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Abstract

We analyze the intergenerational consequences of rare disasters in a calibrated overlapping
generations model featuring realistic household portfolios and equilibrium asset prices. House-
holds own houses and additionally trade in bonds and equity. In a disaster, young households
suffer from reduced labor income and tightened borrowing constraints. Older households lose
a large portion of their savings invested in risky assets. The relative winners are households
shortly before retirement, who have a comparatively stable labor income, are not borrowing
constrained, and are young enough to benefit from large returns of assets purchased during
the disaster at depressed prices. In order to solve the model, we advance contemporary deep
learning based solution methods along two complementary dimensions. First, we introduce
an economics-inspired neural network architecture that, by construction, ensures that market
clearing conditions are always satisfied. Second, we illustrate how to solve models with multiple
assets by introducing them step-wise into the economy. These two innovations enable us to
reduce the number of equilibrium conditions, that are not fulfilled exactly, and to substantially
improve the stability of the training algorithm.
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1 Introduction

In the last two decades, we have witnessed the Great Recession and the Covid-19 pandemic. These

two shocks have led to large economic downturns and swings in asset prices. The repercussions

of such fluctuations are not uniformly distributed; they vary substantially across households, re-

flecting differences in the cyclicality of their labor income and in the composition of their wealth.

Understanding the distributional consequences of such economic crises is important for the design

of policy responses and for capturing the underlying propagation mechanisms of shocks to aggregate

macroeconomic quantities.1 In this paper, we set out to understand the intergenerational conse-

quences of large economic downturns in a rational expectations setting. Despite recent progress,2

integrating rich household heterogeneity into equilibrium models featuring sizeable aggregate risk

remains a challenge for computational solution methods. We address these challenges and advance

deep learning based solution methods for models with equilibrium prices and portfolio choice.

Household exposure to economic disasters is multifaceted and markedly heterogeneous. We focus

on the age dimension of heterogeneity and study the intergenerational consequences of rare disasters.

Our interest in the life-cycle dimension stems from the fact that exposure to economic disasters varies

across the age dimension. Households’ labor income risk, as well as their portfolio composition, and

hence their exposure to stock and house price fluctuations, have a strong life-cycle component. The

young, often leveraging debt to venture into home ownership, are inherently sensitive to labor market

fluctuations. In contrast, older cohorts, having accumulated savings for retirement, confront the risk

of large swings in asset prices. The social security income of retirees on the other hand is insulated

from aggregate fluctuations. The intergenerational consequences of large economic downturns are

hence intimately connected to the household portfolio composition, which in turn strongly depends

on the social security in place. Confronted with an aging society and an unsustainable social security

system, understanding the distributional impact of future economic disasters is an issue of uttermost

importance.

To this end, we study the intergenerational consequences of rare disasters in a rational ex-

pectations general equilibrium model with rich portfolio choice and overlapping generations. Our

contribution is twofold. First, we develop a general equilibrium model of an economy with rare

disasters, featuring the three largest asset classes on households’ balance sheets, namely risk-free as-

sets, equity, and housing. Second, to solve for the equilibrium dynamics of our economy, we innovate

on contemporary deep learning solution methods by introducing a market clearing neural network

architecture, combined with a step-wise algorithm for solving models featuring multiple assets and

non-trivial market clearing conditions.

We use our general equilibrium model as a laboratory to study three interconnected questions:

What are the intergenerational consequences of such disasters? How do the different economic

mechanisms contribute to the unequal impact of disasters across age-groups? How do the welfare

consequences of disasters across the age distribution depend on the social security in place?

Although we consider a minimal set of modeling ingredients, which are necessary to address our

1See, e.g., Kaplan et al. (2018); Krueger et al. (2016).
2see, e.g., Glover et al. (2020); Auclert et al. (2021, 2020); Bayer et al. (2019, 2020); Azinovic et al. (2022).
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question, solving the model still poses substantial challenges for existing solution methods. With

large shocks, together with borrowing constraints, asset prices and aggregate risk at the center of

our research question, we require a global and nonlinear solution method. At the same time, the

life-cycle structure and the resulting asset distribution across age-groups, lead to high-dimensional

state space and solving the model becomes infeasible even for advanced grid-based methods, such

as sparse grids Krueger and Kubler (2004) or adaptive sparse grids Brumm and Scheidegger (2017).

To overcome these challenges, we contribute to the rapidly growing literature on solving high-

dimensional dynamic stochastic economic equilibrium problems using deep learning.3 To find good

approximations, the learning algorithm aims directly at minimizing the errors in the equilibrium

conditions, such as Euler equations, market clearing conditions, and budget constraints, on simulated

paths of the economy.4 Since the equilibrium conditions will not be fulfilled exactly, the researcher

has to, implicitly, trade off errors between different equilibrium conditions. This can be challenging,

especially for equilibrium conditions with different economic units and interpretations.

We propose a new economics-inspired architecture for deep neural networks, which we call mar-

ket clearing layers. A market clearing neural network architecture is a functional form for neural

networks, which ensures that the resulting functions are always consistent with market clearing con-

ditions. Market clearing layers narrow the search space of neural network approximators to only

include subsets consistent with market clearing. Hence the neural network does not need to learn

a property we know ex-ante. Furthermore, the number of different error terms in the loss function

is reduced, and hence a given loss value is easier to interpret and tradeoffs between fundamentally

different equilibrium conditions are reduced.

Additionally, we propose a step-wise training procedure to stabilize the training progress of deep

learning based solution methods for economic models with multiple assets. The main idea is to start

by solving a simple problem and then gradually transform the simple problem into a harder problem

of interest. In this way, we generate a sequence of models, where the initial model is easy to solve

using the standard deep learning solution method coupled with our market clearing layer. We use

the solution of the first model as an initial guess for solving a second, marginally more complex,

model in the sequence. Because the second model differs from the first only marginally, the solution

of the first model constitutes a very good initial guess for solving the second model, ensuring fast and

stable convergence of our deep learning algorithm. Analogously, we use the solution of the second

model as an initial guess for solving the third, and we continue until we reach the final model of

the sequence corresponding to the original hard problem. While similar ideas have been previously

applied in the quantitative macroeconomics literature, we propose a robust way of constructing such

a sequence of models for general equilibrium problems with portfolio choice.

We solve the model using our proposed algorithm and study the intergenerational consequences

of a disaster event. In our model, younger households suffer the most from a disaster due to a

large decrease in their labor income, tightened borrowing constraints, and the resulting delay in

3See, e.g. Duarte (2018), Valaitis and Villa (2024), Azinovic et al. (2022), Maliar et al. (2021), Ebrahimi Kahou
et al. (2021), Han et al. (2022), Gopalakrishna (2021), Folini et al. (2021), Bretscher et al. (2022), Kase et al. (2023),
Gu et al. (2023), Barnett et al. (2023).

