Should the Grossman model retain its Iconic status in health economics?

Audrey Laporte a,b,*

a Associate Professor of Health Economics, Institute for Health Policy, Management and Evaluation, University of Toronto

b Director, Canadian Centre for Health Economics, University of Toronto

Draft

November 24, 2014

Key words: Health economics; Grossman model; Theoretical framework

*Tel.: +1 416-946-7386
E-mail address: audrey.laporte@utoronto.ca
I Introduction

Ever since 1972, Michael Grossman’s model of investment in health capital has been the cornerstone of the way economists model health related behavior both theoretically and empirically (Grossman 1972). Grossman’s model is firmly in the Becker tradition of Human Capital: it assumes that the individual is a forward looking, optimizing individual who, in making decisions today, takes account of their possible future consequences. In Grossman’s framework, as the name implies, the individual’s underlying level of health is treated as a capital good, to be built up by investment and run down by lack of investment. It is not a commodity that can be acquired instantaneously - an individual who wishes to increase his stock of health capital to some target can only do so over time. Health Capital as conceived here is different from how healthy an individual happens to feel today: having a flu, or even a more serious illness, will not necessarily reduce ones stock of health capital, regardless of how much it might reduce ones instantaneous level of utility. Health capital is best thought of as relating to the individual’s ability to resist disease, and to perform what the health care literature refers to as activities of daily life: serious arthritis, which makes it difficult to go upstairs, does represent a reduction in ones stock of health capital.

Grossman’s model assumes that the individual makes decisions about how much to invest in his stock of health capital at any instant on the basis of a calculation of the costs and benefits, where both costs and benefits may be distributed over time. The benefits side of the calculation is generally seen as having two components: consumption benefits, in the sense of the direct utility which an individual receives as a result of being healthier, and investment benefits, which refer to the impact of the individual’s health on their income. This latter can refer to immediate payoff from being healthier, as in the case of someone who is paid on a daily or piecework basis and whose income falls when they are unable, because of poor health, to put in as much work, or it can refer to longer term effects, as in the case where a salaried employee who has a history of sickness-related absences from work might be less likely to receive promotions. It is not unusual for researchers to focus on one or the other of these two benefits and excluding the other, considering the pure consumption or pure investment version of the Grossman model. We shall refer to the version of the model which includes both components as the full Grossman model.

Formally, Grossman’s model can be analyzed using any of the tools of inter-temporal optimization: optimal control theory, dynamic programming or Chow’s Lagrangean approach to inter-temporal optimization, and looked at as either a discrete or a continuous time problem. The three approaches are ultimately equivalent, so choice among them comes down to convenience and to preferences for the readiness with which certain parameters of interest fall out of the analysis. In this paper we shall take the continuous time optimal control approach to analyzing the model, since it allows us to make use of phase diagram representation of the individual’s optimal lifetime trajectory of investment in health.

Over the years, a number of criticisms have been aimed at the Grossman model [hereafter, MGM]. Among the more widely cited papers in the Grossman criticism literature are Zweifel (2012), Galama et al. (2012) and Galama and Kapteyn (2011)\(^1\). Zweifel (2012) is particularly forthright in arguing that the Grossman model is fatally flawed saying (pg. 677): “...the acronym MGM already suggests that the model amounts to something like the Hollywood dream factory Metro-Goldwyn-Mayer: much elegance, very inspiring, but of limited relevance to the real world”; (pg. 679) “In sum, even after 40 years of effort, the main criticisms of the MGM still stand”; (pg. 681) “there is something to be gained by breaking away from the MGM fixation.” The criticisms most often cited

\(^1\) Zweifel’s editorial prompted a response by Kaestner(2013) to which Zweifel (2013) responded.
as fatal to the MGM are that the model: 1) suffers from a fundamental indeterminacy with regard to the optimal level of investment in health (Ehrlich and Chuma, 1990); 2) predicts that there will be a positive relationship between health investment and health status whereas empirically this relationship is typically negative; 3) does not make current health behavior dependent on the past; 4) does not predict that health declines with lower socio-economic status; and 5) does not preclude an individual choosing to live forever. If these criticisms are indeed fatal, then health economists need to develop an entirely new framework for the analysis of health-related behavior.

This paper evaluates the merits of these criticisms by deriving the testable predictions of the MGM within a dynamic optimization framework. A version of the MGM model that includes both the consumption and investment benefits of health is presented using the tools of optimal control including phase diagram analysis.\(^2\) Using phase diagrams allows the optimal trajectories that the MGM predicts individuals will follow over time to be traced and provides deeper insight into the inherent dynamics of the model. The major criticisms leveled at the MGM are then addressed within this framework where the first set of criticisms are treated by analyzing the comparative statics of the model and the second set of criticisms that relate to whether the MGM adequately reflects inter-temporal effects are then analyzed using phase diagrams. This paper aims to show that these criticisms are baseless and that when the MGM is properly characterized as a problem in inter-temporal optimization it provides a firm foundation for empirical analysis of health-related behaviors.

II Grossman as an application of dynamic optimization theory

Consider a one-state variable version of the MGM set within a continuous time optimal control framework.\(^3\) The individual aims to maximize her discounted lifetime utility:

$$\max \int_0^T U(C_t, H_t) e^{-\rho t} dt \quad U_C > 0, U_{CC} < 0, U_H > 0, U_{HH} < 0, U_{CH} > 0$$ \hspace{1cm} (1)

Where C is non health-related consumption, H is health capital (the state variable in the problem) and \(\rho\) is the individual’s subjective discount rate. In principle this could be an infinite horizon problem. As we will set it up, the model includes both the consumption and investment benefits of health, since H enters through the utility that the individual derives from having it and will also be positively associated with income. The individual is assumed to have a finite life T, a question that has been at the base of more heated debate than one might have anticipated. This particular point of controversy is addressed in section VII.

Assume that H evolves according to the following equation of motion:

\(^2\)Galama and Kapteyn (2011) set the Grossman problem up in an optimal control framework, but work with the present value Hamiltonian. This effectively makes their problem non-autonomous. We work with a current value Hamiltonian, which effectively makes the problem autonomous by removing time as an explicit argument and therefore allows us to work with phase diagram techniques. Time is obviously still present but has been subsumed into other parts of the problem.

\[\dot{H} = G(I) - \delta H, \quad G_I > 0, G_{II} \leq 0, G(0) = 0, 0 < \delta < 1, I \geq 0 \] (2)

where \(I \) is health investment and \(G(I) \) is the instantaneous production function for health capital. Here \(\dot{H} \) can be thought of as net investment in health, with \(\delta \) the depreciation rate and \(G(I) \) as the gross investment term. \(I \) is assumed to have a positive marginal product in \(G \).\(^4\) Note that \(I \) does not enter the utility function - it yields benefit to the individual only through the additional health that it generates.

The nature of the gross investment term, \(G(I) \), varies across the literature. We have chosen to assume that health is produced using only purchased inputs, \(I \). It is not uncommon in the literature for there to be a time element in the input set, either because using the \(I \) goods takes time or on the assumption that time devoted to healthy activities can add to health even in the absence of complementary specialized \(I \) goods. When the time input approach is taken the utility function has to be modified to include leisure time as one of its arguments, and a time constraint, binding at every instant (since one cannot bank or borrow time) added. The time budget in such a model generally takes account of leisure time, healthy work time, time devoted to health investment, and sick time. We do not include time as an input, since it is not crucial to the inter-temporal issues on which we wish to focus. If we were instead looking at the choice among a number of different possible health investment strategies, differences in their time requirements and the opportunity cost of time would be a significant factor.

