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Abstract

A group of agents with a common prior receive informative signals about
an unknown state repeatedly over time. If these signals were public, agents’
beliefs would be identical and commonly known. This suggests that if signals
were private, then the more correlated these are, the greater the commonal-
ity of beliefs. We show that, in fact, the opposite is true. In the long run,
conditionally independent signals achieve greater commonality of beliefs than
correlated ones.

1 Introduction

What kind of information increases the possibility of effi cient coordination? If a group
of agents with a common prior receive public signals about an unknown state, they will
have identical, commonly-known beliefs, thereby facilitating effi cient coordination.
This suggests that if agents’signals are private, then the more correlated these are,
the easier it will be for agents to coordinate on the right actions.
Here we examine this intuition in the context of the common learning framework

of Cripps, Ely, Mailath and Samuelson (2008, henceforth CEMS), where informative
signals come repeatedly over time. CEMS (2008) showed that if agents’signals were
independently and identically distributed over time, then regardless of the degree
of correlation among agents’signals, the realized state would, in the limit, become
(approximately) commonly known. Frick, Iijima and Ishii (2023) have recently shown
that when the number of signals each individual sees is large enough, the rate of
common learning is not affected by the degree of correlation among agents’signals.
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Does correlation have any role to play in determining the commonality of beliefs?
We begin by examining this question in the context of a canonical game where a high
degree of common belief is needed for effi cient coordination.

Example 1 Two players simultaneously choose whether to invest or not in the face
of uncertainty. Specifically, there are two equally-likely states of nature G ("good")
or B ("bad"). The cost of investment is c and a player’s investment is successful and
yields a gross return of 1 if and only if the state is G and the other player also invests.
If a player invests and the other does not, then the gross return is 0.
Prior to making choices players receive signals that are informative about the state

of nature. We will show that for some costs c, effi cient coordination can be achieved
when these signals are independently distributed but not when they are correlated.
First, suppose that the information available to players is generated as follows. Let

X = (X1, X2) be a pair of binary signals each of which takes on values 0 ("bad news")
or 1 ("good news"). In state G, X1 and X2 are symmetrically and independently
distributed with Pr [Xi = 0 | G] = 1

5
. In state B, the joint distribution of the signals

is degenerate– with probability 1, both players receive a signal of 0. This means that
even a single 1-signal tells a player that the state is G.
Prior to making decisions, player i sees two serially independent realizations of

the signal Xi, say X1
i and X

2
i . It is routine to verify that if c ≤ 24

25
, then there is an

equilibrium in which player i invests if X1
i + X2

i ≥ 1. Moreover, if c > 24
25
the only

equilibrium is one in which no investment ever takes place.
Now consider an alternative situation in which players’signals are positively cor-

related. Specifically, suppose Y = (Y1, Y2) are signals that in state G, have the
distribution

Y2 = 0 Y2 = 1
Y1 = 0 3

25
2
25

Y1 = 1 2
25

18
25

Notice that while the marginal distributions of Yi and Xi are the same, in state G, the
players’signals Y1 and Y2 are positively correlated. In state B, the joint distribution
of (Y1, Y2) is again degenerate, with Pr [(Y1, Y2) = (0, 0) | B] = 1.
Again, there are two serially independent realizations of (Y1, Y2) . Player i observes

Y 1
i and Y

2
i prior to making an investment decision. Now we claim that if c >

47
50
, then

the unique equilibrium is for neither player to invest regardless of her information.
This follows from a standard infection argument. First, if Y 1

i + Y 2
i = 0, then it is

dominant to not invest because Pr [G | Y 1
i + Y 2

i = 0] = 1
26
< c. Next, if Y 1

i + Y 2
i = 1,

it is iteratively dominant to not invest for j 6= i, Pr
[
Y 1
j + Y 2

j ≥ 1 | Y 1
i + Y 2

i = 1
]

=
47
50
< c as well. Finally, given the behavior of those with Y 1

j +Y 2
j ≤ 1, it is optimal even

for a player with Y 1
i +Y 2

i = 2 to not invest because Pr
[
Y 1
j + Y 2

j = 2 | Y 1
i + Y 2

i = 2
]

=
81
100

< c.
So we obtain the following.
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a. If c ≤ 47
50
, then with either conditionally independent signals X or correlated

ones Yi, there is an equilibrium with effi cient coordination– a player invests if
she gets at least one positive signal and so knows that the state is G.

b. If 47
50
< c ≤ 48

50
, however, with conditionally independent signals X, there is an

equilibrium in which the players both players invest whenever they know G,
while with correlated signals Y , the unique equilibrium is that no player ever
invests. Thus, for these costs, correlated information hinders effi cient coordina-
tion!

Why is this? Compared to the case of (conditionally) independent signals, with
correlated signals a player that gets good news is more likely to believe that the
other player also received good news and becomes optimistic about the prospects of
coordinating on the right outcome. But the opposite is true for a player that gets
bad news. With correlated signals, she is more likely to believe that the other player
also received bad news and so becomes pessimistic. The second effect dominates– a
player with one piece of good news and one piece of bad news is more pessimistic
with correlated signals than with independent signals, that is,

Pr
[
Y 1
j + Y 2

j ≥ 1 | Y 1
i + Y 2

i = 1
]
< Pr

[
X1
j +X2

j ≥ 1 | X1
i +X2

i = 1
]

This type’s increased pessimism then spreads to all types.
Now suppose that players receive T serially independent signals X t

i and Y
t
i prior

to making decisions. It is easy to see that for all T ≥ 2,

Pr
[∑

t Y
t
j ≥ 1 |

∑
t Y

t
i = 1

]
< Pr

[∑
tX

t
j ≥ 1 |

∑
tX

t
i = 1

]
(1)

and it can be argued in a manner similar to that above, that for any cost c in between
the two sides of (1), coordination is possible with the independent signals but not
with the correlated signals.
While the common learning result of CEMS (2008) implies that both sides of

(1) tend to 1 as T → ∞, away from the limit, correlation reduces the prospects for
coordination.

In the rest this paper, we explore this phenomenon in the common learning setting
of CEMS (2008). There is an unknown fundamental state of nature θ ∈ {G,B} that
is of concern to a group of I ≥ 2 agents. The state of nature θ is realized in period
0 and remains fixed. There are T additional periods and in each period t, agents
receive private signals X t

i that are informative about θ. The signals are independent
and identically distributed across time but may be correlated among agents. We are
interested in how the degree of commonality of agents’beliefs– that is, how close they
are to achieving common knowledge of θ– is affected by the degree of commonality
(correlation) of their information.
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In this paper, we show that the phenomenon demonstrated in the example above
is general. Informally stated, our main result is1:
Commonality of information is detrimental to commonality of beliefs.

In what follows, "commonality of information" is formalized using a multivariate
version of "more correlated," defined in the next section. "Commonality of beliefs" is
formalized using the notion of common p-belief introduced by Monderer and Samet
(1989). An event E is common p-believed if (1) everyone assigns at least probability
p to E, and (2) also assigns at least probability p to the event that everyone assigns
at least probability p to E, and also (3) assigns at least probability p to the event
that everyone assigns at least probability p to the event that everyone assigns at least
probability p to E and so on.

Binary and Conclusive Signals We begin by considering a case where agents’
signals are (i) binary (either "good news" or "bad news," as in the example above);
and (ii) conclusive, in the sense that even one piece of good news reveals that the
state is G (again, as in the example). This special case is useful because first-order
uncertainty– that is, concerning the state of nature θ– is resolved once even a single
piece of good news is received. This means that the focus is then solely on higher-
order uncertainty– that is, concerning others’knowledge about G, their knowledge
about others’knowledge, etc.
We first show that whether or not G can be common p-believed is completely

determined by a single parameter q. This parameter is the belief about whether all
agents know G of the second-most pessimistic type– who gets only one piece of good
news and T − 1 pieces of bad news. Only the type that gets only bad news in
every period is more pessimistic. We show that whether or not G can be common
p-believed depends on whether p ≤ q or p > q. If p ≤ q, then G is common p-believed
whenever everyone knows G. On the other hand, if p > q, then it is impossible for G
to be common p-believed. Why is this? By definition, the belief of the second-most
pessimistic type is too low and so this type cannot believe that all others know G.
We show that the pessimism of this type then "infects" all other types so that no one
assigns probability greater than p to the event that everyone knows G. To summarize,
the event that G is common p-believed exhibits a "bang-bang" property: if p ≤ q,
this event is as large as possible and if p > q, it is empty (Proposition 3.1).
The final step is to show that higher correlation decreases the threshold belief q

when T is large (Proposition 3.2). As argued above, second-most pessimistic type is
the one who receives only one piece of good news. Since this type gets a preponderance
of bad news, higher correlation makes her believe that other agents also received a
preponderance of bad news, thereby increasing her pessimism. These facts then lead
to one of main results (Theorem 1). Consider two kinds of signals, one more correlated
than the other. For large enough T, there is an interval of p’s (depending on T ) such

1This is formalized in various settings as Theorems 1 and 2.
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that for all p in that interval, with the more correlated signals, G cannot be common
p-believed, but with the less correlated signals, it can be.

General Signals In Section 4 we relax the assumption that signals are binary
and conclusive. In this more general environment, the results are similar but not
as sharp. The reason is that first-order uncertainty also plays a role now and the
"bang-bang" property does not hold in general. In particular, when p > q, it may
be that the event that G is common p-believed is not empty. As a consequence,
our main result in the general model (Theorem 2) reaches a weaker conclusion than
Theorem 1 does in the binary and conclusive model. In two special cases, however,
the "bang-bang" property re-emerges. These are (a) when the signals are binary but
now non-conclusive; and (b) when the signals are almost-public in that the probability
that different agents have different information is small.2

Informativeness Finally, for the case of two agents and general signals, we
show that our results can be recast in the language of Blackwell informativeness. Say
that Q is more informative than P, if agent i’s signal Yi from Q is more informative
about agent j’s signal Yj than Xi from P is about Xj (see Section 5 for a precise
definition). In the same vein as above, it can be shown that in fact, more informative
signals are detrimental to common learning.