4Exceptions are the parameterized expectations algorithm of Valaitis and Villa (2024) and the value iteration
method of Han et al. (2022).
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accumulating housing property. Older households suffer as well, due to a sharp decline in equity and

house prices, reducing their retirement savings as well as their utility from bequeathing wealth. The

relative winners are households close to retirement. Those households have a stable labor income,

and own a large stock of risk-free assets. Furthermore, they are unconstrained and live long enough

to benefit from high returns on assets, which they buy during the disaster at depressed prices. The

distinction between housing and equity, as well as borrowing constraints, are hence crucial parts of

the economic mechanism at play.

We then use our model as a laboratory to analyze the consequences of rare disasters in a cali-

bration with a lower level of pay-as-you-go social security. A lower level of social security leads to

an increased need for retirement savings by the middle aged. Consequently, the aggregate wealth-

to-income ratio increases and the equilibrium interest rate is lower. The additional savings are

accommodated mainly by an increase in the aggregate capital. The lower interest rate leads young

households to borrow more and allows them to build up home ownership earlier in life, resulting in

a more even distribution of home ownership over the life-cycle. In the event of a disaster, equity

prices drop more than in our baseline model, while house prices drop less. The intergenerational

consequences of the disaster are more evenly distributed, with the young suffering relatively less and

the old suffering more.

2 Related Literature

This paper is most closely related to the recent work of Glover et al. (2020), who study intergener-

ational consequences of the Great Recession in an overlapping generations economy with aggregate

risk. Relative to their pioneering work, we expand the literature along four dimensions. First, we

explicitly disentangle risky assets into equity and housing, accounting for different payoff structures

and adjustment costs. Second, our economy features a model of mortgage lending, where houses

serve as collateral for borrowing, and where a collapse in house prices can generate a fire-sale feed-

back loop. Third, we allow for portfolio adjustment costs, taking into account the role of liquidity for

portfolio heterogeneity.5 Fourth, we couple disaster shocks with a shock to collateral requirements

in the spirit of Huo and Ŕıos-Rull (2016): a disaster in our economy is associated with a significant

tightening of credit conditions, serving as a proxy for major disruption of financial intermediation.

Our paper is also related to Hur (2018), who studies the intergenerational consequences of the

Great Recession in a partial equilibrium setting with rich household heterogeneity. Relative to his

analysis, which imposes exogenous prices, we study the joint response of prices, intergenerational

distributions, and aggregate quantities to disaster shocks.

The stochastic structure of our economy closely follows Gourio (2012) and Nakamura et al. (2013)

and the broad rare disaster literature starting from Rietz (1988) and Barro (2006). Relative to those

representative agent studies which are by construction agnostic to distributional consequences of

disaster events, we study a heterogeneous agent economy, where different cohorts differ in their

labor market and portfolio exposure to disasters. Hence, our model provides a natural laboratory

5See for example Kaplan and Violante (2014) for the importance of distinguishing between liquid and illiquid
wealth.
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for evaluating insurance effects provided by social security and other government policies. Our policy

experiments are closely related to the literature on social security and intergenerational risk sharing

in models with aggregate uncertainty (e.g. Krueger and Kubler (2006), Peterman and Sommer

(2019), Brumm et al. (2021) and Hasanhodzic and Kotlikoff (2022)).

In the housing finance literature, Favilukis et al. (2017) study an overlapping generation model

in a production economy with aggregate risk, equilibrium asset prices, and a rich portfolio choice

including housing, stocks, and bonds. While our model features overlapping generations with the

same asset structure, we focus on the intergenerational consequences of large and rare disasters.

On the methodological side, we contribute to the rapidly growing literature on solving high-

dimensional dynamic macroeconomic problems using deep learning.6 Within this literature, we

follow the equilibrium conditions approach of Azinovic et al. (2022) and Maliar et al. (2021).7 We

train the neural network by minimizing a loss function defined as a weighted mean squared error

of the characterizing equilibrium conditions of the model on a simulated ergodic set of states. We

improve these methods along two dimensions.

First, we introduce an economics-inspired neural network architecture, which, by design, ensures

that market clearing conditions are always satisfied. The idea to encode economic information into

the neural network architecture is conceptually related to the symmetry-preserving architecture of

Ebrahimi Kahou et al. (2021) and Han et al. (2022), who encode permutation-symmetry between

households or firms into the neural network architecture. Similarly, Azinovic et al. (2022) and Han

et al. (2022) make use of suitable neural network architectures to ensure that borrowing constraints

are always satisfied. We take the idea of encoding ex-ante known economic properties directly into

the neural network one step further and show how market clearing conditions can be efficiently

encoded into the neural network architecture. To do so, we introduce market clearing layers, which

ensure that the equilibrium functions encoded by the neural network are always consistent with

market clearing conditions.

Second, we develop a step-wise algorithm to guide the training of neural networks in environments

with multiple assets. The main idea is to start from a single asset economy, solve it accurately, and

then gradually transform the economy to the multi-asset economy of interest, which is typically

much harder to solve, while iteratively re-training the neural network to remain consistent with the

slightly transformed economy. This is possible due to a nesting structure in economies with many

assets. We show how this nesting structure can be leveraged to solve portfolio choice problems, by

ensuring that the equilibrium functions encoded by the neural network remain accurate throughout

the training process. Accurate equilibrium functions throughout training are particularly crucial for

stable training in economies with multiple assets because portfolio choice is only pinned down at

low errors in the corresponding equilibrium conditions (see, e.g., Christiano and Fisher (2000)). The

idea to guide the training of neural networks from simpler to harder problems is related to the idea

6See, among others, Duarte (2018), Valaitis and Villa (2024), Azinovic et al. (2022), Maliar et al. (2021),
Ebrahimi Kahou et al. (2021), Han et al. (2022), Gopalakrishna (2021), Folini et al. (2021), Bretscher et al. (2022),
Gu et al. (2023), Barnett et al. (2023).

7Meanwhile, these methods have been applied in diverse contexts, see, e.g., Folini et al. (2021) for an application
in climate economics, Bretscher et al. (2022) for an application to a multi-region model, and Kase et al. (2023) for an
application in a heterogeneous agent New Keynesian model.
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of curriculum learning in the broader deep learning literature.8 In economic an context, it has been

used, for example, by Kase et al. (2023), who use the representative agent solution as a starting

guess to solve a more complex heterogeneous agent model using neural networks. We extend and

formalize the idea to guide the training of neural networks by providing a detailed and theoretically

founded step-wise procedure for problems with multiple assets, which thus far pose a substantial

challenge for deep learning based solution methods.

