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Abstract

This paper develops and analyzes a macroeconomic model in which aggregate
growth and fluctuations arise from the discovery and diffusion of new technologies;
there are no exogenous aggregate shocks. The temporal behavior of aggregates is
driven by individuals’ efforts to innovate and/or make use of others’ innovations.

Parameters describing preferences, production possibilities and learning technolo-
gies are estimated using post-war U.S. data. The model delivers predicted aggregates
that grow and fluctuate much like the data. The key features of post-war growth are ex-
plained by new technologies that differ in terms of the magnitude of their improvement
over existing methods and the difficulty of acquiring them. The model implies a neg-
ative trend in technological dispersion, and that the generally lower growth witnessed
during the last two decades is the result of new technologies offering comparatively
minor or less broadly-applicable improvements.

Data on the growing and fluctuating share of engineering Ph.D.s support the mod-
el’s technological interpretation of the growth facts, and data on patent applications
and adult schooling are consistent with the notion that newer technologies are more
specific and proprietary.

—This paper modifles and updates “Emdogenous Technological Change and Aggregate Fluctuations,” pre-

sented at the Canadian Economics Association meetings, June 1991 (Kingston). Over the years, this paper
has benefited from the comments and criticisms of numerous individuals, including Fisher Black, Jeff Camp-
bell, Tom Cooley, Mick Devereaux, Jeremy Greenwood, Hugo Hopenhayn, Robbie Jones, Boyan Jovanovic,
Samuel Kortum, and Gregor Smith. As well, we would like to thank three anonymous referees for their
thoughtful and detailed comments. Financial support for this project was provided by the Social Sciences
and Humanities Research Council of Canada (Andolfatto) and the John M. Olin Foundation (MacDonald).
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1 Introduction

This paper explores the quantitative properties of a dynamic general equilibrium model in
which growth and fluctuations in aggregate income follow from the discovery and spread of
new technological know-how. Growth occurs because better technologies are discovered and
then widely used. Fluctuations occur because learning how to use new technology consumes
resources, and attempts to learn — both innovation and imitation — divert resources away
from production. Imitation plays a key role in generating economy-wide S-shaped patterns of
diffusion of new technology; this diffusion generates corresponding fluctuations in aggregates.
According to this view then, fluctuations in aggregate output are not “business cycles” in
the sense of increasing and decreasing economic activity caused by serially-correlated pro-
ductivity shocks, coordination failures or government policy. Instead, they are viewed simply
as one dimension of the economy’s observed behavior as its wealth continually grows with
increasing technological know-how, much like the temporal variation in individual income
that occurs when human capital accumulation periodically diverts time away from full-time
work. Likewise, the distinction between growth and fluctuations becomes less useful since
both are a manifestation of the same underlying economic phenomenon.

In the model, technological know-how is embodied in individuals and there is a non-
degenerate distribution of know-how at any point in time. Individuals understand how

know-how is distributed, the productivity gains that might be realized with different types



Technology Diffusion and Aggregate Dynamics

of technological advances, and the way in which the equilibrium distribution of know-how will
evolve. However, being aware of superior technology is not the same as having the know-how
to implement it. To do this, individuals divert resources to a time-consuming and uncertain
learning process. Following Jovanovic and MacDonald (1994) and Ericson and Pakes (1995),
individuals can discover new technologies on their own, or they can also learn from one

1" The technology of learning something new via imitation is subject

another (imitation).
to an information externality. Following Schumpeter (1939), we assume that it becomes
progressively easier to imitate (or refine) an idea the more extensive is its use throughout
the economy.”

Many different patterns of economic development are consistent with equilibrium. In par-
ticular, depending on the parameters of the learning environment, output may either grow
steadily or display cyclical variation. An uneven pattern of growth follows when developing
frontier know-how 1is relatively difficult, and when frontier know-how represents a large im-
provement over older technologies. In this case, imitation is the main source of information

acquisition, and new technology tends to be widely-used before it is supplanted by yet-newer

methods. Once some individuals have acquired cutting-edge know-how, knowledge-laggards

L A related search-theoretic approach has been explored by Bental and Peled (1996) and Jovanovic and Rob
1990).

g Schl)lmpeter (1939:100): “Considerations of this type [the difficulty of coping with new things] entail the
consequence that whenever a new production function has been set up successfully and the trade beholds
the new thing done and its major problems solved, it becomes easier for other people to do the same thing
and even improve upon it. In fact, they are driven to copying it if they can, and some people will do so
forthwith. [Hence, it follows that] innovations do not remain isolated events, and are not evenly distributed
in time, but that on the contrary they tend to cluster, to come about in bunches, simply because first some,
and then most, firms follow in the wake of successful innovation.” Note that this interpretation of the cycle
differs markedly from Schumpeter’s later (1942) notion of “creative destruction”, formalized by Aghion and
Howitt (1992), Cheng and Dinopolous (1991), and Justman (1997).
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divert resources from production to imitation, implying a low level of current output and sub-
sequent rapid growth, slowing as the cutting edge know-how becomes widely used. During
this epoch, heterogeneity in technology in use rises as new and old techniques are simulta-

3 In contrast, if

neously in use, then falls as the frontier know-how becomes commonplace.
learning at the frontier is relatively easy, and improvements frequent, output grows smoothly
and steadily.

