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Abstract

We develop a rational inattention theory of echo chamber, whereby play-

ers gather information about an uncertain state by allocating limited attention

capacities across biased primary sources and the other players. The resulting

Poisson attention network transmits information from the primary source to

a player either directly or indirectly through the other players. Rational inat-

tention generates heterogeneous demands for information among players who

are initially biased towards different decisions. In an echo chamber equilibrium,

each player restricts attention to his own-biased source and like-minded friends,

as the latter attend to the same primary source as his, and so could serve as sec-

ondary sources in case the information transmission from the primary source to

him is disrupted. We provide sufficient conditions that give rise to echo cham-

ber equilibria, characterize the attention networks within echo chambers, and

use our results to inform the design and regulation of information platforms.
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1 Introduction

The Cambridge English Dictionary defines echo chambers as “environments in which

people encounter only beliefs or opinions that coincide with their own, so that their

existing views are reinforced and alternative ideas are not considered.” Examples

that fit this description have recently flourished on the Internet and social media, and

their economic and social consequences have been the subject of heated debate in the

academia and popular press (Bakshy, Messing, and Adamic, 2015; Del Vicario, Bessi,

Zollo, Petroni, Scala, Caldarelli, Stanley, and Quattrociocchi, 2016; Barberá, 2020;

Cossard, Morales, Kalimeri, Mejova, Paolotti, and Starnini, 2020). Most ongoing

discussions of echo chambers focus on their behavioral roots (Levy and Razin, 2019).

This paper develops a rational theory of echo chamber with clear testable predictions

and relevant normative implications.

Our premise is rational inattention (RI), i.e., the rational and flexible allocation

of limited attention capacities across information sources. Such a premise has become

increasingly relevant in today’s digital age, as people are inundated with information

on the one hand, but can selectively choose which information sources to visit using

personalization technologies on the other hand. Since Sunstein (2007) and Pariser

(2011), it has been long suspected that RI may engender a selective exposure to con-

tent and a formation of homogeneous opinion clusters. The current paper formalizes

this idea by prescribing conditions that are conducive to echo chamber formation

among rationally inattentive decision makers. We also characterize the attention net-

works within echo chambers, and use our results to inform the design and regulation

of information platforms.

To create a role for RI, we embed the analysis in a simple model of decision

making under uncertainty. To illustrate our framework, consider the problem faced

by new parents who are about to feed their babies with solid food. Each parent

must choose between a traditional approach denoted by A (e.g., spoon feeding), and

a new approach denoted by B (e.g, baby-led weaning). Which of the two approaches

is better for baby development is modeled as a random state that is either A or B

with equal probability. A parent earns the highest level of utility if he chooses the

best approach for baby development. Otherwise he incurs a loss, whose magnitude

depends on whether the adopted approach matches his own preference or not (e.g.,

baby-led weaning may be more preferred because it is easy to prepare). Given the
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prior belief about the state, the default decision is to adopt the parent’s preferred

approach.

To gather information about the state, a parent must pay attention to information

sources. We distinguish primary sources from secondary sources. The former gen-

erate original data about the state, and they take the form of scientific experiments

published in pediatric journals in our leading example. As in Che and Mierendorff

(2019), we model two biased primary sources called A-revealing and B-revealing. The

ω-revealing source, ω ∈ {A,B}, is an experiment designed to reject the null hypoth-

esis that the state is ω′ ̸= ω. It works by revealing that the state is ω when it is

and keeping silent otherwise. Secondary sources are our innovation. In the leading

example, they constitute parents who consume and pass along primary source content

to the other parents via online support groups. A parent is endowed with a limited

attention capacity, or bandwidth, that can be allocated across information sources in

a flexible manner. A feasible attention strategy specifies a nonnegative amount of

attention that he pays to each source, subject to the constraint that the total amount

of paid attention must not exceed his bandwidth.

The subject of our study is the Poisson attention network generated by parents’

attention strategies. After these strategies are specified, the state ω is realized, and

messages thereof are circulated in the society for two rounds. In the first round,

the ω-revealing primary source disseminates a message “ω” to parents. The message

reaches each parent independently with a Poisson probability that increases with the

amount of attention that the latter pays to the primary source. In the second round,

those parents who received a message in the previous round pass it along to the

other parents using Poisson technologies. The probability of a successful information

transmission between a parent pair increases with the sender’s visibility as a secondary

source (i.e., the rate of his Poisson technology), as well as the amount of attention

that the recipient pays to the sender. After that, parents update beliefs and make

final decisions. We study the attention networks that can arise in equilibrium.

Our notion of echo chamber has two defining features. The first feature is a

selective exposure to content and a formation of homogeneous clusters. Specifically,

we define a parent’s own-biased source as the primary source that favors his default

decision as its null hypothesis, and call two parents like-minded friends if they share

the same default decision. We say that echo chambers arise in an equilibrium if all

parents restrict attention to their own-biased sources and like-minded friends on the
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equilibrium path. The second feature of echo chambers is a belief polarization coupled

with an occasional and yet drastic belief reversal. It is easy to see that after playing

an echo chamber equilibrium, each parent receives no message from any source most

of the time and updates the belief in favor of his default decision in that event. With a

small complementary probability, the opposite happens, and the parent feels strongly

about departing from his default approach. As discussed in Section 5, both features

of echo chambers have solid empirical supports.

Our main results exploit the trade-off between primary and secondary sources.

The first result prescribes sufficient conditions for the rise of echo chamber equilib-

ria. Since a parent can always make his default decision without paying attention,

paying attention is only useful if it sometimes convinces him to act differently. When

attention is limited, the parent should, intuitively, focus on his own-biased source,

as the latter generates the exact kind of the information that disapproves of his de-

fault decision. Likewise, he should attend only to his like-minded friends but no one

else, as the former share the same primary source with him, and so could serve as

secondary sources in case the information transmission from the primary source to

him is disrupted. A caveat to this argument is that in a strategic environment like

ours, a parent may gain strategically from switching sides, e.g., when many other

parents are gathering the opposite kind of information, he may want to follow suit

so as to gain access to many secondary sources in case he misses the primary source

message. Nevertheless, such a gain is shown to be limited when parents are suffi-

ciently biased towards their default decisions, when they can attend to many people,

and when attention is scarce. These conditions accurately describe the world we are

living in, whereby technology advances have turned the entire globe into a village and

inundated people with more information than what they can process in a lifetime.

These trends are conducive to echo chamber formation, especially when people are

sufficiently biased to begin with.

Our second result characterizes the attention networks within echo chambers. We

define a parent’s informedness as a secondary source as the amount of attention he

pays to the primary source, while capturing his influence on public opinion by the

amount of attention he attracts from his friends. We find that the game among

like-minded friends exhibits strategic substitutability, as raising one’s informedness

attracts more attention of his friends away from the primary source to him. Based

on this finding, together with other basic model properties, we develop a method for
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investigating the comparative statics of the equilibrium attention network. Among

other things, we find that increasing a parent’s bandwidth promotes his informedness

and influence while diminishing that of any other parent. This equilibrium mechanism

is shown to magnify even a small difference between parents’ bandwidths into a very

uneven distribution of opinions, whereby some parents act as opinion leaders, while

others act as opinion followers. An important feature of today’s news landscape is that

while most Americans are interested in many topics such as science, economy, and

politics, only a minority of them are serious news consumers, due to the distractions

that stem from the overabundant entertainment opportunities (Funk, Gottfried, and

Mitchell, 2017). This attentional gap between the majority and minority may generate

patterns such as the law of the few and fat-tailed distributions of opinions,1 whose

presences in the social media sphere have recently been detected by Lu, Zhang, Cao,

Hu, and Guo (2014) and Del Vicario, Bessi, Zollo, Petroni, Scala, Caldarelli, Stanley,

and Quattrociocchi (2016).

We use our results to inform the design and regulation of information platforms.

First and foremost, we find that interventions that target misinformation and fake

news through modulating source visibility may backfire if they are not well calibrated

according to the underlying environment.2 We also evaluate the usefulness of anti-

polarization platforms such as Allsides.com, which operate through exposing users to

balanced viewpoints from both sides. We model such platforms as a mega source that

obtains from merging the A-revealing source and B-revealing source of the baseline

model together. On the one hand, the use of a mega source does fulfill the purpose

of dissolving echo chambers, as it forces different types of parents to attend to each

other as secondary sources. Yet making more secondary sources available to parents

discourages information acquisition from primary sources. The resulting free-riding

problem can render the overall welfare impact ambiguous.

Even in arguably more controversial environments, our model still captures some

facets of reality and sheds cautioning light on several normative issues. In Section

5, we study a political economy application whereby partisan voters must choose

1The law of the few refers to the phenomenon that information is disseminated by a few key
players to the rest of the society. It was originally discovered by Katz and Lazarsfeld (1955) in their
classical study of how personal contacts facilitate the dissemination of political news, and has since
then been rediscovered in numerous areas such as the organization of online communities.

2For example, Facebook caps the number of daily posts by an individual account to 25 articles,
beyond which the visibility of the account will be negatively affected.
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between a Democratic candidate and Republican candidate based on their qualities.

Information about candidates’ qualities is generated by biased media outlets, and

is passed along from one voter to another through social media platforms. We use

our results to match additional empirical patterns, and to speak to media market

regulations such as the FCC’s viewpoint diversity objectives.

In the online appendix, we examine the (in)efficiency of echo chambers, demon-

strate the robustness of our model to more complex decisions problems and more

general information technologies, and address several technical points that are omit-

ted from the main text.

1.1 Related literature

The current paper contributes to three strands of the economic literature: rational

inattention, social network, and rational theories of echo chamber.

Rational inattention. A central question studied by the RI literature concerns the

flexible acquisition of information about a payoff relevant state by a single decision

maker (see Maćkowiak, Matějka, and Wiederholt 2023 for a literature survey). For

that purpose, it is useful to model information acquisition strategies as signal struc-

tures that map each fundamental state to a lottery over final decisions. This compact

representation, however, abstracts away from how decision makers can learn from

multiple information sources, especially when the latter are themselves the players

of a strategic game. In games with strategic complementarities, Hellwig and Veld-

kamp (2009), Denti (forthcoming, 2017), and Hébert and La’O (2021), demonstrate

the usefulness of acquiring information about the endogenous signals gleaned by the

other players, as the latter affect one’s payoff through the other players’ final actions.

This is not the case in our model, where a player’s utility depends on his own action

and a payoff-relevant state, but nothing else. In equilibrium, a player is attended by

the other players because he has a better information dissemination technology than

the primary sources. Evidence for this assumption is discussed in Sections 2.2 and 5.

The idea of filtering bias, namely even a rational decision maker can exhibit a

preference for biased information when constrained by information processing capac-

ities, dates back to Calvert (1985) and is later expanded on by Suen (2004), Che and

Mierendorff (2019), and Hu, Li, and Segal (forthcoming) among others, in single-agent

decision making problems. We examine the validity of this idea in a strategic setting,
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where one’s choice of attention strategy depends not only on his own preference, but

also on the attention strategies of the other players.

The closest work to ours: Che and Mierendorff (2019), studies a dynamic infor-

mation acquisition problem where a decision maker repeatedly allocates a limited

attention capacity between biased primary sources that disseminate Poisson signals.3

We instead focus on the trade-off between allocating attention to primary sources and

to the other players in a static game. Our model becomes a special case of the stage

decision problem studied by Che and Mierendorff (2019) if players are forbidden from

attending to each other.

We are not the first to study Poisson attention networks. Dessein, Galeotti, and

Santos (2016) analyze the efficient attention network between nonstrategic members

of an organization with adaptation and coordination motives. We focus on the equi-

librium attention network between strategic players, although we also characterize

the efficient attention network as an extension. Our players’ objective functions also

differ from that of Dessein, Galeotti, and Santos (2016).

Social network. Inside an echo chamber, our game combines (i) the strategic for-

mation of an information sharing network, with (ii) a network game in which players’

investments (in their informedness) exhibit negative externalities. Studies of non-

cooperative network formation games without endogenous investments were pioneered

by Jackson and Wolinsky (1996) and Bala and Goyal (2000), and have recently been

advanced by Calvó-Armengol, de Mart́ı, and Prat (2015) and Herskovic and Ramos

(2020) among others. The last two papers bestow players with exogenous signals

and focus on the formation of information sharing networks, whereas signals are en-

dogenous in our model. Existing network formation models work mainly with discrete

links. Links are divisible in our model, as well as in Bloch and Dutta (2009), Baumann

(2021), and Elliott, Golub, and Leduc (2022), among others.

There is also a large literature studying how to play games with negative ex-

ternalities on a fixed network (see Jackson and Zenou 2015 for a survey). Most

methodological contributions to this literature concern the uniqueness and stability

of equilibrium, with many early contributions assuming linear best response functions

or a symmetric influence matrix between players (see, e.g., Parise and Ozdaglar 2019

and Bramoullé, Kranton, and D’Amours 2014, respectively). We develop a toolkit

3Zhong (2022) demonstrates the optimality of Poisson attention strategy in dynamic information
acquisition problems with continuous time and discrete terminal actions.
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for investigating equilibrium comparative statics under different assumptions from

the aforementioned ones.

A few recent papers study hybrid games that are akin to ours (see Sadler and

Golub 2021 for a survey). The closest work to ours: Galeotti and Goyal (2010), also

combines endogenous information acquisition with strategic information sharing. Yet

these authors work with homogeneous players and quantitative information acquisi-

tion (i.e., how much information is acquired rather than what kind of information is

acquired), so their model cannot be immediately applied to the study of echo cham-

ber formation among heterogeneous players. Their main result: the law of the few,

is obtained under a different setting and using different arguments from ours.4

Rational theories of echo chamber. A small but growing literature investigates

the rational origins of echo chambers.5 The closest work to ours: Baccara and Yariv

(2013) (BY), studies a model of group formation, followed by the production and

sharing of information among group members. The main differences between BY and

the current work are threefold. First, BY models information as a local public good

that is automatically shared among group members. Here, the decision to acquire

secondhand information from other players is private and strategic. Second, BY codes

players’ preferences for information in their utility functions. Here, such a preference

arises endogenously from limited attention capacities. Third, BY’s reasoning exploits

the sorting of people with similar preferences into groups of limited sizes. We impose

no restriction on the sizes of echo chambers and do not invoke the sorting logic.

Other rational theories of echo chamber fall broadly into two categories: (i) strate-

gic communication or persuasion between players with conflicting objectives (Gale-

otti, Ghiglino, and Squintani, 2013; Jann and Schottmüller, 2021; Innocenti, 2021;

Meng, 2021); (ii) learning from sources with unknown biases (Sethi and Yildiz, 2016;

Williams, 2021). Neither consideration is present in our model, where sources are

nonstrategic, and their biases are commonly known.