Related literature The importance of higher-order uncertainty in game theory
was brought to the fore by Rubinstein’s (1989) E-Mail game.3 The literature on
common learning asks whether such uncertainty can be made to disappear over time.
As mentioned above, Cripps, Ely, Mailath and Samuelson (2008) show that if the set
of signals is finite and these are independent over time, then common learning occurs
in the limit.4

In a subsequent paper, Cripps et al. (2013), the same authors show that com-
mon learning may fail if signals are not serially independent and find some more
general suffi cient conditions for common learning. Steiner and Stewart (2011) con-
sider a version of the common learning model in which signals– which are binary and
conclusive– arrive at random times. They ask how communication between agents
affects common learning and show that under certain conditions it prevents common
learning. In our model, common learning always occurs in the limit. We are inter-
ested in examining agents’beliefs away from the limit and how these are affected by
correlation.
In the CEMS framework, Frick, Iijima and Ishii (2023) study how common learning

is affected by the underlying signal process. Consider joint distributions over states

2In both cases, some additional conditions are needed as well (see Section 4.3).
3The signals in Rubinstein’s E-Mail game are also binary and conclusive.
4They also show that if the set of signals is infinite then common learning may fail if agents’

signals are correlated.
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of nature and signals, P and Q, such that P is more informative about the state θ
than is Q. Frick et al. (2023) show that when T is large enough, P results in greater
commonality of beliefs than does Q. In particular, how correlated agents’signals are
does not matter in the long run. In our work we compare distributions P and Q
that are equally informative about θ but Q is more correlated than P. We show that
when T is large enough, greater correlation is, in fact, detrimental to commonality of
beliefs.
There is, of course, a close connection between common beliefs and equilibria

of games. This connection has been explored in various manners by Monderer and
Samet (1989), Kajii and Morris (1997) and more recently by Oyama and Takahashi
(2020). Oyama and Takahashi (2020) study binary-action supermodular games, and
as in Example 1, our results on the effects of correlation on common learning have
natural counterparts when applied to this class of games.
Somewhat more distant is the work on global games which studies how greater

"commonality"– measured by a decrease in the variance of private information rel-
ative to that of public information– can, in some circumstances, lead to decreased
coordination in equilibrium (see for instance, Iachan and Nenov, 2015). Unlike in our
work, in the global games framework, agents’signals are independent conditional on
the state of nature θ. The increase in "commonality" of the sort mentioned above
affects agents’beliefs about each other only via the change in their beliefs about θ.
In our paper, the increase in commonality increases the correlation among agents’
signals while keeping their beliefs about the fundamental state θ fixed.

2 Model

A group of agents i ∈ I = {1, 2, ..., I} face an uncertain fundamental state of nature
θ ∈ Θ that can take on two possible values, G and B with commonly known prior
probabilities ρ ∈ (0, 1) and 1 − ρ, respectively. We will suppose that G and B take
on numerical values such that G > B, say G = 1 and B = 0.
Time is discrete and there is a finite number of periods, denoted by t = 0, 1, 2, ...T.

At time t = 0, nature chooses θ ∈ Θ = {G,B} and this choice remains fixed for all
remaining periods. At each time t ≥ 1, each agent i receives a private signal that is
informative about the state of nature θ. The set of possible signals is a finite, ordered
set X = {0, 1, 2, ..., K} . The signals are generated as follows.
Let P ∈ ∆

(
Θ×X I

)
be a joint probability distribution over the set of states and

signals, one for each agent. We will write a typical element of Θ × X I as (θ,x) =
(θ, x1, x2, ..., xI) where xi is the signal of agent i. Of course, the marginal probability
of G is ρ. To save on notation, we will write P θ ∈ ∆

(
X I
)
as the distribution over

signal vectors conditional on the state of nature θ. Thus, P θ (x) = P (x | θ) .
We will assume that

1. PG 6= PB so that the signals carry information about θ.
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2. Conditional on θ, the signals are symmetrically distributed– that is, P θ (x) =
P θ (xπ) for any permutation xπ of x.

3. P is affi liated, that is, for all (θ,x) and (θ′,x′) ,

P (θ,x)× P (θ′,x′) ≤ P (θ ∨ θ′,x ∨ x′)× P (θ ∧ θ′,x ∧ x′)

where (θ,x)∨ (θ′,x′) is the component-wise maximum of (θ,x) and (θ′,x′) and
(θ,x) ∧ (θ′,x′) is the component-wise minimum.

Let xt ∈ X I be the vector of signals, one for each agent, in period t. Conditional
on θ, in any period t, the signal vectors xt ∈ X I are independent draws from the
distribution P θ (·) = P (· | θ). Thus, in each state of nature θ, the signal vectors are
independently and identically distributed over time.
It will be convenient to consider the I+1 dimensional random vector (θ̃,X) which

takes values in Θ × X I and satisfies Pr[(θ̃,X) = (θ,x)] = P (θ,x) .5 Similarly, for
each θ, define the I dimensional random vector Xθ which takes values in X I and
satisfies Pr

[
Xθ = x

]
= P θ (x) ≡ Pr [X = x | θ] .6

Now let Q ∈ ∆(Θ×X I) be another distribution such that the marginal probability
of G is ρ. Analogously, let (θ̃,Y ) be the random vector such that Pr[(θ̃,Y ) = (θ,y)] =
Q (θ,y) . And like Xθ, the random vector Y θ also takes values in X I and satisfies
Pr
[
Y θ = y

]
= Qθ (y) ≡ Pr [Y = y | θ] .

Throughout the paper we will assume that X is defined as above from P and Y
is defined as above from Q.

We will compare two distributions P and Q such that Q is "more correlated" than
P ; or equivalently, the signals Y are "more correlated" than signals X.

Multivariate correlation When there are more than two variables, there are many
ways to measure an increase in correlation (or positive dependence). It is useful to
list some desirable properties a partial order "more correlated than" should satisfy.
First, since we are interested in isolating the effects of increased correlation, we will

compare only distributions P and Q with identical univariate marginals conditional
on θ, that is, for all k ∈ X and θ ∈ Θ,

Pr [Xi = k | θ] = Pr [Yi = k | θ] (2)

In other words, the conditional distributions P θ (·) andQθ (·) have the same univariate
marginals. This implies that agents’beliefs about the state of nature θ are the same
with signals X as with Y . Let µθ ∈ ∆ (X ) denote the common univariate marginal
conditional on θ.

5Formally, if S = X I , then
(
Θ× S, 2Θ×S , P

)
is a finite probability space and (θ̃,X) is the identity

map from Θ× S to Θ× S.
6Again,

(
S, 2S , P θ

)
is a probability space and Xθ is the identity map from S to S.
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Second, since signals have no inherent cardinal meaning– they only serve to up-
date beliefs– the notion of more correlated should be preserved by monotone trans-
formations of the variables. In other words, if the variables (Y1, Y2, ..., YI) are more
correlated than (X1, X2, ..., XI) , then it should be that (φ1 (Y1) , φ2 (Y2) , ..., φI (YI))
are also more correlated than (φ1 (X1) , φ2 (X2) , ..., φI (XI)) where each φi is an in-
creasing function.7

Third, the notion should be preserved for marginals over subsets of variables, that
is, if the variables Y are more correlated than X then for any non-empty J ⊆ I, it
should be that the variables Y J = (Yi)i∈J are more correlated than XJ = (Xi)i∈J .
In what follows, we will use the following notion8:

Definition 1 Y is more correlated than X in the positive quadrant dependence
(PQD) order, written Y <PQD X, if for any z ∈ X I ,

Pr [X ≤ z] ≤ Pr [Y ≤ z] (3)

and
Pr [X ≥ z] ≤ Pr [Y ≥ z] (4)

If Y <PQD X, then for any fixed vector z, Y is more likely to take on higher
values than z than is X and also more likely to take on lower values than z. In
the bivariate case, this means that a change from P to Q shifts probability weight
from the "northwest" and "southeast" quadrants to the "northeast" and "southwest"
quadrants. Thus, the values that the variables take are more likely to be closer to each
other than before. The PQD order is discussed in detail in Shaked and Shanthikumar
(2008) and Meyer and Strulovici (2012).
If Y <PQD X, then their distributions have identical univariate marginals, that is,

condition (2) is automatically satisfied. The PQD order also satisfies the two desired
properties listed above– it is preserved by monotone transformations of the variables
and is also preserved for subsets of variables. It is also the case that if Y <PQD X,
then for all i and j 6= i, the pairwise covariances satisfy Cov (Yi, Yj) ≥ Cov (Xi, Xj) .
Finally, and perhaps most important, the PQD order is weaker than all other

orders of positive dependence discussed in the references above– for instance, it is
weaker than the supermodular order or the weak associative order. Since our results
will be of the form: "Y <PQD X, then ...", the last feature means that the result
will remain true for all standard notions of greater positive interdependence.
In what follows, we will use the following strict version of the PQD order. We will

say that Y is strictly greater than X in the PQD order, and write Y �PQD X, if (i)

7Note that the common (bivariate) notion of greater covariance fails this requirement. It may be
that Cov (Y1, Y2) > Cov (X1, X2) but Cov (φ1 (Y1) , φ2 (Y2)) < Cov (φ1 (X1) , φ2 (X2)).

8This order was first defined by Yanagimoto and Okamoto (1969). It was then developed for
I > 2 by Joe (1990), who called it the "concordance order".
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the inequality (3) is strict for any z such that for at least two indices i, zi < K; and
(ii) the inequality (4) is strict for any z such that for at least two indices i, zi > 0.9

Common beliefs A state of the world

ω =
(
θ,x1,x2, ...,xT

)
determines the state of nature θ as well as agents’signal realizations xt ∈ X I (slanted
bold x) in each period. Alternatively, we can write ω = (θ,x1,x2, ...,xI) where
xi ∈ X T (upright bold x) is a list of the T signals received by i. We will refer to a
vector xi ∈ X T as the type of agent i. The set of states of the world is

Ω = Θ×X I × ...×X I

Following Monderer and Samet (1989), given any event E ⊆ Ω and probability
p, the event Bp

i (E) consists of states ω ∈ Ω in which E is p-believed by i, that is, i
assigns probability exceeding p to the event E given her information xi. Next, write
Bp (E) = ∩iBp

i (E) as the set of states in which E is p-believed by everyone.
Now for ` = 1, 2, ... define the operator Bp,` recursively by

Bp,` (E) = Bp
(
Bp,`−1 (E)

)
where Bp,0 (E) = E and finally,

Cp (E) = ∩`≥1B
p,` (E)

Thus, Cp (E) is the set of states of the world in which E is common p-believed. In
other words, (i) everyone assigns probability exceeding p to the event E, and also
(ii) assigns probability exceeding p to the event that everyone assigns probability
exceeding p to the event E, and also (iii) assigns probability exceeding p to the
event that everyone assigns probability exceeding p to the event that everyone assigns
probability exceeding p to the event E, and so on.
We are interested in the set Cp

(
ΩG
)
after T periods, where ΩG = {ω : θ = G} . In

other words, we are interested in the set of states of the world in which G is common
p-believed.
The common learning result of CEMS (2008) implies that for any p < 1,

lim
T→∞

Pr
[
Cp
(
ΩG
)
| θ = G

]
= 1

9If (i) is not satisfied, then the equality of univariate marginals implies that (3) is an equality.
Similarly, if (ii) is not satisfied, then (4) is an equality.
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3 Binary and Conclusive Signals

We begin by considering a special case of the general model in which

1. signals are binary, so that X = {0, 1};

2. a signal Xi = 1 is conclusive about G– that is, Pr [Xi = 1 | B] = 0; and

3. signals have full support in state G, for all x, PG (x) > 0.