A parameterized version of the model is employed to interpret data on the post-war U.S.
economy. Since the model contains no source of “high-frequency” fluctuations, its parameters
are chosen to fit “filtered” versions of the data.* The fitting procedure delivers parameter
values for preferences, production possibilities and learning technologies. An example of the
kind of conclusions that emerge is as follows. In the data, aggregate income grew rapidly dur-
ing both the mid-fifties and mid-sixties. After that, growth was modest until about 1980, at
which point growth resumed, but at a less rapid pace. The model explains this pattern, first,
as the result of a pair of large and comparatively easy-to-learn technological breakthroughs;
these advances generated the two early periods of rapid growth. The second breakthrough
became very widely used, and indeed, was not supplanted for about fifteen years. This

gap in inventive success generated the long period of low growth. The subsequent advances

led to renewed growth, but overall, they offered smaller, more incremental, improvements

3 This economy-wide diffusion of new technology is reminiscent of the rising adoption waves found in many of
the Gort and Klepper (1982) products. At the aggregate level, Lippi and Reichlin (1994) estimate S-shaped
diffusion patterns in U.S. real GNP data (although their diffusion rates are much higher than those estimated
here). In contrast, Jovanovic and Lach (1997) find that there is too much mixing in the diffusion dynamics

of individual technologies for the shape of the diffusion curve to influence the nature of the business cycle.
4 Our methodology is similar to that employed by Hornstein and Krusell (1996) and Greenwood and

Yorukoglu (1997), who explain one slowdown and subsequent recovery with one change in the rate of exoge-
nous technological progress.
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and were harder to implement. Data on the growing and fluctuating share of engineering
Ph.D.s (relative to all Ph.D.s in science and engineering) support the model’s technological
interpretation of the growth facts, and data on patent applications and adult schooling are
consistent with the notion that newer technologies are more specific and proprietary.

The structure of the paper is as follows. The next section sets out the model; this
is followed by a description of the data and procedure employed to choose values for the
model’s parameters. Discussion then turns to interpretation of the model’s parameters (many
of which are new to aggregate models), the implied diffusion of new technology, the model’s
interpretation of the post war data, and implications about learning effort. Some evidence
supporting a technology-based interpretation of the data is offered in the final section, along

with discussion of the model’s findings in terms of chemical- or electronics-based technologies.

2 Model

The objective of this paper is to explore the manner in which the discovery and spread
of technological know-how can deliver equilibrium growth and fluctuations in aggregates,
primarily income. The model includes only those elements needed to accomplish this task.
Time (t) is discrete and the horizon is infinite: ¢ = 0,1,2,....,00. Agents are fixed unit
continua of identical firms and individuals. Below, technological know-how will be embodied
in individuals. Thus the specification of the firm side of the economy is simple. Firms are
competitive and have access to technology displaying constant returns to scale in capital

services and efficiency units of labor input. Thus, without loss of generality, firms can be
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aggregated and represented by a single “large” individual-owned competitive firm whose

technology displays constant returns:
Qt - F(Kt, Ht),

where ()¢, K; and H,; represent output, the capital stock and total efficiency units of labor
services, all at date t.
The firm owns the capital stock, which depreciates at the proportional rate 6 (0 < § < 1),

but can also be augmented by retaining output:
K= (1= 8) Ky + I

where [, denotes gross investment.
Assume that the price of efficiency units of labor services is wy, the real discount factor

is (0 < 8 < 1), and that there is no aggregate uncertainty. Then the firm’s problem is

max Z ﬂiﬂt,

{K,Hi} =)

where

Ht = F(Kt, Ht) — tht —I— (1 — (S)Kt — Kt+1'
Given Ky, an optimal policy { K, H;}°, for the firm will satisly (at an interior):
FH<Kt,Ht) — Wy = 0 (]_>

and

—1+ B[Pk (Key1, Hepa) +1 - 6] = 0. (2)
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Individual preferences over stochastic consumption sequences {C;} are given by
E lz ﬂtct] )
t=0
where F is the expectation operator associated with the distribution of {C;}$°,. (While
there i1s no aggregate uncertainty, individuals face idiosyncratic uncertainty as a result of

randomness in the learning process set out below.) Individuals are endowed with time 7" in

cach period, and may allocate it between work (IV;) and learning activities (L):
Nt —I— Lt — T

The possibility of substituting learning for work contributes to cyclical behavior of output in
the quantitative analysis. That is, when there is a lot to learn, learning will displace work,
reducing current output growth. Later, the results of learning efforts both raise output and
make work relatively more attractive.

An individual’s technological know-how at date ¢ will be described by x;. Assume that an
individual whose know-how is x;, and who supplies market time equal to N, delivers x;/NV;
efficiency units of labor effort in period ¢.° Then, since risk neutral individuals will not find
any advantage in capital market transactions, the relevant budget constraint for a consumer

with know-how x;; is the “period” budget constraint

Ct = wtaﬁtNt + Ht.

5 We assume that technological know-how is embodied in the minds of individuals. However, exactly where
new technology resides is clearly an issue. At one extreme, technology may be something like a process, for
which a firm has configured machines, materials, and so on in a way that allows the process to function. At
the other extreme, technology may be more like chip designs, requiring specific expertise that individuals
may readily carry with them as they move among employers. The paper models the latter case.
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Let z; belong to a finite set X = {z1,...,z5}, indexed by i, where z; < x;,1; normalize
x1 =1 (it is assumed that the economy begins with all individuals knowing ). Since M is
unrestricted, as far as the quantitative analysis is concerned, this setup involves no loss of
generality. Variables associated with an individual who knows z; at ¢ will be subscripted by
it.

How does x; evolve? Individuals can improve their know-how in two ways, similar to
the innovation and imitation possibilities through which firms learn in Andolfatto and Mac-
Donald (1991) and Jovanovic and MacDonald (1994). If an individual whose know-how at
t 1s x; chooses to innovate and devotes time L to this activity, z;, is learned with proba-
bility v,,,¢(L), and nothing is learned (in particular, z;}9,2;3, ...) otherwise; 7, 4 is a fixed
parameter describing the difficulty of discovering in isolation how to improve over x;, and
¢ is an increasing and concave function with ¢(0) = 0 and ¢(T') < 1/max;{z;}.° Should
the individual, again knowing x;, choose to imitate instead, x; 1 is learned with probability
Aiy1¢(L), and nothing is learned otherwise; here A;;; is the fraction of individuals know-
ing z; 11 but no more advanced technology. Note that the substantive distinction between
innovation and imitation is that success in the former activity depends primarily on what
the individual currently knows and on the nature of the new technology to be implemented,
while success in the latter activity depends primarily on the extent to which what is to be

learned is currently in use throughout the economy. Assuming that at most one of inno-

6 Observe that ¢ does not depend on ¢ — i.e. the difficulty of imitation is independent of the size of the
innovation. This restriction is a significant one in that if a technology diffuses comparatively slowly, the model
always attributes this to the technology not being valuable (large) enough to be worth learning quickly, as
opposed to its being comparatively difficult to learn from others. This produces an artificial link between
how quickly a technology diffuses and its magnitude.
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vation and imitation can be selected in any period, the individual will always select the
learning mode yielding the highest success probability. Thus the probability with which the

individual learns x;,¢ given know-how of z; is

§i( L) = max{v; 1, Aiy1}o(Lar)- (3)

Let T'= (g, ..., vpy) and Ay = (A1, ..., Aare); Ao 1s exogenous.