4The argument of Galeotti and Goyal (2010) exploits two properties of their environment: (i) the
total amount of acquired information in the society is independent of players’ population size; and
(ii) links for information sharing are discrete. Together, these properties imply that only a small
number of players can acquire information from the original source and disseminate it to the other
players in equilibrium. Our setup and reasoning are very different.

5Other authors have used the term “echo chamber” to refer to: the excessive sharing of misinfor-
mation in a homophilous, exogenous, network (Acemoglu, Ozdaglar, and Siderius, 2022), correlation
neglect (Levy and Razin, 2019), as well as one’s exogenous neighbors in network learning games
(Bowen, Dmitriev, and Galperti, 2023).
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2 Baseline model

In this section, we first describe the model setup and then present an illustrative

example. Discussions of model assumptions can be found in Footnotes 6-9.

2.1 Setup

A finite set I of players faces two equally likely states A and B. Each player i ∈ I
has a type ti ∈ {A,B} (also called his default decision), and makes a final decision

di ∈ {A,B}. His utility equals zero if his decision matches the true state. If the two

objects differ, then the player incurs a loss of magnitude βi ∈ (0, 1) by making the

default decision. Otherwise the loss has magnitude 1. Formally,6 7

ui(di, ω) =


0 if di = ω,

−βi if di ̸= ω and di = ti,

−1 if di ̸= ω and di ̸= ti.

The assumption βi ∈ (0, 1) implies that the player most prefers his default decision

given the prior belief about the state distribution. The preference becomes stronger

as we decrease βi, which is hereinafter referred to as the player’s horizontal preference

parameter. Let A and B denote the sets of type A players and type B players,

respectively. Assume throughout that |A|, |B| ∈ N− {1}.
There are two primary sources called A-revealing and B-revealing. In state ω ∈

{A,B}, the ω-revealing primary source announces a message “ω,” whereas the other

primary source is silent. The message “ω” fully reveals that the state is ω, since any

player would assign probability one to the state being ω given this message. To gather

information about the state, a player can pay attention to the primary sources, i.e.,

spend valuable time on them. In addition, he can pay attention to the other players as

potential secondary sources. For each player i ∈ I, Ci = {A-revealing,B-revealing} ∪
I −{i} denotes the set of the sources he can pay attention to. His attention strategy

6The following reparameterization of the model captures situations in which players differ in prior
beliefs about the state, while leaving the analysis unaffected: let ui(di, ω) = 0 if di = ω and −1
otherwise ∀i ∈ I; let player i assign probability 1

1+βi
to ω = ti and probability βi

1+βi
to ω ̸= ti.

7We specify the utility function in a way that eases parameterization and interpretation. For
general utility functions, define the default decision as one’s most preferred decision ex ante, i.e.,
ti := argmaxd∈{A,B} E[ui(d, ω)], and all arguments below will go through.
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xi = (xc
i)c∈Ci specifies a nonnegative amount xc

i ≥ 0 of attention that he pays to

each source c ∈ Ci. It is feasible if it satisfies the bandwidth constraint
∑

i∈Ci x
c
i ≤ τi,

which stipulates that the total amount of paid attention must not exceed the player’s

bandwidth τi > 0. Let Xi denote the set of feasible attention strategies for player i.

To capture the flexibility of attention allocation, we allow for the adoption of any

strategy in Xi.

After players specify their attention strategies, the state ω ∈ {A,B} is realized,

and information about ω is circulated in the society for two rounds.

• In the first round, the ω-revealing primary source disseminates “ω” to players

using a Poisson technology with rate 1. The message reaches each player i ∈ I
independently with probability 1 − exp(−xω-revealing

i ), which increases with the

amount xω-revealing
i of attention that player i pays to the primary source and

is strictly bounded above by one. The last property captures the scarcity of

attention relative to the available information in the world.

• In the second round, each player i who received a message in the first round

passes it along to the other players using a Poisson technology with rate λi > 0.

The message reaches each player j ∈ I − {i} independently with probability

1− exp(−λix
i
j), which increases with the amount xi

j of attention that player j

pays to player i. The parameter λi captures player i’s visibility as a secondary

source, and is hereinafter referred to as his visibility parameter.

After two rounds of information transmission, players update beliefs about the state

and make final decisions. The game sequence is summarized as follows.

1. Players choose attention strategies.

2. The state ω is realized.

3. (a) The ω-revealing source disseminates message “ω” to players.

(b) Those players who received messages in Stage 3(a) pass them along to the

other players.

4. Players update beliefs and make final decisions.

The solution concept is pure strategy perfect Bayesian equilibrium (PSPBE), or

equilibrium for short.
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2.2 Illustrative example

In this section, we illustrate our framework using an example of science news con-

sumption among new parents.

Example 1. A group of new parents is about to feed their babies with solid foods.

There are two approaches: A = traditional spoon-feeding, and B = new baby-led

weaning. Under the traditional approach, parents spoon-feed babies first with purée

food and then with different stages of baby food until babies are strong enough to

eat on their own. The new approach skips traditional baby food and puts babies in

charge of their mealtime. Babies are given chucks of suitable food such as banana

or bread, and they hold the food in their hands and feed themselves. Which of the

two approaches is better for baby development is an open question. For example, a

possible downside of baby-led weaning is that babies tend to eat less and choke more

in the first few months. Whether this issue has any long-term health consequence

and how it should be weighed against the upside of the new approach (e.g., practice

motor skills earlier and build healthy eating habits), are topics of active research.

The uncertainty surrounding the truth is captured by the random state ω.

A parent’s preference has two dimensions. The vertical dimension concerns which

of the two approaches is better for baby development. The horizontal dimension—

which is parameterized by βi—captures the parent’s own preference: some parents

prefer the traditional approach because spoon-feeding is less messy, while others prefer

the new approach because it skips purée foods and so is easier to prepare. A parent

earns the highest level of utility when the best approach for baby development is being

used, and incurs a loss otherwise. The loss is smaller in case the adopted approach is

more preferred by the parent.

Information about the uncertain state is provided by two kinds of scientific ex-

periments: those designed to reject the traditional approach A, and those designed

to reject the new approach B. These experiments constitute the primary sources in

our model. Parents can directly read about the experiments published in scientific

journals. Alternatively, they can learn from the secondhand opinions shared by other

parents on online support groups—Academic Moms, BabyCenter, to name a few.

Parents may differ in the amount of available time τis for information gathering,

which depends on the nature of their work, the length of parental leave, etc. They

may also differ in their visibility λis as secondary sources. For example, parents who
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are well-educated and good at explaining science to layman attract many followers

on online platforms; the decision on whether to post a video on Youtube depends on

how enthusiastic a parent is about helping others and how tech savvy he or she is. ♢

3 Analysis

This section conducts model analysis. We first formalize the problems faced by players

in Section 3.1, and introduce key concepts to the analysis in Section 3.2. These

are followed by three main theorems regarding the formation of echo chambers, the

attention networks within echo chambers, and the comparative statics thereof, in

Sections 3.3, 3.4, and 3.5, respectively.

3.1 Player’s problem

Consider the problem faced by a typical player i ∈ I, taking the strategy profile

x−i ∈ X−i := ×j∈I−{i}Xj among the other players as given. In case player i uses an

attention strategy xi ∈ Xi, the information transmission from the ω-revealing source

to him is disrupted with probability

δω-revealingi := exp(−xω-revealing
i ),

and the information transmission from any player j ∈ I − {i} to him is disrupted

with probability

δji := exp(−λjx
j
i ).

Let Ui denote the event in which player i receives no message at Stage 4 of the game

(hereinafter, the decision making stage), which happens if the information transmis-

sion from the ω-revealing source to player i—either directly or indirectly through

another player—is completely disrupted. Its probability in state ω is given by

Px (Ui | ω) := δω-revealingi

∏
j∈I−{i}

(δω-revealingj + (1− δω-revealingj )δji ),

where x := (xi, x−i) denotes the joint attention strategy profile across all players.

At the decision making stage, player i earns zero utility if he learns the state and

acts accordingly. Otherwise event Ui happens, and he must choose between the two
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available options. The optimal choice yields the following ex ante expected utility:

max

{
−βi

2
Px (Ui | ω ̸= ti) ,−

1

2
Px (Ui | ω = ti)

}
,

where the first and second terms in the big bracket constitute the expected utilities

in case one makes his default decision and the other decision in event Ui, respectively.

At Stage 1 of the game (hereinafter the attention paying stage), the player chooses a

feasible attention strategy to maximize the above expression, taking the other players’

attention strategies x−i as given.
8

3.2 Key concepts

We first define the biases of primary sources, as in Che and Mierendorff (2019).

Definition 1. A primary source is biased toward decision d ∈ {A,B} (or simply

d-biased) if attending to that source but receiving no message from it increases one’s

belief that the state favors decision d. A player’s own-biased source is the primary

source that is biased toward his default decision.

In the leading example, the A-revealing source is an experiment designed to reject

the null hypothesis that the state is B. It does so through generating A-revealing

evidence, absent of which state B becomes more likely, hence the name “B-biased.”

A player’s own-biased source favors his default decision as its null hypothesis. In case

the player attends to that source but receives no message from it, he reinforces the

belief that the state favors his default decision. For a more natural interpretation,

one can think of no message as a “babbling message” that favors the player’s default

decision. In what follows, we will denote the A-revealing (resp. B-revealing) source

by b (resp. a). Type A (resp. B) players’ own-biased source is a (resp. b).

Next is the notion of like-minded friends.

Definition 2. Two players are like-minded friends if they share the same default

decision (and hence the same own-biased source).

Next is our key notion of echo chamber equilibrium.

8The above formulation remains valid even if the player can first decide how much attention
to pay to the primary sources, and, in case he receives from no message from them, divides the
remaining attention capacity across the other players.
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Definition 3. An equilibrium is an echo chamber equilibrium if each player attends

only to his own-biased source and like-minded friends on the equilibrium path.

An echo chamber equilibrium has two noteworthy features. The first feature is a

selective exposure to content and a formation of homogeneous clusters. Indeed, casual

inspections suggest that parents who prefer the traditional baby-feeding approach

focus on learning the upside of the new approach and share information among each

other. The second feature of echo chamber equilibrium is a belief polarization coupled

with an occasional yet drastic belief reversal. It is easy to see that after playing an

echo chamber equilibrium, each parent receives no message from any source most of

the time and updates the belief in favor of his default decision in that event. With a

small complementary probability, the opposite happens, and the parent feels strongly

about trying a different approach. As discussed in Section 5, both features of echo

chambers have solid empirical supports.

While our analysis is mainly conducted in a general environment, we sometimes

restrict attention to symmetric environments and symmetric equilibria.

Definition 4. A society is symmetric if the two types of players have the same

population size N , and all players have the same characteristic profile (β, λ, τ). An

equilibrium is symmetric if the equilibrium strategy depends only on the amounts of

attention that a typical player pays to his own-biased source, the other primary source,

each like-minded friend of his, and any other player, respectively.

We conclude this section by defining two useful functions and stating their main

properties (a full list of properties can be found in Lemma 3 of Appendix A).

Definition 5. For each λ ≥ 0, define

ϕ (λ) :=

log( λ
λ−1

) if λ > 1,

+∞ if λ ∈ [0, 1].

For each λ > 1 and x ∈ [ϕ (λ) ,+∞), define

h (x;λ) :=
1

λ
log [(λ− 1) (exp (x)− 1)] .

Observation 1. ϕ′(λ) < 0 on (1,+∞) and limλ↓1 ϕ(λ) = +∞. For each λ > 1,

h(ϕ(λ), λ) = 0 and hx (x;λ) ∈ (0, 1) on (ϕ (λ) ,+∞).
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3.3 Echo chamber formation

Our first theorem provides sufficient conditions that give rise of echo chamber equilib-

ria. It shows that every equilibrium of the game must be an echo chamber equilibrium

when players have sufficiently strong horizontal preferences, holding everything else

constant. Alternatively, in a symmetric society, the unique symmetric equilibrium of

the game must be an echo chamber equilibrium when the population size is large, or

when attention is scarce.

Theorem 1. (i) Fix any population sizes |A|, |B| and characteristic profiles (λi, τi)i∈A∪B

as in Section 2. There exists β ∈ (0, 1) such that when βi ∈ (0, β) ∀i ∈ I, every equi-

librium of the game must be an echo chamber equilibrium. (ii) Consider a symmetric

society parameterized by (N, β, λ, τ).

(a) For any β ∈ (0, 1), λ > 0, and τ > 0, there exists N ∈ N − {1} such that for

any N > N , the unique symmetric equilibrium of the game is an echo chamber

equilibrium.

(b) For any β ∈ (0, 1), λ > 0, and N ∈ N − {1}, there exists τ > 0 such that for

any τ < τ , the unique symmetric equilibrium of the game is an echo chamber

equilibrium.

The conditions prescribed Theorem 1 accurately describe the world we are living

in. As more and more people turn to the Internet and social media where the amount

of available information is vastly greater than what an individual can process in a

lifetime, it is reasonable to model bandwidth τis as finite, if not small, numbers. Mean-

while, the use of automated systems has destroyed the physical boundaries between

people, enabling virtual connections between like-minded friends who have never met

before in reality. In terms of modeling, this means that we can look at the case of

a large N , and assume that the allocation of attention across information sources is

flexible. According to Theorem 1, these conditions are conducive to echo chamber

formation, especially when people are sufficiently biased to begin with.

The remainder of this section explains the ideas behind Theorem 1 in two steps.

Basic intuitions. Consider first a benchmark case in which players can only attend

to the primary sources but not to each other. The next lemma, also proven by Che and

Mierendorff (2019) as part of their preliminary analysis, solves the optimal decision

problems that players face.
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Lemma 1. Let everything be as in Section 2 except that Stage 3(b) is removed from

the game. Then each player attends only to his own-biased source but not the other

source at the attention paying stage.

The idea behind Lemma 1 is as follows: since a player can always make his default

decision without paying attention, paying attention is useful only if it sometimes con-

vince him to act differently. Achieving this goal requires that the player disapproves

of his default decision, using the very kind of the information generated by his own-

biased source. Moreover, since one can never be certain that the state is ω even if

he focuses exclusively on the ω-revealing source, it is optimal to attend only to his

own-biased source but not the other source. The takeaway from this exercise is that

rational inattention generates heterogeneous demands for information among people

who are initially biased towards different decisions.