Note that binary and conclusive signals are perfectly correlated in state B.
Since signals are binary, the fact that they are independently and identically

distributed over time implies that an agent’s type can effectively be represented simply
by the total number of 1-signals received. Thus, with binary signals, a type xi can
be represented simply as ni =

∑
t x

t
i and so types can be linearly ordered.

The assumption of conclusive signals allows us to focus solely on higher-order
uncertainty– an agent who gets even one signal xti = 1 knows for sure that the state
of nature is G but remains unsure about whether others know G, whether others
know that she knows G, etc. This higher-order uncertainty is captured via agents’
beliefs about the set

Ω+ = {ω : ∀j, nj ≥ 1}
that is, the set of states of the world in which every agent j received a signal xtj = 1
at some time t. Since even one positive signal is conclusive about G, at any ω ∈ Ω+

it must be that θ = G. Formally, Ω+ ⊆ ΩG. Define

q = Pr
[
Ω+ | Ni = 1

]
(5)

to be the belief of type Ni = 1 about the event that everyone else saw at least one
positive signal– and so also knows G. Note that Ω+ and q depend on T although we
have suppressed this dependence to reduce the notational burden.
Since signals are affi liated, for all n ≥ 1,

Pr
[
Ω+ | Ni = n

]
≥ Pr

[
Ω+ | Ni = 1

]
= q (6)

as established in Lemma A.2 in the Appendix. In other words, among all those that
know G, type Ni = 1 is most pessimistic about the event that everyone also knows
G. Put another way, type Ni = 1 is the second-most pessimistic type– type Ni = 0
is the most pessimistic, of course.

3.1 Main result

Consider two signal distributions P and Q with identical univariate marginals. Let
qX = PrX [Ω+ |

∑
tX

t
i = 1] as in (5) and let qY = PrY [Ω+ |

∑
t Y

t
i = 1] be the

analogous belief derived from signals Y .10

10The symbol PrX indicates that the probability is calculated using P and similarly, PrY is
calculated using Q.
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Define
ρ0 = Pr

[
ΩG | Ni = 0

]
(7)

to be the belief about G of an agent who receives only 0-signals in each of the T
periods. As T increases, ρ0 goes to zero. Note also that Ω, qX , qY , as well as ρ0 all
depend on T although we have suppressed this dependence, again to avoid notational
clutter.
The main result of this section is11:

Theorem 1 Suppose signals X and Y are binary and conclusive.

(1) For any T, if ρ0 < qY < qX , then for p ∈ (qY , qX),

Cp
Y

(
ΩG
)

= ∅ and Cp
X

(
ΩG
)

= Ω+

that is, G cannot be common p-believed with Y whereas G is common p-believed with
X whenever everyone knows G.

(2) If Y G �PQD XG, then for T large enough, ρ0 < qY < qX .

Theorem 1 says that when T is large enough, there is a non-empty open interval
of p’s, depending on T, such that for any p in that interval, it is impossible for G to be
common p-believed with the more correlated signals Y while it is possible with the
less correlated signals X. In this sense, greater commonality of information reduces
the commonality of beliefs.
A few remarks on the theorem are in order.
First, it is easy to verify that if qY < qX , then for all p, C

p
Y

(
ΩG
)
⊆ Cp

X

(
ΩG
)
. This

does not mean that the probability of the former is less than that of the latter– they
are measured using differernt distributions Q and P, respectively. But it does imply
that for any p, Cp

X

(
ΩG
)

= ∅ and Cp
Y

(
ΩG
)
6= ∅ is impossible.

Second, since we have assumed that QG has full support, the signals Y are not
public– that is, they are not perfectly correlated. If the signals Y were public,
then we would have that for all p, Cp

Y

(
ΩG
)

= Ω+, which would run counter to
(1). But what if Y is "almost" public– that is, for some small ε, for all k ∈ X ,
Pr [∀j, Yj = k | Yi = k] > 1− ε? Is there a discontinuity at ε = 0? Here the order of
quantifiers in the theorem is important. For a fixed T, it may be that if Y is almost
public, it leads to greater commonality of beliefs than X. What the theorem says is
that this cannot persist once T is large enough. Figure 1 depicts the beliefs qX and qY
as functions of T for the two signal distributions in Example 1– the (conditionally)
independent signals X and the correlated signals Y .
Third, the theorem does not conflict with the CEMS (2008) result that common

learning occurs in the limit regardless of the commonality of signals. Theorem 1
requires T to be large enough but not infinite.
11CpX

(
ΩG
)
is the set of states of the world in which ΩG is common p-believed when all the

probabilities are calculated using P and CpY
(
ΩG
)
is the same set when they are calculated using Q.

Note also that these depend on T as well.

11
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Figure 1: Threshold Beliefs for the Two Signals in Example 1

Fourth, note also that in Theorem 1 part (1), T must be at least 2– the conclusion
cannot hold for T = 1. This is because if Y G �PQD XG, then with binary and
conclusive signals,

qX = Pr [∀j,Xj = 1 | Xi = 1]

< Pr [∀j, Yj = 1 | Yi = 1]

= qY

and so when T = 1, for all p, Cp
X

(
ΩG
)
⊆ Cp

Y

(
ΩG
)
.

Finally, if we define T0 as the smallest T for which qY < qX , then T0 is "relatively
small". This is most easily seen when I = 2 as the condition that qY < qX is then
equivalent to

L ≡ PG (1, 0)

QG (1, 0)
<

(
QG (0, 0)

PG (0, 0)

)T−1

≡ RT−1

Now Y G �PQD XG implies that both L and R are greater than one. If 1 < L < R,
then, of course, T0 = 2. And if 1 < R < L, then since the right-hand side of the
inequality above grows exponentially, it will overtake the left-hand side very quickly,
that is, for a relatively small T0. Precisely, when L > R, T0 = dlnL− lnRe where
dze denotes the smallest integer that exceeds z.

3.2 Proof of Theorem 1

The proof of Theorem 1 has two components. We first show that with binary, con-
clusive signals, for any T, the set Cp

(
ΩG
)
has a "bang-bang" property– it is either

12



quite large or empty. Precisely, if p ≤ q, then Cp
(
ΩG
)
is as large as possible– any

state of the world in which everyone knows that θ = G is included. But if p > q,
Cp
(
ΩG
)
is empty. Thus, Cp

(
ΩG
)
suddenly goes from being large to being empty as

p crosses the threshold q. This is Proposition 3.1 below.
The second step in the proof of Theorem 1 then shows that when T is large

enough, an increase in the correlation among agents’signals leads to an increase in the
pessimism of the pivotal type who gets only one positive signal. This is Proposition
3.2 below.

3.2.1 Bang-bang property

The important "bang-bang" property of Cp
(
ΩG
)
is derived in the following proposi-

tion.

Proposition 3.1 Suppose signals are binary and conclusive. For any T,

(i) if ρ0 < p ≤ q, then
Cp
(
ΩG
)

= Ω+

(ii) if ρ0 < q < p, then
Cp
(
ΩG
)

= ∅

A formal proof of the proposition is below but the underlying arguments run as
follows.
Part (i) is rather intuitive. Consider the type ni = 1 that gets exactly one positive

signal. Since signals are conclusive, this type knows G. Moreover, this type assigns
probability q ≥ p to the event that all others also know G. Because signals are
affi liated, all types nj ≥ 1 also assign probability of at least q to the same event. The
fact that G is common p-believed now follows.
Part (ii) says that, in a strong sense, the converse is true as well. Again, consider

the type ni = 1 that gets exactly one positive signal. As above, since signals are
conclusive, this type knows that G has occurred but assigns only probability q < p
to the event that all others also know G. So this type cannot be in Cp

(
ΩG
)
. Now

an infection argument takes over. Consider type ni = 2 with two positive signals.
This type is only concerned with the event that all other agents are of type nj ≥ 2
since all those with nj = 1 have already been ruled out. We show that type ni = 2
assigns a lower probability to the event that all others are of type nj ≥ 2, than type
ni = 1 assigns to the event that all others are of type nj ≥ 1. Why is this? There
are two forces at work here. First, the event that all nj ≥ 2 is a subset of the event
that all nj ≥ 1 and, all else being equal, the former has a lower probability than the
latter. But on the other hand, affi liation implies that type ni = 2 assigns a higher
probability to any event of the sort nj ≥ n than does ni = 1. We show that the first
effect is always stronger and so the probability of the event that all nj ≥ n assigned

13



by ni = n decreases with n. This now means that the type ni = 2 is also excluded
from Cp

(
ΩG
)
. Once those with ni = 2 are excluded, this argument now carries over

to ni = 3 and so on. What is crucial for this argument is that because signals are
binary, types can be linearly ordered by the number of positive signals.

Proof of Proposition 3.1 (i) If ρ0 < p ≤ q, then the fact that signals are con-
clusive implies that all types with ni ≥ 1 assign probability 1 to the event ΩG and
hence, of course, assign at least probability q to ΩG. On the other hand, type ni = 0
assigns a probability ρ0 < q to the event ΩG. Thus, Bq

i

(
ΩG
)

= {ω : ni ≥ 1} and so

Bq
(
ΩG
)

= {ω : ∀j, nj ≥ 1} = Ω+ (8)

Moreover, (6) implies that all types with ni ≥ 1 assign at least probability q to
the event Ω+ that everyone got at least one positive signal. Formally, {ω : ni ≥ 1} ⊆
Bq
i (Ω+) and since Ω+ = {ω : ∀j, nj ≥ 1} ⊂ {ω : ni ≥ 1} , we have

Ω+ ⊆ Bq
(
Ω+
)

(9)

We will argue by induction that for all ` ≥ 1, that Ω+ ⊆ Bq,`
(
ΩG
)
.

Now (8) implies that the statement is true for ` = 1. So suppose that for some
` > 1,Ω+ ⊆ Bq,`−1

(
ΩG
)
. Operating on both sides by the monotone operator Bq, we

have Bq (Ω+) ⊆ Bq,`
(
ΩG
)
. But from (9), Ω+ ⊆ Bq,`

(
ΩG
)
.

Thus, for all `, Ω+ ⊆ Bq,`
(
ΩG
)
and hence Ω+ ⊆ Cq

(
ΩG
)
. Finally, since p ≤ q,

Cq
(
ΩG
)
⊆ Cp

(
ΩG
)
.

Proof of Proposition 3.1 (ii) Now suppose ρ0 < q < p.
For n = 0, 1, ..., T + 1, define

Γ(n) = {ω : ∀j, nj ≥ n}

as the set of states of the world ω in which every agent gets at least n signals X t
i = 1.

Clearly, for any n, Γ(n+1) ⊂ Γ(n) and ∩T+1
n=0 Γ(n) = ∅ since Γ(T+1) = ∅.