This setup has two special features that simplify, but are otherwise “unattractive.” One
is that given the continuum of individuals and (3), some individuals may come to know
2 in the M period of the economy; this feature appears in the quantitative analysis.
However, because observed output growth is both positive on average and fluctuating, the
model’s parameters must be chosen so that successful innovation is relatively infrequent,
and imitation is the main source of the model’s dynamics. The few individuals who learn
advanced technologies early, therefore, have negligible effect on the quantitative analysis
because the many individuals whose know-how is far less advanced cannot imitate them.
Second, if an individual is left behind — in the sense of knowing x; when most others have
learned at least x; 9 — successful imitation is very unlikely. This is a reasonable assumption
in that, arguably, many new technologies are hard to learn without some knowledge of
the workings of their recent predecessors. In the quantitative analysis, this feature of the
model is unimportant in that, to fit the data, the parameters are such that by the time a
new technology starts to become widely known, most individuals have already learned its
predecessor.

The problem faced by an individual whose know-how at ¢ is z;( i < M), may be repre-

8



Technology Diffusion and Aggregate Dynamics
sented by

Vie = maxy, {wer, (T — L) + I + B[&;(Lit) Vigr,e + [1 = &(Lit)|Viesn 1 - (4)

Assuming that £, can be differentiated, an optimal choice of L;; satisfies (at an interior):”

—w; + B (Lit) Vig1e41 — Vir1) =0, (5)

where for 1 = M, L, = 0.
Equations (1),(2),(4) and (5) describe individual behavior. The remaining equilibrium

conditions specify that the labor market clear:

i=M
Hy = Z )\itﬂ7z‘(T — L), (6>
i=1

and that the evolution of A; be consistent with the learning technology and the aggregation

of individual learning efforts:

[T — &( L) Mt i=1

Air1 = (7>

1 =& L)) dae + & 1 (Lim1e) X1 3> 1.
Altogether, an equilibrium is a vector ({ Ky, Hy, IL 1220, {wi 1520, {A: 3220, { Lit, V;t}zjwtj)oo)

such that (1),(2),(4), (5), (6) and (7) are satisfied for all i and t.
3 Data and Parameterization

The theory delivers time paths for a number of commonly-examined economic aggregates:

output, consumption, labor input, capital input and wages. The corresponding data (details

7 For the parameter values considered below, the solutions are interior.

9
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described in the Appendix) are annual series, for 1946-1994, on real per capita GNP, real
per capita consumption expenditures (private and public), per capita hours of work, real per
capita wages, and real per capita net stock of fixed nonresidential structures and equipment
(private and public).

In order to compare the model and data, what “version” of the data should be employed?
In the standard real-business-cycle analysis, growth is ignored and the conventional data-
model comparison is based on data whose (nonlinear) trend has been removed by taking
deviations from HP-filtered series; see, for example, Cooley and Prescott (1996). Here, with
both growth and fluctuations being important, this particular treatment of the data is not
helpful. The model delivers fluctuations at the frequency with which major innovations
diffuse. Thus, realistically, it cannot yield high frequency fluctuations, and making compar-
isons to the raw data is less informative than comparisons to series with less high-frequency
variation. The method adopted here is to focus on HP-filtered series (not deviations from
filtered series). Specifically all series are smoothed using an IHP filter with smoothing pa-
rameter equal to 10. For the purpose of choosing parameters, it turns out that the choice
of the smoothing parameter is virtually irrelevant provided the parameter is less than 100
for annual data. In particular, fitting the model to the raw data (i.e., IIP smoothing para-
meter equal to zero) does not substantially alter the parameter estimates reported below,
and hence would generate an equilibrium time path for output that closely resembles the
HP-filter with smoothing parameter equal to 10. The value of 10 for the smoothing para-

meter was chosen primarily because the relevant features of the data are particularly easily

10
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displayed graphically.® For example, Figure 1 displays the raw and filtered (dashed series)
GNP data.
Functional forms are required for the production technology F' and the learning technol-

ogy &. The choice of F' is standard:
F(K,H)=AK*“H"“

where « is a parameter; 0 < a < 1, and A > 0. This specification of the aggregate technology
is chosen because, in conjunction with the embodiment of technology in human capital, it
readily produces both wage growth and no trend in returns to capital, as per the data.’

Less guidance is available for the choice of £. The specification chosen here is
p(L)=1—¢ T,

where 6 is a parameter; 6 > 0.
There are various ways to proceed quantitatively. On one extreme, basic features of the
data, augmented with other evidence, might be used to select values for the parameters.

For example, o could be set equal to capital’s average share of income; this is the familiar

8 The filtered series with smoothing parameters 3, 5, 10 and 100 are difficult to distinguish from one another
in a time series plot, whereas the raw data fluctuate significantly more. Evidently, for smoothing parameters
in this range, the main features of the smoothed series are not greatly affected. For example, consider the
means and standard deviations of GNP growth for the raw data and smoothed series:

Mean | S. D.
Raw .0172 | .0310
HP3 0172 | .0135
HP5 0174 | .0125
HP10 | .0175 | .0114
HP100 | .0180 [ .0095

9 There is, however, some evidence suggesting that it is not descriptive as a plant-level specification; i.e., see

Bahk and Gort (1993).

11
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“calibration” approach. At the other extreme, the parameters can be chosen to fit the
data in the sense of maximizing some measure of goodness of fit — “estimation”. The route
followed here is of the latter variety. The reasoning is simply that the parameters fall into
two groups — those for which there is information sufficient to allow a reasonable choice of
the parameter, and all others. For this model the second group is large, implying that some
degree of estimation is required. While calibrating the first group is possible (o and 3, for
example), it turns out that the estimated values for these parameters differ little from what
a calibration would deliver.