We next allow players to attend to each other. Assuming that every player makes

his default decision in event Ui (where he doesn’t hear from any source), the argument

articulated above remains valid, namely it is optimal to attend only to one’s own-

biased source but not the other source. Likewise, it is optimal to attend only to

one’s like-minded friends but no one else, as the former share the same own-biased

source with him, and so could serve as secondary sources in case the information

transmission from the primary source to him is disrupted. This is the basic intuition

for why echo chambers could arise in equilibrium.

Limit strategic gains from switching sides. Yet in a strategic environment like

ours, players may benefit strategically from switching sides, as illustrated by the next

example.

Example 2. There is one player of each type called Alice (A) and Bob (B). If

both players attend only to their own-biased sources, then Alice’s expected utility

is −βA exp(−τA)/2. Now suppose that Alice decides to switch sides, i.e., make de-

cision B in event UA. To facilitate decision making, she pays x ∈ [0, τA] units of

attention to the other primary source and τA − x units of attention to Bob. Her

problem becomes

max
x∈[0,τA]

−1

2
exp (−x) [exp(−τB) + (1− exp(−τB)) exp(−λB(τA − x))].

Solving the above problem shows that x = max{τA−h(τB, λB), 0}, and that Alice
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benefits from switching sides if λB > 1, τB > ϕ(λB), and h(τB, λB) − τB + ϕ(λB) <

log βA. The first two conditions guarantee that h(τB, λB) > 0 (recall Observation 1),

and they are easy to understand: if λB ≤ 1, then Bob is less visible than the primary

source and so should be ignored by Alice in any equilibrium. If τB ≤ ϕ(λB), then Bob

lacks the capacity to absorb enough information and pass it along to Alice. In both

cases, Alice will attend only to source A if she decides to switch sides, i.e., xA = τA.

Given her horizontal preference for decision A, switching sides is unprofitable.

The last condition is most likely to hold when βA is large, and so Alice has only a

mild preference for her default decision; and when τB is large (recall from Observation

1 that hx ∈ (0, 1) on the relevant domain), and so Bob can absorb a lot of information

and pass it along to Alice. These are the exact confounding forces we wish to rule

out in order to sustain echo chambers in equilibrium. ♢

The construction presented above is relatively straightforward because there is

only one player of each type. As a consequence, Bob’s strategy in an echo chamber

equilibrium is to attend to source B, and we used this fact to calculate Alice’s expected

utility gain from switching sides. The proof presented in the appendix handles the

multi-agent case, in which players’ equilibrium strategies are much harder, if not

impossible, to compute explicitly.

Part (i) of Theorem 1 is the most intuitive: when players’ horizontal preferences

are sufficiently strong, making the default decision in event Ui becomes a dominant

strategy, regardless of the belief he holds. As a result, any equilibrium must be an

echo chamber equilibrium, for the same reason as given in the benchmark case. The

existence of an equilibrium will become clear in the next section.9

When players’ horizontal preferences are mild, we make progress by studying

symmetric societies, as in Part (ii) of Theorem 1. To gain insights into Part (ii-a) of

the theorem, notice that when all players except i ∈ A adopt equilibrium strategies,

player i faces two choices: attend to his own-biased source and N − 1 like-minded

9Part (i) of Theorem 1 is robust to several model variations. First and foremost, it is easy to see
that the result remains valid even if players can communicate for more than one round. While the
complete segregation between different types of players is an artifact of binary states and decisions,
as well as the assumption that messages fully reveal the true state, the idea that rational inattention
leads like-minded people to focus on similar information sources and on each other should and indeed
has a life of its own. In Online Appendix O.3, we extend the baseline model to arbitrarily finite
decisions and states. We establish a pattern called semi echo chamber, whereby players pay most,
but not all their attention to own-biased sources and like-minded friends. The same pattern can also
be established when primary source messages entail small false positive and false negative rates.
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friends and make the default decision in event Ui; or attend to the B-biased source

and N type B players and make decision B in event Ui. When N is small, switching

sides significantly increases the amount of information that player i can glean from

secondary sources. Yet the resulting gain vanishes and eventually becomes a loss as

N grows to infinity.

Part (ii-b) of Theorem 1 can be understood as follows: when attention is abundant,

as captured by a large τ , switching sides exposes player i to one more highly informed

secondary source, and the resulting gain is shown to increase with τ . Interestingly

and importantly, this is true despite that raising τ also makes player i’s like-minded

friends more informed as secondary sources. To sustain echo chambers in equilibrium,

τ mustn’t be too large.

3.4 Inside an echo chamber

Our second theorem gives a complete characterization of the equilibrium attention

network within an echo chamber. Without loss of generality (w.l.o.g.), consider the

echo chamber among type A players.

Theorem 2. The following are true for any i ∈ A in any echo chamber equilibrium.

(i) If all type A players attend to their own-biased source, i.e., xa
j > 0 ∀j ∈ A, then

the following are equivalent: (a) xi
j > 0 for some j ∈ A − {i}; (b) xa

i > ϕ (λi);

(c) xi
j ≡ h(xa

i ;λi) ∀j ∈ A− {i}.

(ii) xa
i = [τi −

∑
j∈A−{i}

1

λj

logmax
{
(λj − 1)(exp(xa

j )− 1), 1
}

︸ ︷︷ ︸
=xj

i if xa
i >0

]+

(iii) If all type A players attend to each other, i.e., xk
j > 0 ∀j ∈ A and k ∈ A−{j},

then player i’s ex ante expected utility equals

−βi

2
exp(−

∑
j∈A

xa
j +

∑
j∈A−{i}

ϕ (λj)).

Part (i) of Theorem 2 shows that if player i wishes to be attended by a like-

minded friend, then he must first cross his threshold of being visible ϕ(λi), i.e., pay

at least ϕ (λi) units of attention to the primary source. After that, he receives the
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same amount h (xa
i ;λi) of attention from all his friends, which increases with the

amount of attention xa
i that he pays to the primary source. For this reason, we

shall hereinafter call xa
i player i’s level of informedness as a secondary source. The

following observations are important.

Core-periphery architecture. Fix any equilibrium as in Theorem 2. Define

COR = {i ∈ A : xa
i > ϕ(λi)} as the set of the players who are attended by their like-

minded friends, and PER = {i ∈ A : xa
i ≤ ϕ(λi)} as the set of the players who are

ignored by their like-minded friends. When both sets are nonempty, a core-periphery

architecture emerges, whereby COR players acquire information from the primary

source and share results among each other, whereas PER players tap into COR for

secondhand information but are themselves ignored by any player. In order for player

i to belong to COR, he must be, first of all, more visible than the primary source,

i.e., λi > 1. In addition, he must have a large enough bandwidth to satisfy τi > ϕ(λi).

This suggests that a core-periphery architecture is most likely to emerge when play-

ers are heterogeneous, so that those players with large bandwidths and high visibility

parameters form COR, and the remaining players form PER.10 Finally, notice that

the horizontal preference parameter βis do not affect the division between COR and

PER. Indeed, they have no impact on the equilibrium attention network within an

echo chamber.

Informedness as strategic substitutes. For any COR player, we define his in-

fluence on public opinion as the amount h(xa
i ;λi) of attention he receives from any

other player. From hx > 0 (recall Observation 1), it follows that different players’

informedness levels are strategic substitutes: as a player becomes more informed,

his like-minded friends pay more attention to him and less attention to the primary

10A sizable economic literature pioneered by Bala and Goyal (2000) examines when equilibrium so-
cial networks exhibit core-peripheral structures. In our case, numerical analysis suggests that a small
difference between players is often enough to sustain a core-periphery architecture in equilibrium;
see Figure 1 of Appendix B. The intuition behind this finding—which exploits the strategic substi-
tutability between players’ informedness levels—will be explained together with that of Theorem 3,
in the next section.
Recently, Perego and Yuksel (2016) study a related trade-off between producing information and

searching for information in a dynamic learning model. In their setting, a player either produces
information or searches undirectedly for information, but not both, and he cannot learn directly
from other information producers in the first case. Here, the interactions between core players are
central to the comparative statics analysis in Section 3.5. Peripheral players may learn directly from
the primary source, and they actively decide how to allocate attention capacities among core players.

18



source. In the next section, we examine the consequences of this observation for

equilibrium.

Parts (i) and (ii) of Theorem 2 prescribe a two-step algorithm for computing all

echo chamber equilibria. The first step is to pin down players’ informedness levels,

by solving the system of equations in as Part (ii) of the theorem. The second step

is to back out the attention network between players using Part (i) of the theorem.

Specifically, if player i pays a positive amount of attention to his own-biased source,

i.e., xa
i > 0, then the amount of attention he pays to a different player j equals

1

λj

logmax
{
(λj − 1)(exp(xa

j )− 1), 1
}
=

h(xa
j ;λj) if j ∈ COR,

0 if j ∈ PER.

If, instead, xa
i = 0, then the above expression must be scaled by the Lagrange mul-

tiplier associated with the nonnegative constraint xa
i ≥ 0. Regardless of which case

we end up with, the equilibrium attention network between players is always fully

determined by their informedness levels. Since the system of equations that gov-

erns the latter has a solution by the Brouwer fixed point theorem, an echo chamber

equilibrium must exist when βis are small, which completes the proof of Theorem

1(i).

Part (iii) of Theorem 2 shows that when all players belong to COR, their equi-

librium expected utilities depend positively on the total amount of attention that

the entire echo chamber pays to the primary source, and negatively on the visibility

thresholds of their like-minded friends. Intuitively, members of an echo chamber be-

come better off as they collectively acquire more information from the primary source,

and as they become more capable of disseminating information to each other.

3.5 Comparative statics

This section investigates the comparative statics of the equilibrium attention network

within an echo chamber, focusing again on the case among type A players. For ease

of notation, we write {1, · · · , N} for A, θi for (λi, τi), and θ for [θ1, · · · , θN ]⊤. The

next regularity condition is maintained throughout this section.

Assumption 1. The game among type A players has a unique equilibrium, and all

type A players attend to each other in that equilibrium.
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Assumption 1 has two parts. The first part will be elaborated upon in Online Ap-

pendix O.4, where we provide sufficient conditions for the uniqueness of equilibrium.

The second part requires that all players belong to COR, and its sole purpose is to

simplify the exposition: as demonstrated in Online Appendix O.5, introducing PER
players into the analysis does not affect any qualitative prediction of ours.

We conduct two exercises. The first exercise fixes players’ population size and

varies their individual characteristics. The second exercise assumes that players are

homogeneous and varies their population size.

3.5.1 Individual characteristics

The next theorem examines the effects of perturbing a single player’s characteristics

on the equilibrium attention network.

Theorem 3. Fix any N ∈ N−{1}, and let Θ be any neighborhood in R2N
++ such that

for any θ ∈ Θ, the game among a set A of type A players with population size N and

characteristic profile θ satisfies Assumption 1. Then the following must hold for any

i ∈ A, j ∈ A− {i}, and k ∈ A− {j} (i = k is allowed), at any θ◦ ∈ int (Θ).

(i) ∂xa
i /∂τi|θ=θ◦ > 0, ∂xi

j/∂τi
∣∣
θ=θ◦ > 0, ∂xa

j/∂τi
∣∣
θ=θ◦ < 0, and ∂xj

k/∂τi
∣∣
θ=θ◦ < 0.

(ii) One of the following situations happens:

(a) ∂xa
i /∂λi|θ=θ◦ > 0, ∂xi

j/∂λi

∣∣
θ=θ◦ > 0, ∂xa

j/∂λi

∣∣
θ=θ◦ < 0, and ∂xj

k/∂λi

∣∣
θ=θ◦ <

0;

(b) the inequalities in Part (a) are all reversed;

(c) the inequalities in Part (a) are all replaced with equalities.

(iii) If θn ≡ θ ∀n ∈ A, then ∂
∑

n∈A xa
n/∂τi

∣∣
θ=θ◦ > 0 and sgn

(
∂
∑

n∈A xa
n/∂λi

∣∣
θ=θ◦

)
=

sgn (− ∂xa
i /∂λi|θ=θ◦).

Part (i) of Theorem 3 shows that increasing a player’s bandwidth raises his in-

formedness and influence as a secondary source, and so promotes him to become an

opinion leader. More surprisingly, the change diminishes the informedness and influ-

ence of any other player, who thus becomes an opinion follower. As depicted in Figure

1 of Appendix B, this equilibrium mechanism can magnify even a small difference be-

tween people’s bandwidths into a very uneven distribution of opinions, whereby some
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people occupy the center of attention, while others are barely visible. An important

feature of today’s news landscape is that while most Americans express curiosity in

many topics such as science and politics, only a minority of them are willing to spend

time on hard news consumption (Prior, 2007; Funk, Gottfried, and Mitchell, 2017).

According to Theorem 3(i), this attentional gap between the majority and minority

may lead the former to consume most firsthand news, and the latter to rely mainly

on the secondhand opinions that are passed along to them from the former. Patterns

consistent with this prediction, such as the law of the few and fat-tailed distributions

of opinions, have recently been detected in the social media sphere (Lu, Zhang, Cao,

Hu, and Guo, 2014; Del Vicario, Bessi, Zollo, Petroni, Scala, Caldarelli, Stanley, and

Quattrociocchi, 2016; Néda, Varga, and Biró, 2017).

Part (ii) of Theorem 3 shows that increasing a player’s visibility parameter by a

small amount may promote his informedness and influence while diminishing that of

the other players. But the opposite can also happen. Alternatively, the effect can

be neutral. Two countervailing effects are at work here. On the one hand, raising

player i’s visibility parameter λi reduces the threshold ϕ(λi) at which he starts to

exert influences on the other players (recall from Observation 1 that ϕ′ < 0). We

refer to this effect as the intercept effect. On the other hand, now that player i has

become a better information disseminator, the amount of attention that his friends

pay to him no longer varies as sensitively with his informedness as it used to. We refer

to this effect as the slope effect, and note that it goes in the opposite direction of the

intercept effect. In general, either effect can dominate the other (as depicted in Figure

2 of Appendix B), which renders the comparative statics ambiguous. To counter the

rising threat from misinformation and fake news, many social media companies have

taken measures that operate through modulating account visibility. Among others,

Facebook imposes a daily posting limit of 25 articles, beyond which the reach of

the posts will be negatively affected. Theorem 3(ii) warns that such measures may

backfire and, as demonstrated in the next paragraph, undermine consumer welfare,

if they are not well calibrated according to the underlying environment.