One aspect of the form of the health production function, \(G(I) \), which we shall focus on is the productivity of \(I \) in the production of \(H \). As we shall discuss below, one long-running strand in the literature focuses on the question of whether the production function can have constant returns to scale or whether the model fails unless decreasing returns to scale is assumed\(^5\). How this question is operationalized depends on the form of the production function. Since we are assuming a single, purchased input \(I \), we take as our general case that with \(G_I > 0, G_{II} \leq 0 \). When we deal with issues pertaining to the implications of the assumption of constant returns in the Grossman framework, we shall define \(G(I) = I \).

The issue of constant versus diminishing marginal productivity of \(I \) will be discussed once the model is set out in general form since this plays a key role in some of the debate surrounding the MGM. We have imposed a non-negativity constraint on \(I \), indicating that the individual cannot reduce his stock of health by, in effect, selling it.

In expression (2), \(\delta \) is the intrinsic rate of depreciation of health capital. \(\delta \) is assumed to be constant, although Grossman (1972) discussed the case where \(\delta \) increased with the age of the individual, and indeed made it a key part of his discussion of finite life. Since we have assumed that \(G(0) = 0 \), the equation of motion for \(H \) says that when the individual undertakes no health investment, their stock of health capital will decline at a constant proportional rate \(\delta \). Section VII discusses the implications of relaxing the constant \(\delta \) assumption.

\(^4\)We can easily extend the model to the case where the production function is represented by \(G(I) - F(S) \) where \(S \) represents goods (consumption of cigarettes, for example) which are harmful to the individual’s health. We focus on health goods rather than health bads.

\(^5\)Grossman (1972) assumed constant returns to scale in the production of health and made use of some of the implications of CRS in his detailed analysis. The question might well be asked whether CRS is an essential element of the MGM, or merely a simplifying assumption. It would presumably surprise very few people if it were to turn out that, empirically, the health production function does not display CRS. The most significant of the criticism of the CRS assumption from a theoretical perspective is that by Ehrlich and Chuma, which we shall discuss below.
Equation (2) is a non-stochastic first order differential equation in H^6. Health investment, I, is defined as a commodity which can be purchased in the market at a price p_I. We assume that the individual has an instantaneous budget constraint of the form

$$Y_0 + Y(H) = C_t + p_{II} \quad Y_H > 0, Y_{HH} < 0$$

(3)

Where Y_0 is the exogenous portion of the individual’s income and $Y(H)$ is the portion of the individual’s income which depends on his stock of health. If we were working with a model which included time variables as choice variables, we could define a concept of healthy time (with healthy time and sick time adding up to total time) and allow for the individual’s decision as to how to allocate healthy time across work, leisure and health investment activities. In that case the individual’s decision with regard to the allocation of time today would affect future healthy time and hence future income. For our purposes we can focus on the investment aspect of the Grossman framework by making income a function directly of H, with H depending on past decisions about allocating money income between C and I.

The price of non-health related goods is set to 1 for simplicity. This means that we can regard the price of I as being relative to the price of C and income as measured in terms of real consumption. At this point, we use a binding instantaneous budget constraint as a further simplification from Grossman’s original formulation. We will relax this assumption below to include an asset equation in order to address a fundamental debate in the literature which stems from a paper by Ehrlich and Chuma (1990). We have also simplified relative to Grossman’s original formulation by not including a time constraint - in that version of the model an increase in health affects income by reducing sick time, allowing an increase either in working time or in leisure.

The Lagrangian for this version of the Grossman problem can be written as

$$\mathcal{L} = U(Y_0 + Y(H) - p_{II}I, H) + \psi[G(I) - \delta H] + \lambda I$$

(4)

Where the budget constraint is used to substitute out C. In this formulation, Ψ is the co-state on H or the shadow price of an additional unit of H. It is the increase in maximized lifetime utility that could be attained at some time t if the individual were to be given unexpectedly at t, an additional unit of H. λI is a Kuhn-Tucker expression, with $\lambda = 0$ when $I > 0$, and $\lambda > 0$ when $I = 0$.

The first of the Pontryagin necessary conditions for the one state variable problem, on the assumption, for the moment, of an interior solution for I (i.e. $\lambda = 0$) is

$$\frac{\partial \mathcal{L}}{\partial I} = -p_{II}U_C + \psi G(I) = 0$$

(5)

Which can be written as

$$\psi G(I) = p_{II}U_C$$

(6)

6This is a non-stochastic (i.e. deterministic) version of the model, but it is possible to incorporate uncertainty. See for example, Cropper (1977) and Ferguson and Laporte (2007).
This is a marginal benefit equals marginal cost condition for investment in health. The left hand side of this expression is the product of G_I, the marginal product of an additional unit of I in terms of production of health times ψ, the shadow price of another unit of health, and hence shows the utility value of another unit of I, or the marginal benefit of I in terms of additional utility from H. The right hand side is the marginal cost of an additional unit of I, also in utility terms. One unit of I costs p_I dollars, and since the price of C has been set to 1 that means that a one unit increase in I must be matched by a reduction of p_I units in C. The marginal utility of a unit of C is U_C, so the cost in terms of utility foregone of an additional unit of I is $p_I U_C$.

This expression plays a key role in two of the debates in the literature on the MGM - whether the model must exhibit decreasing (rather than constant) returns in order for it to have a solution, and whether the fact that $G_I > 0$ means that the model predicts that there must be a positive correlation between I and H when we estimate the model on individual level data.

III Comparative statics relation between I and H

Zweifel (2012) argues that the MGM predicts a positive relation between I and H whereas in empirical work a negative relation is generally found. This criticism is based on the presumption that because the marginal product of I in the health production function is positive i.e. $G_I(I) > 0$ when I is regressed on H we must in effect be estimating a production function. In effect, it treats H as non-durable as opposed to a durable capital good-the only way to get more H is through more I this period. To understand the issue involved it is important to remember that the individual's observed choice of I is a derived demand, and that, if the model is correct, it must always satisfy the first order condition in equation (6), that the additional benefit of an additional unit of I must always equal its marginal cost.

Since (6) must always hold, assuming the model is correct, we can use it to derive testable hypotheses about factors affecting I. Totally differentiating (6) we have:

$$G_I \partial \psi + [\psi G_{II} + p_I^2 U_{CC}] \partial I - p_I U_{CC} \partial Y_0 + [p_I U_{CC} - U_C] \partial p - [p_I U_{CC} Y_H + p_I U_{CH}] \partial H = 0 \quad (7)$$

From (7) we have

$$\frac{\partial I}{\partial \psi} = \frac{-G_I(I)}{\psi G_{II} + p_I^2 U_{CC}} > 0 \quad (8)$$

so that, as we might expect, an increase in the utility value of H increases the optimal level of I. Looking at the relation between I and P, we find:

$$\frac{\partial I}{\partial p_I} = \frac{U_C - p_I U_{CC}}{[\psi G_{II} + p_I^2 U_{CC}]} < 0 \quad (9)$$

we shows that the demand curve for I is downward sloping in p_I. We can also see, from (10) that investment in health is a normal good (here we are looking at the effect of a change in the strictly exogenous part of income Y_0):
\[\frac{\partial I}{\partial Y_0} = \frac{p_I U_{CC}}{\psi G_{II} + p_I^2 U_{CC}} > 0 \] \hspace{1cm} (10)

To determine what the MGM predicts about the impact of changes in \(H \) on the level of health investment \(I \) (holding everything else constant including \(\psi \), the shadow price of \(H \)), depends on the magnitude of \(Y_H \) since \([\psi G_{II} + p_I^2 U_{CC}] < 0, U_{CC} < 0 \) and \(U_{CH} > 0 \).

\[\frac{\partial I}{\partial Y} = \frac{p_I U_{CC} Y_H + p_I U_{CH}}{[\psi G_{II} + p_I^2 U_{CC}]} \leq 0 \] \hspace{1cm} (11)

It should be noted that the sign of (11) depends on which version of the MGM we are considering. For example, if \(Y_H = 0 \) and we are dealing with a pure consumption version of the MGM (i.e. no investment benefit of health) then (11) can be signed:

\[\frac{\partial I}{\partial H} = \frac{p_I U_{CH}}{[\psi G_{II} + p_I^2 U_{CC}]} < 0 \] \hspace{1cm} (12)

which means that an increase in \(H \) reduces the optimal level of \(I \). On the other hand, if we are dealing with the pure investment version, so that \(H \) does not appear in the utility function and \(U_{CH} = 0 \), then we would find a positive comparative static relation between \(I \) and \(H \). We note that the negative relation between \(I \) and \(H \) is not a consequence of an assumption of constant returns to scale (CRS), but holds even when \(G_{II} < 0 \), that is under an assumption of diminishing marginal productivity of \(I \). Given that \(G_{II} \) and \(U_{CC} \) are both negative, the sign of (12) clearly depends on the sign of \(U_{CH} \) which we are taking to be positive.