The parameters are chosen to minimize the discrepancy between the five series described
above and the corresponding equilibrium time series implied by the model, given parameter
values. There are many metrics that might be employed to gauge the magnitude of this
discrepancy. Let v be the vector of data on the k™ variable, and 7z be the corresponding

series from the model. The metric employed here is

k

One motivation for this metric is the fact that it is proportional to the concentrated log-
likelihood function that would follow by assuming In 4, differs from In ¥, by a normal random
variable ey, where £, 1s independent of both ey and sg;.

To keep the number of parameters to be estimated manageable, the number of knowledge
states (M) and the initial distribution of know-how (Ag) are not estimated. Some experi-
mentation revealed that there was little to be gained by allowing M > 7; M =7 is imposed.
Likewise, experimentation reveals that the correspondence between model and data is con-

12
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sistent with a relatively concentrated initial distribution. Thus Ag = (.98,.02,0,0,0,0,0) is
assumed. With these assumptions, nineteen parameters remain to be estimated: Ky and 6,
B, T, a, A, To,...,%7,%9,....,v; and 6. These parameters will be estimated numerically by

minimizing (R).*

4 Results

The parameter values and their interpretation are discussed first. Then, attention is directed
to the innovation and diffusion behavior implied by the model. There is no data to compare to
these predicted paths, but focusing some attention on them greatly facilitates the discussion

of the explanation the model offers for the patterns in the data, which follows last.

4.1 Parameter Values

Estimated parameter values appear in the table following.

10The minimization follows the standard methodology: Given a parameter vector, the model’s equilibrium
is computed numerically. The equilibrium is then used to calculate the series to be compared to the data,
and (8) is then obtained from the data and the computed series.

13
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Estimated Parameter Values

Ko, 6 | 4688, 0.1263

3 0.8349
T 1156.91
a, A 0.4804, 0.9056

To, ..., x7 | 1.3169, 1.4949, 1.8548, 2.1814, 2.2658, 2.2665

You ooV, | 0.1267, 0.1366, 0.2355, 0.0364, 0.2022, 0.1991

0 10.0144

The parameters Ky, 8, 3,1, a and A appear in most dynamic general equilibrium models,
and are of lesser interest. However, if unrealistic values are needed for the model to fit the
data, this would be an indication that the model is a poor abstraction. Thus, consider these

parameters first, as a “specification check”.

4.1.1 Ky

The estimate of the initial capital stock, $468R, is 11% below the actual figure for 1946. The
source of this discrepancy is clear. The capital stock declined in the late 1940’s, and did not
exceed its 1946 value until 1950. Given the labor-augmenting form of technical progress and
the capital-labor complementarity implicit in the production technology, it is difficult for the
model to deliver a capital stock series that declines at any point. Thus, if the model were
to fit the 1946 value of the capital stock more closely, it would produce a capital series that
is above the actual for a significant period, and thus match the capital stock series poorly
overall.

14
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4.1.2 ¢

The annual physical depreciation rate of capital is estimated to be 12.63%. This value is

within the range of values commonly used; see Prescott (1986).

4.1.3 B

The estimated discount factor, 0.8349, is somewhat lower than the values typically encoun-
tered. With a higher value for the discount factor the model delivers a consumption path
that is below that observed in the data. This may be a consequence of assuming risk neutral
consumers — that is, consumers who do not value consumption smoothing. Since technology
is always improving, investment in capital is attractive. And with a high discount factor,
consumers find the cost of delaying consumption small. Thus, while the estimated value
is lower than commonly assumed, it is not wildly implausible, and may be traced to one

particular, but not essential, part of the model’s specification.

414 T

The parameter T is interpreted as the annual amount of time that the representative con-
sumer divides between work and information acquisition activities. The quantitative analysis
assumes that observed hours of work are entirely time spent working, and not time devoted
to learning. Under this assumption, the estimated value of T, 1156.91, implies that (since
observed average annual hours are 1087) on the average, about 94% of the time endowment
is devoted to work; the maximum in the data is 99.6% and the minimum 87.6%. Observe

that this implies very large proportional variation in the time devoted to learning activities.

15
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4.1.5 o« and A

In the data, the average value of capital’s share of income is .40, whereas the estimated
value of o 1s .48. That these values differ to some degree is not surprising in that the
estimation procedure makes no direct use of the fact that « is capital’s share; instead, it fits

the components of the share series-by-series. A is simply a scaling parameter.

4.1.6 T9,..., L7

The parameters xo, ..., £7 represent the successive technology parameters, measured relative
to the technology widely used as of 1946 —i.e. z; = 1. They are most revealingly interpreted
as successive proportional improvements — ie. (z9 — x1)/x1, (X3 — X9) /9, etc. The six
estimated values are then 0.3169, 0.1352,0.2408, 0.1761,0.0387 and 0.0003. Thus, according
to the model, the first major innovation to diffuse after the second world war was very
large — roughly twice as large as any that followed, and four times the median. While six
values are too few to make strong statements about the distribution of possible technological
improvements, these values are most consistent with it being quite positively skewed- i.e.

11

many moderate improvements and a few very large ones. Below, the size and order of

these improvements will be employed to interpret the post-war data.

1 Even if the first large innovation is more appropriately explained as a reaction to resources no longer being
directed towards the war effort, the distribution of the other improvements is still quite positively skewed.
While interpreting the first innovation this way may seem reasonable, it will become clear from what follows
that there is no correspondingly large innovation following the Korean war (mid-1950 through 1954).

16
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4.1.7 vy, ey,

The parameters ,, ..., v; describe innovation difficulty. Their levels primarily dictate how
long it will be before imitation becomes a more attractive way to learn, in comparison to
innovation. When -y is low, for an innovation of a given magnitude, use of the corresponding
innovation will begin slowly, since innovation is hard, but diffuse rapidly as contagion-style
learning supplants innovation. The values 0.13,0.14,0.24,0.04,0.20,0.20 display negative
skewness — the hardest-to-innovate technology is about three times as difficult to innovate
as the next most difficult.