Part (iii) of Theorem 3 concerns the total amount of attention that the entire

echo chamber pays to the primary source, which is a crucial determinant of play-

ers’ equilibrium expected utilities. In general, nothing clear-cut can be said, which

is unsurprising given how few assumptions we have made about the magnitudes of

the strategic substitution effects across people. This finding suggests that the afore-

21



mentioned policy interventions could entail ambiguous welfare consequences, and so

should be implemented with caution and care. When players are homogeneous, our

predictions are clear, as increasing a player’s bandwidth makes everyone in the echo

chamber better off.11 As for the consequences of increasing one’s visibility parameter,

our result depends on whether that player ends up being an opinion leader or an

opinion follower: the entire echo chamber pays less attention to the primary source

in the first case, and more attention to the primary source in the second case.

Proof sketch. Proving Theorem 3 requires a new method that we now develop. Due

to space limitations, we only sketch the proof for ∂xa
1/∂τ1|θ=θ◦ > 0 and ∂xa

j/∂τ1
∣∣
θ=θ◦ <

0 ∀j ̸= 1, starting off from the case of two players. In that case, differentiating the

system of equations concerning players’ equilibrium informedness against τ1 yields[
1

∂x2
1

∂xa
2

∂x1
2

∂xa
1

1

] [
∂xa

1

∂τ1
∂xa

2

∂τ1

]∣∣∣∣∣
θ=θ◦

=

[
1

0

]
,

where the term ∂xj
i/∂x

a
j

∣∣
θ=θ◦ captures how perturbing player j’s informedness affects

his influence on player i. Write gj for hx(x
a
j ;λj)

∣∣
θ=θ◦ , and recall that

∂xj
i

∂xa
j

∣∣∣∣∣
θ=θ◦

=︸︷︷︸
Theorem 2

gj ∈︸︷︷︸
Observation 1

(0, 1) ,

i.e., increasing player j’s informedness by one unit raises his influence on player i by

less than one unit. From gj > 0, i.e., informedness levels are strategic substitutes, it

follows that in order for the perturbation to have zero effect on player 2’s bandwidth,

it must cause one and only one player to pay more attention to the primary source.

Now, since gj < 1, i.e., the strategic substitution effects are sufficiently mild, that

player must be player 1, as the direct effect stemming from increasing his bandwidth

dominates the indirect effects that he and player 2 could exert on each other.

Extending the above argument to more than two players is a nontrivial task, as

it requires that we trace out how the strategic substitution effects reverberate across

11To be precise, all we need is that core players be almost homogeneous. Online Appendix O.5
incorporates (heterogeneous) peripheral players into the analysis.
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a large and endogenous attention network. Mathematically, we must solve

[IN +GN ] ∇τ1 [x
a
1 · · · xa

N ]
⊤
∣∣∣
θ=θ◦

= [1, 0, · · · , 0]⊤ ,

where IN is the N × N diagonal matrix, and GN is the marginal influence matrix

defined as

[GN ]i,j =

0 if i = j,

∂xj
i

∂xa
j

∣∣∣
θ=θ◦

else.

A seemingly innocuous fact proves its usefulness here, namely an individual attracts

the same amount of attention from all his friends, i.e., xj
i ≡ h(xa

j ;λj) ∀i ̸= j. Taking

derivatives yields ∂xj
i/∂x

a
j

∣∣
θ=θ◦ ≡ gj ∀i ̸= j, i.e., the off-diagonal entries of GN are

constant column by column:

GN =


0 g2 · · · gN

g1 0 · · · gN
...

...
. . .

...

g1 g2 · · · 0

 .

Based on this fact, as well as gj ∈ (0, 1) ∀j ∈ {1, · · · , N}, we develop a method for

solving [IN+GN ]
−1 and determining the signs of its entries. Our findings are reported

in the next lemma, from which Theorem 3 follows.

Lemma 2. Fix any N ∈ N−{1} and g1, · · · , gN ∈ (0, 1), and let [GN ]i,j = gj ∀i ̸= j

in the marginal influence matrix. Then AN := IN + GN is invertible and satisfies

∀i ∈ {1, · · · , N}: (i)
[
A−1

N

]
i,i
> 0; (ii)

[
A−1

N

]
i,j

< 0 ∀j ̸= i;(iii)
∑N

j=1

[
A−1

N

]
i,j

> 0.

To the best of our knowledge, Lemma 2 is to new to the literature on network

games with negative externalities, as it generates sharp comparative statics predic-

tions without invoking the usual assumptions made in the literature, such as linear

best response functions or a symmetric influence matrix. The lemma is useful for

other purposes, such as evaluating the consequences of a common shock to players’

characteristics; see online Appendix O.2 for such an exercise. While the assumption

that an individual must be equally visible to all his friends is certainly crucial, it can

be relaxed as long as the environment is sufficiently close to the one considered above

(as shown in Online Appendix O.6).
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3.5.2 Population size

This section examines the comparative statics regarding the population size N . To

obtain the sharpest insights, we assume, unlike in the previous section, that players

are homogeneous. Under this assumption, it is easy to see that if the game has a

unique equilibrium (as required by Assumption 1), it must be symmetric. Let x (N)

denote the amount of attention that a typical player pays to the primary source in

that equilibrium. The next proposition investigates the comparative statics of x(N).

Proposition 1. Take any λ, τ > 0, and N ′′ > N ′ ≥ 2 such that the game among

N ∈ {N ′, N ′′} type A players with visibility parameter λ and bandwidth τ satisfies

Assumption 1. As N increases from N ′ to N ′′, x (N) decreases, whereas Nx (N) may

either increase or decrease.

As an echo chamber grows in size, each member of it has access to more secondary

sources and so pays less attention to the primary source. Depending on the severity

of this free-riding problem compared to the population size effect, the overall effect on

the amount of attention that the entire echo chamber pays to the primary source and,

hence, players’ equilibrium expected utilities, is in general ambiguous (as confirmed

by numerical analysis).

Recently, several information platforms, including Allsides.com, have been built

to combat the rising polarization through exposing users to diverse viewpoints from

both sides. In Online Appendix O.2, we model such a platform as a mega source that

results from merging the A-revealing source and B-revealing source of the baseline

model together. We find that the use of a mega source does achieve the purpose

of dissolving echo chambers, as it forces different types of players to attend to each

other as secondary sources. Yet making more secondary sources available to players

discourages information acquisition from primary sources and so exacerbate the free-

riding problem. In a symmetric society, merging biased sources into a mega source is

mathematically equivalent to doubling the population of type A players in Proposition

1. Its effect on players’ equilibrium expected utilities is in general ambiguous.

4 Extensions

This section reports main extensions of the baseline model, in addition to the ones

we have already discussed. Due to space constraints, we postpone the analysis to the
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online appendix, and focus here on results and takeaways.

(In)efficiency of echo chambers. In Online Appendix O.1, we examine the effi-

cient attention network that maximizes the utilitarian welfare of a symmetric society.

We focus on the case where players are sufficiently biased, and so making one’s default

decision is efficient in event Ui. The main qualitative difference between the efficient

attention network and an echo chamber equilibrium is, then, that the former can man-

date that all players attend to both primary sources. In this way, a lot more players

are qualified as secondary sources, despite that each individual cares only about the

information generated by one primary source. Such an allocation is efficient when

players have large bandwidths and high visibility parameters, and so are good at

absorbing information and disseminating it to the others as secondary sources. Yet

it cannot be sustained in any equilibrium, because a self-interested individual would

only gather information about state A or state B, but not both.

General primary sources. In Online Appendix O.2, we extend the baseline model

to multiple primary sources with general visibility parameters. The framework pro-

posed there nests many interesting situations as special cases. For example, if a source

is visible to all players in both states, then it is the mega source discussed at the end

of Section 3.5.2. If it is only visible to a single player in a single state, then it is a

private experiment conducted by that player.

Two findings are noteworthy. First, introducing multiple identical and indepen-

dent primary sources into the model does not affect the total amount of attention

one pays to each kind of source. All it does is to dilute players’ attention across the

same kind of sources. In our leading example, this finding suggests that increasing

the number of independent experiments without improving their qualities may have

limited impacts on public opinion and consumer welfare.

Second, when the visibility parameter of primary sources differs from one, all we

need to do is to rescale things properly. As for comparative statics, we find that

increasing the visibility of primary sources effectively diminishes the visibility of all

secondary sources. Then using the toolkit developed in Lemma 2, we find the same

ambiguous effect as in Theorem 3(ii). Thus in practice, factors that affect primary

sources’ visibility—such as the increasing reliance of scientific journals on digital

technologies and AI to boost distribution and reach—could have ambiguous effects

on public opinion and consumer welfare.
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5 Further Application

This section studies a political economy application of our model. We use our results

to match additional empirical patterns, and to shed light on several policy issues.

Example 3. Each player i ∈ I is now a voter who is affiliated with either the

Democratic Party or the Republican Party. His decision is to vote for either the

Democratic candidate or the Republican candidate, di ∈ {L,R}, and his utility is

the highest if the candidate he supports has the best quality. In case the voter

supports the lowest quality candidate, he incurs a loss of magnitude βi ∈ (0, 1) if

that candidate comes from his own party. If the candidate comes from the opposing

party, then the loss has magnitude 1. Expressive voting is an important motive for

consuming political news according to Prat and Strömberg (2013).

Candidate quality is uncertain and is modeled as a random state ω ∈ {L,R}. News
about ω is generated by an L-revealing source and an R-revealing source. The game

begins with voters specifying how much attention they wish to pay to each primary

source and to each other. After that, news transmits from the primary source to

voters, and then among voters themselves in a nonstrategic manner. While stylized,

the last assumption helps us focus on the optimal attention allocation problem while

still capturing important facets of reality: according to a recent study by Dewey

(2016), 6 out of 10 people share links after glancing quickly at the headlines.

Voters can differ in their bandwidth τis, depending on how much time they are

willing to spend on hard news consumption versus doing other things, such as con-

suming entertainment. They can also differ in their visibility parameter λis, as public

figures like Oprah Winfrey are more capable of deciphering and disseminating the

complex messages of elite newspapers to the less educated audience than ordinary

people (Baum and Jamison, 2006). ♢

We interpret primary sources as journalists or media outlets that produce original

reporting about the state. Following Che and Mierendorff (2019), we call the L-

revealing source R-biased, and the R-revealing source L-biased. This practice is

inspired by Chiang and Knight (2011), who find that newspaper endorsements for

the presidential candidates in the United States are most effective in shaping voters’

beliefs and decisions if the endorsement goes against of the bias of the newspaper.

Additional evidence for this view is surveyed by DellaVigna and Gentzkow (2010).
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Our model predicts after playing an echo chamber equilibrium, a majority of the

voters will have more faith in their own-party candidates than before, while a minority

of them will become supportive of the opposing party candidate. The coexistence of

a belief polarization and an occasional yet drastic belief reversal is a hallmark of

Bayesian rationality. Its presence among voters after social media consumption has

recently been detected by Flaxman, Goel, and Rao (2016), Balsamo, Gelardi, Han,

Rama, Samantray, Zucca, and Starnini (2019), and Allcott, Braghieri, Eichmeyer,

and Gentzkow (2020), among others.

As for comparative statics, we note that today’s high-choice media environment

and the resulting separation of news junkies from the majority of people may generate

the fat-tailed distribution of opinions that Farrell and Drezner (2008) find among

political blogs. In the aftermath of the 2021 U.S. Capitol attack, there have been

calls to modify Section 230 of the Communications Decency Act of 1996 so as to allow

Internet companies to exercise more account control (Romm, 2021). We caution that

account control via modulating source visibility may backfire if it is not well calibrated

according to underlying environment.

Our results speak to the effectiveness of the FCC’s viewpoint diversity objectives

and, more specifically, the eight voice rule. The latter mandates that at least eight

independent media outlets must be operating in the same digital media area (Ho

and Quinn, 2008). As shown in Online Appendix O.2, increasing the number of

independent primary sources without improving their qualities has no real impact in

the setting we consider.

6 Concluding remarks

This paper develops a rational inattention theory of echo chamber. To single out the

economic forces of our interest, we abstract away from alternative considerations such

as strategic information sources, behavioral players, etc. To the extent that the latter

are believed to foster echo chambers, our model prescribes a lower bound for the degree

of opinion segregation that can arise and persist in reality. Its normative implications,

especially those that question the effectiveness of interventions that target the rising

misinformation and polarization, are relevant in more general, complex, environments.

Our analysis generates several new predictions, including conducive conditions

to echo chamber formation and the comparative statics of equilibrium attention net-
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works, in addition to patterns that have been documented by other authors in different

contexts, such as the belief distribution after social media consumption. Testing these

predictions together in a rigorous manner is an interesting avenue for future research.

One way to make progress is to run a controlled experiment on social media, as has

done by scholars working on related topics (see, e.g., Allcott, Braghieri, Eichmeyer,

and Gentzkow 2020).

A Proofs

A.1 Useful lemmas and their proofs

Proof of Lemma 1. When players can only attend to the primary sources but not

to each other, the ex ante problem faced by a type A player who makes decision A

in event Ui is

max
xa,xb

−βi

2
exp(−xa) s.t. xa, xb ≥ 0 and τi ≥ xa + xb.

If, instead, the player makes decision B in event Ui, then his ex ante problem becomes

max
xa,xb

−1

2
exp(−xb) s.t. xa, xb ≥ 0 and τi ≥ xa + xb.

The solutions to these problems are (xa, xb) = (τi, 0) and (xa, xb) = (0, τi). The first

solution generates a higher expected utility and so is optimal.

Proof of Lemma 2. We proceed in three steps.

Step 1. Solve for A−1
N . We conjecture that

det (AN) = 1 +
N∑
s=1

(−1)s−1 (s− 1)
∑

(kl)
s
l=1:kl∈{1,··· ,N},
k1<···<ks

s∏
l=1

gkl , (1)

and that the following hold ∀i ∈ {1, · · · , N} and j ∈ {1, · · · , N} − {i}:

[
A−1

N

]
i,i
=

1

det (AN)
[1 +

N−1∑
s=1

(−1)s−1 (s− 1)
∑

(kl)
s
l=1:kl∈{1,··· ,N}−{i},

k1<···<ks

s∏
l=1

gkl ] (2)
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and [
A−1

N

]
i,j

=
−gj

det (AN)

∏
k∈{1,··· ,N}−{i,j}

(1− gk) . (3)

We omit most algebra, but note that AN can be rewritten as BN + uNv
⊤
N , where

BN := diag(1− g1, · · · , 1− gN), uN is the N -vector of ones, and vN := [g1, · · · , gN ]⊤.
Applying the Sherman-Morrison formula (Sherman and Morrison, 1950) shows that

A−1
N = B−1

N − B−1
N uNv

⊤
NB

−1
N

1 + v⊤
NB

−1
N uN

,

and simplifying the last expression by doing lengthy algebra gives the desired result.