While our method focuses on problems characterized by a system of discrete-time equilibrium

conditions, our innovations can be applied more broadly in the context of other deep learning based

solution methods. The market clearing architecture, for example, can naturally be applied for

methods based on value maximization, such as Han et al. (2022), as well. The step-wise algorithm

for multiple asset environments can, for example, also be used in conjunction with the neural network

parameterized expectations algorithm of Valaitis and Villa (2024). Likewise, market clearing layers

and our step-wise algorithm can be used in continuous-time deep learning based solution methods

(e.g. Duarte (2018), Gopalakrishna (2021), Gu et al. (2023)).

3 Model

We focus on the intergenerational consequences of rare disasters. Consequently, our model focuses

on household heterogeneity in the age dimension and the portfolio composition of households over

the life cycle. The remaining parts of the economy are deliberately kept simple. On the firm side,

we model a representative firm with a neo-classical production function. The stochastic processes,

which generate aggregate uncertainty and rare disasters follow the established literature in Gourio

(2012) and Nakamura et al. (2013).

3.1 Technology

We model a representative firm that operates a Cobb-Douglas technology and produces a non-

storable consumption good. Further we model intermediaries with the ability to transform the

consumption goods into capital and housing. As in Bayer et al. (2019), we assume the intermediaries

are groups of mass-zero and their profits are distributed to the households. Aggregate uncertainty

is modeled as a stochastic process for total factor productivity, the depreciation of capital, and a

time-varying probability for the economy to enter into a disaster state.

Representative firm Time is discrete and indexed by t ∈ {0, 1, . . .∞}. A representative firm

rents capital Kt and efficient units of labor Lt from households and produces output Yt using a

Cobb-Douglas technology

Yt = Kα
t (ztL)

1−α
, (1)

where zt denotes stochastic total factor productivity. The firm takes the wage, wt, and the rental

rate for capital, rKt , as given and maximizes profits. The firm’s optimality conditions for the choice

8see, e.g., Goodfellow et al. (2016).
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of capital and labor are hence given by

wt = (1− α)Kα
t z

1−α
t L−α

t (2)

rKt = αKα−1
t z1−αt L1−α

t . (3)

Productivity The stochastic process for the productivity zt follows the work of Gourio (2012).

Productivity consists of a permanent component zpt and a transitory component zrt , such that

zt = zpt z
r
t . (4)

As in Gourio (2012), the evolution of the two parts of the productivity process depends on the regime

of the economy. We model a two-state Markov process for the regime xt ∈ {0, 1}. Normal times

corresponds to xt = 0, while xt = 1 corresponds to disasters. During normal times the permanent

component of productivity evolves according to random walk with drift

log(zpt ) = log(zpt−1) + µ+ ϵt, (5)

where ϵt is i.i.d. N (0, σ2
ϵ ). The transitory component is only shocked during disasters and reverts

back to zero during normal times

log(zrt ) = ρr log(zrt−1). (6)

Every period when the economy is in the disaster state, productivity additionaly receives a short-

run shock ϕt ∼ N (µϕ − 1
2σ

2
ϕ, σ

2
ϕ) and a permanent shock θt ∼ N (µθ − 1

2θ
2
θ , θ

2
θ) on productivity,

as in Gourio (2012) and Nakamura et al. (2013). During disasters, the permanent and transitory

components evolve according to

log(zpt ) = log(zpt−1) + µ+ ϵt︸ ︷︷ ︸
as in normal times

+ θt︸︷︷︸
only during disasters

(7)

log(zrt ) = ρr log(zrt−1)︸ ︷︷ ︸
as in normal times

+ ϕt − θt.︸ ︷︷ ︸
only during disasters

. (8)

Following Gourio (2012), we assume that the probability to enter a disaster in the next period,

denoted with pentert , during normal times follows an AR(1) process given by

log(pentert ) = ρp log(p
enter
t−1 ) + (1− ρp) log(p̄) + (1− xt)ϵ

p
t , (9)

with ϵpt ∼ N (0, σ2
p).

Intermediaries We assume two intermediaries of mass zero with the ability to transform output

into capital and housing respectively. The function of the intermediaries in our model is to control

movements in prices relative to movements in quantities. We model the intermediaries similar to

the managers in Bayer et al. (2019) and assume that their profits are distributed to the households

7



proportionally to their capital and housing respectively. We now detail the intermediary for capital,

the intermediary for housing is analogous. Let Kt denote aggregate capital in the beginning of

period t and let Kend
t denote the capital in the end of period t. The distinction is important in this

model since there are bequests, which may realize in the beginning of each period. The capital good

producer can convert IKt units of consumption good into ∆Kt := Kend
t −Kt units of capital with

the following technology

∆Kt := IKt − ξK,adj

2

(
(∆Kt)

2

Kt

)
, (10)

where the second term can be understood as the costs of adjusting the aggregate capital stock. The

price for capital is denoted with qt. The intermediaries profits are given by

ΠK,intert = qt∆Kt − IKt . (11)

The first order condition gives a closed for expression for the price, given Kt and K
end
t , which holds

in equilibrium.

qt =

(
1 + ξK,adj

∆Kt

Kt

)
. (12)

The profits of the intermediary, per unit of aggregate capital, are given by

πK,intert :=
ΠK,intert

Kt
=
ξK,adj

2

(
∆Kt+1

Kt

)2

. (13)

Let ξH,adj denote the analogous adjustment cost parameter for the intermediary for housing. Further,

let

πH,intert :=
ΠH,intert

Ht
=
ξH,adj

2

(
∆Ht+1

Ht

)2

(14)

denote the associated profits per unit of aggregate housing and let the equilibrium price for housing

be denoted by pHt , where

pHt =

(
1 + ξH,adj

∆Ht+1

Ht

)
. (15)

3.2 Mortality and household size

This paper focuses on household heterogeneity in the age-dimension. Therefore we model an

overlapping-generations life-cycle model with H age groups. Households live for at most H pe-

riods, and survive to the next period with age-specific survival probabilities Γh for h ∈ {1, . . . ,H},
with ΓH = 0. Le µh denote the resulting mass of households in age-group h, where µh+1 = Γhµh,

and
∑H
h=1 µh = 1.

The typical size of an household varies over the life-cycle and is hump-shaped. To take that

8



into account, we assume an exogenous age-specific household size eh, measured by the age-specific

number of members of a household, as in Hur (2018).