Basically, the higher the initial level of \(H \) the lower the value of another unit of \(I \) relative to its opportunity cost in terms of foregone consumption of other, non-health related commodities. Again, noting that the value of a unit of \(I \) is derived from the value of the additional \(H \) which it can produce and hence the lower the optimal level of \(I \).

If \(Y_H > 0 \) and \(H \) appears in the utility function with \(U_{CH} > 0 \), then we are dealing with the full, consumption plus investment version of the MGM. In this context, the sign of (11) will depend on whether \(p_I U_{CC} Y_H + p_I U_{CH} \leq 0 \). So if \(Y_H \) is sufficiently large, \(\frac{\partial I}{\partial H} > 0 \), otherwise \(\frac{\partial I}{\partial H} < 0 \).

In summary, we observe that the MGM may predict a positive relation between an individual’s stock of health and their investment in health but again it is not a consequence of the form of the production function, as asserted by, rather it is a consequence of the magnitude of the return to health in the form of additional income. If \(Y_H \) is large when \(H \) is low it is not impossible that we would observe a positive relation between \(I \) and \(H \), but, at values of \(H \) at which \(Y_H \) is small we would expect to observe a negative relation.

Even in the case where we do observe a positive comparative static relation between \(I \) and \(H \), then, it is not a consequence of the positive productivity of \(I \) in the production function but rather of the strength of the income effect. If, at low values of \(H \), \(Y_H \) is large, an increase in \(H \) could lead to an increase in \(Y \) large enough that the comparative static income effect would lead

\[\text{The term } U_{CH} \text{ will also } = 0 \text{ in the consumption version of the model if the utility function is separable in } H \text{ and } C. \]
to an increase in I. If Y_H is relatively low, the comparative static relation between I and H will be negative despite the positive productivity of I in $G(I)$. In what follows we shall assume that $[UC_{HC}Y_H + UC_{CH}] > 0$. Clearly, though, the magnitude of Y_H is a question of some importance for empirical work: for an individual who is initially in very poor health, an improvement in health might result in a sufficiently large increase in income that the income effect would lead to further investments in health.

In addition, it is worth emphasizing that Zweifel’s argument essentially assumes that H is a non-durable commodity in which the level of H today depends solely on the level of I today. In fact, H is a durable capital good, a fact that plays a very significant role in determining the individual’s current optimal value of I. We will return to this point when we look at the determinants of the optimal trajectories for I and H in section V.

IV Does the Grossman model suffer from indeterminacy?

We have referred to the expression

$$-p_I UC + \psi G_I = 0 \quad (13)$$

as the necessary condition for I in the MGM. It says that the optimal level of I at any instant is that at which the marginal cost of I equals its marginal benefit, where the marginal benefit is the additional health that an additional unit of I will produce, multiplied by the shadow price of each unit of H.

This condition is at the root of a long-standing point of confusion in the literature, starting with the paper by Ehrlich and Chuma on optimal length of life in the MGM. In that paper, based on their version of the MGM, Ehrlich and Chuma argue that the $MC=MB$ condition cannot be satisfied for the MGM unless decreasing returns to scale hold, and in particular that under Grossman’s assumption of constant returns MC will in general not equal MB and the optimal level of I cannot be determined in the model as Grossman set it up.

In the context of our model it is easy to show that the argument made by Ehrlich and Chuma does not hold. We have already identified MB as being equal to ψG_I. MC is $p_I UC$, because given our assumption of an instantaneously binding budget constraint, each additional unit of I which is purchased results in a reduction in C of p_I units, each of which has a utility value equal to UC. As I increases, C decreases and UC increases so the marginal cost curve is positively sloped in I. Our production function expression, $G(I)$, allows for differing degrees of returns to scale in the production of H. The simplest case of constant returns would be $G(I) = I$, giving $G_I = 1$. Substituting this into the $MB = MC$ condition gives

$$p_I UC = \psi \quad (14)$$

which is in general easily satisfied, even if ψ were constant\(^8\). Ehrlich and Chuma’s indeterminacy argument is concerned with the case where ψ is everywhere above $p_I UC$ so there is no limit to

\(^8\)Grossman (2000) makes the point that the term that we call ψ is the shadow price of H. This means that its value at any time t is the value to the individual in terms of maximized lifetime utility from that point on of unexpectedly receiving another unit of H. This value function is itself a utility function, with a particular, additively separable over time structure, and will display a positive and diminishing marginal value of H. Since I yields no utility in itself
optimal investment in health. If there is a no-intersection problem it would actually be in the case where ψ is everywhere below marginal cost for non-negative I, meaning that there is no interior solution for I, which would arise if the marginal benefit of another unit of health was so low that the individual would really like a negative value of I. Here, however, the non-negativity condition on I cuts in and the value of I is determinate, being equal to zero. Thus the Ehrlich-Chuma argument does not apply in our version of the MGM.

Our version does, however, differ from Ehrlich and Chuma’s in a number of ways, the most important of which is that theirs is a two-state-variable model. Rather than our instantaneous budget constraint, they follow Grossman in assuming a binding lifetime budget constraint, meaning that at any point in time the individual’s expenditure might exceed or fall short of their income, although lifetime expenditure cannot exceed lifetime income. To see the E-C critique in this context, we can set up the Hamiltonian for their version of the problem.

The Grossman problem in this context is

$$\max \int_0^T U(C_t, H_t)e^{-\rho t}dt \quad U_C > 0, U_{CC} < 0, U_H > 0, U_{HH} < 0, U_{CH} \geq 0$$

(15)

Subject to

$$\dot{A} = rA + Y_0 + Y_H - C - P_I I$$

(16)

And

$$\dot{H} = G(I) - \delta H, \quad G_I > 0, G_{II} \leq 0, G(0) = 0, 0 < \delta < 1, I \geq 0$$

(17)

giving as the Hamiltonian

$$\mathcal{H} = U(C_t, H_t) + \Psi_H[G(I) - \delta H] + \psi_A[rA + Y_0 + Y_H - C - P_I I]$$

(18)

Where ψ_A is the costate, or shadow price, for financial assets, A. Here C_t becomes a choice variable along with I since the two are no longer bound by the budget constraint at time t. (Note that we are still assuming that $\rho C = 1$.) The necessary conditions for C and I are

$$U_C - \psi_A = 0$$

(19)

And

$$\Psi_H G_I - \psi_A P_I = 0$$

(20)

(indeed, we might well write I as yielding disutility in itself) its utility is a derived utility, based on the impact on the value function at t of the additional units of H which will be produced from an additional unit of I. Thus diminishing returns to H in the value function translate into diminishing returns to I, so ψ will not be a constant, or independent of I, as Ehrlich and Chuma argue.