Step 2. Show that det (AN) > 0, i.e,

N∑
s=1

(−1)s−1 (s− 1)
∑

(kl)
s
l=1:kl∈{1,··· ,N},
k1<···<ks

s∏
l=1

gkl > −1.

Denote the left-hand side of the above inequality by LHS (g1, · · · , gN). Since the

function LHS : [0, 1]N → R is linear in each gi, holding (gj)j ̸=i constant, its minimum is

attained at an extremal point of [0, 1]N . Indeed, since the function is symmetric across

gis, the following must hold for any (g1, · · · , gN) ∈ {0, 1}N−1 such that
∑N

i=1 gi = n:

LHS (g1, · · · , gN) = f (n) :=
n∑

k=1

(−1)k−1 (k − 1)

(
n

k

)
.

It remains to show that f (n) ≥ −1 ∀n = 0, 1, · · · , N . When n = 0 and 1, f(n) = 0.

For each n ≥ 2, define

p (n) :=
n∑

k=1

(−1)k k

(
n

k

)
.

Below we prove by induction that f (n) = −1 and p (n) = 0 ∀n = 2, · · · , N .

Our conjecture is clearly true when n = 2, as

f (2) = −
(
2

2

)
= −1 and p (2) = −

(
2

1

)
+ 2

(
2

2

)
= 0.
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Now suppose that it is true for some n ≥ 2. Then

f (n+ 1)

=
n+1∑
k=1

(−1)k−1 (k − 1)

(
n+ 1

k

)
=

n∑
k=1

(−1)k−1 (k − 1)

(
n+ 1

k

)
+ (−1)n n

(
n+ 1

n+ 1

)
=

n∑
k=1

(−1)k−1 (k − 1)

((
n

k

)
+

(
n

k − 1

))
+ (−1)n n (∵

(
n+1
k

)
=

(
n
k

)
+
(

n
k−1

)
)

= f (n) + 0

(
n

0

)
+

n−1∑
k=1

(−1)k k

(
n

k

)
+ (−1)n n

(
n

n

)
= f (n) + p (n)

= −1,

and

p (n+ 1)

=
n+1∑
k=1

(−1)k k

(
n+ 1

k

)
=

n∑
k=1

(−1)k k

((
n

k

)
+

(
n

k − 1

))
+ (−1)n+1 (n+ 1) (∵

(
n+1
k

)
=

(
n
k

)
+
(

n
k−1

)
)

= p (n) +
n−1∑
k=0

(−1)k+1 (k + 1)

(
n

k

)
+ (−1)n+1 (n+ 1)

= 0 +
n−1∑
k=1

(−1)k+1 k

(
n

k

)
+

n−1∑
k=0

(−1)k+1

(
n

k

)
+ (−1)n+1 (n+ 1) .

Then from

n−1∑
k=1

(−1)k+1 k

(
n

k

)
=

n∑
k=1

(−1)k+1 k

(
n

k

)
− (−1)n+1n

= −p (n)− (−1)n+1n

= −(−1)n+1n,
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it follows that

p (n+ 1) =
n−1∑
k=0

(−1)k+1

(
n

k

)
+ (−1)n+1 ,

and so p(n+ 1) = 0 if and only if

q (n) :=
n−1∑
k=0

(−1)k+1

(
n

k

)
= (−1)n .

When n is odd, simplifying q(n) using the fact that

(−1)k+1

(
n

k

)
+ (−1)n−k+1

(
n

n− k

)
= 0 ∀k ∈ {1, · · · , n− 1},

yields

q(n) = (−1)

(
n

0

)
+ 0 = (−1)n, as desired.

When n is even, expanding q (n) yields

q (n) =
n−1∑
k=1

(−1)k−1

((
n− 1

k − 1

)
+

(
n− 1

k

))
−
(
n

0

)
(∵

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
)

=
n−1∑
k=1

(−1)k−1

(
n− 1

k − 1

)
+

n−1∑
k=0

(−1)k−1

(
n− 1

k

)
. (∵ −

(
n
0

)
= (−1)−1

(
n−1
0

)
)

Then from

n−1∑
k=1

(−1)k−1

(
n− 1

k − 1

)
=

n−2∑
k=0

(−1)k
(
n− 1

k

)
= −q (n− 1) = 1 (∵ q(n− 1) = −1)

and

n−1∑
k=0

(−1)k−1

(
n− 1

k

)
=

n−2∑
k=0

(−1)k−1

(
n− 1

k

)
+ (−1)n−2

(
n− 1

n− 1

)
= q (n− 1) + 1

= 0,

it follows that q (n) = 1 = (−1)n, as desired.

31



Step 3. Verify that
[
A−1

N

]
i,i

> 0,
[
A−1

N

]
i,j

< 0, and
∑N

j=1

[
A−1

N

]
i,j

> 0 ∀i ∈
{1, · · · , N} and j ∈ {1, · · · , N} − {i}.[

A−1
N

]
i,j

is clearly negative. To show that [A−1
N ]i,i is positive, define DN,i as the

principal minor of AN that obtains from deleting the ith row and column of AN .

Since DN,i satisfies all the properties stated in Lemma 2, det (DN,i) must be positive

by Step 2. Then from the fact that
[
A−1

N

]
i,i

= det (DN,i) /det (AN), it follows that

[A−1
N ]i,i > 0, as desired. Finally, summing

[
A−1

N

]
i,j

over j ∈ {1, · · · , N} and doing

lengthy algebra yields

N∑
j=1

[
A−1

N

]
i,j

=
1

det (AN)

∏
k∈{1,··· ,N}−{i}

(1− gk) > 0, as desired.

Lemma 3. ϕ′(λ) < 0 on (1,+∞) and limλ↓1 ϕ(λ) = +∞. For each λ > 1, h(·;λ) sat-
isfies (i) h (ϕ (λ) ;λ) = 0; (ii) hx (x;λ) ∈ (0, 1) on (ϕ (λ) ,+∞) and limx↓ϕ(λ) hx(x;λ) =

1; and (iii) hxx (x, λ) < 0 on (ϕ (λ) ,+∞).

Proof. The result follows from straightforward algebra.

Lemma 4. Fix any λ > 1 and τ > ϕ(λ). For each N ∈ N−{1} and x ∈ [ϕ(λ),+∞),

define

φN (x) := τ − (N − 1)h(x;λ).

Then φN has a unique fixed point x(N) that satisfies x(N) ∈ (ϕ(λ), τ), limN→+∞ x(N)

= ϕ(λ), limτ→+∞ x(N) = +∞, and dx(N)/dτ ∈ (1/N, 1).

Proof. Since h(ϕ(λ);λ) = 0 and hx(x;λ) > 0 on (ϕ(λ),+∞) by Lemma 3, φN(x) =

τ − (N − 1)h(x;λ) has a unique fixed point x(N) that belongs to (ϕ(λ), τ) (drawing

a picture will make this point clear). In order to satisfy x(N) = φN(x(N)) > ϕ(λ),

h(x(N);λ) must converge to zero as N → +∞, which, together with Lemma 3,

implies that limN→+∞ x(N) = ϕ(λ).

Turning to the relationship between x(N) and τ , notice that x(N) must grow to

infinity as τ → +∞ in order to satisfy x(N) + (N − 1)h(x(N);λ) = τ . Taking the

total derivative of φN(x(N)) = x(N) with respect to τ yields dx(N)/dτ = (1+ (N −
1)hx(x(N);λ))−1, where the last term lies in (1/N, 1) because hx ∈ (0, 1).

A.2 Proofs of theorems and propositions

Proof of Theorems 1(i) and 2. We proceed in four steps.
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Step 1. Show that for any type A player i, making the default decision in event

Ui is a dominant strategy when βi is sufficiently small.

If the player attends only to source a and makes decision A in event Ui, then

his ex ante expected utility equals −βi exp (−τi) /2. If, instead, he makes decision B

in event Ui, then his ex ante expected utility is at most − exp(−λτi)/2, where λ :=

max{1, λj, j ∈ I − {i}}. The reason is that, in a hypothetical situation where all the

other players knows for sure when state A occurs, player i essentially faces the original

primary source b, together with |I|− 1 primary sources with visibility parameter λjs,

j ̸= i. His optimal strategy is to focus on the source with the highest visibility

parameter λ, and the resulting ex ante expected utility equals − exp(−λτi)/2. The

last term is smaller than −βi exp (−τi) /2 when βi < exp((1 − λ)τi). The remainder

of the proof assumes that this is the case.

Step 2. Show that any equilibrium must be an echo chamber equilibrium. It

suffices to show that xb
i = 0 and xj

i = 0 ∀i ∈ A and j ∈ B. Fix any x−i ∈ X−i.

Rewrite player i’s problem: maxxi∈Xi
−βiPx(Ui | ω = B)/2, as follows:

max
(xc

i )c∈Ci

− xa
i −

∑
j∈I−{i}

log(δaj + (1− δaj )δ
j
i ) (4)

s.t. xc
i ≥ 0 ∀c ∈ Ci and τi ≥

∑
i∈Ci

xc
i ,

where δai := exp(−xa
i ) and δji := exp(−λjx

j
i ). Since (4) is a concave problem, it can

be solved using the Lagrangian method. Let ηxc
i
≥ 0 and γi ≥ 0 denote the Lagrange

multipliers associated with the constraints xc
i ≥ 0 and τi ≥

∑
c∈Ci x

c
i , respectively.

The first-order conditions regarding xa
i , x

b
i , and xj

i , j ∈ I − {i}, are

1− γi + ηxa
i
= 0, (FOCxa

i
)

−γi + ηxb
i
= 0, (FOCxb

i
)

and
λj(1− δaj )δ

j
i

δaj + (1− δaj )δ
j
i

− γi + ηxj
i
= 0, (FOCxj

i
)

respectively. FOCxa
i
and FOCxb

i
together imply that γi = ηxb

i
≥ 1 > 0, and so∑

c∈Ci x
c
i = τi and xb

i = 0. In words, player i must exhaust his bandwidth but ignore

source b. The opposite is true for any type B player j, who must ignore source a, i.e.,

xa
j = 0. Letting δaj := exp(−xa

j ) = 1 in FOCxj
i
yields ηxj

i
= γi > 0, and so xj

i = 0.
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Step 3. Characterize the equilibrium attention network among type A players.

Simplifying FOCxj
i
shows that

xj
i =

1

λj

logmax{
(
λj

γi
− 1

)
(exp(xa

j )− 1), 1} ∀i ∈ A and j ∈ A− {i}, (5)

where the term γi in the above expression satisfies γi ≥ 1, and the inequality is strict

if and only if xa
i = 0 (as shown in Step 2). Simplifying (5) accordingly yields

xa
i = [τi −

∑
j∈L−{i}

1

λj

logmax{(λj − 1)(exp(xa
j )− 1), 1}]+ ∀i ∈ A. (6)

Equations (5) and (6) together pin down all equilibria of the game among type A

players. They can be further simplified when xa
i > 0 ∀i ∈ A, and when xj

i > 0 ∀i ∈ A
and j ∈ A− {i}.

• In the first case, γi ≡ 1 ∀i ∈ A, and so (5) becomes

xj
i =

1

λj

logmax{(λj − 1)(exp(xa
j )− 1), 1} ∀i ∈ A and j ∈ A− {i}. (7)

A close inspection of (7) reveals the equivalence between (a) xa
j > ϕ(λj), (b) x

j
i > 0,

and (c) xj
k ≡ h(xa

j ;λj) ∀k ∈ A− {j}, as in Part (i) of Theorem 2.

• In the second case, (5) and (6) become

xj
i = h(xa

j ;λj) ∀i ∈ A and j ∈ A− {i} (8)

and xa
i = τi −

∑
j∈A−{i}

h(xa
j ;λj) ∀i ∈ A, respectively. (9)

Simplifying Px (Ui | ω = B) accordingly yields

Px (Ui | ω = B)

= δai
∏

j∈A−{i}

(δaj + (1− δaj )δ
j
i )

= exp(−xa
i )

∏
j∈A−{i}

exp(−xa
j ) + (1− exp(−xa

j )) exp(−λj ·
1

λj

log(λj − 1)(exp(xa
j )− 1))

= exp(−
∑
j∈A

xa
j +

∑
j∈A−{i}

ϕ (λj)),
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as in Part (iii) of Theorem 2.

Step 4. Show that the game among type A players has an equilibrium. Recall

from Step 3 that all equilibria of this game can be obtained by first solving (6) and

then substituting the result(s) into (5). To show that (6) admits a solution, write

{1, · · · , N} for A. For each xa := [xa
1 · · · xa

N ]
⊤ ∈ ×N

i=1 [0, τi], define T (xa) as the

N -vector whose ith entry is given by the right-hand side of (6), and rewrite (6) as

T (xa) = xa. Since T : ×N
i=1 [0, τi] → ×N

i=1 [0, τi] is a continuous mapping from a

compact convex set to itself, it has a fixed point according to the Brouwer fixed point

theorem.

Proof of Theorem 1(ii). If τ ≤ ϕ(λ), then the game has a unique equilibrium in

which players attend to their own-biased sources but nothing else. The remainder of

the proof focuses on the more interesting case where τ > ϕ(λ).

Our starting observation is that each player must attend only to a single primary

source in any equilibrium. Thus in a symmetric equilibrium, either (i) all type A

players attend to source a and their like-minded friends, and make decision A in

event Uis; or (ii) all type A players attend to source b and their like-minded friends,

and make decision B in event Uis.

Part (a): We proceed in two steps.

Step 1. Show that the game has a unique symmetric equilibrium of the first

kind when N is large.

Let xa
i and xj

i denote the amounts of attention that a typical type A player i pays

to source a and each like-minded friend of his, respectively. If xj
i = 0, then xa

i = τ .

But then xi
j = h(τ, λ) ̸= xj

i , which violates symmetry. As a result, xj
i > 0 must

hold, and xa
i must solve x = τ − (N − 1)h(x;λ) := φN(x) and so equals x(N) by

Lemma 4. Substituting this result into Parts (ii) and (iii) of Theorem 2(ii) yields

xj
i = h(x(N);λ) > 0, and −β exp (−Nx (N) + (N − 1)ϕ (λ)) /2 as the player’s ex

ante expected utility.