3.3 Preferences

Utility from consumption and housing Households derive utility from consumption and, as in

Huo and Ŕıos-Rull (2016), from owning a houses. Let cht denotes the consumption of age-group h in

period t and let Ct denote aggregate consumption. Households have preferences over consumption

relative to their household size eh and an aggregate, slow-moving, consumption habit, which we

denote as XC
t−1, and which evolves according to

XC
t = ρXCXC

t−1 + (1− ρXC )Ct. (16)

We define the effective consumption of age-group h as

ceff,ht :=
cht

ehXC
t−1

. (17)

While cht and XC
t are growing, due to the permanent shocks to productivity, ceff,ht is stationary. The

households utility from consumption is given by

u(ceff,ht ) :=

(
ceff,ht

)1−σc

1− σc
, (18)

where σc > 0 denotes the coefficient of relative risk aversion.

Similarly, we define the effective units of housing as

heff,ht :=
hht

ehXC
t−1

(19)

and similarly to ceff,ht , heff,ht is stationary. All age-groups except the youngest age-group, which

enters the economy without house ownership, receive utility from owning housing units. For the

utility function from housing, we follow Huo and Ŕıos-Rull (2016) and define it as a combination of

two utility functions, such that

v(heff,ht ) := w1(h
eff,h
t )v1(heff,ht ) +

(
1− w1(h

eff,h
t )

)
v2(heff,ht ) (20)

w1(h
eff,h
t ) := sigmoid

(
factor× (heff,ht − hcut)

)
(21)

v1(heff,ht ) := log(heff,ht ) (22)

v2(heff,ht ) :=

(
heff,ht + hparam

)1−σh

1− σh
+ hconst (23)

Some explanations are in order. The utility function v(·) from housing is a weighted average between

two utility function v1(·) and v2(·). The weighting is such that the utility switches from v1(·) to

9



v2(·) as heff,ht crosses the cutoff hcut. The parameter hparam is chosen in a way that the marginal

value is continuous at the cut-off value, i.e.

(v1)′(hcut) = (v2)′(hcut) (24)

⇔ hparam =
(
hcut

) 1

σh − hcut (25)

The constant hconst ensures that the value function is continuous as well, i.e.

(v1)(hcut) = (v2)(hcut). (26)

In a typical calibration, we will have σh > 1, meaning that the marginal utility from housing is

decreasing more rapidly as housing rises above the threshold value hcut. The parameter hcut is

calibrated to obtain a life-cycle profile of house ownership in line with the data. The weighting

w1(h
eff,h
t ) is a smoothed version of a step function, with the step at hcut, approaching the step

function for factor → ∞.

sigmoid(x) :=
1

1 + e−x
, (27)

such that sigmoid(0) = 0.5, sigmoid(x ≪ 0) ≈ 0, and sigmoid(x ≫ 0) ≈ 1. We choose a smooth

approximation to the step-function since the smoothness ensures that the marginal value of housing

is not only continuous, but also differentiable, which offers advantages in terms of numerical stability.

The overall utility received by age-group h in period t is given by

u(ceff,ht ) + ψhousingv(heff,ht ), (28)

where ψhousing is an exogenously given parameter determining the relative importance of housing

for the instantaneous utility.

Bequest motive In the data, we observe that households hold substantial amounts of wealth in

old age. To match that fact, we model bequests. When households die, they receive a one-off utility,

which depends on the value of the assets they are holding. It is given by

βψbequestu
(
(ceff, death)ht

)
, (29)

where

(ceff, death)ht =
cdeath,ht

XC
t−1e

h
(30)

and

cdeath,ht = ptb
end,h
t + pHt h

end,h
t + (qt − λpt)k

end,h
t + zp,tbeq

C (31)
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and where beqC is a small fudge factor we include for numerical reasons.9 The bonds held in the

end of period t by age-group h are denoted with bend,ht , the equity held with kend,ht , and the number

of housing units owned with hend,ht . The corresponding asset prices are denoted with pt, (qt − λpt),

and pHt respectively. The following section introduces the asset markets in detail.

3.4 Asset markets

Households can invest in three distinct assets. We choose to model the three largest asset classes

on households’ balance sheets: houses, equity, which we model as leveraged capital, and a risk-free

asset, which we model as a one-period risk-free bond.

Equity We assume that equity is a claim to leveraged capital. More precisely, for every unit

of capital households purchase, they (short) sell λ units of the risk-free on period bond. These

bonds pay the equilibrium interest rate but are held by foreign investors outside the model. We

make this assumption to model equity as leveraged capital, as in Gourio (2012), while maintaining

the negligible amount of net risk-free assets on households balance sheet, which we measure in the

SCF 2007. Let kht denote the equity holdings of age-group h in the beginning of period t, after

all shocks are realized. kht units of equity correspond to equally many units of capital and −λkht
units of bonds, where λ denotes leverage. The household rents the capital to the representative firm

and receives the rental rate rKt . Further, the household owns the remaining capital after stochastic

capital depreciation (1 − δK)ξt, which is valued at market price qt. Similar to the capital quality

shock in Gourio (2012), we assume that the stochastic depreciation ξt is perfectly correlated with the

growth in the permanent component of productivity, such that ξt =
zpt
zpt−1

. We further assume that

the profits of the capital-producing intermediary, πK,intert , as given in equation (13), are distributed

proportionally to capital ownership.

The total payout from holding the kht units of equity is hence given by

kht

rKt + (1− δK)ξtqt + πK,intert︸ ︷︷ ︸
payout from pure capital

−λ︸︷︷︸
payout from debt

 . (32)

Let kend,ht denote the units of equity purchased for the next period at equilibrium price pEt , given by

pEt = qt − λpbt . (33)

We assume that equity is an illiquid asset and households’ have to pay adjustment costs if

kend,ht ̸= kht . The adjustment costs are given by

ξK,hh

zpt

(
kend,ht − kht

)2
, (34)

9Since we do not model within-generation heterogeneity, wealth heterogeneity is limited and we do not model a
strong non-homotheticity in the bequest motive.
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where ξK,hh is an exogenous adjustment cost parameter. Since capital and consumption grow with

the permanent productivity zpt , the division by zpt ensure that the marginal adjustment costs grow

at the same rate.10

We assume that the assets of deceased households of age-group h are inherited by the surviving

households of the age-group h̃, which are 30 years younger, such that

µh(1− Γh)︸ ︷︷ ︸
mass of dieing hh’s aged h

kend,ht = Γh̃µh̃︸ ︷︷ ︸
mass of 30 y. younger inheriting hh’s

kbequest,h̃t (35)

Where kbequest,h̃ denotes the units of equity bequeathed to the surviving households of age-group h̃.