We will argue by induction that for all n ≤ T + 1,

Cp
(
ΩG
)
⊆ Γ(n) (10)

First, since Γ(0) = {ω : ∀j, nj ≥ 0} = Ω, (10) holds for n = 0.
Now suppose that Cp

(
ΩG
)
⊆ Γ(n). Let ω′ ∈ Γ(n) \ Γ(n+1). At any such ω′, there is

an i with ni = n, that is, i gets exactly n positive signals and since Cp
(
ΩG
)
⊆ Γ(n),

Pr
[
Cp
(
ΩG
)
| Ni = n

]
≤ Pr

[
Γ(n) | Ni = n

]
Lemma B.1 now implies that

Pr
[
Cp
(
ΩG
)
| Ni = n

]
< Pr

[
Γ(1) | Ni = 1

]
= q

14



and since p > q, ω′ /∈ Bp
i

(
Cp
(
ΩG
))
and hence ω′ /∈ Cp

(
ΩG
)
. Thus, we have argued

that Cp
(
ΩG
)
⊆ Γ(n+1) and hence established (10).

Now since Cp
(
ΩG
)
⊆ Γ(n) for all n and ∩T+1

n=0 Γ(n) = ∅, we have that Cp
(
ΩG
)

= ∅.
This completes the proof of Proposition 3.1. �

3.2.2 Correlation increases pessimism

Proposition 3.1 establishes that with binary and conclusive signals, the maximum
commonality of beliefs– that is, the highest p for which ΩG can be common p-
believed– is exactly q, the belief of the second-most pessimistic. In this section, we
compare two signal distributions such that Y G �PQD XG.12 We show that a change
from XG to Y G increases the pessimism of type ni = 1.

Proposition 3.2 Suppose signals are binary and conclusive. If Y G �PQD XG, then
for T large enough,

qY < qX

Proof. Follows from Lemma A.3 and Lemma C.1 in the Appendix.

The result is rather intuitive. Consider a type ni = 1 who gets one 1-signal in
period 1 and in every subsequent period t > 1 gets signal 0. What happens if signals
become more correlated? At the end of period 1, with more correlated signals, this
type ismore optimistic about the event that other agents also knowG. However, when
T is large this initial optimism is overwhelmed by the increased pessimism resulting
from a string of T − 1 zeros. Formally, if signals Y are more correlated than X,

Pr [Xj = 1 | Xi = 1] < Pr [Yj = 1 | Yi = 1]

at the same time

Pr [Xj = 1 | Xi = 0] > Pr [Yj = 1 | Yi = 0]

and for large enough T, the second inequality dictates the effect of greater "correla-
tion" on the beliefs of type ni = 1.

Propositions 3.1 and 3.2 together prove Theorem 1 since part 1 holds if p ∈
(qY , qX) and when T is large enough, ρ0 = Pr

[
ΩG | Ni = 0

]
< qY < qX .

12Recall that Xθ is a random vector such that Pr[Xθ = x] = Pr [X =x | θ] . Y θ is similarly
defined.
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4 General Model

The sharp result in Theorem 1 was derived for the case of binary and conclusive
signals. The sharp result obtains because with conclusive signals, one may focus
solely on higher-order uncertainty– that is, agents’beliefs about the beliefs of other
agents etc. When signals are not conclusive, first-order uncertainty– that is, agents’
beliefs about the state of nature θ– also plays a role. Moreover, if signals are not
binary, the types cannot be linearly ordered. For instance, with three signals and
T = 2, it is unclear whether type (1, 1) is more or less optimistic than type (2, 0) .
We now consider the general case where the set of signals X = {0, 1, 2, ..., K}.

Here we will assume that conditional on θ ∈ {G,B} , the distribution P has full
support. Recall that since P is affi liated, higher signals are more indicative that
θ = G; that is, Pr [G | Xi = k] is increasing in k.
Let

e1 = (1, 0, ..., 0) ∈ X T

denote the type that receives a signal of 1 in period 1 and 0’s thereafter and

qX = PrX
[
Ω+ | Xi = e1

]
where, as before, Ω+ = {ω : ∀j,xj 6= 0} is the set of states of the world in which
everyone gets at least one non-zero signal. Note that because of affi liation, type e1

is the second-most pessimistic type about both ΩG and Ω+. Only type 0 is more
pessimistic.
Once again we will compare signals X coming from P with Y coming from Q

such that Y θ �PQD Xθ for θ = G,B. Let qY be defined in a manner analogous to
qX .
As in (7), let

ρ0 = Pr
[
ΩG | Xi = 0

]
to be the belief of type 0 about G and define

ρ1 ≡ Pr
[
ΩG | Xi = e1

]
to be the belief of type e1 about G. Both ρ0 and ρ1 are the same for X and Y since
Y θ �PQD Xθ and so the univariate marginal distributions µθ of Xθ and Y θ are the
same (see (2)). Moreover, the prior probability ρ of G is the same. Note that if a
1-signal is conclusive, as in last section, then ρ1 = 1.
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4.1 Main result

In the general model, we have the following result:

Theorem 2

(1) For any T, if ρ0 < qY < qX < ρ1, then for p ∈ (qY , qX),

Cp
Y

(
ΩG
)
( Cp

X

(
ΩG
)

= Ω+

that is, if G is common p-believed with signals Y , it is also common p-believed with
X. Moreover, there are states of the world in which G is common p-believed with X
but not with Y .

(2) If Y θ �PQD Xθ, for θ = G,B, then for T large enough, ρ0 < qY < qX .

Like Theorem 1, Theorem 2 says that, under the identified circumstances, greater
commonality of information reduces the commonality of beliefs. Before proving the
theorem, it is useful to compare its conclusions to those of Theorem 1.
First, in part (1) of Theorem 2, while Cp

Y

(
ΩG
)
is a strict subset of Cp

X

(
ΩG
)
,

the former may be non-empty and there is no guarantee that PrY
[
Cp
Y

(
ΩG
)]

<
PrX

[
Cp
X

(
ΩG
)]
. This is because the two ex ante probabilities are determined from

different distributions Q and P, respectively. In Section 4.3, however, we provide
two environments in which under some weak conditions, the stronger conclusion that
Cp
Y

(
ΩG
)

= ∅ while Cp
X

(
ΩG
)

= Ω+ obtains. Now, of course, the probability of the
former is zero. These are

1. binary and non-conclusive signals (Section 4.3.1)

2. almost-public signals– that is, when the probability of events in which the sig-
nals received by the agents differ is small (Section 4.3.2).

Second, in the general model it is possible that even when qY < qX , it is the case
that ρ1 ≤ qY . This, of course, is impossible in the binary and conclusive model of
Section 3 where ρ1 = 1. What if ρ1 ≤ qY < qX? It can then be argued that for
p ∈ (ρ0, qY ) ,

Cp
Y

(
ΩG
)

= Cp
X

(
ΩG
)

= Ω+

and in this case correlation has no effect on Cp
(
ΩG
)
.

Finally, recall that with binary and conclusive signals, when T = 1, it was the
case that qX < qY . Where there are more than two signals, it may be that even for
T = 1, qY < qX so that the conclusion of Theorem 2 may hold even for T = 1.13

13An example is available from the authors.
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4.2 Proof of Theorem 2

Like Theorem 1, the proof of Theorem 2 is in two parts.
We first prove, for general signals, an analog of Proposition 3.1. With general

signals, however, the conclusion reached is weaker. Of course, Cp
(
ΩG
)
gets smaller

as p increases and the proposition shows that it is strictly smaller as p crosses the
threshold q. But unlike in the case of binary and conclusive signals, Cp

(
ΩG
)
may be

non-empty even when p exceeds q. In other words, the bang-bang property does not
hold in general.
The second step again shows that when T is large enough, an increase in the

correlation among agents’signals again increases the pessimism of the second-most
pessimistic type e1. This is Proposition 4.2 below.

4.2.1 Threshold beliefs

Recall that ρ0 = Pr
[
ΩG | Xi = 0

]
and ρ1 = Pr

[
ΩG | Xi = e1

]
.

Proposition 4.1 For any T,

(i) if ρ0 < p ≤ q ≤ ρ1 then
Cp
(
ΩG
)

= Ω+

(ii) if ρ0 < q < p, then
Cp
(
ΩG
)
( Ω+

Proof. First, in both (i) and (ii), ρ0 < p and we claim that

Cp
(
ΩG
)
⊆ Ω+ (11)

To see this, note that if ω /∈ Ω+, then there exists an agent, say i, such that xi = 0
and since Pr

[
ΩG | Xi = 0

]
= ρ0 < p,

ω /∈ Bp
1

(
ΩG
)

and so
ω /∈ Cp

(
ΩG
)

Part (i)We now argue that if p ≤ q, Ω+ ⊆ Cp
(
ΩG
)
and together with (11), this

will imply (i),
By assumption, p ≤ q < ρ1 = Pr

[
ΩG | Xi = e1

]
. SinceX1,X2, ...,XI are affi liated

(Lemma A.1), this implies that for any xi 6= 0, Pr
[
ΩG | Xi = e1

]
≤ Pr

[
ΩG | Xi = xi

]
and so for any xi 6= 0, p ≤ Pr

[
ΩG | Xi = xi

]
as well. Thus, for all i,

{ω : xi 6= 0} ⊆ Bp
i

(
ΩG
)
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Taking the intersection over i, we have

Ω+ ⊆ Bp
(
ΩG
)

In a similar manner, affi liation implies that for any xi 6= 0, Pr [Ω+ | Xi = e1] ≤
Pr [Ω+ | Xi = xi] and so p ≤ Pr [Ω+ | Xi = xi] as well. Thus,

{ω : xi 6= 0} ⊆ Bp
i

(
Ω+
)

Taking intersections over i, we have that

Ω+ ⊆ Bp
(
Ω+
)

In the language of Monderer and Samet (1989) this says that Ω+ is evident p-belief
(or is p-evident, for short). Proposition 3 in Monderer and Samet (1989) now implies
that Ω+ is common p-believed at any ω ∈ Ω+. Formally,

Ω+ ⊆ Cp
(
Ω+
)

Since Ω+ ⊆ Bp
(
ΩG
)
we have that Cp (Ω+) ⊆ Cp

(
Bp
(
ΩG
))

= Cp
(
ΩG
)
and so

Ω+ ⊆ Cp
(
ΩG
)

Part (ii) Next we argue that if p > q, the inclusion in (11) is strict. In particular,
if ω′ ∈ Ω+ is such that x1 = e1, then ω′ /∈ Cp

(
ΩG
)
.

There are two cases to consider. Since p > q, either (a) p > Pr
[
ΩG | X1 = e1

]
or

(b) p > Pr [Ω+ | X1 = e1] or both.
If (a), then ω′ /∈ Bp

1

(
ΩG
)
and so ω′ /∈ Cp

(
ΩG
)
.

If (b), then ω′ /∈ Bp
1 (Ω+) and so ω′ /∈ Cp (Ω+) . But since

Cp
(
ΩG
)
⊆ Ω+

operating on both sides by Cp and using the fact that Cp
(
ΩG
)
is a fixed point of the

operator CP ,
Cp
(
ΩG
)
⊆ Cp

(
Ω+
)

and so ω′ /∈ Cp
(
ΩG
)
.