To sustain the above outcome on the equilibrium path, player i mustn’t benefit

from attending to source b and type B players and making decision B in event Ui. In

case player i commits such a deviation, solving his best response to type B players’

equilibrium strategies yields yji = h (x (N) ;λ) as the amount of attention that he

pays to each type B player, and ybi = τ − Nh(x(N);λ) as the amount of attention
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that he pays to source b. The last term is positive when N is large, because ybi =

φN(x(N)) − h(x(N);λ) = x(N) − h(x(N);λ) → ϕ(λ) > 0 as N → ∞ by Lemma 4.

The ex ante expected utility generated by this best response function equals

−1

2
exp(−τ +

N (τ − x (N))

N − 1
−Nx (N) +Nϕ (λ)). (10)

Comparing (10) with the on-path expected utility, we find that the former is smaller

than the latter (and so the deviation is unprofitable) if and only if

τ

N − 1
+ ϕ (λ)− N

N − 1
x (N) > log β. (11)

Since the left-hand side of (11) converges to zero as N grows to infinity by Lemma 4,

it must exceed the right-hand side when N is sufficiently large.

Step 2. Show that no symmetric equilibrium of the second kind exists. In any

equilibrium as such, any type A player can strictly benefit from attending to source

a and N − 1 type B players (who pay x(N) unit of attention to source a) rather than

adopting the equilibrium strategy.

Part (b): By Lemma 4, the left-hand side of (11), hereinafter denoted by LHS(τ),

satisfies limτ↓ϕ(λ) LHS(τ) = 0 and dLHS(τ)
dτ

= 1
N−1

− N
N−1

dx(N)
dτ

∈ (−1, 0). Thus there

exists τ ∈ (ϕ(λ),+∞) such that (11) holds if and only if τ ∈ (ϕ(λ), τ). The remainder

of the proof is the same as that of Part (i) and is therefore omitted for brevity.

Proof of Theorem 3. Write {1, · · · , N} for A. Since xa
i > ϕ(λi) ∀i ∈ A in

equilibrium (as required by Assumption 1), gi := hx(x
a
i ;λi) ∈ (0, 1) must hold by

Lemma 3. Let [GN ]i,j = gj ∀j ∈ {1, · · · , N} and i ∈ {1, · · · , N} − {j} in the

marginal influence matrix. The corresponding matrix AN := IN + GN satisfies the

properties stated in Lemma 2.

Part (i): We only prove the result for τ1. Under Assumption 1, (xa
i )

N
i=1 and (xj

i )i,j

must solve (9) and (8) among type A players, respectively. Differentiating (9) with

respect to τ1 yields

∇τ1x
a = A−1

N [1 0 · · · 0]⊤ ,
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where xa := [xa
1 · · · xa

N ]
⊤. From Lemma 2, it follows that

∂xa
1

∂τ1
=

[
A−1

N

]
1,1

> 0 and
∂xa

j

∂τ1
=

[
A−1

N

]
j,1

< 0 ∀j ̸= 1.

Substituting this result into (8) yields

∂x1
j

∂τ1
= g1

∂xa
1

∂τ1
> 0 and

∂xj
k

∂τ1
= gj

∂xa
j

∂τ1
< 0 ∀j ̸= 1 and k ̸= j.

Part (ii): We only prove the result for λ1. Differentiating (9) with respect to λ1 yields

∇λ1x
a = κA−1

N [0 1 · · · 1]⊤ ,

where κ := −hλ(x
a
1;λ1) has an ambiguous sign in general. From Lemma 2, it follows

that

sgn(
∂xa

1

∂λ1

) = sgn(κ
∑
i ̸=1

[
A−1

N

]
1,i︸ ︷︷ ︸

<0

) = sgn (−κ)

and that

sgn(
∂xa

j

∂λ1

) = sgn(κ(
N∑
i=1

[
A−1

N

]
j,i︸ ︷︷ ︸

>0

−
[
A−1

N

]
j,1︸ ︷︷ ︸

<0

)) = sgn (κ) ∀j ̸= 1.

Substituting the second result into (8) yields

sgn(
∂xj

k

∂λ1

) = sgn(gj
∂xa

j

∂λ1

) = sgn (κ) ∀j ̸= 1 and k ̸= j.

Finally, differentiating x1
j with respect to λ1 yields

sgn(
∂x1

j

∂λ1

) = sgn(κ[g1
∑
i ̸=1

[A−1
N ]i,1︸ ︷︷ ︸

<0

−1]) = sgn (−κ) .

Thus in total, only three situations can happen, depending on whether κ is negative,

positive, or zero. Specifically,
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(a) if κ < 0, then ∂xa
1/∂λ1 > 0, ∂xa

j/∂λ1 > 0, ∂xa
j/∂λ1 < 0, and ∂xj

k/∂λ1 < 0 ∀j ̸= 1

and k ̸= j;

(b) if κ > 0, then reverse all the inequalities in case (a);

(c) if κ = 0, then replace the inequalities in case (a) with equalities.

Part (iii): Write x for
∑N

i=1 x
a
i . From

∂x

∂τ1
= [1 1 · · · 1]∇τ1x

a =
N∑
i=1

[
A−1

N

]
i,1︸ ︷︷ ︸

X

and
∂x

∂λ1

= [1 1 · · · 1]∇λ1x
a = κ(

N∑
i,j=1

[
A−1

N

]
i,j

−
N∑
i=1

[
A−1

N

]
i,1︸ ︷︷ ︸

Y

),

it follows that sgn (∂x/∂τ1) = sgn(X), and that sgn (∂x/∂λ1) = sgn(κ) = sgn (−∂xa
1/∂λ1)

if and only if Y > 0. It remains to show that X, Y > 0. For starters, notice that

if the environment is symmetric and the game has a unique equilibrium (as required

by Assumption 1), then the equilibrium and the corresponding matrix AN must also

be symmetric. Based on this fact, we can simplify X to
∑N

i=1

[
A−1

N

]
1,i

and Y to

(N − 1)
∑N

i=1

[
A−1

N

]
1,i
. The last terms are positive by Lemma 2(iii).

Proof of Proposition 1. We made three assumptions in the statement of Propo-

sition 1: the environment is symmetric; the game has a unique equilibrium; and all

players attend to each other in equilibrium. The first two assumptions imply that the

equilibrium is symmetric. The last assumption implies that each player pays x(N)

units of attention to his own-biased source and h(x(N);λ) units of attention to each

like-minded friend of his (as shown in the proof of Theorem 1(ii)). Differentiating

both sides of x (N) = φN(x(N)) with respect to N yields

dx (N)

dN
= −1

λ

[
1 +

N − 1

λ

exp (x (N))

exp (x (N))− 1

]−1

log [(λ− 1) (exp (x(N))− 1)] < 0,

where the last inequality uses the fact that x(N) > ϕ(λ) := log( λ
λ−1

). The term

Nx(N) is in general nonmonotonic in N , as is confirmed by numerical methods.
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B Figures

0
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xa
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a
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a

Figure 1: τl and τf denote the bandwidths of opinion leaders and followers; xa
l and

xa
f denote their levels of informedness in equilibrium: τf = 0.16, λl = λf = 10, the

numbers of opinion leaders and followers are 10 and 90, respectively.
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BR1(x
a
2 ;�2 = 1.5)

(b) Increase λ1 from 1.5 to 4.

Figure 2: The red and black curves represent player 1 and player 2’s best response
functions, respectively: λ2 = 1.5, τ1 = τ2 = 3.
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Hébert, B. M., and J. La’O (2021): “Information acquisition, efficiency, and
non-fundamental volatility,” Working paper.

Hellwig, C., and L. Veldkamp (2009): “Knowing what others know: Coordi-
nation motives in information acquisition,” Review of Economic Studies, 76(1),
223–251.

Herskovic, B., and J. Ramos (2020): “Acquiring information through peers,”
American Economic Review, 110(7), 2128–2152.

Ho, D. E., and K. M. Quinn (2008): “Viewpoint diversity and media consolidation:
An empirical study,” Stanford Law Review, 61, 781.

Hu, L., A. Li, and I. Segal (forthcoming): “The politics of personalized news
aggregation,” Journal of Political Economy Microeconomics.

Innocenti, F. (2021): “Can media pluralism be harmful to news quality?,” Working
paper.

Jackson, M. O., and A. Wolinsky (1996): “A strategic model of social and
economic networks,” Journal of Economic Theory, 71(1), 44–74.

Jackson, M. O., and Y. Zenou (2015): “Games on networks,” in Handbook of
Game Theory with Economic Applications, vol. 4, pp. 95–163. Elsevier.

Jann, O., and C. Schottmüller (2021): “Why are echo chambers useful,” Work-
ing paper.

Katz, E., and P. F. Lazarsfeld (1955): Personal Influence: The Part Played by
People in the Flow of Mass Communications. New York, NY: The Free Press.

Levy, G., and R. Razin (2019): “Echo chambers and their effects on economic and
political outcomes,” Annual Review of Economics, 11, 303–328.

Lu, Y., P. Zhang, Y. Cao, Y. Hu, and L. Guo (2014): “On the frequency
distribution of retweets,” Procedia Computer Science, 31, 747–753.
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Prat, A., and D. Strömberg (2013): “The political economy of mass media,” in
Advances in Economics and Econometrics: Theory and Applications, Tenth World
Congress, ed. by D. Acemoglu, M. Arellano, and E. Dekel. Cambrige University
Press.

Prior, M. (2007): Post-Broadcast Democracy: How Media Choice Increases Inequal-
ity in Political Involvement and Polarizes Elections. New York, NY: Cambridge
University Press.

Romm, T. (2021): “Facebook, Twitter could face punishing regulation for their role
in U.S. Capitol riot, Democrats say,” The Washington Post, January 8.

Sadler, E., and B. Golub (2021): “Games on endogenous networks,” arXiv
preprint arXiv:2102.01587.

Sethi, R., and M. Yildiz (2016): “Communication with unknown perspectives,”
Econometrica, 84(6), 2029–2069.

Sherman, J., and W. J. Morrison (1950): “Adjustment of an inverse matrix cor-
responding to a change in one element of a given matrix,” Annals of Mathematical
Statistics, 21(1), 124–127.

Suen, W. (2004): “The self-perpetuation of biased beliefs,” Economic Journal,
114(495), 377–396.

Sunstein, C. (2007): Republic. com 2.0. Princeton, NJ: Princeton University Press.

Williams, C. (2021): “Echo chambers: Social learning under unobserved hetero-
geneity,” Working paper.

Zhong, W. (2022): “Optimal dynamic information acquisition,” Econometrica,
90(4), 1537–1582.

43



Online Appendix for

“A Rational Inattention Theory of Echo

Chamber”

by Lin Hu, Anqi Li, and Xu Tan



O.1 Efficient attention network

In this appendix, we examine the efficient attention network that maximizes the

utilitarian welfare of a symmetric society, and highlight its main qualitative difference

from the equilibrium attention network.

We focus on the case where players have strong horizontal preferences, and so

making one’s default decision is efficient in event Ui. The efficient attention network

solves

max
x∈×i∈IXi

−β

2

∑
i∈I

Px(Ui | ω ̸= di).

The next theorem shows that when players are good at absorbing and disseminating

information (as captured by a large bandwidth τ and a high visibility parameter λ),

they are mandated to attend to both primary sources and to each other under the

efficient attention network. Doing so qualifies all players as secondary sources and

so facilitates information transmission between them, although the outcome cannot

be sustained in any equilibrium. The reason is that in our model, a self-interested

individual would only gather information about state A or B, but not both. Mandat-

ing that players attend to both primary sources is socially beneficial but individually

wasteful.

Theorem O1. Consider a symmetric society parameterized by (N, β, λ, τ). For each

N ∈ N − {1}, there exist β, λ, and τ > 0 such that when β < β, λ > λ, and τ > τ ,

the efficient attention network features xa
i , x

b
i , x

j
i > 0 for all i, j, and so cannot be

sustained in any equilibrium.

Proof. Omitted proofs from this appendix are gathered in subsection O.7.

O.2 General primary sources

This appendix extends the baseline model to a finite set S of primary sources. In

state ω ∈ Ω := {A,B}, source s ∈ S disseminates message “ω” to player i at Poisson

rate λs
i (ω) ≥ 0. The baseline model is a special case of this general framework, where

S = {ω-revealing : ω ∈ Ω}, and λω′-revealing
i (ω) =

1 if ω = ω′

0 else
∀i ∈ I and ω′ ∈ Ω.

Other special cases include, but are not limited to the following.
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Example O1. If ∀i ∈ I, λs
i (ω) =

λs > 0 if ω = ω′ ∈ Ω,

0 else,
then s is a public source

that specializes in revealing state ω′ to all players at rate λs. ♢

Example O2. If ∃i′ ∈ I and ω′ ∈ Ω such that λs
i (ω) =

λs > 0 if i = i′ and ω = ω′,

0 else,

then s is a private source that specializes in revealing state ω′ to player i′. ♢

Example O3. If λs
i (ω) = 1 ∀i ∈ I and ω ∈ Ω, then s is a mega source that reveals

both states to all players at rate 1, and it can be obtained from merging the biased

primary sources in the baseline model together. ♢

For each i ∈ I and ω ∈ Ω, define λi(ω) := max{λs
i (ω) : s ∈ S} as the highest

rate at which state ω is revealed to player i, and assume that λi(ω) > 0 to make the

analysis interesting. Define Si(ω) := {s : λs
i (ω) = λi(ω)} and Si := ∪ω∈ΩSi(ω). Our

starting observation is that in equilibrium, each player i attends only to the sources

in Si, and only the total amount of attention that he pays to these sources matters.

Lemma O1. ∀i ∈ I and s ∈ S, xs
i = 0 if s ∈ S\Si in any equilibrium. Moreover,

if ((xs
i )s∈Si

, (xj
i )j∈I−{i})i∈I is an equilibrium strategy profile, then so is every strategy

profile ((ysi )s∈Si
, (yji )j∈I−{i})i∈I that satisfies

∑
s∈Si(ω)

ysi =
∑

i∈Si(ω)
xs
i ∀i ∈ I and

ω ∈ Ω, as well as yji = xj
i ∀i ∈ I and j ∈ I − {i}.

The remainder of this appendix examines two special cases: specialized sources

and mega source. As in Examples O1 and O2, we say that primary sources are

specialized if each of them reveals at most one state at a positive rate to each player,

i.e., ∀i ∈ I and s ∈ S, |{ω : λs
i (ω) > 0}| ≤ 1. The next proposition extends the

baseline model to encompass specialized sources.