The law of motion for equity is hence given by

kh+1
t+1 =

(
kend,ht + kbequest,ht

)
. (36)

Housing Housing fulfills a threefold role for households. As introduced in section 3.3, households

intrinsically value home ownership, deriving a continuous stream of utility from the possession of

residential property. Furthermore, house ownership constitutes a tangible mechanism for wealth

accumulation. Lastly, we assume that houses are the only asset that can be used as as collateral for

borrowing.

Similar to capital depreciation, we assume that a proportional maintenance cost, pHt δ
Hhjt , has to

be paid in every period. Here, hjt denotes the housing units owned by age-group j at the beginning

of period t, pHt denotes the equilibrium price for housing units and δH is an exogenously given main-

tenance cost parameter. Further, we assume that the profits of the house-producing intermediary

are paid out proportional to home ownership. The financial payoff of owning hjt housing units, is

hence give by

hjt

(
(1− δH)pHt + πH,intert

)
. (37)

We assume that housing is an illiquid asset, such that households have to pay adjustment costs

when adjusting their level of home ownership. The adjustment costs are specified analogously to

equity, and given by

ξH,hh

zpt

(
hend,jt − hjt

)2
. (38)

As shown for the case of equity in equation (35), the housing units of dying households are inherited

by the surviving households of the age group that is 30 years younger. The law of motion for housing

units is given by

hj+1
t+1 =

(
hend,jt + hbequest,jt

)
. (39)

10Alternatively we could specify the adjustment costs in relative terms, as for the intermediary. However, since
young households start of with very little wealth, relative adjustment costs would make it overly hard for them to
accumulate wealth.
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Risk-free bond We model the risk-free asset as a one-period bond in zero net supply. Bonds

guarantee a payout of one in the following period. Bonds can be purchased at an equilibrium price

pt. Bonds are fully liquid and there are no adjustment costs associated with bond ownership. As for

equity and housing units, the bonds of dying households are bequeathed to the surviving households

of the age-group which is 30 years younger. The law of motion for bond ownership is given by

bj+1
t+1 =

(
bend,jt + bbequest,jt

)
. (40)

While housing and stock positions are subject to strict no short-sale constraints, households can

borrow through issuing bonds. However, their borrowing is subject to pledging enough housing

value as collateral and subject to being of working age.

Borrowing constraints There is a short sale constraint for housing and equity such that hend,jt ≥
0 and kend,jt ≥ 0, ∀j ∈ {1, . . . ,H}. The short-sale constraint on housing does not bind in equilibrium,

due to the Inada property of the utility flow from housing.

We assume that before retirement, households can borrow by going short on bonds, subject to

collateral constrained given by

bend,jt + X̃κ,j
t X̃PH ,j

t hend,jt ≥ 0, (41)

where X̃κ,j
t denotes the relevant loan-to-value-ratio for age-group j in period t and X̃PH ,j

t denotes

the relevant house price used in the loan-to-value calculation. The idea behind this modelling choice

is as follows. In line with Huo and Ŕıos-Rull (2016), we assume that credit constraints tighten

when the economy enters into a disaster and hence the loan-to-value ratio for new house purchases

decreases. Let κnormal denote the loan-to-value requirement on new house purchases in normal times

and let κdisaster analogously denote the loan-to-value requirement for new house purchases in the

disaster state. For housing units purchased in period t, given by hend,jt − hjt , we would like to

apply the current loan-to-value requirement κt = (1− xt)κ
normal + xtκ

disaster, where xt denotes the

disaster indicator. The question remains, which loan-to-value requirement to apply to the previously

purchased housing units hjt . In order to avoid having to keep track of the history of housing purchases

for each age-group, we apply an exponential moving average of the current and past loan-to-value

ratio’s to the previously purchased housing units.

To formalize this idea, let Xκ
t denote an exponential moving average of loan-to-value require-

ments, such that

κt = (1− xt)κ
normal + xtκ

disaster (42)

Xκ
t = ρX

κ

Xκ
t−1 + (1− ρX

κ

)κt (43)

Furthermore, let the weight

wnew, j
t := max

{
0,
hend,jt − hjt

hend,jt

}
(44)
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denote the fraction of newly purchased housing, relative to total end-of-period house ownership,

truncated to be non-negative. This weight will be different for different age-groups j. It is always

equal to one for the youngest age-group which enters the economy with h1t = 0 and it is zero

for households that do not adjust or decumulate housing. We assume that the relavant loan-to-

value ratio for age-group j will be given by a weighted average between the current loan-to-value

requirement κt and the exponential moving average of loan-to-value requirements Xκ
t , where the

weight on κt is given by wnew, j
t . Putting this together, we define the loan-to-value requirement for

age-group j as

X̃κ,j
t := wnew, j

t κt + (1− wnew, j
t )Xκ

t . (45)

We make an analogous assumption for the house price used for the loan-to-value calculation. We

apply the period t equilibrium price pHt to the fraction of newly purchased housing units wnew, j
t and

an exponential moving average XPH ,j
t−1 for the previously purchased housing units. Analogously to

the loan-to-value requirement we define

XpH

t = ρX
pH

XpH

t−1 + (1− ρX
pH

)pHt (46)

X̃pH ,j
t := wnew, j

t pHt + (1− wnew, j
t )XpH

t . (47)

Putting these together results in the collateral requirement given in equation (41). Note that for

the special case of ρX
pH

= ρX
κ

= 0, our formulation nests the special case where all age-groups face

the current loan-to-value requirement κt, where the value is determined at the current market price

pHt . This special case however, exposes households to an unrealistically large role-over risk.

3.5 Labor income and social security

Households work from when the enter the economy at age h = 1 until they retire at age h =

hretirement. After retirement, households receive defined benefit pay-as-you-go social security, fi-

nanced by proportional labor taxes on working households. The efficient labor units depend on the

household’s age as well as on output growth. The dependence of the age-specific efficient units on

output growth is a reduced form way to account for age-differences in the exposure on labor earn-

ings on the business cycle (see, e.g. Jaimovich and Siu (2009) and Jaimovich et al. (2013)). More

precisely, we assume that the efficient units of labor lht are given by11

lht =

l
h
ss

(
Yt+1
Yt

)ζh

∑
h µhlhss

(
Yt+1
Yt

)ζh
for h < hretirement

0 for h ≥ hretirement,

(48)

where lhss captures the life-cycle profile of efficient units and
(
Yt+1

Yt

)ζh
captures the exposure of

labor income to fluctuations in output growth, where higher ζh correspond to more exposure. The

11A similar reduced form way to model the exposure of labor earnings of specific groups to aggregate fluctuations
in a parsimonious way is used by Yang (2022) for the case of heterogeneity in idiosyncratic productivity.
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denominator
∑
h µhl

h
ss

(
Yt+1

Yt

)ζh
is a normalization so that the aggregate supply of efficient units is

constant, i.e.