4.2.2 Correlation increases pessimism

Theorem 1 showed that with conclusive signals, an increase in correlation (as mea-
sured by the PQD order) made the second-most pessimistic type even more pes-
simistic. Here we show that, modulo some minor qualifications, the same is true in
general– that is, even when signals are not conclusive.
Lemmas A.3 and C.2 in the Appendix imply the following result.

Proposition 4.2 If for θ = G,B, Y θ �PQD Xθ, then for T large enough,

qY < qX

The proof of Theorem 2 is completed by noting that as T increases, ρ0 goes to
zero. Now for large enough T, ρ0 < qY and part (i) of Proposition 4.1 applies to
Cp
X

(
ΩG
)
and part (ii) to Cp

Y

(
ΩG
)
.
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Example 2 We now consider an example in which signals are neither binary nor
conclusive. In the example, all the assumptions in part (1) of Theorem 2 hold when
T = 2. Specifically, ρ0 < qY < qX < ρ1. The example illustrates the following. First,
part (1) cannot be strengthened to read that for p ∈ (qY , qX), Cp

Y

(
ΩG
)

= ∅. Second,
while Theorem 2 only says that Cp

Y

(
ΩG
)
( Cp

X

(
ΩG
)
, it is the case that the ex

ante probability of the event Cp
Y

(
ΩG
)
according to Q is smaller than the ex ante

probability of the event Cp
X

(
ΩG
)
according to P.

Suppose that the set of signals X = {0, 1, 2} . There are two agents and the prior
probability of G, ρ = 1

2
.

Consider signals Y with the following joint distributions conditional on θ, where
ε > 0 is a small number.

QG =

Y2 = 0 Y2 = 1 Y2 = 2
Y1 = 0 0.1 0.08 ε3

Y1 = 1 0.08 0.7− 2ε− 2ε3 ε
Y1 = 2 ε3 ε 0.04

QB =

Y2 = 0 Y2 = 1 Y2 = 2
Y1 = 0 0.997− 3ε3 − 2ε4 0.001 ε4

Y1 = 1 0.001 0.001 ε3

Y1 = 2 ε4 ε3 ε3

When ε is small, the distribution Q is affi liated. In fact, all the (non-trivial) affi liation
inequalities are strict.
Now consider signalsX where for each θ, the conditional distribution Pr [Xi | θ] =

Pr [Yi | θ] and

Pr [Xi = k,Xj = l | θ] = Pr [Xi = k | θ]× Pr [Xj = l | θ]

In other words, conditional on θ, the signals X are independently distributed.
Suppose that T = 2, so that signals are generated twice. Now we have that when

ε is close to zero,

ρ0 = Pr
[
ΩG | Xi = 0

]
≈ 0.031

qY = Pr
[
Ω+ | Yi = e1

]
≈ 0.936

qX = Pr
[
Ω+ | Xi = e1

]
≈ 0.954

ρ1 = Pr
[
ΩG | Xi = e1

]
≈ 0.986

and since ρ0 < qY < qX < ρ1, the conditions of Theorem 2 part (1) are met.
If p ∈ (qY , qX) , then from Theorem 2,

Cp
X

(
ΩG
)

= Ω+ = {ω : ∀i, xi 6= 0}

and it may be verified that

Cp
Y

(
ΩG
)

=
{
ω : ∀i, maxt y

t
i = 2

}
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that is, Cp
Y

(
ΩG
)
consists of those states of the world in which both players receive

at least one signal k = 2.
Moreover, it can be verified that for p ∈ (qY , qX) , when ε ≈ 0,

PrY
[
Cp
Y

(
ΩG
)]
≈ 0.039 and PrX

[
Cp
X

(
ΩG
)]
≈ 0.468

Thus, in the example, for p ∈ (qY , qX) we not only have ∅ 6= Cp
Y

(
ΩG
)
( Cp

X

(
ΩG
)

(part (1) of Theorem 2) but

0 < PrY
[
Cp
Y

(
ΩG
)]
< PrX

[
Cp
X

(
ΩG
)]

as well. Thus, for p ∈ (qY , qX) it is more likely that ΩG will be common p-believed
with signals X than with Y . This last feature is not a consequence of Theorem 2.

4.3 Bang-bang property: two suffi cient conditions

While Theorem 2 part (1) gives suffi cient conditions for Cp
Y

(
ΩG
)
 Cp

X

(
ΩG
)
, this

of course does not imply that PrY
[
Cp
Y

(
ΩG
)]

< PrX
[
Cp
X

(
ΩG
)]
. Here we provide

two sets of suffi cient conditions such that in Theorem 2, the stronger conclusion that
Cp
Y

(
ΩG
)

= ∅ while Ω+ ⊆ Cp
X

(
ΩG
)
obtains (as in Theorem 1).

One suffi cient condition concerns the case where signals are binary (but perhaps
not conclusive). The other suffi cient condition concerns almost public signals– that
is, the probability that different agents get different signals is small.

4.3.1 Binary signals

The following result generalizes the "bang-bang" result of Proposition 3.1 in that
it allows for non-conclusive binary signals. Now while types can still be linearly
ordered, there is first-order uncertainty– about the state of nature θ. We show how
the conclusion of Proposition 3.1 can be reached in this more permissive setting as
well.

Proposition 4.3 Suppose signals are binary. For any T ,

(i) if ρ0 < p ≤ q ≤ ρ1 then
Cp
(
ΩG
)

= Ω+

(ii) if ρ0 < q < p, then
Cp
(
ΩG
)

= ∅

Part (i) of Proposition 4.3 needs no additional proof since it follows from part
(i) of 4.1. The proof of part (ii) of Proposition 4.3 is identical to that of part (ii) of
Proposition 3.1 since the fact that signals were conclusive was not used in proving
this. In particular, Lemma B.1 requires only that signals are binary.
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Proposition 4.3 implies that for binary signals, under the assumptions of Theorem
2, its conclusion in part (1) can be sharpened to read that Cp

Y

(
ΩG
)

= ∅.
One may rightly wonder whether condition ρ0 < p ≤ ρ1 holds only when signals

are "nearly" conclusive. This is not the case as the following example shows.

Example 3 Suppose that the set of signals X = {0, 1} . There are two agents and
the prior probability ρ = 3

4
.

Consider signals Y with the following joint distributions conditional on θ,

QG =
Y2 = 0 Y2 = 1

Y1 = 0 0.12 0.08
Y1 = 1 0.08 0.72

QB =
Y2 = 0 Y2 = 1

Y1 = 0 0.84 0.075
Y1 = 1 0.075 0.01

The two marginal distributions µG = (0.2, 0.8) and µB = (0.915, 0.085) .
Let signalsX be generated from P such that for each θ, P θ (x1, x2) = µθ (x1)µθ (x2),

that is, P θ is the product of the marginal distributions in each state.
Note that QB (0, 0) = 0.84 < 1 and so (θ,Y ) is not conclusive (perhaps even

"far" from conclusive). It is routine to verify that when T = 2, this example satisfies
ρ0 < qY < qX < ρ1 and so for p ∈ (qY , qX) , Cp

Y

(
ΩG
)

= ∅ while Cp
X

(
ΩG
)

= Ω+.

4.3.2 Almost-public signals

Here we consider signals Y that are so highly correlated that they are almost public.
In other words, the probability that agents’ signals disagree in any period is very
small. We will show that under a weak condition, the conclusion of Theorem 2 can
again be strengthened.
For ε > 0, an ε-public signal distribution is constructed as follows. For any vector

of signals y ∈ X I , define
d (y) = min

k

∑
i |yi − k|

as the distance y from to the nearest diagonal vector (k, k, .., k) . Note that d (y) > 0
if and only if y is not diagonal.

Definition 2 Q is ε-public if for all non-diagonal y,

Qθ (y) = εd(y)

The definition says that the probability of any vector that is not diagonal is small
and decreases, by an order of magnitude, the further a signal vector is from being
diagonal.
An ε-public distribution Q can be interpreted as follows. A public signal y =

(k, k, ..., k) is generated. Each agent, however, "misunderstands" the signal k with
error. Specifically, an agent thinks the signal is k + 1 or k − 1 each with probability
ε; thinks that the signal is k + 2 or k − 2, each with probability ε2; etc. Thus
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larger misunderstandings occur with smaller probabilities. Misunderstandings occur
independently across agents.14

Let µθ ∈ ∆ (X ) denote the univariate marginal distribution of agents’signals in
state of nature θ derived from Q. We will assume the following

Condition 1 For all k > 1, and θ, θ′ ∈ {G,B} ,

µθ (1) > µθ
′
(k)

The condition is rather weak and requires only that the marginal probability of
signal k = 1 in either state of nature G or B is not too small relative to those of
signals k > 1 in both states, G and B.
Fix a full-support univariate marginal µ ∈ ∆ (X ) and let Q (µ) ⊂ ∆

(
X I
)
be the

set of (symmetric) full-support joint distributions with univariate marginals equal to
µ.
For ε-public signals satisfying Condition 1, for all ε small enough, the "bang-bang"

property holds:

Proposition 4.4 Let Q ∈ Q (µ) be an ε-public distribution and suppose that the
univariate marginals µθ satisfy Condition 1. For any T,
(i)if ρ0 < p ≤ q ≤ ρ1 then

Cp
(
ΩG
)

= Ω+

(ii)if ρ0 < q < p, then for all ε small enough,

Cp
(
ΩG
)

= ∅

Proof. Part (i) follows from part (i) of Proposition 4.1 since this is just a special
case.
Part (ii) Let n be an integer satisfying 0 ≤ n ≤ KT + 1 and define

S(n) =
{
yi :

∑T
t=1 y

t
i = n

}
as the set of types yi such that the sum of signals is n. Finally, define

Γ(n) = ∪m≥nS(m)

as the set of types yi such that the signal-sum is at least n. Note that by definition,
Γ(1) = Ω+.

14This exact specification is not needed in what follows. All that is needed is that all non-diagonal
y with d (y) = 1 are of the same magnitude and that other non-diagonal y’s are of lower magnitude.
This last feature is in fact a necessary consequence of affi liation.
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Lemma D.1 in Appendix D shows that for small enough ε, for any yi ∈ S(n),

Pr
[
Γ(n) | Yi = yi

]
≤ q

that is, a type with signal-sum n is more pessimistic about Γ(n) than type with
signal-sum 1 is about Γ(1).15

The remainder of the proof is identical to that of part (ii) of Proposition 3.1.

Proposition 4.4 implies that for ε-public signals, under the assumptions of Theo-
rem 2, its conclusion in part (1) can again be sharpened to read that Cp

Y

(
ΩG
)

= ∅
while Cp

X

(
ΩG
)

= Ω+.