Proposition O1. When sources are specialized, (i) it is w.l.o.g. to assume that each

player faces two primary sources, each revealing a distinct state ω ∈ Ω to him at rate

λi(ω). (ii) In the case where λi(ω) ≡ ν > 0 ∀i ∈ I and ω ∈ Ω, Theorems 1 and

2 remain valid after we replace xc
i , λi, and τi with νxc

i , λi/ν, and ντi, respectively,

∀i ∈ I and c ∈ Ci.

Part (i) of Proposition O1 shows that introducing multiple (public or private)

specialized sources of the same quality into the baseline model does not impact the
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equilibrium attention network in any meaningful way. All it does is to dilute players’

attention across the same kind of sources.

When λi(ω) ̸= 1, we must rescale player’s bandwidths and visibility parameters

properly to make the equilibrium characterization work. Part (ii) of Proposition

O1 examines the consequences of applying a common shock ν to the visibility of the

primary sources. Among other things, we find that increasing the visibility of primary

sources effectively diminishes that of secondary sources. The equilibrium and welfare

consequences of this change are in general ambiguous by Theorem 3.

Consider next the case of a mega source as in Example O3. We denote this source

by m as in the main text, and normalize its visibility parameter to 1 for simplicity.

The next proposition establishes the isomorphism between two interesting games.

Proposition O2. Let everything be as in the baseline model except that sources a

and b are merged into m. If (xm
i , (x

j
i )j∈I−{i})i∈I is an equilibrium of this augmented

game, then the strategy profile (yai , (y
j
i )j∈I−{i})i∈I with yai = xm

i and yji = xj
i ∀i ∈ I

and j ∈ I − {i} is an equilibrium of the game among a set I of type A players with

characteristics (βi, λi, τi)s and access to source a. Moreover, the converse is also true,

and players’ expected utilities are the same under the two equilibria.

We demonstrate the usefulness of Proposition O2 in a symmetric society. There,

merging sources a and b into m is mathematically equivalent to doubling the size

N of the echo chamber among type A players in Proposition 1. From the previ-

ous discussion, we know that the welfare consequence of this change is in general

ambiguous.

O.3 Finite decision problems

This appendix extends the baseline model to decision problems with more than two

states and actions. Suppose that the state ω is distributed uniformly on a finite set

{1, · · · ,M} with M ∈ N−{1}. There are M types of players, each has a population

N ∈ N − {1} and can make one of the decisions in {1, · · · ,M}. In case a type m

player makes decision d, his utility in state ω equals zero if d = ω, −1 if ω = m and

d ̸= m, and −β if ω ̸= m and d = m. Assume that β ∈ (0, 1), and so m is the default

decision of type m players. Also assume that all players share the same visibility

parameter λ > 0 and bandwidth τ > 0.
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There are M primary sources called 1-revealing, · · · , M -revealing. In state ω ∈
{1, · · · ,M}, the ω-revealing source announces a message “ω,” whereas the other

sources are silent. To make informed decisions, players attend to the primary sources

and to each other as potential secondary sources.

We analyze the symmetric PSPBE of the game. An equilibrium as such can be

parameterized by four quantities: ∆∗, x∗, y∗, and z∗. For a type m player:

(i) ∆∗ denotes the amount of attention that he pays to the m-revealing source;

(ii) x∗ denotes the amount of attention that he pays to each other primary source;

(iii) y∗ denotes the amount of attention that he pays to each like-minded friend of

his;

(iv) z∗ denotes the amount of attention that he pays to any other player.

Call an equilibrium a semi echo chamber equilibrium if ∆∗ = 0 and y∗ > z∗. That is,

no player wastes time on learning the state that favors his default decision, and all

players prioritize like-minded friends over the other players when deciding whom to

pay attention to.

The next theorem proves an analog of Theorem 1: when players are sufficiently

biased towards their default decisions, the unique symmetric PSPBE of the game

must be a semi echo chamber equilibrium.

Theorem O2. For any M,N ∈ N−{1}, λ > 1/(M−1) and τ > (M−1)ϕ(λ(M−1)),

there exist β ∈ (0, 1) such that for any β < β, the unique PSPBE of the game must

be a semi echo chamber equilibrium.

O.4 Uniqueness of equilibrium

This appendix provides sufficient conditions for the game among type A players to

admit a unique equilibrium. Let the set PV := {i ∈ A : τi > ϕ (λi)} gather those

players who are potentially visible to their like-minded friends in equilibrium. The

next observation is immediate.

Observation O1. The game among type A players has a unique equilibrium if and

only if the system (6) of equations among PV players has a unique solution.

Proof. All equilibria of the game among type A players can be obtained as follows.
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Step 1. Solve (6) among PV players. For each solution (xa
i )i∈PV , define COR =

{i ∈ PV : xa
i > ϕ(λi)} and PER = A− COR.

Step 2. For each pair i, j ∈ COR, let xj
i = h(xa

j ;λj). For each pair i ∈ A
and j ∈ PER, let xj

i = 0. For each pair i ∈ PER and j ∈ COR, let xj
i =

1
λj

logmax{
(

λj

γi
− 1

) (
exp(xa

j )− 1
)
, 1} and xa

i = τi −
∑

j∈COR xj
i , where γi ≥ 1 is

the Lagrange multiplier associated with the constraint xa
i ≥ 0, and γi > 1 if and only

if xa
i = 0.

Observation O1 implies that the game among type A players has a unique equi-

librium if |PV| = 1. The remainder of this appendix assumes that |PV| ≥ 2. The

analysis differs, depending on whether PV players are homogeneous or not. In the

first case, equilibrium is unique when PV players’ bandwidth is large relative to their

population size and, roughly speaking, when they have a high visibility parameter.

Theorem O3. In the case where (λi, τi) ≡ (λ, τ) ∀i ∈ PV, the game among type A

players has a unique equilibrium if τ − (|PV| − 2)h(τ ;λ) > ϕ(λ).

When PV players are heterogeneous, we cannot establish the uniqueness of equi-

librium in the setting of the baseline model. The reason is that, when xa
i ≈ ϕ(λi), the

marginal influence hx(x
a
i ;λi) of player i on the other players equals approximately 1

(recall Lemma 3), which is too big for the contraction mapping theorem to work. To

bound players’ marginal influences on each other, we enrich the baseline model by

assuming that each player i has τ i > 0 units of attention to spare and yet must pay

at least τ i ∈ [0, τ i) units of attention to his own-biased source. If τ i ≡ 0 ∀i ∈ I, then
we are back to the baseline model. The next proposition establishes the analog of

Theorem 2 in this new setting. The fact that Theorems 1 is unaffected by the change

is easy to see.

Proposition O3. Let everything be as above. Then the following are true for any

i ∈ A in any echo chamber equilibrium.

(i) If xa
j > τ j ∀j ∈ A, then Part (i) of Theorem 2 remains valid.

(ii) xa
i = max{τ i −

∑
j∈A−{i}

1

λj

logmax
{
(λj − 1)(exp(xa

j )− 1), 1
}

︸ ︷︷ ︸
=xj

i if xa
i >τ i

, τ i}.

(iii) If xk
j > 0 ∀j ∈ A and k ∈ A− {j}, then Part (iii) of Theorem 2 remains valid.
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Proof. The proof is analogous to that of Theorem 2 and is omitted for brevity.

We provide sufficient conditions for the augmented game among type A players

to admit a unique equilibrium. Redefine PV := {i ∈ A : τ i > ϕ(λi)}. Suppose that

τ i > ϕ(λi) ∀i ∈ PV , and define g := maxi∈PV hx(τ i;λi). By Lemma 3, g < 1 is a

uniform upper bound for the marginal influences that PV players can exert on each

other. The next theorem shows that when g is small relative to the population size

of PV players, the augmented game among type A players has a unique equilibrium.

Theorem O4. Let everything be as above. Then the game among type A players has

a unique equilibrium if g < 1/(|PV| − 1).

O.5 Comparative statics with peripheral players

When proving Theorem 3, we assumed, for convenience, that all type A players must

attend to each other, or, equivalently, A = COR. We now relax this assumption as

follows.

Assumption O1. The game among type A players has a unique equilibrium, whereby

all players attend to source a, |COR| ≥ 2 (to make the analysis interesting), and no

PER player is a borderline player, i.e., xa
i < ϕ(λi) ∀i ∈ PER.

It is clear that perturbing the characteristics of a PER player has no impact on

any other player under Assumption O1. The next proposition examines the effect on

PER players as we perturb the characteristics of a COR player.

Proposition O4. Let everything be as in Theorem 3 except that Assumption 1 is

replaced with Assumption O1. At any θ◦ ∈ int (Θ), the following are true for any

i, j ∈ COR (i = j is allowed) and any k ∈ PER.

(i) sgn(
∂xa

k

∂τi

∣∣∣
θ=θ◦

) = sgn(− ∂xa
i

∂τi

∣∣∣
θ=θ◦

) and sgn(
∂xj

k

∂τi

∣∣∣
θ=θ◦

) = sgn(
∂xa

j

∂τi

∣∣∣
θ=θ◦

).

(ii) sgn(
∂xa

k

∂λi

∣∣∣
θ=θ◦

) = sgn(− ∂xa
i

∂λi

∣∣∣
θ=θ◦

) and sgn(
∂xj

k

∂λi

∣∣∣
θ=θ◦

) = sgn(
∂xa

j

∂λi

∣∣∣
θ=θ◦

).

As we increase the bandwidth of a COR player i, a PER player k pays less

attention to the primary source, more attention to player i, and less attention to any

other COR player than i. As we increase the visibility parameter of player i, the effect

on player k depends on whether the perturbation makes player i an opinion leader
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or an opinion follower. In the first case, player k pays less attention to the primary

source, more attention to player i, and less attention to any other COR player than

i. The opposite happens in the second case.

O.6 Pairwise visibility parameter

This appendix extends the baseline model to encompass pairwise visibility parame-

ters. Let λj
i ≥ 0 parameterize the visibility of player j to player i, and write λi for

(λj
i )j∈I−{i}. The next proposition establishes the analog of Theorem 2 in this new

setting. The fact that Theorem 1 is unaffected by the change is easy to see.

Proposition O5. The following are true for any i ∈ A in any echo chamber equilib-

rium.

(i) If all type A players attend to source a, then the following are equivalent: (a)

xa
j > ϕ(λj

i ); (b) xj
i > 0; (c) xj

i = h(xa
j ;λ

j
i ).

(ii) xa
i = [τi −

∑
j∈A−{i}

1

λj
i

logmax
{
(λj

i − 1)(exp(xa
j )− 1), 1

}
︸ ︷︷ ︸

=xj
i if xa

i >0

]+.

(iii) If all type A players attend to each other, then the ex ante expected utility of

player i equals

−βi

2
exp(−

∑
j∈A

xa
j +

∑
j∈A−{i}

ϕ(λj
i )).

Proof. The proof is analogous to that of Theorem 2 and is therefore omitted.

With pairwise visibility parameters, player j must cross a personalized threshold

ϕ(λj
i ) in order to be attended by player i. After that, the amount of influence h(xa

j ;λ
j
i )

that he exerts on player i depends on his informedness xa
j as a secondary source, as

well as his visibility λj
i to player i. Player i’s equilibrium expected utility depends

positively on the total amount of attention that the entire echo chamber pays to the

primary source, and negatively on the visibility threshold ϕ(λj
i )s that prevent his

like-minded friends from disseminating information to him.

Turning to equilibrium comparative statics, we write A = {1, · · · , N}, θi = (λi, τi)

∀i ∈ A, and θ = [θ1 · · · θN ]
⊤. Note that with pairwise visibility parameters, the off-

diagonal entries of the marginal influence matrix are no longer constant column by
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column. Nevertheless, if that matrix still satisfies the properties stated in Lemma 2,

then we can establish an analog of Theorem 3 as follows.

Proposition O6. Fix any N ∈ N − {1}. Let Θ be any neighborhood in RN2

++ such

that for any θ ∈ Θ, the game among a set A of type A players with population size N

and characteristic profile θ satisfies Assumption 1, and the matrix AN := IN +GN

satisfies the properties stated in Lemma 2. Then at any θ◦ ∈ int(Θ), the following

must hold for any i ∈ {1, · · · , N}, j, k ∈ {1, · · · , N} − {i} (j = k is allowed), and

m ∈ {1, · · · , N} − {k}.

(i) ∂xa
i /∂τi|θ=θ◦ > 0, ∂xi

k/∂τi|θ=θ◦ > 0, ∂xa
k/∂τi|θ=θ◦ < 0, and ∂xk

m/∂τi
∣∣
θ=θ◦ < 0.

(ii) One of the following situations happens:

(a) ∂xa
i /∂λ

j
i

∣∣
θ=θ◦ > 0, ∂xi

k/∂λ
j
i

∣∣
θ=θ◦ > 0, ∂xa

k/∂λ
j
i

∣∣
θ=θ◦ < 0, and ∂xk

m/∂λ
j
i

∣∣
θ=θ◦ <

0;

(b) the inequalities in Part (a) are all reversed;

(c) the inequalities in Part (a) are replaced with equalities.

O.7 Proofs

Proof of Theorem O1. When β is sufficiently small, it is efficient to make one’s

default decision in event Ui. The social planner’s problem then becomes

max
x∈×i∈IXi

−
∑
i∈A

δai
∏

j∈I−{i}

(
δaj +

(
1− δaj

)
δji
)
−
∑
i∈B

δbi
∏

j∈I−{i}

(
δbj +

(
1− δbj

)
δji
)
.

Since the above problem has a strictly concave maximand and a compact convex

choice set, it has a unique solution. In case the solution is interior, it is fully de-

termined by the first-order conditions. If, in addition, it is symmetric, then it is

parameterized by

(i) x∗ > 0: the amount of attention that a typical player pays to his own-biased

source;

(ii) y∗ > 0: the amount of attention he pays to the other source;

(iii) z∗ > 0: the amount of attention he pays to each like-minded friend of his;
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(iv) ∆∗ > 0: the amount of attention he pays to any other player.

The corresponding attention network cannot arise in any equilibrium because y∗ > 0.