The difficulty of learning seems to be (loosely) inversely related to the importance of what
is to be learned. For example, the least important innovations (i =6 and ¢ =7) are among
the easiest to learn via innovation, and the largest (i = 2) innovation is harder to learn than
average. On the other hand, the hardest-to-learn technology (i = 5) is less important than
average. Altogether, the correlation between v, and % is negative (—0.27). If the 7, and
%L:mz are viewed as describing the nature of the some creative process, there is no reason to
expect them to be related. However, to the extent that individuals select which technology
to try to learn, the only minor innovations that would attract resources are those that are
easy to learn; presumably all available major innovations would be explored. In this case
a loose negative relation between ~y, and mz%:mz would emerge. The calculations offer some

support for this idea: the three largest innovations range from the most difficult to easiest

to learn, but the three smallest innovations are all relatively easy to learn.

17
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4.1.8 0

The value of @ is difficult to interpret directly; however, it implies, for the sample average
number of hours of work, a learning technology equal to max{~; , \iy1} x 447, and an

elasticity of ¢ with respect to L of .74.

4.2 Diffusion of New Technology

Figure 2 displays the equilibrium diffusion paths given the estimated parameters — i.e., for
each date, the proportion of individuals knowing technology i. While there is no data for
comparison, the diffusion paths influence the shape of the model’s predicted series and are the
explanation the model offers for the behavior of the data. The Figure also contains summary
information that will be helpful later — for example, technology two is a “large” improvement
over the existing know-how, and about “average” in terms of innovation difficulty.*
Technologies two through six diffused during the period covered by the data; the extent
of use of technology seven was still increasing in 1994. Technology two diffused quickly
precisely because it was not hard to discover, and its large size meant putting it to use was
quite valuable. Evidently, it was simultaneously employed by over 70% of individuals at its
peak usage. In contrast, technology three was only trivially harder to innovate, but offered
only a small improvement. At the peak it was employed by less than 40% of individuals,
despite the (assumed) fact that technology three had to be learned in order to have any

chance of using technology four, which offered a bigger improvement. Put another way,

12The coexistence of technologies is also a feature of many vintage-capital models; see, for example, Chari
and Hopenhayn (1991).

18
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technology three would not attract a lot of learning effort if all that was to be gleaned was
access to technology three. Those who already new how to use technology two stood to gain
little by obtaining technology three other than access to technology four, which offered a
substantial improvement. Since technology four was relatively easy to learn with technology
three in hand, and also diffused quickly — opening up good prospects for imitation — use
of technology three came and went relatively quickly for any individual. Thus, although
essentially all individuals employed technology three at some point, comparatively few used
it at any particular point in time, and it never became a “dominant” technology. In contrast,
technology four achieved broad acceptance — nearly 90% of individuals where simultaneously
using it at its peak acceptance. The reasons for this are two-fold. First, as mentioned,
exit from technology three was relatively quick. And second, exit from technology four was
comparatively slow. The reason for this is that technology five offered a smaller improvement
than technology four, was relatively hard to innovate, and, evidently, only opened the door
to modest technological improvements. Once technology five was in common-enough use
for diffusion by imitation to be practical, its size was sufficient to cause it to become fairly
widely employed — in simultaneous use by over 60% of individuals at the peak. However,
even though the next pair of new technologies were minor advances, they were sufficiently
easy to learn that they caused exit from technology five before it became as dominant as
either of the other large innovations.

One other diffusion-related issue deserves mention. Figure 3 displays the diffusion paths

in the top panel and the standard deviation of know-how over time — i.e. the standard
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deviation of the estimated A; —in the bottom. Overall, this dispersion of technological know-
how shows a negative trend. One source of this trend is that the earlier innovations offered
greater improvements, in which case simply having more than one technology in use implied
wide dispersion; the early fifties, when only technologies one and two were widely used, is an
example. Of course, even if improvements are not large, they may be easy to acquire, so that
there are relatively many technologies in use simultaneously. This also generates dispersion
in know-how; the early and middle eighties are an example of this phenomenon. However,
in the data, the technologies in use later in the sample period are too similar to generate
the kind of dispersion witnessed earlier. Overall, these results are consistent with the notion
that innovations are becoming more “incremental” in the sense of their being smaller and
more related to one another.

Another way to look a this phenomenon is displayed in Figure 4. The series depicted is

=6 N
Z )\it (a”.H»l xl) 7
i—1 L

which can be interpreted as a measure of the date ¢ opportunities for technological im-
provement. At the outset, the technology in use is almost exclusively technology one, and
technology two provides an improvement of over 30%; thus the series takes on a value of
just over .3. This series has an annual growth rate of -4.2%, declining by nearly an order of

magnitude over the sample period.
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4.3 Actual and Predicted Evolution of Aggregates

4.3.1 Income

13 From

The model studied here can in some sense be regarded as a theory of the HP-filter.
Figure 5, it is not hard to see why. In Fligure 5 the dashed series is the series predicted by
the model. The diffusion of new technologies delivers a time series of income that grows
and fluctuates in a manner with obvious similarities to the data. Again, herein, growth and
fluctuations are simply different aspects of the same general phenomenon — new technology
provides opportunities for growth in income, and the resource-consuming activities required
for these opportunities to come to fruition imply fluctuations.

The model’s parameters were chosen to fit the data in levels — including both trend and
fluctuations. Nevertheless, as Figure 6 illustrates, the level and variability of growth rates in
the data and predicted series have much in common. In the data, the average annual growth
rate is 1.75%, with standard deviation 1.14%; the corresponding figures for the model are
1.77% and 1.33%. While the model reproduces the gross features of GNP growth, the model
predicts growth that picks up more slowly than is observed in the data, at least early in the
sample. This feature of the analysis will come up again in connection with the behavior of
consumption.'4

The underpinnings of the general patterns in the growth rates are evident from the

diffusion paths set out above, reproduced below along with the predicted growth rate. The

13We thank Jefl Campbell for bringing this to our attention.
140ne possible explanation for this is that the initial distribution of know-how has been assumed to be too

concentrated. This error would delay imitation and rapid diffusion. Experimentation with the assumed
initial distribution shows that this is not the explanation. A more plausible explanation is that the imitation
technology — A; 1@ (Ly;) — is overly restricted, and that some concavity in A; 1 is called for. Concavity would
deliver more rapid diffusion at lower levels of use of the new technology.
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first two periods of rapid growth follow from the diffusion of the two large technological
improvements — technologies two and four. The long period of modest growth follows from
technology four being widely used while technology five was still in its (difficult) innovation
phase. The diffusion of technology five delivers the final period of higher growth. The
connection between technological heterogeneity and growth is apparent from Figure 8. Note
that dispersion tends to lead growth. This is a consequence of imitation playing such a
key role. Rising dispersion is an indication of improving imitation opportunities, leading
to growth through wide-spread use of better techniques. Also note that, in the model,
the distribution of wage income is closely tied to the dispersion in technological know-how.
Consequently, the model predicts that high levels of income inequality are associated with

periods of rising growth.!?