Example 4 This example illustrates the workings of Theorem 2 when the signal
distribution Q is ε-public and satisfies Condition 1 and P is (conditionally) inde-
pendent. Signals are neither binary nor conclusive but the stronger conclusion that
Cp
Y

(
ΩG
)

= ∅ still obtains.
Suppose that the set of signals X = {0, 1, 2} . There are two agents and the prior

probability ρ = 0.85. Suppose also that T = 2.
Let the signals Y be distributed according to an ε-public distribution Q with

conditional distributions

QG =

Y2 = 0 Y2 = 1 Y2 = 2
Y1 = 0 0.4− ε− ε2 ε ε2

Y1 = 1 ε 0.315− 2ε ε
Y1 = 2 ε2 ε 0.285− ε− ε2

QB =

Y2 = 0 Y2 = 1 Y2 = 2
Y1 = 0 0.5− ε− ε2 ε ε2

Y1 = 1 ε 0.3− 2ε ε
Y1 = 2 ε2 ε 0.2− ε− ε2

so that the two marginal distributions are µG = (0.4, 0.315, 0.285) and µB = (0.5, 0.3, 0.2).
Let X be such that the conditional distributions are independent with the given

marginals, that is, P θ (x1, x2) = µθ (x1)× µθ (x2) .
Routine calculations show that for this example, when ε = 0.07,

ρ0 ' 0.784

qX ' 0.807

qY ' 0.824

ρ1 ' 0.826

15Note that unlike in the case of binary signals, there is no claim that different types with the
same sum of signals have the same beliefs. For instance, if T = 2, type xi = (1, 1) may have different
beliefs than type x′i = (2, 0) even though both have the same sum.
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and since ρ0 < qX < qY < ρ1, the conditions of Theorem 2 part (1) are met .
It may be verified that in this example, we have that for all p ∈ (qX , qY ) ,

Cp
Y

(
ΩG
)

= ∅ while Cp
X

(
ΩG
)

= Ω+.

5 Blackwell Informativeness

When there are only two agents (I = 2), our main result can be reinterpreted in
the language of Blackwell’s (1951) informativeness notion. Blackwell’s setting, of
course, is that of a single agent facing a decision whose payoff is influenced by an
unknown state of nature. In what follows, signals need not be binary nor need they
be conclusive.
In the two-agent case, we first adopt the perspective of agent 1, say. As above,

suppose P is a joint distribution over states of nature and signals and let P θ be the
joint distribution of signals conditional on θ. For fixed θ, from agent 1’s perspective,
the signal X2 of agent 2 can be interpreted as a "state of nature" and X1 as agent
1’s informative signal about X2. The conditional distribution P θ (X1 | X2) is then a
Blackwell experiment. The same is true if we adopt the perspective of agent 2 and
treat X1 as a "state of nature" and X2 as agent 2’s signal about X1.16

Now consider another distribution Q of states of nature and signals and again
let Qθ be the joint distribution of signals conditional on θ. As above, for fixed θ,
Qθ (Y1 | Y2) is also a Blackwell experiment.
We will say that

Definition 3 Suppose I = 2.The signals Y are mutually more informative than X
if for all θ, Qθ (Yj | Yi) is Blackwell more informative than P θ (Xj | Xi).

Note that this definition focuses on how informative one agent’s signals are about
the other agent’s signals. Also, this guarantees that conditional on θ, X and Y have
the same univariate marginal distributions.

Lemma 5.1 Suppose that P and Q are both affi liated. If the signals Y are mutually
more informative than X, then

Pr [X1 = 0, X2 = 0 | θ] ≤ Pr [Y1 = 0, Y2 = 0 | θ] (12)

Proof. Fix θ. From Blackwell (1951), we know that if Qθ (Y1 | Y2) is more informative
than P θ (X1 | X2) , then the posteriors from Y are a mean-preserving spread of the
posteriors from X.

16This reinterpretation cannot work when there are more than two agents. For instance, suppose
signals are binary and I = 3. Now from agent 1’s perspective the state of nature is (X2, X3) .
Blackwell’s informativeness criterion would require that if Y is another signal structure, then for all
i, the distribution of (X2, X3) be the same as the distribution of (Y2, Y3) . Together with symmetry,
this can hold only if the distribution of Y is the same as the distribution of X.
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Formally, if we define for every k and l in X ,

pkl = P θ (X2 = l | X1 = k)

and
pk =

(
pkl
)
l∈X ∈ ∆ (X )

to be the vector of posterior beliefs of agent 1 with signal X1 = k about the signals
X2 of agent 2. Similarly, define

qk ∈ ∆ (X )

to be the vector of posterior beliefs of agent 1 with signal Y1 = k about the signals
Y2 of agent 2.
Now Blackwell’s Theorem implies that for all k,

pk ∈ co{qm : m ∈ X}

the convex hull of the set of posterior vectors qm from Y .
Moreover, since (X1, X2) are affi liated, for any k > 0, the distribution pk ∈ ∆ (X )

(first-order) stochastically dominates the distribution p0 ∈ ∆ (X ) . Similarly, for any
k > 0, the distribution qk ∈ ∆ (X ) stochastically dominates the distribution q0 ∈
∆ (X ) .
Since p0 ∈ co{qm : m ∈ X} we can write

p0 =
∑K

m=0
αmq

m

where αm ∈ [0, 1] and
∑K

m=0 αm = 1.
We claim that the distribution p0 ∈ ∆ (X ) stochastically dominates p0 ∈ ∆ (X ) .

This is the same as, for any L ∈ X ,∑L

l=0
p0
l =

∑L

l=0

∑K

m=0
αmq

m
l

=
∑K

m=0
αm

(∑L

l=0
qml

)
≤

∑K

m=0
αm

(∑L

l=0
q0
l

)
=

∑L

l=0
q0
l

where the inequality in the third line follows from the fact that the distribution for
all m > 0, qm stochastically dominates q0.
In particular, for L = 0, this implies that

p0
0 ≤ q0

0

which is equivalent to

P θ (X2 = 0 | X1 = 0) ≤ Qθ (Y2 = 0 | Y1 = 0)
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and since P θ (X1 = 0) = Qθ (Y1 = 0) , the result follows.

Lemma 5.1 implies that when there are two agents, in all of the results of the
earlier sections, the condition that "Y �PQD X" can be replaced with the condition
"Y is mutually more informative than X," provided that the inequality in (12) is
strict. This is because Lemmas C.1 and C.2 only require (the strict version) of the
inequality.

6 Common p-beliefs about B

Theorems 1 and 2 concern the effects of increased correlation on the common learning
of the state of nature G. In many applications (such as the investment game in
Example 1, games of regime change, currency attacks, etc.) one is interested in
discovering the prospects of coordinated actions in one of the states and not the
other. Nevertheless, one may well ask what effect increased correlation has on the
common learning of B and we now turn to this question.
In the general model of Section 4, there is nothing special about the state of nature

G versus B. In particular, all signals have full support in both states of nature. Thus
all the results of Section 4 that concern the beliefs about G have counterparts that
concern the beliefs about B. The counterpart of Ω+ = {ω : ∀j,Xj 6= 0} is Ω− =
{ω : ∀j,Xj 6= (K,K, ...,K)} since type (K,K, ...,K) is most optimistic about G and
hence most pessimistic about B. The counterpart of q = Pr [Ω+ | Xi = (1, 0, ..., 0)]
is r = Pr [Ω− | Xi = (K − 1, K, ...,K)] . Just as type (1, 0, ..., 0) is the second-most
pessimistic about G, type (K − 1, K, ...,K) is the second-most pessimistic about B.
Finally, analogous to ρ0 and ρ1, let σK = Pr

[
ΩB | Xi = (K,K, ...,K)

]
and σK−1 =

Pr
[
ΩB | Xi = (K − 1, K, ...,K)

]
. These corresponding objects can then be used to

derive results about θ = B that are qualitatively the same as those derived in Section
4 about θ = G. Mimicking the arguments in Theorem 2, we would deduce (1) that
if σK < rY < rX < σK−1, then C

p
Y

(
ΩB
)
 Cp

X

(
ΩB
)

; and (2) for T large enough,
σK < rY < rX .
With binary and conclusive signals, however, there is an important asymmetry

between the two states of nature G and B. The signals do not have full support in
state B and even one 1-signal reveals that the state is G. So we now turn to consider
this special case.
Analogous to the definition of ΩG, let

ΩB = {ω : θ = B}

as the set of states of the world in which the state of nature is B and define

Ω0 = {ω : ∀j,xj = 0}

as the set of states of the world in which every agent gets only 0-signals in every
period.
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We then have the following "bang-bang" result for agents’beliefs about ΩB.17

Proposition 6.1 Suppose signals are binary and conclusive.

(i) If p ≤ 1− ρ0, then
Cp
(
ΩB
)

= Ω0

(ii) If 1− ρ0 < p, then
Cp
(
ΩB
)

= ∅

Proof. (i) Since type 0 assigns probability 1− ρ0 to B, {ω : xi = 0} ⊆ Bp
i

(
ΩB
)
and

hence Ω0 ⊆ Bp
(
ΩB
)
.

Also, since signals are conclusive, ΩB ⊂ Ω0, and so 1 − ρ0 = Pr
[
ΩB | Xi = 0

]
<

Pr [Ω0 | Xi = 0] . Thus, p < Pr [Ω0 | Xi = 0] and so {ω : xi = 0} ⊆ Bp
i (Ω0) and hence

Ω0 ⊆ Bp (Ω0) . Thus, Ω0 ⊆ Bp
(
Bp
(
ΩB
))
. Proceeding in this way, we obtain that

Ω0 ⊆ Cp
(
ΩB
)
.Moreover, any type xi 6= 0 assigns probability 0 to the event ΩB (since

even a single 1-signal indicates that θ = G). Thus, {ω : xi 6= 0} ∩ Bp
i

(
ΩB
)

= ∅ and
this implies that {ω : xi 6= 0} ∩ Cp

(
ΩB
)

= ∅ as well. Thus, Cp
(
ΩB
)

= Ω0.
(ii) Since type 0 assigns a probability less than p to ΩB, all types xi do so as well.

Thus, Bp
(
ΩB
)

= ∅ and so Cp
(
ΩB
)

= ∅.

Now consider two binary, signals such that Y �PQD X. Since they have the same
univariate marginals, it is the case that Pr

[
ΩB | Xi = 0

]
= Pr

[
ΩB | Yi = 0

]
= 1−ρ0.

Proposition 6.1 now implies that with binary and conclusive signals, if p ≤ 1−ρ0,
then Cp

X

(
ΩB
)

= Cp
Y

(
ΩB
)

= Ω0 and if p > 1 − ρ0, then C
p
X

(
ΩB
)

= Cp
Y

(
ΩB
)

= ∅.
In other words, increased correlation does not affect the set Cp

(
ΩB
)
.

Finally, Y �PQD X implies that PrX [Ω0] < PrY [Ω0] , that is, increased correla-
tion does not decrease the likelihood that ΩB is common p-believed.

