]. Whereas the Bakery uses only reads and writes,

and orders processes using numerical tickets, more scal-

able FCFS algorithms implement various queue struc-

tures using read-modify-write primitives [5,38,21,39].

For a detailed treatment of progress in mutual exclu-

sion research up to 2003, the reader is referred to [4,

46].

Local spin mutual exclusion algorithms, which guar-

antee bounded RMR complexity per passage by busy-

waiting only on locally accessible shared variables, have

been studied intensively due to their performance bene-

fits [5]. For the class of algorithms that use reads, writes

and comparison primitives, the tight bound on RMRs

per passage in the worst case is Θ(logN). Yang and An-

derson [49] proved the upper bound in the CC and DSM

models using an arbitration tree modeled after Kessels
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[33]. Attiya, Hendler, and Woelfel [6] later proved the

matching lower bound, building on a series of earlier

results [3,11,14,17]. In comparison, queue-based locks

achieve O(1) RMR complexity but require additional

primitives, such as atomic Fetch-And-Store or Fetch-

And-Add.

Recovery from failures is featured prominently in

the seminal work of Lamport [36], who formalized two

types of faulty process behavior: “unannounced death”,

similar to a crash in our model but permanent, and

“malfunctioning”, whereby the private state and com-

munication variables of a process assume arbitrary val-

ues. Lamport’s Bakery algorithm [34] tolerates the first

type of failure provided that a faulty process returns to

the remainder section and its communication variables

(i.e., the single-writer shared registers written by it) are

reset eventually to zero—an assumption that is false in

our model.

Taubenfeld’s treatment of fault-tolerant mutual ex-

clusion focuses on a crash-recovery model where pro-

cess failures affect the values of shared variables in well-

defined ways [48]. This model is defined around single-

writer registers, and assumes that only those variables

that a process “owns” (i.e., has write access to) may

be affected by its failure. In one variation, the program

counter is reset to the remainder section on failure, and

any variables a process owns are reset to default values.

In another variation, the program counter and variables

owned by a process may adopt arbitrary values, possi-

bly leading to temporary violations of safety and live-

ness. Solutions in the latter category are based upon Di-

jkstra’s self-stabilization paradigm [13]. In comparison,

a crash failure in our model resets the program counter

deterministically and does not affect shared variables

at all. Furthermore, we consider multi-writer registers

in Section 3, as well as read-modify-write primitives in

Section 4.

Bohannon, Lieuwen, Silberschatz, Sudarshan, and

Gava [9] proposed a technique for determining the own-

ership of a Test-And-Set lock following a permanent

crash failure, which is the most difficult aspect of re-

covery in this case given that the mutex algorithm it-

self is quite simple. In a follow-up paper, Bohannon,

Lieuwen, and Silberschatz [8] added recoverability to

Mellor-Crummey and Scott’s queue-based mutex algo-

rithm [39] by designing an intricate mechanism to re-

pair the queue structure after a process fails while en-

queuing or dequeuing itself. Both papers augment the

mutex lock with additional shared variables to detect

the intent of a process to enter the CS, and perform

corrective actions inside a dedicated recovery process

that is able to detect failures by querying the operating

system. This recovery process is itself assumed to be

reliable.

In terms of RMR complexity, the recoverable MCS

lock in [8] does not bound the number of RMRs per pas-

sage in the CC or DSM models. This is because when

the recovery process is executing corrective actions, a

process in the entry section or exit section waits at spe-

cific points for such actions to finish by spinning on

a global variable. The RMR complexity of this busy-

wait loop is unbounded in the DSM model because all

processes share the same spin variable. The RMR com-

plexity is also unbounded in the CC model unless the

number of failures is bounded, as otherwise the recovery

section may invoke corrective actions arbitrarily many

times in parallel with one execution of the entry or exit

section, each time causing an RMR. In comparison, our

model allows both failures and concurrency in the re-

covery section, and three of our algorithms guarantee

bounded RMR complexity per passage irrespective of

the number of failures.

Michael and Kim proposed another fault-tolerant

mutex lock in which a process that is waiting to ac-

quire a lock can “usurp” the lock if it determines that

the previous lock holder has crashed permanently [40].

This technique is not applicable in our model since we

assume that a crashed process eventually recovers and

attempts to clean up the lock.

Research on mutual exclusion, and more generally

on concurrent objects, has focused mostly on models

where the memory is reliable. In this body of work,

a limited form or resilience against unreliable processes

follows immediately from liveness guarantees in an asyn-

chronous environment, where a slow process cannot be

distinguished from one that has crashed permanently.

For example, Herlihy introduced wait-free objects [24],

which guarantee the progress of each correct process

individually. In comparison, only a handful of papers

consider computation using unreliable memory, focus-

ing on minor corruptions such as bit flips. Afek, Green-

berg, Merritt, and Taubenfeld [1] considered the con-

sensus problem in this general context, Moscibroda and

Oshman [43] focused on mutual exclusion, and Jayanti,

Chandra, and Toueg [28] proposed implementations of

shared objects from unreliable base objects. In con-

trast to these techniques, which break if the number of

corruptions exceeds a specified bound, Hoepman, Pap-

atriantafilou, and Tsigas [25], as well as Johnen and

Higham [31], proposed self-stabilizing shared objects

that can tolerate any number of memory failures but

may lose their safety properties temporarily after a fail-

ure.

Several new developments on the topic of recover-

able mutual exclusion have occurred since the publica-
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tion of the conference version of this manuscript [20].

Jayanti and Joshi recently proposed an RME algorithm

that uses reads, writes, and single-word Compare-And-

Swap operations, and incurs O(logN) RMRs per pas-

sage in the CC and DSM models [29]. The new break-

through in this work is wait-free recovery code, achieved

using an f -array – a shared object type that generalizes

multi-writer snapshots by supporting the computation

of a user-specified function f (e.g., min or max) over

the array elements [27]. The logarithmic RMR com-

plexity bound in our work and [29] was shown to be

sub-optimal in the CC model in follow-up work by Go-

lab and Hendler [18,19]. Jayanti, Jayanti and Joshi en-

hanced and extended this result by proposing an algo-

rithm that attains sub-logarithmic RMR complexity in

both the CC and DSM models [30].

The best known RMR complexity bounds for the

recoverable mutual exclusion problem under the inde-

pendent crash failure assumption are O(1) in the CC

and DSM models for algorithms that use atomic reads,

writes, and double-word read-modify-write primitives,

and O(logN/ log logN) in the CC and DSM models for

algorithms that use only atomic reads, writes, and com-

monly supported single-word read-modify-write prim-

itives [18,30]. Under the assumption of system-wide

failures and with additional information provided to

processes by the environment, O(1) RMR complexity

is achievable in the CC and DSM models using only

atomic reads, writes, and commonly supported single-

word read-modify-write primitives [19].

6 Conclusion

In this paper, we formalized the recoverable mutual ex-

clusion problem and presented four solutions, three of

which guarantee bounded RMR complexity per passage

in the CC and DSM models irrespective of failures (see

Figure 1). Our work leaves open several research ques-

tions: What is the tight RMR complexity bound for

RME algorithms that use only commonly supported

single-word synchronization primitives primitives? Can

randomized solutions beat deterministic ones in terms

of RMRs, as has been shown for ordinary mutual exclu-

sion [6,7,15,23]? Is it possible to solve the problem for

N processes using bounded RMRs in the DSM model

and only O(N) shared variables, thus improving on the

space complexity of our N -process algorithms? (Simple

optimizations reduce the space complexity of our solu-

tions to O(N) in the CC model.) How would one design

a recoverable reader-writer lock?
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