4.3.2 Other Aggregates

The model also has implications for the other four series of interest - consumption, wages, the
capital stock and hours. The data and the model’s predicted paths are displayed in Figures
9-12. With the exception of the hours data, the series predicted by the model have features
similar to the data. The source of the discrepancy in hours is clear. The assumption that
a fixed time endowment is divided between work and learning effort implies that periods
where there is a lot of learning must be associated with low hours of work. Thus, during the
diffusion of the two large innovations early in the sample period, the model must predict low

hours, whereas the data are the opposite. Likewise, during the long period where technology

15The dispersion in discounted lifetime income is about half (in percentage terms) that of income and displays
considerably less cyclical variability.
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four was dominant, the model must predict high hours, whereas the data display low hours.
Part of this discrepancy is a consequence of assumption that observed hours of work do not
involve time spent learning. In all likelihood, this is counterfactual. Further, the analysis
ignores the work/learning versus leisure margin, inclusion of which would raise hours early

and lower them during the period of technology four’s dominance.

4.3.3 Summary of Actual and Predicted Evolution of Aggregates

The table following contains the means and standard deviations for the actual and predicted
values of the series of interest; the correlation between the data and the model’s predictions

1s included as well.

Levels Growth Rates (%)
Data Model Corr. Data Model Corr.
Mean [ S. D. | Mean | S.D. Mean | S.D. | Mean | S.D.

Consumption | 4490 | 1151 | 4479 | 1095 | 0.9954 | 2.06 | 1.27 | 2.01 | 2.25 | 0.47
Income 5660 | 1302 | 5666 | 1308 | 0.9981 | 1.75 | 1.14 | 1.77 | 1.33 | 0.79
Hours 1084 | 26.73 | 1088 | 17.87 | -0.3617 | -0.02 | 0.51 | 0.00 | 0.46 [ 0.11
Wages 3.092 | 0.576 | 3.124 | 0.699 | 0.9819 | 1.24 | 1132 | 1.72 | 1.09 | 0.68
Capital 8416 | 2169 | 8329 | 1955 | 0.9665 | 1.58 | 1.71 | 1.84 | 1.49 | 0.42

4.4 Measures of Learning

The theory interprets the data on growth and fluctuations in terms of development and
spread of new technological know-how. Features of the manner in which new know-how
influences the economy — the magnitude of productivity increases, how difficult is it for the
ideas to spread, etc. — are inferred from the data on the assumption that this interpretation
of the data is correct.

The model also makes predictions about efforts to learn. Figure 13 presents the diffusion

paths discussed earlier, along with the model’s predicted time series of labor effort devoted
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to learning as a fraction of total output (bottom panel). T'wo points are noteworthy. First,
the value of resources devoted to learning make up a small fraction of (about 3%) of income.
Second, learning effort peaks early in the period during which new technology diffuses, and
before the time of most rapid diffusion. This highlights the role of imitation. That is, as
new technology diffuses, imitation becomes easier, allowing more rapid diffusion with fewer
aggregate resources. The countercyclical nature of learning efforts is apparent from Figure
14. For comparison purposes, Figure 15 displays HP-filtered aggregate R&D expenditures
as a proportion of GNP alongside the predicted resources devoted to learning (1954 is the
earliest year for which a consistent R&D series is available.)'® The predicted learning effort
series leads the R&D series, and they share the pair of upswings associated with the two
(just two, as a result of the shorter period over which data are available) diffusions of new
technology.

Some more direct measurements of attempts to learn and development of new ideas are
presented in the figures following. Patents are one way to measure the extent to which
new technological know-how is evolving. Figure 16 displays the growth rate of smoothed
(again, using the HP filter with smoothing parameter equal to ten) patent applications for
inventions, per capita, along with the estimated diffusion of new technology discussed earlier.

It is apparent that an increase in patent applications occurred during the beginning of
the periods in which the two, major technological advances diffused. The later, and smaller,

technological improvement coincides with a more substantial increase in the application rate;

16The data discussed in this section are from: U.S. Bureau of the Census, Historical Statistics of the United
States, Colonial Times to 1970, Bicentennial Edition, Parts 1 and 2; and Washington, D.C., 1975. U.S.
Bureau of the Census, Statistical Abstract of the United States, Various issues, Washington, D.C.
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this is discussed further in the concluding section. These data support the model’s assumed
connection between growth and technological advance. Observe also that the periods of max-
imal patent application lag the periods during which the model predicts maximum learning
efforts.

The next figure repeats the information on diffusion, but compares it to growth in school
enrollment of adults (eighteen years or older, enrolled in any educational institutions, per
capita, and smoothed). School enrollment can be interpreted as general human capital
investment accompanying innovation and diffusion of new technology. A clear connection
between diffusion of the two major technological advances and human capital investment is
apparent; the association with the later advance is less clear. This, too, will be discussed in

the concluding section.
5 Summary and Conclusions

The paper develops and analyzes a model in which aggregate dynamics are the result of
individuals’ efforts and success at putting new technologies to work. It takes the cre-
ative/inventive process as given, but endogenizes the link between inventions and the eventual
adoption of technologies based on them. As such it takes a step in the direction of explaining
temporal variation in technology.

The model interprets the key facts of post war growth — three periods of significant
growth, declining in size, with the second and third separated by a long period of low

growth — as the outcome of diffusion of technologies that differ both in the degree to which
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they improve over what exists already, and the difficulty of basing innovations on them.
Newer inventions appear to offer increasingly modest improvements, implying decreasing
heterogeneity in technological know-how.