A Appendix: Affi liation and the PQD Order

Recall that a joint probability distribution P ∈ ∆
(
X I
)
is said to be affi liated if for

all x and x′ in X I , P (x)×P (x′) ≤ P (x ∨ x′)×P (x ∧ x′). Also recall the notation
that if x = (xti)i∈I,t∈T is a realization of all I signals in all T periods, then x

t = (xti)i∈I
(slanted bold) is the I-vector of all I signal realizations in period t, while xi = (xti)t∈T
(upright bold) is the T -vector of i’s signals over the T periods.

Lemma A.1 Suppose that the I variables X = (X1, X2, ..., XI) are affi liated with
distribution P . If X1,X2, ...,XT are independently and identically distributed ac-
cording to P , then the I × T variables (X1,X2, ...,XI) also have an affi liated joint
distribution.
17This result was suggested by a referee.
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Proof. Suppose x = (x1,x2, ...,xI) and x′ = (x′1,x
′
2, ...,x

′
I) are both in

(
X I
)T
.

Because the X t’s are independently distributed over time

Pr [x] =
∏T

t=1 P
(
xt
)
and Pr [x′] =

∏T
t=1 P

(
x′t
)

Thus,

Pr [x] Pr [x′] =
∏T

t=1 P
(
xt
)∏T

t=1 P
(
x′t
)

=
∏T

t=1 P
(
xt
)
P
(
x′t
)

≤
∏T

t=1 P
(
xt ∨ x′t

)
P
(
xt ∧ x′t

)
=

∏T
t=1 P

(
xt ∨ x′t

)∏T
t=1 P

(
xt ∧ x′t

)
= Pr [x ∨ x′] Pr [x ∧ x′]

Lemma A.2 Let e1 = (1, 0, ..., 0) ∈ X T . Suppose that the variables X are affi liated.
For any xi 6= 0,

Pr
[
Ω+| Xi = xi

]
≥ Pr

[
Ω+| Xi = e1

]
Proof. Clearly, the indicator function IΩ+ :

(
X T
)I → {0, 1} of the set Ω+ =

{ω : ∀j,xj 6= 0} is non-decreasing. For any xi 6= 0 there is a permutation xπi of
xi such that xπi ≥ e1. Since the set Ω+ is permutation invariant

Pr
[
Ω+| Xi = xi

]
= Pr

[
Ω+| Xi = xπi

]
= E [IΩ+ (X) | Xi = xπi ]

≥ E
[
IΩ+ (X) | Xi = e1

]
= Pr

[
Ω+| Xi = e1

]
The inequality in the third line is the result of the following argument. First,

since the variables X = (X t
i ) are affi liated (Lemma A.1), the probability distribution

of X−i conditional on Xi = xπi dominates the distribution of X−i conditional on
Xi = e1 in the multivariate likelihood order, as defined in Section 6.E of Shaked and
Shanthikumar (2008). Their Theorem 6.E.8 now implies that the two distributions
are also ranked by the usual stochastic order.

Lemma A.3 Suppose that Y θ �PQD Xθ. Then

Pr [Xi = 0, Xj = 0 | θ] < Pr [Yi = 0, Yj = 0 | θ]

Proof. Recall that Y θ �PQD Xθ implies that for any z such that for at least two
indices l, zl < K, then

Pr [X ≤ z | θ] < Pr [Y ≤ z | θ]

If we choose z such that zi = zj = 0 and zl = K, for all l 6= i, j, then the conclusion
follows.
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B Appendix: Binary Signals

Lemma B.1 Suppose signals are binary. For any n ≥ 1,

Pr [∀j,Nj ≥ n+ 1 | Ni = n+ 1] ≤ Pr [∀j,Nj ≥ n | Ni = n]

Proof. Since signals are serially independent, without loss of generality, suppose
that the conditioning events are such that

∑T−1
t=1 X

t
i = n and then on the left-hand

side XT
i = 1 whereas on the right-hand side XT

i = 0. In other words, the additional
1-signal received by i occurs in period T.
For j = 1, 2., , , I, define Mj =

∑T−1
t=1 X

t
j to be the sum of the first T − 1 signals

received by j and let M−i = (Mj)j 6=i denote the vector of sums of the first T − 1

signals received by agents other than i. Then Nj = Mj +XT
j .

We will argue that for all m−i,

Pr
[
∀Nj ≥ n+ 1,M−i = m−i |Mi = n,XT

i = 1
]

(13)

≤ Pr
[
∀Nj ≥ n,M−i = m−i |Mi = n,XT

i = 0
]

This is because if the left-hand side of (13) is positive, then it must be that after
T − 1 periods everyone has already received at least n positive signals, that is, for all
j, mj ≥ n. But then the right-hand side of (13) is 1.
Thus, for all m−i, the probability that Nj ≥ n+ 1 occurs conditional on Mi = n

and XT
i = 1 is no greater than the probability that Nj ≥ n occurs conditional on

Mi = n and XT
i = 0.

Finally, since the probability distribution ofM−i =
∑T−1

t=1 X
t
−i is independent of

XT
i , summing both sides of the inequality over all the m−i, we have

Pr
[
∀j,Mj +XT

j ≥ n+ 1 |Mi = n,XT
i = 1

]
≤ Pr

[
∀j,Mj +XT

j ≥ n |Mi = n,XT
i = 0

]
which establishes the result.

C Appendix: Effect of Correlation

We are interested in how correlation affects the probability Pr [Ω+ | X1 = e1] that
type e1 = (1, 0, ..., 0) ∈ X T assigns to the event that all others get at least one
positive signal.
We begin by developing a formula for the joint probability

Pr
[
X1 = e1,Ω+

]
= Pr

[
X1 = e1,∀j,Xj 6= 0

]
= Pr

[
X1 = e1

]
− Pr

[
X1 = e1,∃j,Xj = 0

]
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If we define Aj = {ω : x1 = e1,xj = 0} as the set of states of the world in which 1’s
type is e1 and j’s type is 0, then

Pr
[
X1 = e1,∃j,Xj = 0

]
= P (∪j 6=1Aj)

where P ∈ ∆
(
Θ×X I

)
is the joint distribution of states of nature and signals.

By the inclusion-exclusion principle,

P (∪j 6=1Aj) =
∑
1<j

P (Aj)−
∑

1<j<k

P (Aj ∩ Ak) +
∑

1<j<k<l

P (Aj ∩ Ak ∩ Al)− ...

But since agents are symmetric, we have

P [∪j 6=1Aj] =
(
I−1

1

)
P (A2)−

(
I−1

2

)
P (A2 ∩ A3) +

(
I−1

3

)
P (A2 ∩ A3 ∩ A4)− ...

=
I∑
l=2

(−1)l
(
I−1
l−1

)
P (A2 ∩ A3 ∩ ... ∩ Al) (14)

Now, since conditional on θ, the signals are independent over time

P (A2) = Pr
[
X1 = e1,X2 = 0

]
= ρPG ((X1, X2) = (1, 0))×

(
PG ((X1, X2) = (0, 0))

)T−1

+ (1− ρ)
(
PB ((X1, X2) = (1, 0))× (P (X1, X2) = (0, 0))T−1

)
In general, for all l = 2, 3, ..., I

P [A2 ∩ A3 ∩ ... ∩ Al] = Pr
[
X1 = e1,X2 = X3 = ... = Xl = 0

]
= ρ (P [(X1, X2, , ..., Xl) = (1, 0, ...0) | G]

× (P [(X1, X2, , ..., Xl) = (0, 0, ...0) | G])T−1
)

+ (1− ρ) (P [(X1, X2, , ..., Xl) = (1, 0, ...0) | B]

× (P [(X1, X2, , ..., Xl) = (0, 0, ...0) | B])T−1
)

It will be convenient to define, for l = 2, 3, ..., I and θ = G,B,

αθl = P [(X1, X2, , ..., Xl) = (1, 0, ...0) | θ]

and
βθl = P [(X1, X2, , ..., Xl) = (0, 0, ...0) | θ]

and so we can rewrite (14) more compactly as

P [∪j 6=1Aj] =
I∑
l=2

(−1)l
(
I−1
l−1

) (
ραGl

(
βGl
)T−1

+ (1− ρ)αBl
(
βBl
)T−1

)
(15)
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Note that for θ = G,B, both αθl and β
θ
l are non-increasing sequences since the

event that X2 = X2 = ... = Xl = 0 includes the event that X2 = X2 = ... = Xl =
Xl+1 = 0. Moreover, if conditional on θ, signals have full support, then αθl and β

θ
l are

strictly decreasing.
Analogously, if (θ,Y ) are distributed according to Q, then we have

Q [∪j 6=1Aj] =

I∑
l=2

(−1)l
(
I−1
l−1

) (
ραGl (β

G

l )T−1 + (1− ρ)αBl (β
B

l )T−1
)

(16)

where αθl and β
θ

l are defined in the same manner as α
θ
l and β

θ
l but for the probability

distribution Q of Y . As above, both αθl and β
θ

l are non-increasing sequences.

Lemma C.1 Suppose that both signals X and Y are binary and conclusive. If

Pr [Yi = 0, Yj = 0 | G] > Pr [Xi = 0, Xj = 0 | G] (17)

Then there exists a T0 such that for all T > T0,

qY = PrY
[
Ω+ | Yi = e1

]
< PrX

[
Ω+ | Xi = e1

]
= qX

Proof. First, since the signals X and Y are conclusive, then for all l,

αBl = Pr [(X1, X2, , ..., Xl) = (1, 0, ...0) | B] = 0

and αBl = 0 as well. Then from (15) and (16) we have that the ratio

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

∑I
l=2 (−1)l

(
I−1
l−1

)
αGl
(
βGl
)T−1∑I

l=2 (−1)l
(
I−1
l−1

)
αGl (β

G

l )T−1

Dividing the numerator and denominator by
(
β
G

2

)T−1

> 0, we obtain

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

(I − 1)αG2

(
βG2

β
G
2

)T−1

+
∑I

l=3 (−1)l
(
I−1
l−1

)
αGl

(
βGl

β
G
2

)T−1

(I − 1)αG2 +
∑I

l=3 (−1)l
(
I−1
l−1

)
αGl (β

G
l

β
G
2

)T−1

Now note that since β
G

l is a strictly decreasing sequence, each of the terms of the

form
(
β
G

l /β
G

2

)
is less than one. Moreover, (17) is the same as βG2 < β

G

2 ,

βGl

β
G

2

<
βG2

β
G

2

< 1
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and so we have that when T is large enough,

Pr [X1 = e1, ∃j,Xj = 0]

Pr [Y1 = e1, ∃j,Yj = 0]
=
P (∪j 6=1Aj)

Q (∪j 6=1Aj)
< 1 (18)

Now sinceX and Y have the same univariate marginals, Pr [X1 = e1] = Pr [Y1 = e1]
and so from (18)

Pr
[
∀j,Yj 6= 0 | Y1 = e1

]
< Pr

[
∀j,Xj 6= 0 | X1 = e1

]

Lemma C.2 Suppose P and Q are full-support distributions such that for θ = G,B,
and i 6= j,