L =

H∑
h=1

µhl
h
t = 1. (49)

During retirement households receive a pay-as-you-go defined benefit social security. In line with

the data and with the decreasing household size during retirement, retirement benefits decrease

with age. The social security benefits are indexed to the exponential moving average of aggregate

consumption, and therefore retirees income has little exposure to aggregate conditions. The social

security benefit for age group h is given by

sht := XC
t−1R

ssrh,∀h ≥ hretirement. (50)

XC
t−1 is the slowly moving exponential moving average for aggregate consumption, introduced in

equation (16), rh determines the decline in social security benefits with age during retirement and

the parameter Rss determines the overall level of social security payouts. The social security tax

τsst is determined to clear the government budget constraint, such that

τsst =

∑
h≥hretirement sht µ

h

Lwt
. (51)

The pay-as-you-go defined benefit social security assumption implies that working households insure

retired households against income fluctuation.

3.6 Household problem

Each periods, the households choose how much to consume and how much of each asset to purchase,

subject to their budget and borrowing constraints. Recursively formulated, the Bellman equation

corresponding to the household problem of a household with age a in period t is given by

V at = max
{kend,a

t ,hend,a
t ,bend,a

t }
u(ceff,at ) + ψhousingv(heff,at ) + βE

[
(1− Γa)ψbequestu(cdeath,at ) + ΓaV a+1

t+1

]
(52)

subject to:

cat = lat (1− τsst )wt + sat + bat + kat ((1− δK)ξtqt + πK,intert + rt − λ) + hat ((1− δH)pHt + πH,intert )

− ptb
end,a
t − (qt − λpt)k

end,h
t − ψk

zp,t
(kend,at − kat )

2 − pHt h
end,a
t − ψh

zp,t
(hend,at − hat )

2 (53)

0 ≤ bend,at + X̃κ,a
t X̃PH ,a

t hend,at ,∀a ∈ {1, . . . , hretirement − 1} (54)

0 ≤ bend,at ,∀a ∈ {hretirement, . . . ,H} (55)

0 ≤ kend,at , (56)

as well as the definitions and law of motions introduced above.
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3.7 Equilibrium

In this section we formally define the functional rational expectations equilibrium for our economy, as

introduced by Spear (1988) and applied in Krueger and Kubler (2004) to an overlapping generations

setting.

State space The state of the economy is given by the exogenous shocks, asset distributions across

age groups and the lagged values for the exponential moving averages. Let bolt-faced letters denote

vectors, such that ht ∈ RH denotes the distribution of housing units across age groups in the

beginning of period t. Similarly, let kt ∈ RH and bt ∈ RH denotes the distribution of equity and

bond holdings. The state of the economy is given by

xgrowing
t := [xt, z

p
t , ξt, z

r
t , Yt−1, X

C
t−1, X

κ
t−1, X

pH

t−1,ht,kt,bt] ∈ R8+3×H . (57)

Lagged output is included in the state since the distribution of efficiency units across age-groups

depends on output growth (see equation (48)). We know that the youngest age-group always enters

the economy without assets, the asset holding of the youngest age-group is always 0 and hence the

state can be reduced to an 8+3× (H − 1) dimensional vector. Because the economy is growing, the

state defined in equation (57) is not stationary. As in Gourio (2012), we stationarize the economy.

Stationarized formulation To stationarize the economy we define an operator ·̂ to divide any

quantity ot by the permanent component of total factor productivity:

·̂ : RN → RN : ôt :=
ot
zpt
. (58)

Notice that the operator depends on the time index of the input variable and, for example,

ôt+1 =
ot+1

zpt+1

(59)

ôt+1 =
ot−1

zpt−1

. (60)

We will use the ·̂ operator to stationarize the growing quantities in our model, such as capital,

output, assets, and wages. Some other quantities, like the disaster indicator or the prices, are not

growing and do not need to be stationarized. Further we define the helpful quantity

zpgt :=
zpt
zpt−1

, (61)

such that for any growing quantity ot, we obtain

ot+1

ot
=
zpt+1ôt+1

zpt ôt
= zpgt+1

ôt+1

ôt
. (62)
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Parameter Meaning Value Source

lhss efficiency units see text SCF 2007
rh social security see text SCF 2007
eh household size see text SCF 2007, OECD equivalence scale
Γh survival probability see text U.S. 2007 Life Tables
ζh exposure to aggregate fluctuations see text Guvenen et al. (2014)
Ih inheritance see text see text

Table 1: Life-cycle parameters and their sources in the benchmark model.

In the stationary formulation, we define the state of the economy as

xt := [xt, z
pg
t , z

r
t , Ŷt−1, X̂

C
t−1, X

κ
t−1, X

pH

t−1, ĥt, k̂t, b̂t] ∈ R7+3×H . (63)

The stationary state vector xt allows us to define a functional rational expectations equilibrium as

a set of functions mapping from xt to equilibrium quantities.

Functional rational expectations equilibrium The unknown equilibrium objects we need to

solve for are the 3×H policy functions of the households for each of the assets, i.e. ĥend(xt) ∈ RH ,

k̂end(xt) ∈ RH , and b̂end(xt) ∈ RH , as well as a function for the price of the bond p(xt). Given those

functions, the remaining equilibrium quantities, such as the households’ consumption or the prices

for capital and housing units, are implied in closed form by equilibrium conditions.12 In equilibrium,

these functions need to be consistent with the households’ optimality conditions as well as market

clearing.

4 Calibration

In the following, we lay out the calibration of our benchmark model.

4.1 Life-cycle parameters

The life-cycle profiles of household size, mortality, social security payouts, and efficient units of labor

are chosen outside the model to match corresponding life-cycle profiles observed in the data. We set

one model period to be equal to four calendar years. The model age h ∈ {1, . . . ,H} corresponds to

ages 21 to 92. We base most of the life-cycle parameters on mean values by age in the 2007 Survey

of Consumer Finances (SCF), as in Glover et al. (2020); Hur (2018). The life-cycle parameters and

our data sources are given in table 1.

Efficiency units and social security For modeling labor endowment and social security income,

we separate households into two groups. We assume households work from when they enter the

economy at 21 until retiring at 66.