9There are some other differences between Ehrlich and Chuma’s version of the model and ours, but they are not relevant to the issue at hand.
In their presentation of the MGM, Ehrlich and Chuma (following Grossman) introduce a cost of investment function, \(C(I) \), which has increasing marginal cost when \(I \) is produced under conditions of decreasing returns to scale and constant marginal cost when \(I \) is produced under constant returns. In their formulation of the model, \(I \) is itself a produced commodity, produced using market inputs and time. Their equation of motion for \(H \) is

\[
\dot{H} = I - \delta H \tag{21}
\]

Thus Ehrlich and Chuma put the decreasing returns to scale in at the stage of the production of \(I \), and assume that one unit of \(I \) is equivalent to one unit of \(H \), i.e. \(I \) is the current output of the health production function. We assume that \(I \) is an input into the production of \(H \), which can be bought directly in the market (medical care, for example) and allow non-constant returns to enter through the production function \(G(I) \). To make the two sets of notation equivalent, we could replace Ehrlich and Chuma’s \(I \), in their equation of motion for \(H \), with the production function for \(I \), and make the arguments of their production function the choice variables. They characterize constant returns in terms of the production function for \(I \), we characterize constant returns by writing \(G(I) = I \). We are able to make this simplification because we are assuming that there is a single health investment good \(I \).

In our notation, Ehrlich and Chuma’s expression for what they term the flow equilibrium for optimal investment in health is

\[
C_I(I) = \frac{\psi_H}{\psi_A} \tag{22}
\]

Where our counterpart to their marginal cost term is \(p_I/G_I(I) \). Thus when we re-write our equation (21) as

\[
p_I/G_I(I) = \frac{\psi_H}{\psi_A} \tag{23}
\]

We are writing an expression that is equivalent to Ehrlich and Chuma’s flow equilibrium condition. Ehrlich and Chuma argue that the right hand side of (23) is independent of the scale of investment. Their argument with regards to CRS is that if we set \(G(I) = I \) so that \(G_I(I) = 1 \), (23) becomes

\[
p_I = \frac{\psi_H}{\psi_A} \tag{24}
\]

and that there is no guarantee that (24) can be satisfied, or yield a determinate choice of \(I \), since both sides are taken to be independent of \(I \).

Ehrlich and Chuma’s introduction of the \(C(I) \) function clouds a certain key aspect of the problem - the fact that the decision-maker is a utility-maximizing individual, and this is an individual-level problem. Their use of \(C(I) \) (which follows from Grossman’s discussion of the equivalence between the individual’s problem of the optimal choice of health investment level and the firm’s problem of choosing an optimal level of physical capital) draws attention away from the first order conditions of the problem, and has led researchers who followed their approach to pass over the same issue.

To see this, consider equation (19) above: \(U_C - \psi_A = 0 \). This obviously gives
\[\psi_A = U_C \]

(25)

Substituting (25) into (23) and rearranging slightly gives

\[U_{CP_I} = \psi_H G_I(I) \]

(26)

which is the same as the necessary condition which we derived in the absence of an equation of motion for A. In that case, of an instantaneously binding budget constraint, we argued that an increase in I must reduce C, so the opportunity cost of an increase in I was lost utility from consumption of other, non-health related commodities.

The same argument holds here, even though the budget constraint is binding over the lifetime and not instantaneously. The decision to increase I by one unit is a decision to reduce accumulated assets by pI units. Each unit of A has a shadow price of \(\psi_A \), and optimality requires that \(\psi_A = U_C \). No matter how the reduction in accumulated financial capital is distributed across consumption over time, an increase in I still has an opportunity cost in the form of reduced utility from other consumption. The opportunity cost will be less in this case than in the case of an instantaneously binding budget constraint because the individual has the option of taking part of the reduction of consumption at some point in the future rather than taking it all today, but there will still be an opportunity cost. Ehrlich and Chuma’s introduction of a cost-of-production function for I draws attention to the market element of the cost of investment in health and away from the element which is accounted for by the individual’s subjective opportunity cost.

Now, introducing CRS by setting \(G_I(I) = 1 \), the condition (26) becomes

\[U_{CP_I} = \psi_H \]

(27)

And again there is no reason to doubt that this condition can be satisfied - i.e. no reason to believe that there will necessarily be an indeterminacy problem with \(\psi_H \) above the marginal cost of I at all values of I.

The Ehrlich and Chuma indeterminacy argument lies behind many of the recent critiques of the MGM, but we argue here that their particular critique does not have the force that it has been accorded in the literature. There have been other arguments made relating to the CRS argument, however, notably by Galama and various co-authors, and we turn to these arguments in the next section.

V Dynamic predictions from the Grossman model

If as we argued above, the MGM with CRS does not suffer from the indeterminacy of I problem, we can reasonably ask whether the other arguments made about the failures of the CRS version of the model hold up. The critics take Grossman’s use of a CRS production function for health as not just an issue of a simplifying assumption but seem to regard it as exposing a fatal intrinsic flaw in the entire MGM framework.

We therefore will tackle the criticisms which are tied to CRS in a model in which we assume CRS in the production function for gross investment in health i.e. \(G(I) = I \). Under the CRS consumption plus investment version of the model, \(G_I = 1, G_{II} = 0, Y_H > 0, \) and \(Y_{HH} < 0 \).
There are two key arguments that have been made which purport to expose fatal weaknesses in the MGM. First, Galama et al. (2012) argue that solutions to the current health investment decision lack history in that they do not take account of initial health and related to this Zweifel (2012) argues that the MGM does not reflect the behavior of an individual who has suffered a major illness. Second, Galama et al. (2012) argue that the MGM does not predict that health will decline faster for individuals of lower socio-economic status.

Returning to the one-state variable version of the MGM introduced in section II, allows for the use of phase diagrams\(^{10}\), which in turn allows for a focus on the dynamic aspects of the Grossman approach that seem sometimes to be overlooked but are essential to addressing the arguments raised by the critics. As we have argued in the previous section, the choice between an instantaneously binding and a lifetime budget constraint is not fundamental and the gain in clarity from being able to use the phase diagram technique outweighs any loss from working in a one-state variable framework.

We represent the evolution of \(H\) and \(I\) over time in a diagram with \(I\) on the vertical and \(H\) on the horizontal axis. The equations of motion for \(H\) and \(I\), will be used to determine how the individual’s optimal trajectory evolves over time. The starting point for a phase diagram is the definition of stationary loci for each of \(I\) and \(H\). The stationary locus for \(I\) has the property that, on the locus there is no intrinsic tendency for \(I\) to change. In other words, on the stationary locus for \(I\), \(\dot{I} = 0\). Similarly, on the stationary locus for \(H\), \(\dot{H} = 0\). Given the stationary loci, the \((I,H)\) space can be divided into regions where \(I\) and \(H\) are increasing or decreasing by finding the phase arrows for \(I\) and \(H\)\(^{11}\).

In the CRS version of our one-state variable MGM, the individual’s objective remains to maximize (1), but when we replace \(G(I)\) by \(I\), the equation of motion for \(H\) becomes

\[
\dot{H} = I - \delta H
\] (28)

Maintaining the assumption that the budget constraint is satisfied at all values of \(t\), and assuming, following Grossman, that \(I\) is non-negative \((I \geq 0)\), instead of the Lagrangian we can write the current value Hamiltonian for the problem:

\[
\mathcal{H} = U(Y_0 + Y(H) - p_I I, H) + \Psi[I - \delta H]
\] (29)

The Pontryagin necessary condition with respect to \(I\) in this case is:

\[
\frac{\partial \mathcal{H}}{\partial I} : -p_I U_C(Y_0 + Y(H) - p_I I, H) + \psi = 0
\] (30)

which can be re-written as \(\psi = p_I U_C(Y_0 + Y(H)) - p_I I, H\). The second of Pontryagin’s necessary conditions is:

\[
\dot{\psi} = \rho \psi - \mathcal{H}_H
\] (31)

\(^{10}\)Phase diagrams cannot, in general, be used for two state variable problems.