The model can be modified or improved in several ways:

1. It is assumed that technological know-how is embodied in people, and stresses hetero-
geneity across agents. A different approach assumes that knowledge resides in firms,
and emphasizes inter-firm heterogeneity; this is the route explored by Andolfatto and
MacDonald (1991). While the magnitude of the estimated technological improvements
is reasonably insensitive to which of these approaches is followed, the conclusions about
learning difficulty are not. Indeed, the second approach implies that the early, large,
breakthroughs were very hard to implement, and that there was a significant buildup
of firms using older technology prior to each major expansion. Determining which

approach yields a better explanation of the facts would be a useful extension.

2. The poor performance of aggregate models in explaining the evolution of hours is well
known; see, for example, Kydland (1996). However, the model studied herein may
be capable of delivering a much improved treatment of hours. In particular, treating
observed hours as the sum of work and learning time, and allowing a work/learning

versus leisure margin, might improve the models performance markedly.

3. The model allows innovation difficulty to vary with each new technology, but restricts
the imitation possibilities not to vary in this dimension. This is one source of the model’s

difficulty in delivering predicted growth that accelerates as quickly as does early post-
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war growth. Dropping this restriction might also improve the model’s performance.

4. Some of the counterfactual volatility of growth is due simply to the assumption that
individuals are risk neutral. While this simplifies, its impact on the model’s ability to

fit the facts may be significant and should be explored further.

It is perilous, not to mention somewhat outside of the macroeconomic tradition, to at-
tempt to identify any particular technological event with a change in the aggregate technol-
ogy. However, as more such changes are endogenized, and more of their structure uncovered,
some attempt to find corresponding new technologies is called for. The technologies that the
theory points to are the “general purpose technologies” — see the discussion and references
in Bresnahan and Trajtenberg (1995) — whose introduction influences entire classes of more
specific production processes. Evidently, based on Jovanovic and Lach’s work, the type of
technologies measured by Gort and Klepper are narrower in scope than those whose aggre-
gate influence is deduced here; this is consistent with the observation that the Gort-Klepper
data are organized in terms of products (e.g. automobile tires) rather than technologies used
to manufacture them.

A natural interpretation of the first post-war improvement (z5) is that it represents the
class of innovations associated with the “chemicals revolution” of the 1950s. The knowl-
edge of molecular structure acquired in the years during and subsequent to the war made it
possible to create a wide array of synthetic materials (e.g., plastics, synthetic fibres, pack-
aging materials, synthetic rubber, lightweight thermal insulation, water-repellant coating,

high-strength adhesives, etc.), which allowed a wide-spread shift from a reliance on organic
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materials to inorganic sources. In addition, the early post-war period witnessed tremendous
productivity gains in agriculture as a result of the increased utilization of chemical inputs
such as synthetic nitrogen fertilizers, herbicides and pesticides. As documented by Brady
(1961) and Rosenberg (1972), the growing usefulness of the knowledge of chemical processes
to the transformation of materials during this time greatly expanded the industrial area over
which such knowledge became relevant. The scope of this expansion may be appreciated by
recognizing that chemicals industries include practically all metallurgical refining; all refine-
ment of fuels such as petroleum, natural gases and coal; the processes of refining materials
leading to the production of cement, rubber, glass, etc.; and, indeed, any industry involved in
either breaking down the molecular structure of materials or in reassembling them to make
new compounds or materials.

The subsequent two technological improvements (z3, z4) might be interpreted as repre-
senting the “electronics revolution” of the 1960s. The revolution in electronics was made
possible by some earlier advances in quantum mechanics that led to an understanding of
the determinants of electrical conductivity in terms of the atomic structure of crystalline
solids. Solid state physics made semiconductor devices such as diodes and transistor possi-
ble; these developments in turn became indispensable inputs for a number of technological
developments, such as computers, nuclear reactors, improved communication networks, and
lasers (Rosenberg, 1972). As well, such devices facilitated the use of numerical control and
robotics in manufacturing, which have been described by some as one of the century’s most

important innovations (Mansfield, et. al, 1977).!7

17
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While electronics (i.e., microprocessors) have become much more wide-spread in the last
decade, the model suggests that its earlier incursion — transistors, solid state electronics,...
— had a greater impact on aggregates, and that if anything, the magnitude of technical
advances has diminished over time. There are many reasons why this might be the case.
One is that the legal vehicles for protecting proprietary information may have become less
effective, speeding the diffusion of what is discovered, but reducing the incentive to invent
in the first place. Another possibility is that the earlier developments were the consequence
of technical advances during the second world war and the space program, many of which
had both numerous possible applications and few attempts to make them proprietary; the
later developments may have been more narrow, or more protected by their inventors. The
rapidly-rising personal and corporate marginal tax rates of the sixties may also have been
an important deterrent to investment in new ideas.

All of these possibilities are consistent with the data employed to estimate the model.
However, patent data point towards an explanation emphasizing a more proprietary nature
of the newer breakthroughs. That is, Figure 18 plots the data on growth of patent applica-
tions alongside income growth.'®  After the mid 1970s, the diffusion of the third sizeable
technological breakthrough, and the associated income growth, are both accompanied by
rapid growth of patent applications.

Figure 19 plots GNP growth and data on the proportion of adults in enrolled in school.

According to Lynn (1966:89), “Numerical control is probably the most significant new develoopment in

manufacturing since Henry Ford introduced the concept of the moving assembly line.”
18The data discussed in this section are from: U.S. Bureau of the Census, Historical Statistics of the United

States, Colonial Times to 1970, Bicentennial Edition, Parts 1 and 2; and Washington, D.C., 1975. U.S.
Bureau of the Census, Statistical Abstract of the United States, Various issues, Washington, D.C.
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This figure suggests that newer technological advances are more specific in nature, and rely
less on the accumulation of general human capital. Indeed, after the mid 1970s, growth of
adult schooling and GNP growth are negatively correlated, consistent with the notion that
newer advances are more narrow, or less “general purpose.” In this case new know-how
is more likely to require a substitution away from the accumulation of general skills and
towards technology-specific human capital. This is also consistent with the comparatively
rapid growth of the more narrowly-focused programs provided by two-year colleges — in 1970,
27% of students enrolled in two-and four-year colleges, universities and professional schools
were enrolled in two-year colleges; the comparable figure for 1990 is 37.9%.