12In this case, by the budget constraint of households and the intermediaries’ optimality conditions.
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Figure 1: Mean disposable labor income (left panel) and mean adult-equivalent household size (right
panel), based on the SCF 2007. The blue dashed line shows the data and the orange solid line a
fitted polynomial of degree six.

For households aged between 21 and 65 years, we choose the labor efficiency units over the life-

cycle, lhss, to match the age profile of after-tax disposable labor income, which includes social security

income and transfers. In order to smooth the age-profile of disposable labor income obtained form

the SCF 2007 data, we fit a sixth-degree polynomial in age to the age-specific averages. This is the

closest measure to efficiency units in our model, since we abstract from taxes and transfers, with

the exception of social security income for retirees and a proportional social security payroll tax

for working households. The data on mean disposable labor income by age, as well as the fitted

functional forms, are shown in the left panel of figure 1.

Cohorts 66 to 92 are retired, and receive pay-as-you-go social security payouts, which is indexed

to the aggregate consumption habit Rht = RssXC
t−1r

h ⇒ R̂ht = Rss
X̂C

t−1

zpgt
rh. As a result, the social

security income is well insured against aggregate fluctuations. We choose rh to model a linear 60%

decline in social security income during retirement, in line with the SCF 2007.13

Household size and survival probability Following Hur (2018), we obtain adult-equivalent

household size, eh, by fitting a sixth-degree polynomial in age to the adult-equivalent household

size obtained from the SCF 2007. To obtain adult-equivalent household size, we use the OECD

equivalence scale (see Hagenaars et al. (1994)) and assign an adult-equivalent size of one to each

household, adding 0.5 for each additional adult member and 0.3 for each kid. The resulting life-cycle

profile for adult-equivalent household size is shown in the right panel in figure 1. Similarly, we follow

Hur (2018) and take the survival probabilities Γh from the 2007 U.S. Life Tables. We additionally

assume households below and including age 44 have a survival probability of 1 and our oldest age

group, corresponding to age 92, has a survival probability of 0. In order to avoid large jumps in the

13Household size is declining as well.
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survival probability coming from these two modeling assumptions, we linearly smooth the survival

probability at the onset of a positive death probability, between ages 44 and 56, and for the last age

groups, between ages 83 and 92.

Inheritance The assets bequeathed by deceased households are inherited by younger households.

Inheritances are deterministic and not subject to adjustment costs. The assets left by the non-

surviving part of generation h is distributed to the age-group corresponding to 30 years younger

households.

Exposure of labor income to aggregate fluctuations In order to capture the age-dependent

exposure to aggregate fluctuations, we follow Yang (2022) and estimate the real earnings growth

elasticity to output growth. While Yang (2022) estimates real earnings growth elasticity for different

income groups, we unbundle the data along the age dimension as well. To obtain data on earnings

by age groups and income percentiles, we use the data provided by Guvenen et al. (2014). The

data covers the annual real earnings growth for age groups 25, 35, 45, and 55 and several income

percentiles from 1979 to 2010. The data are publicly available and constructed from the U.S. Social

Security Administration’s Master Earnings file.14 We specify

∆lh,q,t = αh,q + βh,q∆Yt + ϵh,q,t. (64)

∆lh,q,t is the log difference in earnings for households in age-group h ∈ {25, 35, 45, 55} and age-

specific income percentile q ∈ {25, 50, 75}. ∆Yt is the log difference in real GDP per capita obtained

from the Federal Reserve Economic Data.15 βh,q is our coefficient of interest, which we map into

model parameters ζh introduced in section 3.2. To obtain the exposure for all ages, we inter- and

extrapolate linearly from the ages {25, 35, 45, 55}. Since we are focusing on mean quantities, and

the mean income lies above the median income, we average the exposure for the 50th and 75th

percentile. The estimated coefficients as well as our interpolation scheme are shown in figure 2. The

exposure of earnings to aggregate fluctuations is decreasing in age and income percentile. For our

estimates for ζh we take the mean average between the age-specific coefficient for the 50th and 75th

income percentile. For example, we obtain ζh = 0.90 for 25 year olds and ζh = 0.27 for 55 year olds.

4.2 Preferences, technology, and shocks

When it is sensible, we choose the parameter values without resorting to model simulation, either we

choose them in line with standard values or estimate them directly from the data.16 The remaining

parameters are chosen based on moments endogenously generated inside the model.

14The data is available at https://www.fatihguvenen.com/s/gos-jpe2014-data.xlsx, and we last accessed it on
October 10, 2023. We use the data in tables A4, A5, A6, and A7.

15U.S. Bureau of Economic Analysis, Real gross domestic product per capita [A939RX0Q048SBEA], retrieved from
FRED, Federal Reserve Bank of St. Louis; November 4, 2023.

16Such as, for example, the half-life times of exponential moving averages
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Figure 2: The round circles show the regression coefficients for the specification in equation (64).
The dashed lines show a linear inter- and extrapolation in age, and the solid red line shows the mean
between the 50th and the 75th percentile.

Exogenously chosen parameters Table 2 summarizes the values chosen for parameters cali-

brated outside the model. We fix the relative risk aversion for consumption and housing above the

saturation threshold to a moderate value of σC = σH = 6. Further, we fix the persistence of the

consumption habit to 0.95, resulting in a half-life time of 13.5 model periods, corresponding to 54

calendar years. We set the persistence of the exponential moving averages for the relevant house

price and LTV ratio for households that do not buy any new housing to ρX
κ

= ρX
PH = 0.8, implying

a half-life time of 12.4 calendar years. This value is hence in line with mortgage durations of about

25 years.

We choose a capital share in production of α = 0.3, and a yearly depreciation rate of capital of

10%, in line with standard values used in the literature. The yearly maintenance cost of housing

is set to a lower value of 7%. We model a LTV ratio of κnormal = 0.5 during normal times, and

a reduction to κdisaster = 0.4 during the disaster, which is in line with the 25% reduction of LTV

ratios during the Great Recession reported in Favilukis et al. (2017). Following Gourio (2012), we

set the leverage ratio of equity to λfirm = 0.5.