\(^{11}\)See Ferguson and Lim (1998) for an introduction to the technique.
\[\dot{\psi} = \rho \psi - [U_C Y_H + U_H - \delta \psi] \] (32)

The stationary locus for H in this case becomes a straight line:

\[I = \delta H \] (33)

Turning to the stationary locus for I, we totally differentiate (30) with respect to time which will give us an equation in \(\dot{H}, \dot{I}, \) and \(\dot{\psi} \). Substituting in (28) and (32) and rearranging yields and equation for \(\dot{I} \):

\[\dot{I} = \frac{p_I [U_{CH} + U_{CC} Y_H] [I - \delta H] + [U_C Y_H + U_H] - [\rho + \delta] p_I U_C}{p_I^2 U_{CC}} \] (34)

At this stage we need to find the slope of the stationary locus for I and this is more easily done where the \(\dot{I} = 0 \) locus intersects with the stationary locus for H i.e. at \(\dot{H} = 0 \), meaning that we are linearizing the system at its equilibrium. Recalling that \(\psi = p_I U_C \) we have

\[\dot{I} = \frac{[U_C Y_H + U_H] - [\rho + \delta] p_I U_C}{p_I^2 U_{CC}} \] (35)

To find the slope of the stationary locus for I, set (35) to 0. And this requires that

\[p_I [U_{CH} + U_{CC} Y_H] [I - \delta H] + [U_C Y_H + U_H] - [\rho + \delta] p_I U_C = 0 \] (36)

Differentiating (36) with respect to I gives

\[p_I [U_{CH} + U_{CC} Y_H] - p_I^2 [I - \delta H] [U_{CHC} + U_{CCC} Y_H] + [\rho + \delta] p_I^2 U_{CC} - p_I [U_{CH} + U_{CC} Y_H] = 0 \] (37)

or

\[[\rho + \delta] p_I^2 U_{CC} - p_I^2 [I - \delta H] [U_{CHC} + U_{CCC} Y_H] \] (38)

At \([I - \delta H] = 0 \) this is \([\rho + \delta] p_I^2 U_{CC} < 0 \). Elsewhere, the term \([U_{CHC} + U_{CCC} Y_H]\), which is the derivative of \(U_{CC} \) with respect to H, has one negative (the first) and one positive (the second) element and cannot be definitively signed. Because of the mix of signs we can probably assume that it is small in absolute value whatever its sign might be.

Now taking the expression which we are using to find the stationary locus for I and differentiating it with respect to H, we have

\[[U_{CC} Y_H^2 + 2U_{CH} Y_H + U_{CHH} Y_H + U_{HH} Y_H] - [\rho + 2\delta] [U_{CH} + U_{CC} Y_H] \]
\[+ [I - \delta H] p_I [U_{CHH} + 2U_{CHC} Y_H + U_{CCC} Y_H^2 + U_{CC} Y_{HH}] \] (39)
The first term in square brackets in this expression we can assume is negative, on the assumption that the overall marginal utility of health is diminishing when we account for both its effect on income and its direct consumption effect. The last term contains a mixture of positives and negatives and we can presumably assume that it is small. At the intersection of the stationary loci this last term drops out and we have

\[
[U_{CC}Y_H^2 + 2U_{CH}Y_H + U_{CYYH} + U_{HH}] - [\rho + 2\delta][U_{CH} + U_{CC}Y_H]
\]

(40)

In this expression the term \([U_{CH} + U_{CC}Y_H]\) we have assumed to be positive (from the comparative static effect of \(H\) on \(I\)).

The slope of the stationary locus for \(I\) is

\[
\frac{\partial I}{\partial H} = \frac{[\rho + 2\delta][U_{CH} + U_{CC}Y_H] - [U_{CC}Y_H^2 + 2U_{CH}Y_H + U_{CYYH} + U_{HH}] - [I - \delta H][U_{CHH} + 2U_{CHC}Y_H + U_{CCC}Y_H^2 + U_{CCYYH}]}{[\rho + \delta]\rho^2U_{CC} - \rho^2[I - \delta H][U_{CHC} + U_{CCYYH}]}
\]

(41)

At the intersection of the stationary loci this becomes

\[
\frac{\partial I}{\partial H} = \frac{[\rho + 2\delta][U_{CH} + U_{CC}Y_H] - [U_{CC}Y_H^2 + 2U_{CH}Y_H + U_{CYYH} + U_{HH}]}{[\rho + \delta]\rho^2U_{CC}}
\]

(42)

Which, on the assumptions we have made above we can assume is negative. When we put the terms involving \([I - \delta H]\) back in, because they are mixtures of positive and negative terms, and are third derivatives of the utility function, we can probably assume that they will not change the sign of the slope of the stationary locus, even if they change its magnitude to some degree.

Then to find the phase arrows for \(I\), we can evaluate \(\partial I/\partial I\) or \(\partial I/\partial H\) close to the stationary locus for \(I\):

\[
\frac{\partial I}{\partial I} = \frac{[\rho + 2\delta]\rho^2U_{CC}}{\rho^2U_{CC}} > 0
\]

(43)

\[
\frac{\partial I}{\partial H} = \frac{[U_{CC}Y_H^2 + 2U_{CH}Y_H + U_{CYYH} + U_{HH}] - [\rho + 2\delta][U_{CH} + U_{CC}Y_H]}{\rho^2U_{CC}} > 0
\]

(44)

The phase arrows for \(H\) can be found from the fact that \(\frac{\partial H}{\partial I} = 1, > 0\) and \(\frac{\partial H}{\partial H} = -\delta, < 0\). The phase diagram for the CRS case of the one-state variable consumption plus investment version of the MGM is depicted in Figure 1. The phase arrows in the four regions defined by the stationary loci and illustrative trajectories in each region that are consistent with the phase arrows are shown in Figure 1\(^\text{12}\). Obviously we are only interested in considering trajectories that have the potential to reflect the individual’s lifetime utility maximization decision. This means that the Pontryagin necessary conditions must be satisfied at every point along any trajectory that is worth considering. Because the phase diagram is derived using the first-order conditions, every trajectory in it is a

\(^{12}\text{Differentiating the expression for } \dot{I} \text{ with respect to } I \text{ and } H \text{ gives the phase arrows for } I.\)
potential optimal trajectory. The trajectory that is actually chosen by the individual depends on
the level of health that she starts with and where she wants to end up.

Like virtually all optimal control problems this one displays saddle-point dynamics. A saddle-
point equilibrium (E in Figure 1) is defined as the point of intersection of the stationary loci
(because at that point there is no intrinsic tendency for either I or H to change); there are only
two trajectories, referred to as the stable branches, that converge to the equilibrium. There are
also two trajectories referred to as the unstable branches, which point directly away from the
equilibrium. Every other trajectory that could be drawn on the diagram, would initially move
toward the equilibrium but eventually turn around and diverge from it. That is why saddle-point
dynamics are generally taken to imply the uniqueness of solution trajectories.

We have referred to the intersection of the stationary loci as the equilibrium for the problem.
Normally in economic modeling, we take it for granted that the system will either be at or be
converging to its equilibrium. In optimal control problems this is certainly true for most macro
economic applications and for models of economic growth. It is not however true for most micro-
economic problems. The reason for this is that it takes an infinite amount of time to reach the
equilibrium. Optimal control problems include among their necessary conditions, what are referred
to as terminal transversality conditions. For an infinite horizon problem the transversality condi-
tions tell us that whatever the initial value of our state variable, we must pick the control variable
so that we are on the stable branch to the equilibrium. For a finite horizon problem, like ours,
the transversality condition gives us a different endpoint, so the equilibrium point of the system
will not be part of the individual’s optimal trajectory. It makes no sense for us to assume that the
optimizing individual is fully informed and forward looking with the one minor exception that she
assumes that she will live forever. Economies may live forever; individuals within them do not.