Pr [Yi = 0, Yj = 0 | θ] > Pr [Xi = 0, Xj = 0 | θ] (19)

Then there exists a T0 such that for all T > T0,

qY = PrY
[
Ω+ | Yi = e1

]
< PrX

[
Ω+ | Xi = e1

]
= qX

Proof. From (15) and (16) we have that the ratio

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

∑I
l=2 (−1)l

(
I−1
l−1

) (
ραGl

(
βGl
)T−1

+ (1− ρ)αBl
(
βBl
)T−1

)
∑I

l=2 (−1)l
(
I−1
l−1

)(
ραGl

(
β
G

l

)T−1

+ (1− ρ)αBl

(
β
B

l

)T−1
)

Dividing the numerator and denominator by
(
β
B

2

)T−1

> 0, we obtain

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

∑I
l=2 (−1)l

(
I−1
l−1

)(
ραGl

(
βGl

β
B
2

)T−1

+ (1− ρ)αBl

(
βBl

β
B
2

)T−1
)

∑I
l=2 (−1)l

(
I−1
l−1

) (
ραGl (β

G
l

β
B
2

)T−1 + (1− ρ)αBl (β
B
l

β
B
2

)T−1
) (20)

and observe that since both (θ,X) and (θ,Y ) are affi liated,

βG2 = PG ((X1, X2) = (0, 0)) ≤ PB ((X1, X2) = (0, 0)) = βB2

β
G

2 = PG ((Y1, Y2) = (0, 0)) ≤ PB ((Y1, Y2) = (0, 0)) = β
B

2

Moreover, (19) implies that

βB2 = PB ((X1, X2) = (0, 0)) < PB ((Y1, Y2) = (0, 0)) = β
B

2

βG2 = PG ((X1, X2) = (0, 0)) < PG ((Y1, Y2) = (0, 0)) = β
G

2

Thus, for all l,
βGl ≤ βG2 < β

G

2 ≤ β
B

2
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and since βBl is a strictly decreasing sequence, for l > 2,

βBl < βB2 < β
B

2

These inequalities in turn imply that in the numerator of (20), for all l

βGl

β
B

2

< 1 and
βBl

β
B

2

< 1

and so as T →∞, the numerator goes to zero.
Moreover, for all l > 2

β
G

l

β
B

2

<
β
G

2

β
B

2

≤ 1 and
β
B

l

β
B

2

< 1

and so as T →∞, all the terms with l > 2 in the denominator of the right-hand side
of (20) go to zero. The l = 2 term in the denominator, however, stays positive (the
l = 2 term in the denominator is at least (1− ρ)αBl > 0).
So we have that when T is large enough,

Pr [X1 = e1, ∃j,Xj = 0]

Pr [Y1 = e1, ∃j,Yj = 0]
=
P (∪j 6=1Aj)

Q (∪j 6=1Aj)
< 1

Now sinceX and Y have the same univariate marginals, Pr [X1 = e1] = Pr [Y1 = e1]
and so from (18)

Pr
[
∀j,Yj 6= 0 | Y1 = e1

]
< Pr

[
∀j,Xj 6= 0 | X1 = e1

]

D Appendix: Almost-public signals

Recall that S(n) = {yi :
∑

t y
t
i = n} is the set of types whose signal-sum is n and

Γ(n) = {y : ∀j,
∑

t y
t
j ≥ n} is the set of types of all agents such that the signal-sum

of each agent is at least n. Also, recall that d (y) = mink
∑

i |yi − k| is the distance
of y ∈ X I from to the nearest diagonal vector (k, k, .., k) ∈ X I .
In what follows, we will use the following (Landau) asymptotic notation to denote

that a function f (ε) is of lower order than ε.

Definition 4 A function f (ε) = o (ε) if limε→0 (f (ε) /ε) = 0.

Lemma D.1 Let Q ∈ Q (µ) be an ε-public distribution and suppose that the univari-
ate marginals µθ satisfy Condition 1. For ε > 0 small enough, for all n > 1 and for
all yi ∈ S(n),

Pr
[
Γ(n) | Yi = yi

]
< q ≡ Pr

[
Γ(1) | Yi = e1

]
(21)
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Proof. We will develop estimates for both sides of (21) that are such that the error
in both estimates is o (ε) .
Define

Rt
−i (yi) =

{
y−i : ∀s 6= t, d (ys) = 0 and ∀j, ytj ≥ yti , d

(
yt
)

= 1
}

where y−i is a vector of types of agents other than i. Note that if y−i ∈ Rt
−i (yi) , there

is a single mismatch of signals only in period t. Note also that for all t, Rt
−i (yi) ⊂ Γ(n)

and for t 6= t′ the sets Rt
−i (yi) and R

t′
−i (yi) are disjoint. Thus, for any yi ∈ S(n),

Pr
[
Γ(n),Yi = yi

]
= Pr [∀j,Yj = yi] +

T∑
t=1

Pr
[
Rt
−i (yi) ,Yi = yi

]
+ o (ε) (22)

The first term is the probability that all agents j 6= i are of the same type as i. The
second term is on the probability of events in which there is single mismatch– not
all signals are identical. The probabilities of all other events in Γ(n)– involving either
multiple mismatches in the same period or across periods– are of lower order and
o (ε) .
The first term in (22)

Pr [∀j,Yj = yi] =
∏T

t=1 Q
θ
(
yti , ..., y

t
i

)
We now proceed to calculate the second term in (22). We claim that for all t,

Pr
[
Rt
−i (yi) ,Yi = yi | θ

]
=

{ ∏
s 6=tQ

θ (ysi , ..., y
s
i ) Iε if 0 ≤ yti < K

0 if yti = K
(23)

This is because, if yti < K, then there are exactly I elements of Rt
−i (yi) since either

(i) there is only one h 6= i with yth = yti + 1; or (ii) ∀j 6= i, ytj = yti + 1. There are
I − 1 events of type (i) and only one event of type (ii).18 Each has a probability of∏

s 6=tQ
θ (ysi , ..., y

s
i ) ε in state θ. If y

t
i = K, then Rt

−i (yi) = ∅.
Let T0 be the set of periods in which yti = 0 and TK be the set of periods in which

yti = K. Let TR be the set of remaining periods– those in which 0 < yti < K and thus
the second term in (22) is: for I > 2,

T∑
t=1

Pr
[
Rt
−i (yi) ,Yi = yi

]
=
∑
t/∈TK

∏
s 6=tQ

θ (ysi , ..., y
s
i ) Iε

and when I = 2, Iε is replaced with ε.
Thus, we can rewrite (22), for I > 2,

Pr
[
Γ(n),Yi = yi | θ

]
=

∏T
t=1Q

θ
(
yti , ..., y

t
i

)
+
∑
t/∈TK

∏
s 6=tQ

θ (ysi , ..., y
s
i ) Iε+ o (ε) (24)

18If I = 2, then the event in (i) is the same as the event in (ii) and so the total number of events
of this kind is only I − 1 = 1.
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and when I = 2, the Iε is replaced with ε.
We now proceed to further simplify (24).
Observe that the marginal probability of yti ,

µθ(yti) = Qθ
(
yti , ..., y

t
i

)
+

{
Iε+ o (ε) if yti = 0 or K
2Iε+ o (ε) if 0 < yti < K

and it is useful to write this compactly as

µθ(yti) = Qθ
(
yti , ..., y

t
i

)
+ (2− IT0∪TK (t)) Iε+ o (ε)

where IT0∪TK is the indicator function of T0∪TK . This is because now if yti 6= 0 or K,
the 2I events with only one mismatch are (i) there is only one h 6= i with yth = yti ±1;
or (ii) ∀j 6= i, ytj = yti + 1 or ∀j 6= i, ytj = yti − 1. If yti = 0 or K, then there are only I
such events.
Thus, the first term on the right-hand side of (24)∏T

t=1Q
θ
(
yti , ..., y

t
i

)
=

∏
t∈T0∪TK

(
µθ(yti)− Iε

)∏
t∈TR

(
µθ(yti)− 2Iε

)
+ o (ε)

=
∏T

t=1 µ
θ(yti)− 2Iε

∑
t∈TR

∏
s 6=t µ

θ(ysi )− Iε
∑

t∈T0∪TK

∏
s 6=t µ

θ(ysi ) + o (ε) (25)

and the second term on the right-hand side of (24)∏
s 6=tQ

θ (ysi , ..., y
s
i ) Iε =

∏
s 6=t
(
µθ(ysi )−

(
2− I(T0∪TK) (s)

)
Iε
)
Iε+ o (ε)

=
∏

s 6=t µ
θ(ysi )Iε+ o (ε) (26)

Substituting from (25) and (26) in (24), we obtain for I > 2,

Pr
[
Γ(n),Yi = yi | θ

]
=
∏T

t=1 µ
θ(yti)− Iε

∑
t/∈T0

∏
s 6=t µ

θ(ysi ) + o (ε)

and if I = 2, then Iε is replaced with just ε.
Writing ρG = ρ and ρB = 1− ρ, it now follows that

Pr
[
Γ(n),Yi = yi

]
=
∑
θ

ρθ
∏T

t=1 µ
θ(yti)− Iε

∑
t/∈T0

∏
s 6=t µ

θ(ysi ) + o (ε)

Also, since Pr [Yi = yi | θ] =
∏T

t=1 µ
θ(yti), for I > 2, the conditional probability

Pr
[
Γ(n) | Yi = yi

]
= 1−

∑
θ ρ

θ
∑

t/∈T0
∏

s 6=t µ
θ(ysi )∑

θ ρ
θ
∏T

t=1 µ
θ(yti)

Iε+ o (ε) (27)

and if I = 2, then Iε is replaced with ε.
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Now if yi = e1 so that n = 1, we obtain from (27) that for I > 2

q ≡ Pr
[
Γ(1) | Yi = e1

]
= 1−

∑
θ ρ

θµθ(0)T−1∑
θ ρ

θµθ (1)µθ (0)T−1
Iε+ o (ε) (28)

and if I = 2, then Iε is replaced with ε.
Because of (27) and (28), we have the following: when ε is small, Pr

[
Γ(n) | Yi = yi

]
<

Pr
[
Γ(1) | Yi = e1

]
is implied by the inequality,∑
θ ρ

θ
∑

t/∈T0
∏

s 6=t µ
θ(ysi )∑

θ ρ
θ
∏T

t=1 µ
θ(yti)

>

∑
θ ρ

θµθ(0)T−1∑
θ ρ

θµθ(1)µθ(0)T−1

This, in turn, is implied by for all θ, θ′ ∈ {G,B}∑
t/∈T0

∏
s 6=t µ

θ(ysi )∏T
t=1 µ

θ(yti)
>

µθ
′
(0)T−1

µθ
′
(1)µθ

′
(0)T−1∑

t/∈T0

1

µθ(yti)
>

1

µθ
′
(1)

and this is guaranteed by Condition 1.
Since there are only a finite number of types yi’s, for small enough ε, the conclusion

is true for all yi.
This completes the proof. �
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