A final piece of evidence suggesting a technological underpinning — a human capital-based
one, in particular — for growth and fluctuations comes from the data on advanced degrees
in science and engineering.!® The raw data are the number of Doctoral degrees awarded
in the four areas that define “hard” science in the data: (1) Physics, astronomy, chemistry
and earth sciences; (2) Mathematics and Computer Science; (3) Engineering; and (4) Basic
medicine and other biological sciences. All of these areas experienced dramatic post war
growth. Thus Figure 20 depicts the four series expressed as a proportion of the total; the
series are HP-filtered. The physical sciences show a steady downward trend, with their
decline being met by a modest increase in mathematics and computer science, and biological
science, and a more rapid emergence of engineering. The fluctuations are primarily an

engineering/biological science substitution. The relevance of this phenomenon is suggested

19Again, see U.S. Bureau of the Census, Historical Statistics of the United States, Colonial Times to 1970,
Bicentennial Edition, Parts 1 and 2; and Washington, D.C., 1975. U.S. Bureau of the Census, Statistical
Abstract of the United States, Various issues, Washington, D.C.
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by Figure 21, which plots growth in engineering’s share and GNP growth. Evidently, there

is some sort of connection between what engineers do or know, and income growth.
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FIGURE 1
U.S. Real per Capita GNP and HP Trend
(Smoothing Parameter = 10)
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FIGURE 2
Diffusion of New Technology
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FIGURE 3
Predicted Technology Diffusion and
Dispersion in Productivity Across Individuals
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FIGURE 4
Opportunity for Technological Improvement
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FIGURE 5
Real per Capita Output
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FIGURE 6
Real per Capita Output Growth
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FIGURE 7
Predicted Technology Diffusion and Output Growth
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FIGURE 8

Predicted Technology Dispersion and Output Growth
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FIGURE 9
Consumption Expenditures
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FIGURE 10
Wage Rate
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FIGURE 11
Capital Stock
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FIGURE 12
Aggregate Labor Input
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FIGURE 13

Predicted Technology Diffusion and Learning Effort
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FIGURE 14
Predicted Growth in Output and R&D
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FIGURE 15
R&D as Ratio of GNP
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FIGURE 16
Predicted Technology Diffusion
and Actual Invention Patents
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FIGURE 17
Predicted Technoloogy Diffusion and
Actual School Enroliment of Adults
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FIGURE 18
Growth in GNP and Applications
for Invention Patents
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FIGURE 19
Growth in GNP and School
Enroliment for Adults
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FIGURE 20
Shifting Composition of PhDs
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FIGURE 21
Growth in GNP and Engineer's
Share of PhDs
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7 Data Appendix

7.1 General

All data are taken from one of:

[a] U.S. Bureau of the Census, Historical Statistics of the United States, Colonial Times
to 1970, Bicentennial Edition, Parts 1 and 2, Washington, D.C., 1975.

[b] U.S. Bureau of the Census, Statistical Abstract of the United States, Various issues,
Washington, D.C.

[c] U.S. Department of Commerce, Bureau of Economic Analysis, Fixed Reproducible

Tangible Wealth in the United States, 1925-85, U.S. Government Printing Office, June 1987,

and its update May 1997 Survey of Current Business.

7.2 Base Series

All data used are calculated from the following series:

Population (N) - Total non-institutional population over the age of 16, including armed
forces overseas. Sources: 1940-70, series A39 of [a]; 1974-88, [b]. The 1971-73 figures are
geometric interpolations of the 1970 and 1974 figures.

Consumption (C') - Personal consumption expenditures, in nominal billions. Source:
1940-70, series G416 of [a]; 1971-94, [b].

Price Level (P) - Consumer price index, 1967=100. Source: 1940-70, Series E135 of [a];
1971-94, [b].

Output (V') - Gross national product. Source: 1940-70, Series I'1 of [a]; 1971-94, [b].
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Government Expenditures ((7) - Purchases of goods and services by all levels of govern-
ment. Source: 1940-50 even years, and 1952-70, Series F6 of [a]; 1971-94, [b].

Government Capital Outlays (GC') - Capital outlays by all levels of government. Source:
1952-70, series Y523 of [a]; 1971-94, [b]. Data for 1940-51 were constructed as follows: Let
F; = total federal government outlays in year ¢ and R; = nominal interest rate in year ¢ (see

[8] below). Using the data available for 1952-86, the OLS regression:

Py — B

In(GC/Gy) = ~0.588 +0.766 In(F} /) + 0.009(R, — 100[~"=
t

) —0.028t

was computed (R? = 0.929) and used to forecast In(GC;/G,) for 1940-51.

Capital Stock (K') - Net stock of fixed non-residential structures and equipment, public
and private, current cost valuation method. Source: 1940-94, [c].

Weekly Hours (H) - An employment weighted average of average weckly hours in all
manufacturing, contract construction, wholesale trade, retail trade, finance, insurance and
real estate. Source: (i) Hours. 1940-70, series D803, D878, D881 and D890 of [a]; 1971-94
[b]. Finance, insurance and real estate is included only from 1947 onwards. (ii) Employment.
1940-70, Series D129, D130, D135, D136, and D137; 1971-94 [b].

Labor Force (L) - Total employed labor force, age 16 and over, including armed forces.
Sources: 1940-70, series D1, D8 D12 and D18 of [a]; 1971-94, [b]. For 1947-70, the employed
labor force is the difference between the total labor force (D12) and the unemployed (D18).
For 1940-46, the figure is the employed labor force 14 and over (D1-D&), multiplied by the
population 16 and over to the population 14 and over.

Annual Earnings (F) - Total Earnings, wages and salaries; includes self-employment and
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military earnings. Source: 1940-70, series H57 of [a]; 1971-94, [b].

7.3 Constructed Series

Real per capita consumption: (C'4+ G — GC)/(PN)
Real per capita output: Y/(PN)

Annual hours per capita: 50H L /N

Capital stock per capita: K/(PN)

Real hourly wage: F/(50H LP)
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