Figure 1: An optimal path within the Grossman model

For a finite horizon problem, we have a number of options for the terminal transversality con-
dition. One is that the stock of the state variable at T equals zero meaning that the stock of the state variable has been used up at the end of the horizon. This condition is often used in models of accumulation of financial assets in the absence of a bequest motive. In some cases it is not possible for the state variable to reach zero in finite time. In those cases the transversality condition is \(\psi \) at T equals zero, meaning that there is no value to having another unit of the state variable at the end of the problem. The third case is what is known as a fixed endpoint problem in which a specific target value is chosen for the state variable at T. This would be the case in a model for example, of financial asset accumulation when the individual has a target bequest motive. To begin with, in what follows we will assume that \(H_{MIN} \) is a fixed endpoint target. We will discuss the implications of relaxing this assumption in section VII.

Figure 1 includes a trajectory which is typical of those found in Grossman problems. The individual is born healthy, in the sense that her initial \(H_0 \) is above the level to which an infinite-lived individual would tend over time. We take \(H_{MIN} \) to be a firm endpoint value of \(H \) and treat the length of the time horizon, from \(t = 0 \) to \(t = T \), as fixed. The individual’s problem, then, is to select a trajectory of \(I \) and \(H \) that will take her from her initial value of \(H \) to her terminal value with an elapsed time of exactly T time units. We note that this individual’s stock of health capital will decline throughout her life, although not necessarily at a constant proportional rate. Initially she chooses a low value of \(I \), which allows her \(H \) to decline. As time passes and \(H \) falls she increases her optimal \(I \), slowing the rate of decline in \(H \) but not reversing it, so that her stock of health capital continues to fall. After a certain time has elapsed - indicated on the diagram by the point at which the trajectory cuts the stationary locus for \(I \), she begins to let her \(I \) fall again, while \(H \) continues to fall towards \(H_{MIN} \). Looking at this trajectory in a lifetime perspective, we see that there are intervals during which \(I \) and \(H \) are moving in the same direction and intervals in which they are moving in opposite directions. We also note that we have drawn the phase diagram holding all of the exogenous variables - \(p_I \) and \(Y_0 \), notably - unchanged, so that the observed relation between \(I \), \(H \) and the exogenous variables will change over time at a non-constant rate. If we are going to investigate the determinants of the individual’s optimal \(I \) and \(H \), we must allow for the intrinsically dynamic nature of the problem and the fact that, to the extent that there is a valid equilibrium concept for this individual it is represented by a trajectory, not a point.

A Lack of path dependence

One issue that has been raised is whether the MGM properly takes account of the way an individual’s initial stock of health capital affects their later health investment decisions along with the related issue of whether it adequately captures path dependency in health (Galama et al. 2012). These are fundamentally dynamic questions dealing with the nature of the joint trajectory of health investment \(I \), and the stock of health \(H \), that the model predicts for an individual.

In Figure 2 we show the optimal trajectories for two individuals; one born with a high level of initial health (\(H_{HIGH} \)), a second individual who is identical to the first with the sole exception that she is born with a much lower initial stock of health (\(H_{LOW} \)). Given \(H_{HIGH} \), the individual wants to find a trajectory that satisfies the necessary conditions for optimization and that will take her from \(H_{HIGH} \) to \(H_{MIN} \) over an elapsed time of exactly T. She cannot choose her initial value of \(H \)-that is given at the beginning of the problem (e.g. at birth). All she can do is choose \(I \) taking account of her utility function and her budget constraint. Because she starts from a high initial level of health, her initial level of \(I \) can be relatively low. She then adjusts \(I \) throughout her planning horizon to control the rate of change of \(H \) that is given by equation (21). The individual starts
with a relatively low value of I after which I increases until her trajectory reaches the stationary locus for I, at which point I starts to decrease. H declines continuously but at a varying rate; as I increases the rate of decline of H decreases. Given equation (21), the initial value of H, and the terminal value of H, we see that only one trajectory satisfies the optimality conditions and fits the time horizon.

In this context the argument that has been made in the literature that an individual could have been born with more than her optimal stock of H makes no sense - a high initial H cannot reduce utility. It would make sense, as we shall see later, to say that, given that her initial stock of health is very high, any non-zero level of health investment would be higher than optimal.

In Figure 2, we see that compared to the first individual, the individual born with a much lower initial stock of health (H_{LOW}), according to the phase arrows, will tend to start with a high value of I (point A) causing her stock of health to increase, and as her health increases she can then reduce her level of I. Her stock of H continues to increase until her trajectory reaches the $\dot{H} = 0$ locus at which point both H and I will decrease until she reaches the end of the horizon. We see that the MGM predicts that it is optimal for the individual born with a low initial stock of health to front-load her health investment. Contrary to the assertion made by Galama et al. (2012) then, in a standard MGM with CRS, current health status at any value of t is indeed a function of the individual’s initial level of health and her history of prior health investments made.

In Figure 3 we again consider an individual who is born with a high stock of health. She is initially following the trajectory illustrated in Figure 2 but part way through the trajectory she is struck by a significant unanticipated health shock which takes her from health level H_{HIGH} to

![Figure 2: Low versus high initial health](image-url)
At H_{LOW} it is clear that the original level of health investment will no longer be optimal. In terms of a control theory problem a shock like this to the state variable necessitates re-planning. Re-optimizing over the remaining horizon (which may or may not have been affected by the shock), taking as the initial stock of health for the new plan that stock with which she now finds herself to be endowed at the instant after the illness struck. In Figure 3 the individual responds to this new lower health state by dramatically increasing her level of investment to point C and following a new optimal trajectory for the remainder of the planning horizon. The amount the upward jump will depend on how long that remaining horizon is and in particular whether the illness has also shortened the individual’s life expectancy. The shorter the remaining horizon, the smaller the expected jump.

Figure 3: Effect of an unanticipated health shock

Zweifel (2013) says that the MGM predicts “...total investment in health should decrease at least in the case of a serious illness when time to death suddenly becomes short, reducing the present value of returns to investment. Neither prediction is borne out by the data”(pg. 361); meaning that the model predicts a downward jump because of the shortened horizon. We see from Figure 3 that the model can indeed predict an upward jump in investment, I, the size of which will depend on the length of the individual’s remaining horizon and also on the magnitude of the cross-partial between health and consumption in the individual’s utility function since that will play a key role in determining the opportunity cost of a jump in I.

We see that even in the context of the CRS version of the MGM that individuals respond to their particular health history. In this Figure we have assumed that the shock was completely unanticipated. Elsewhere this problem has been set up as a stochastic control problem within the
MGM framework and it was shown that the model can be modified to allow the individual to take account of the probability of a major health shock when she is making her initial health investment plans (Laporte and Ferguson (2007)). Even in that case however, once the shock has occurred the individual re-optimizes13.

B Socio-economic gradient in health

Galama et al. (2012) argue that the MGM is not capable of predicting a socio-economic gradient in health, specifically that it does not allow health to decline faster for individuals with lower socio-economic status (SES). Here we take SES to refer to income and consider the case of two individuals born with the same high level of initial health (H_{HIGH}), one of which has a higher income at each value of t than the other. We will assume that for each individual, income is constant over time, so we are not dealing with the case where health status can affect income, i.e. we drop the $Y(H)$ term. The two individuals also have the same equation of motion for health so income differences do not mean differences in intrinsic productivity when it comes to producing health. We take this approach to underscore the fact that an SES gradient can emerge even in a CRS pure consumption version of the MGM and is not dependent on a healthier individual gaining an edge.

Recall (33) the condition that defines the stationary locus for H in the CRS case. This expression will clearly not be affected by an increase in Y_0. This is because it is biological rather than behavioural - it says simply that for $H = 0$ it must be the case that the level of I is just sufficient to replace the depreciation of H, at whatever the value of H happens to be. To use the terminology of models of investment in physical capital, it must be that the level of gross investment is exactly equal to the level of depreciation so that the level of net investment equals zero.