We provide conditions under which the solution to the planner’s problem is interior

and symmetric. For ease of notation, writeX for exp(−x∗)+(1−exp(−x∗)) exp(−λz∗),

Y for exp(−y∗)+(1− exp(−y∗)) exp(−λ∆∗), ã for exp(x∗)−1, b̃ for exp(y∗)−1, c̃ for

exp(λz∗) − 1, and d̃ for exp(λ∆∗) − 1. Fix any type A player (name him i), and let

γ > 0 denote the Lagrange multiplier associated with his bandwidth constraint, which

must be binding under the efficient allocation. The first-order conditions regarding

xa
i , x

b
i , x

j
i with j ∈ A, and xk

i with k ∈ B, are

δai X
N−1Y N +

∑
j∈A−{i}

δai δ
a
j (1− δij)X

N−2Y N = γ (FOCxa
i
)

∑
j∈B

δbi δ
b
j(1− δij)X

N−1Y N−1 = γ (FOCxb
i
)

λδai (1− δaj )δ
j
iX

N−2Y N = γ (FOCxj
i
)

and λδai (1− δak)δ
k
i X

N−1Y N−1 = γ, (FOCxk
i
)

respectively. Letting xa
i = x∗, xb

i = y∗, xj
i = z∗, and xk

i = ∆∗ in the FOCs yields

(λ− 1)ã = Nc̃+ 1

Nd̃ = λb̃

λã(b̃+ d̃+ 1) = Nd̃(ã+ c̃+ 1)

log(ã+ 1) + log(b̃+ 1) + N−1
λ

log(c̃+ 1) + N
λ
log(d̃+ 1) = τ.

The solution to the first three linear equations is

b̃ =
Nã

N − 1− ã
, c̃ =

(λ− 1)ã− 1

N
, and d̃ =

λã

N − 1− ã
.

Simplifying the last equation accordingly yields

log(ã+ 1) + log(
Nã

N − 1− ã
+ 1) +

N − 1

λ
log(

(λ− 1)ã− 1

N
+ 1)

+
N

λ
log(

λã

N − 1− ã
+ 1) = τ. (12)

It remains to find conditions on (λ, τ,N) such that (12) admits a solution ã(λ, τ,N)
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satisfying

ã(·) > 0,
Nã(·)

N − 1− ã(·)
> 0,

(λ− 1)ã(·)− 1

N
> 0, and

λã(·)
N − 1− ã(·)

> 0,

or, equivalently,

λ >
N

N − 1
and ã(·) ∈ (

1

λ− 1
, N − 1).

To make progress, notice that the left-hand side of (12) as a function of ã (i) is

well-defined on (0, N − 1), (ii) is negative when ã ≈ 0, (iii) → +∞ as ã → N − 1,

(iv) is strictly increasing in ã, and (v) is independent of τ . Thus for any N ≥ 2 and

λ > N/(N−1), there exists a threshold τ(λ,N) such that the solution to (12) belongs

to (1/(λ− 1), N − 1) for any τ > τ(λ,N), as desired.

Proof of Lemma O1. For each i ∈ I, redefine Ci as S∪I−{i} and Xi as {(xc
i)c∈Ci :∑

c∈Ci x
c
i ≤ τi}. Replacing the term xω-revealing

i with
∑

s∈S λ
s
i (ω)x

s
i := yω-revealingi in the

original expression for Px(Ui | ω) gives its new expression. If a type A player i makes

the default decision A in event Ui, then his ex ante problem can be obtained from

replacing the term xB-revealing
i in (4) with yB-revealing

i . Since yB-revealing
i , the nonnegative

constraint xc
i ≥ 0 ∀c ∈ Ci, and the bandwidth constraint

∑
c∈Ci x

c
i ≤ τi, are all linear

in xs
i s, x

s
i > 0 only if s ∈ Si(B), and only

∑
s∈Si(B) x

s
i matters for the equilibrium

analysis. The proof for the opposite case where decision B is made in event Ui is

analogous and is omitted for brevity.

Proof of Proposition O1. Part (i) of the proposition follows immediately from

Lemma O1. Part (ii) of the proposition can be obtained from replacing the terms xc
i ,

λi, and τi, in the proofs of Theorems 1 and 2 with νxc
i , λi/ν, and ντi, respectively,

∀i ∈ I and c ∈ Ci.

Proof of Proposition O2. In the augmented game with source m, redefine Ci as
{m}∪I−{i} and Xi as {(xc

i)c∈Ci :
∑

c∈Ci x
c
i ≤ τi}. Replacing the term xω-revealing

i with

xm
i in the original expression for Px(Ui | ω) gives its new expression. Since player i’s

posterior belief equals the prior in event Ui, he will make the default decision in that

10



event. His ex ante problem is thus maxxi∈Xi
−βiPx(Ui | ω ̸= ti)/2, or, equivalently,

max
(xc

i )c∈Ci

− xm
i −

∑
j∈I−{i}

log(δmj + (1− δmj )δ
j
i )

s.t. xc
i ≥ 0 ∀c ∈ Ci and τi ≥

∑
i∈Ci

xc
i .

Relabeling xm
i as xa

i in the above problem turns it into an analog of (4), with the only

difference being that the set of type A players is I rather than A.

Proof of Theorem O2. In the setting described in Online Appendix O.3, the set

of feasible sources for player i is Ci = {1-revealing, · · · ,m-revealing} ∪ I − {i}, and
the set Xi of feasible attention strategies for him is {(xc

i)c∈Ci ∈ R|Ci|
+ :

∑
c∈Ci x

c
i ≤ τi}.

We focus on the case where β is small, and so all players must make default decisions

in event Uis. The ex ante problem faced by a type m player is thus

max
xi∈Xi

− β

M

∑
ω ̸=m

δω-revealingi

∏
j∈I−{i}

(δω-revealingj + (1− δω-revealingj )δji ).

Using the parameterization proposed in Online Appendix O.3 and solving, we obtain

that ∆∗ = 0, (M−1)x∗+(N−1)y∗+(M−1)Nz∗ = τ , y∗ = g1 (x
∗), and z∗ = g2 (x

∗),

where

g1 (x) :=
1

λ
logmax {(λ (M − 1)− 1) (exp (x)− 1) , 1}

and g2 (x) :=
1

λ
logmax {(λ (M − 2)− 1) (exp (x)− 1) , 1} .

Thus x∗ is the unique fixed point of 1
M−1

[τ − (N − 1) g1 (x)− (M − 1)Ng2 (x)], and

the following are equivalent: (i) y∗ > 0; (ii) y∗ > z∗; (iii) λ > 1/(M − 1) and

τ > (M − 1)ϕ (λ (M − 1)). Drawing a picture will make the last point clear.

Proof of Theorem O3. Write {1, · · · , N} for PV , and note that λi > 1 ∀i ∈ PV .
Simplifying the system (6) of equations among PV players accordingly yields

xa
i = max{τi −

∑
j∈PV−{i}

max
{
h(xa

j ;λj), 0
}
, 0} ∀i ∈ PV . (13)
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Below we demonstrate that if (λi, τi) ≡ (λ, τ) ∀i ∈ PV , and if τ − (|PV|−2)h(τ ;λ) >

ϕ (λ), then the unique solution to (13) is xa
i ≡ x(N) ∀i ∈ PV , where x(N) is the

unique fixed point of φN(x) = τ − (N − 1)h(x;λ), and it belongs to (ϕ(λ), τ) as

shown in Lemma 3.

Consider first the case N = 2. In that case, (13) is simply

xa
1 = max {τ −max {h (xa

2;λ) , 0} , 0} (14)

and xa
2 = max {τ −max {h (xa

1;λ) , 0} , 0} ,

and drawing a picture makes it clear that (14) has a unique solution (x(2), x(2)). For

each N ≥ 3, we fix any pair i ̸= j. Define τ̂ := τ −
∑

k ̸=i,j max {h (xa
k;λ) , 0}, and note

that τ̂ ∈ (ϕ(λ), τ) by assumption. Drawing a picture makes it clear that the solution

to

xa
i = max

{
τ̂ −max

{
h
(
xa
j ;λ

)
, 0
}
, 0
}

and xa
j = max {τ̂ −max {h (xa

i ;λ) , 0} , 0} ,

must satisfy xa
i = xa

j ∈ (ϕ (λ) , τ̂), and repeating this argument for all (i, j) pairs

shows that xa
i = xa

j ∈ (ϕ (λ) , τ) ∀i, j ∈ PV . Simplifying (13) accordingly yields

xa
i = φN (xa

i ) ∀i ∈ PV , or, equivalently, xa
i ≡ x (N).

Proof of Theorem O4. Write {1, · · · , N} for PV . For each i ∈ PV , define yi :=

xa
i − τ i and ∆τi := τ i − τ i. Since τ i > τ i > ϕ(λi) ∀i ∈ PV , we can simplify the best

response function of any i ∈ PV :

xa
i = max{τ i −

∑
j∈PV−{i}

1

λi

logmax{(λj − 1)(exp(xa
j )− 1), 1}, τ i},

to the following:

yi = max{∆τi −
∑

j∈PV−{i}

h(yj + τ j;λj), 0}.

For each y = [y1 · · · yN ]
⊤ ∈ Y := ×N

i=1[0,∆τi], define F (y) as the N -vector whose

ith entry equals yi +
∑

j∈PV−{i} h(yj + τ j;λj) − ∆τi. The function F : Y → RN is
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strongly monotone,1 because for any y,y′ ∈ Y ,

(y − y′)⊤(F (y)− F (y′))

=
N∑
i=1

(yi − y′i)
2 +

N∑
i=1

∑
j ̸=i

(yi − y′i)[h(yj + τ j;λj)− h(y′j + τ j;λj)]

≥ ∥y − y′∥2 − g

N∑
i=1

∑
j ̸=i

|yi − y′i||yj − y′j| (∵ hx ∈ (0, g))

≥ [1− (N − 1)g]︸ ︷︷ ︸
>0 by assumption

∥y − y′∥2.

Then by Proposition 1 of Naghizadeh and Liu (2017), the game among PV players

has a unique equilibrium.

Proof of Proposition O4. We only prove that sgn (∂xa
k/∂τi) = sgn (−∂xa

i /∂τi)

and sgn (∂xa
k/∂λi) = sgn (−∂xa

i /∂λi) for an arbitrary pair of k ∈ PER and i ∈ COR.

The remaining results follow immediately from what we already know and so won’t

be proven again.

Write {1, · · · , N} for COR. Let GN denote the marginal influence matrix among

COR players, and redefine AN := IN +GN . W.l.o.g. let i = 1. Under the assumption

that player k pays a positive amount of attention to source a, the following must hold:

xa
k = τk −

N∑
j=1

h(xa
j ;λj). (15)

Differentiating both sides of (15) with respect to τ1 yields

∂xa
k

∂τ1
=

N∑
j=1

−gj
∂xa

j

∂τ1
= (1− g1)

∂xa
1

∂τ1
− 1,

where the last equality follows from doing lengthy algebra, based on the fact that

∇τ1 [x
a
1 · · · xa

N ]
⊤ = A−1

N [1 0 · · · 0]⊤ (as shown in the proof of Theorem 3). Since

∂xa
1/∂τ1 > 0 by Theorem 3(i), sgn(∂xa

k/∂τ1) = sgn(−∂xa
1/∂τ1) holds if and only

if ∂xa
1/∂τ1 < 1/ (1− g1). To establish the last inequality, recall from the proof of

1A function f : K → Rn defined on a closed convex set K ⊂ Rn is strongly monotone if there
exists c > 0 such that (x− y)⊤(f(x)− f(y)) > c∥x− y∥2 ∀x,y ∈ K.
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Theorem 3 that ∂xa
1/∂τ1 =

[
A−1

N

]
1,1

=(2). Tedious but straightforward algebra shows

that [
A−1

N

]
1,1

− 1

1− g1
=

−g1
det (AN) (1− g1)

N∏
j=2

(1− gj) < 0,

as desired.

Meanwhile, differentiating both sides of (15) with respect to λ1 yields

∂xa
k

∂λ1

= −
N∑
j=1

gj
∂xa

j

∂λ1

+ κ,

where κ := −hλ(x
a
1;λ1). Lengthy algebra reduces the right-hand side of the above ex-

pression to κ
det(AN )

∏N
j=2 (1− gj), based the fact that∇λ1 [x

a
1 · · · xa

N ]
⊤ = κA−1

N [0 1 · · · 1]⊤

(as shown in the proof of Theorem 3). Thus sgn(∂xa
k/∂λ1) = sgn(κ) = sgn(−∂xa

1/∂λ1),

as desired, where the last equality was established in the proof of Theorem 3.

Proof of Proposition O6. Write {1, · · · , N} for A. Under the assumptions stated

in Proposition O6, the following must hold ∀i ∈ {1, · · · , N} and j ∈ {1, · · · , N}−{i}:

xa
i = τi −

∑
j∈A−{i}

h(xa
j ;λ

j
i ) (16)

and xj
i = h(xa

j ;λ
j
i ); (17)

and [GN ]i,j := hx(x
a
j ;λ

j
i ) ∈ (0, 1). Moreover, AN := IN + GN must satisfy the

properties stated in Lemma 2.

Part (i) of the proposition closely resembles Theorem 3(i), so its proof is omitted

for brevity. For Part (ii) of the proposition, it suffices to prove the result for i = 1

and j = 2. Differentiating (16) with respect to λ2
1 yields

∇λ2
1
xa = κ2

1A
−1
N [1 0 · · · 0]⊤ ,

where xa := [xa
1 · · · xa

N ]
⊤, and κ2

1 := −hλ(x
a
2;λ

2
1) has an ambiguous sign in general.

Since
[
A−1

N

]
1,1

> 0 and
[
A−1

N

]
k,1

< 0 ∀k ̸= 1, by assumption, the following must hold:

sgn(
∂xa

1

∂λ2
1

) = sgn(κ2
1

[
A−1

N

]
1,1
) = sgn(κ2

1)
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and

sgn(
∂xa

k

∂λ2
1

) = sgn(κ2
1

[
A−1

N

]
k,1
) = sgn(−κ2

1) ∀k ̸= 1.

Substituting these results into (17) yields

sgn(
∂x1

k

∂λ2
1

) = sgn(hx(x
a
1;λ

1
k)
∂xa

1

∂λ2
1

) = sgn(κ2
1) ∀k ̸= 1

and

sgn(
∂xk

m

∂λ2
1

) = sgn(hx(x
a
k;λ

k
m)

∂xa
k

∂λ2
1

) = sgn(−κ2
1) ∀k ̸= 1 and (m, k) ̸= (1, 2) .

Finally, differentiating x2
1 = h(xa

2;λ
2
1) with respect to λ2

1 yields

sgn(
∂x2

1

∂λ2
1

) = sgn(κ2
1

[
hx(x

a
2;λ

2
1)[A

−1
N ]2,1 − 1

]
) = sgn(−κ2

1),

where the second equality follows from the assumption that
[
A−1

N

]
2,1

< 0. Thus in

total, only the three situations listed in the proposition can happen, depending on

whether κ2
1 is positive, negative, or zero.
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