Recall (35) which is the expression for $\dot{I} = 0$ at $\dot{H} = 0$. When $Y = Y_0$ this expression becomes:

$$\dot{I} = \frac{(\rho + \delta)p_I U_c - U_H}{p_I U_{CC}}$$ \hfill (45)

And for $\dot{I} = 0$ we need

$$\left[\rho + \delta]\frac{p_I U_c}{G_I} - U_H$$ \hfill (46)

Differentiating (46) with respect to I and Y_0 tells us how I changes, holding H constant, when we are increasing I, and hence moving vertically (if we move at all) from the (I,H) point at which the stationary locus for I cuts the stationary locus for H. In the CRS case $G_I = 1$ and $G_{II} = 0$ so (46) becomes

$$\left[\rho + \delta]p_I U_c - U_H$$ \hfill (47)

And differentiating we have

13One reason that it might appear that the model presented here does not allow current decisions depend on past decisions is that the solutions to control theory problems are expressed as open loop rather than as feedback solutions. As we have seen however, from the necessary conditions, the optimal value of I at any time does depend on H and in the event of a shock to H the individual will re-plan taking account of how her realized H differs from the value she had originally anticipated.
\[\frac{\partial I}{\partial Y_0} = \frac{U_{HC} - [\rho + \delta]P_I U_{CC}}{P_I U_{HC} - P_I^2 U_{CC}[\rho + \delta]} = \frac{1}{p_I} > 0 \quad (48) \]

Which says that the stationary locus for I, at the point at which it cuts the stationary locus for H, shifts up in response to an increase in Y_0. Thus we can argue that the stationary locus for I will shift up in response to an increase in Y_0. This in turn will tend to pull up all of the trajectories for the individual whose income has increased upward - we can see this most clearly in the case of the stable branch to the equilibrium, when we compare the pre and post income increase diagrams. Thus if we are comparing two individuals, identical in preferences but one of whom has a higher (exogenous) level of income than the other we would expect the higher income individual’s phase diagram to differ from that for the lower income individual in that the stationary locus for I will be higher (but they will both have the same stationary locus for H) and the higher income individual’s potential trajectories will all be shifted up relative to those of the lower income individual. Assuming that the two individuals both still have the same, exogenous value of T, and assuming that they are born with the same initial H_0 so that there is no income-related health difference at birth, we would still expect the higher income individual to invest more in his health at every value of t. In economic terms, this is because an increase in Y by increasing the amount of C that can be consumed at any given value of I, reduces the opportunity cost of increasing I.

As a result, the higher income individual’s H will decline more slowly than that of the lower income individual, since \(\dot{H} = I - \delta H \) and I is higher at every H. This means that, contrary to the assertion of Galama et al. (2012), the MGM with CRS is perfectly capable of generating a case in which higher income individuals’ health declines more slowly than does that of lower income individuals. Whether this is the explanation of observed income-related gradients in health or not, the claim that the MGM cannot yield such gradients is clearly incorrect.

These two individuals are depicted in Figure 4. Both have the same stationary locus for H but the individual with a higher income faces a lower opportunity of investment in health in terms of the value of the consumption utility given up for each additional unit of I purchased. In terms of the phase diagram, the stationary locus for I for the higher income individual is thus shifted up relative to that of the lower income individual (dashed \(\dot{I} = 0 \) locus) and the higher income individual will have an optimal trajectory involving higher initial values of I.

Both individuals start from the same initial health stock and both have the same equation of motion for H, but the fact that the higher income individual will have a higher initial value of I means that her stock of health will decline more slowly than will that of the lower income individual. As a result, even though the two individuals are born with the same initial health stock we see that the MGM predicts that health will decline faster for the individual with lower SES. To see this more clearly, we can rearrange the equation of motion for health (28), to yield:

\[\frac{\dot{H}}{H} = \frac{I}{H} - \frac{\delta H}{H} = \frac{I}{H} - \delta \quad (49) \]

Where \(\frac{\dot{H}}{H} \) is the instantaneous rate of change in the stock of health. The two individuals face the same \(\delta \) and given that both individuals start at the same level of H, we note that if I = 0 that \(\frac{\dot{H}}{H} = -\delta \) and that if I >0 then \(-\delta \) will be a smaller negative number. We see that the individual
with higher SES (will have higher I) and thus will experience a slower rate of decline in her health. We see that even if two people start with the same level of health an SES gradient emerges from even the simplest MGM because of the different choices the individuals will make about I and the gradient emerges even though we did not assume Y(H). Contrary then, to the assertion made by Galama et al. (2012) we see that the MGM does predict that a high SES individual will have a higher level of H than the low SES individual.

C The health threshold

Galama and Kapteyn (2011) say that one criticism of the MGM that has not been satisfactorily addressed is the fact that in empirical work I and H are generally found to be negatively related whereas it is said the model predicts a positive relation (Zweifel 2012). They propose modifying the basic MGM to allow for a corner solution in I i.e. I=0. They refer to this as Grossman’s missing health threshold. The issue of the relationship between I and H has been addressed in section III. In this section, we set up the Galama-Kapteyn model in the context of the one-state variable version of the MGM to illustrate the effect of a non-negativity constraint on I using a phase diagram.

Galama and Kapteyn (2011) set the problem up as we do in the form of an optimal control problem. They incorporate explicitly a non-negativity constraint on I. It is worth noting that in his original 1972 paper, Grossman discussed such a non-negativity constraint in some detail but his calculus of variations based approach did not lend itself to a formal demonstration of the effects of this assumption. We allowed for the possibility of a non-negativity constraint on I in the MGM.
outlined at the outset of the paper, where we introduced the term λI. When I is positive, λ will be equal to 0, so we have to this point been assuming an interior solution. We can see the effect of allowing the non-negativity constraint on I to be binding if we modify equation (13) as follows:

$$-p_I U_C + \Psi + \lambda = 0$$

(50)

then rearrange to obtain:

$$\Psi = p_I U_C - \lambda$$

(51)

This necessary condition can be interpreted as marginal benefit equals marginal cost where ψ (the shadow price of an additional unit of H) is the marginal benefit term. When I is positive and λ is zero, the right hand side of (51) is the marginal cost of the investment necessary to yield an additional unit of H. When $I=0$, we note two things about the right-hand side of (51). One is that C will now be equal to income Y, and the other is that λ will be positive. The fact that we have to subtract λ from the RHS for the equality to hold means that even when $I=0$, the LHS, which is MB of an additional unit of H, is less than the MC. In other words, $I=0$ when the MB of another unit of health is so low that we cannot satisfy the first order condition with equality without subtracting the λ term from the RHS. Given the definition of Ψ, we can actually see two cases where this might arise. One at the beginning of the planning horizon, for someone who is born with what one might call perfect health, so that the benefit from investing in health is virtually zero, which is the case Galama and Kapteyn(2011) appear to have in mind. The other is the case where ψ is very low because the remaining time horizon is short so that the payoff period to investing in health is too short to make it worth doing. This would occur at the end of the planning horizon. Thus, it is quite possible that the trajectory for an individual could look like Figure 5.

VI Other considerations on the form of the production function

Zweifel (2012) raises an additional criticism that the MGM assumes “a fixed ratio between individuals health care expenditure and the cost of their own health enhancing efforts regardless of their state of health” (pg. 677). This is a feature of the Grossman 1972 paper where he explicitly assumes a CRS production function for health, although Zweifel discusses it in the context of a Cobb-Douglas production function. In practice it would be a finding that was associated with any homothetic health production function that had more than one input. Zweifel’s criticism then is that the homotheticity of this isoquant map is unaffected by changes in the individual’s level of H. This is an empirical rather than a theoretical issue. CRS is a common simplifying assumption but is not a fundamental prediction of the MGM. It seems perfectly sensible that when the health production function has more than one input, their relative productivities will vary across isoquants.

There is, another consideration that has received rather limited attention in the literature despite the fact that Grossman gave quite a detailed discussion of it in his Journal of Political Economy paper. While it relates to the nature of the production function and the productivity of I, it is not a matter of returns to scale in the traditional sense. When we talk about returns to scale in a production function we are referring to what is really an engineering, and not an economic issue. It
Figure 5: The health threshold effect

deals with the technical point of the rate at which we can increase output by increasing all inputs in the same proportion. Under CRS, if we double all inputs we will double output and if we increase all inputs by ten per cent we will increase output by ten per cent. The matter is probably not quite as clear-cut as that summary suggests: we can probably safely assume that we can double output if we double inputs by replication of existing production facilities. This is the argument that underlies the common assumption that the industry-level supply function is horizontal in the long run. On the other hand it is not always going to be the case that increasing all inputs by ten per cent will increase output by ten per cent - this is the engineering issue of scalability. Whatever conclusion we reach, however, the degree of returns to scale is a matter that relates to the impact of increases in inputs on output.

In the case of the production function for health capital, though, there is an additional consideration. We can best summarize this by referring to it as the issue of perfect health. Assume, as Grossman does, that there is some technologically or physiologically determined upper value of H, H^*, which cannot be exceeded. We set aside the issue of whether H^* has been increasing over the centuries or whether H^* has always been fixed and we have been doing a better job of approaching it at both population and individual levels. Importantly for empirical implications, we also set aside the question of the relation, if any, between H^* and some maximum possible length of life. For purposes of our discussion here we can simply assume that at any time there exists a maximum possible H and that if that H^* changes it does so so slowly that we are safe in treating it as exogenous as far as individuals in the population are concerned. We might, as a first approximation, introduce the issue of perfect health by writing the health production function G as:
Here the marginal product of I in the production of H becomes

\[G(I)[1 - H/H^*], \quad H \leq H^* \]

so that as H approaches H* the marginal productivity of I declines at all levels of I. Again, this has nothing to do with returns to scale in the sense in which that term is used in microeconomics in general precisely because the effect that we are considering is independent of the level of I. It does, however, come into the individual’s decision about the optimal level of I to choose. Under this assumption, (13) the necessary condition for I becomes

\[\psi G(I)[1 - H/H^*] = p_I U_C \]

and totally differentiating (54) gives

\[
\frac{\partial I}{\partial H} = \frac{G_I/H^* \psi + p_I U_C}{[1 - H/H^*] \psi I + p_I U_C}
\]

which is still negative but whose magnitude now depends on the size of H relative to H*. It is clear from (54) that the closer H is to H* the smaller the MB of another unit of I relative to its MC, regardless of the particular level of I which we happen to be talking about: i.e. regardless of the assumptions we make about the curvature of the G(I) term.

We should note that when we talk about a perfect, or upper, level of health we are focusing on the production function, not on the utility function. We are not talking about a satiation level of H in the utility function and we are not talking about the value of the co-state \(\psi \) when we say that as H approached H* the marginal benefit of another unit of I falls. We are, however, adducing another factor that would lead us to invest less in I as H increases.

VII Death in the Grossman model

One key issue in the literature is whether the MGM would actually allow an individual to choose to live forever. If it does, this would have to be regarded as a major theoretical weakness since nobody as yet has successfully made that choice. This is an issue which goes all the way back to Grossman’s original 1972 paper and which he said in Grossman (2000) had been of concern to him at the time. Grossman’s solution in the 1972 paper was to have the rate of depreciation of health capital increase at an increasing rate so that at a certain point even with CRS in the production
function, it became impossible to maintain H above H_{MIN}. As we have written the MGM, δ has been constant. Grossman’s approach is not at all unreasonable if we assume that the human body simply breaks down at some point at a rate faster than it is possible to repair it. That would seem to suggest that technological improvement in the health production function would still open the possibility of immortality. However, if we are going to use the MGM as the basis for empirical investigation of human health behavior it does not seem unreasonable to do what we have done in this paper and assume the individual knows that their life is finite. In other words, to work with a fixed finite horizon form of the problem. Zweifel (2012) has argued that the assumption that the length of life is known is unreasonable. It is certainly the case that people die at different ages. One possible approach is to define a maximum possible length of life and allow people to choose their length of life up to that upper limit. The transversality condition for an endogenous horizon is that the Hamiltonian equals zero at the optimal end of life. This can clearly be a result of different choices made by different individuals, conditional on their endowments. We can also consider a model in which there is an absolute upper limit to T and the actual age at death is stochastic with the probability of death being a function of the individual’s stock of health capital. This moves us into the realm of stochastic control theory and Ito’s Lemma, techniques that have been little used in health economics despite the fact that health behaviours reflect decisions about inter-temporal optimization under uncertainty.

The key issue associated with the way we make life finite is the implication of the method chosen for end of life consumption of health care. This is a case however, where we need to separate the effects of two assumptions, one pertaining to the finite nature of the horizon and the other to the implications of the assumption that is made about the rate of depreciation of health capital. The most obvious combination of these assumptions would appear to be the case where there is an upper bound to the length of life and the depreciation rate also increases at an increasing rate late in life.

From a purely technical point of view making δ increase with age, given that age increases at exactly the same rate as time passes, turns the optimal control problem from a one state variable to a two state variable problem. To this point we have been using phase diagram analysis to illustrate the arguments we have been making about the workings of the MGM, unfortunately, it is extremely difficult, and in many cases impossible to draw a phase diagram for a two-state variable problem. The nearest we could come would be to use a two-stage optimal control problem in which delta was low during the first stage and high during the second stage. This would not result in a discrete jump in I at the point where we pass from the first to the second stage since the transversality conditions for a two-stage problem would make such a jump sub-optimal. In terms of the phase diagram it is clear that an increase in δ would rotate the stationary locus for H upward. That by itself would be relatively easy to illustrate. Unfortunately, a change in delta will also shift the stationary locus for I. The result of these two effects is that the overall effect on the optimal trajectory is ambiguous. The most productive approach to introducing age-dependent depreciation rates would appear to be theoretical simulation (see for example, Koka et al., 2014).

14 For a different take on the issue of why death happens, see Robson and Hillard (2007).
15 Cropper (1977) presents a version of the MGM with uncertainty in relation to health where the health shocks are characterized as being minor and having no effect on the stock of health capital (pg. 1277).
16 Wagstaff (1993) tried to implement a two-stage process empirically with less than satisfactory results.
VIII Conclusion

We have argued that the criticisms leveled at the Grossman model in the literature do not in fact constitute a serious indictment of the theoretical structure of Grossman’s 1972 model. We have shown that Grossman’s model even under the CRS assumption does not suffer from an indeterminacy problem. We have shown that the model does take account of an individual’s history. The model underscores the importance of distinguishing between comparative static effects and dynamic effects. Returning to the question of the relationship between I and H, we can see that in empirical data, when we are looking at changes in I and changes H between two consecutive points in time, the correlation between changes in I and changes in H could be either positive or negative depending on where we are in the individual’s lifetime trajectory.

In empirical work it is important that we use estimating equations whose functional form takes explicit account of the intrinsic account of the dynamics of I and H since failing to do so is likely to bias estimates of the comparative statics of the determinants of I. The key message of the Grossman framework is that since individuals are forward looking, it is important that researchers think in terms not of a point in time but rather in terms of an individual’s optimal trajectory.

It is our contention that when we apply techniques of dynamic economic analysis that are standard in other areas of economics to the Grossman model we can clearly see that its status as the workhorse of modeling individual health related behaviours is well justified.
References

American Economic Review, 97(2): 492-495