We assume the trend-growth of TFP to be given by µ = 8% and the standard deviation of TFP

shocks, occuring during normal and disaster times, of σϵ = 4%, following Gourio (2012). We choose

a probability of 2
3 to exit the disaster state, in line with an average disaster duration of six years,

estimated by Nakamura et al. (2013). We choose the persistence for the AR(1) process for the time-

varying disaster probability as ρp = 0.185, in line with Gourio (2012). The values for mean reversion

p̄ = 2.5% and the standard deviation of shocks to the disaster probability σp = 2.75 are chosen such

that the unconditional disaster probability and the average probability to enter a disaster are in line

with estimates in Nakamura et al. (2013). We set the mean of the permanent productivity shock to

µθ = −0.10, implying that an average four-year disaster leads to a permanent loss of 10% of output,

matching the empirical estimate by Nakamura et al. (2013). We take the standard deviation of the
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disaster-specific shocks to be σϕ = 8% and σθ = 6%, the latter is 50% larger than the standard

deviation of productivity shocks during normal times.

Parameter Value Meaning

Preferences

σC 6 risk aversion consumption
σH 4 risk aversion housing
ρXC 0.95 persistence of the aggregate consumption habit

Technology and policy

α 0.3 capital share in production
δK 0.344 depreciation of capital
δH 0.252 maintenance costs for housing
κnormal 0.5 LTV ratio in normal times
κdisaster 0.4 LTV ration during disasters

ρX
κ

0.8 persistence of the exponential moving average for the LTV requirement

ρX
PH 0.8 persistence of the exponential moving average for the house price relevant in the LTV constraint

λfirm 0.5 leverage of capital

Shocks

µ 0.08 trend growth
σϵ 0.04 std. dev. of growth shocks during all times
pexit

2
3

prob. to remain in the disaster state
ρp 0.185 persistence of the disaster probability during normal times
σp 2.75 std. dev. of shocks to the disaster probability during normal times
p̄ 0.025 probability of disaster in the absence of disaster probability shocks
µθ -0.10 mean permanent shock during dis.
σθ 0.06 std. dev. of disaster-specific permanent shocks
σϕ 0.08 std dev. of disaster-specific transitory shocks

Table 2: Exogenously chosen model parameters.

Parameter chosen inside the model Since we study a general equilibrium economy, in principle,

all model parameters are linked to all endogenously model-implied moments. However, we try to give

an intuition on which parameters are the ones most directly associated with a moment of interest.

As a main source of calibration targets, we take the SCF 2007, staying in line with the literature on

the Great Recession.

For the preference parameters, we set the patience parameter β = 1.0717 to match the net-worth

to income ratio, and the preference for housing ψhousing = 0.35 to match the share of housing in the

aggregate net-worth. The bequest motive is set to ψbequest = 10 and the cutoff value, above which

the marginal utility of housing is decreasing more quickly, is set to heff, cut to match the lifecycle

profile of asset holdings.

The two remaining parameters govern the transitory effect of a disaster. We set those to µϕ =

−0.335 and ρz = 0.65, matching the impulse response of aggregate consumption to a two period

disaster of average severity, as estimated by Nakamura et al. (2013).

We choose the level of social security payout Rss to match the disposable income of old (cor-

responding to age 61 - 80) relative to middle-aged households (41 - 60). We further assume that

17In an overlapping generation setting, a β > 1 does not pose any conceptual challenge since households face a finite
planning horizon.
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the adjustment cost parameter for housing is 50% higher than the adjustment cost parameter for

equity and capital. We set the parameter governing household level adjustment costs for housing

to ψh = 0.15, implying an average adjustment cost of 0.5% of the adjusted value and the aggregate

adjustment cost for housing to 12, making the aggregate consumption growth in normal times 0.92

times as volatile as output growth.

The parameters, their values and the associated model moments are summarized in table 3.

Parameter Value Meaning Associated model moments

Preferences

β 1.07 patience aggregate wealth to income ratio
ψhousing 0.35 preference for housing share of housing in aggregate net-worth
ψbequest 10 bequest motive share of asset held by old households
heff, cut 1 start of quicker utility decrease life-cycle profile of home ownership

Technology and policy

Rss 2.6 level of social security income of old relative to middle aged
ψk 0.10 hh. level adjustment costs on equity none, set to 2

3
ψh

ψh 0.15 hh. level adjustment costs on housing average adjustment costs are 0.5% of adjusted value
ξK,adj 4 agg. adjustment costs on capital volatility of aggregate consumption growth
ξH,adj 12 agg. adjustment costs on housing none, set to 3

2
ξK,adj

Shocks

µϕ -0.335 mean of transitory shock during disasters impact response of agg. cons. to an average disaster shock
ρz 0.65 persistence of the transitory shock response of agg. cons. in the second subsequent disaster period

Table 3: Parameters chosen inside the model and their associated moments.

4.2.1 Calibration targets

Relative size of asset classes We target the size of each asset class relative to mean disposable

income. Our data is based on the SCF (2007), and hence in line with the asset sizes targeted in

the literature on the intergenerational consequences of the Great Recession by Glover et al. (2020)

and Hur (2018). To convert the yearly wealth-to-income ratio measured in the SCF to a value

corresponding to the four-year calibration in our model, we divide the measured values by four.

The resulting ratio of mean net-worth to mean disposable income is given by 1.77. Housing is

the largest asset on the household balance sheet, with the ratio of housing wealth to four years of

income equal to 1.17, making up about 66% of the aggregate household mean net-worth. The mean

value of equity on households’ balance sheet corresponds to 0.55 times their four-year disposable

labor income, making up 31% of mean net-worth. The remaining 3% of household net-worth is

held in risk-free assets. Since we assume that households can only trade bonds with each other, the

aggregate amount of risk-free assets held by households in the model is always zero. However, since

risk-free assets account for only a very small fraction of households’ aggregate net-worth in the data,

imposing zero net supply is not a very consequential assumption.

Portfolio composition by age For targeting the asset-specific wealth across the life cycle, we

aggregate households into three groups: ages 21-40, ages 41-60, and ages 61-80, which we refer to as
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young, middle, and old households.

We do not consider households older than 80 years old for two reasons: first, very old ages are

sparsely covered in the SCF data. Second, the decisions by the very old households in our model

are strongly influenced by the fact that households die with certainty at age 92. We compute the

average wealth in each of the three age-buckets. We formulate our calibration targets as the shares

of wealth owned by each of the three age groups. The distribution of net-worth across the three age

groups is given by 6.8%, 38.4%, and 54.8%. The portfolio weight of housing does not increase from

the middle-aged to the old-aged group, with the shares given by 17.0%, 41.2%, and 41.8%. The

portfolio weight on equity is increasing with age, with 5.6% owned by the young age group, 38.1%

owned by the middle-aged, and 56.3% by the old age group. Since the net supply of bonds is zero in

our model, for the distribution of bond holdings across age groups, we compute mean risk-free wealth

by age group relative to the mean disposable labor income. Converted to a four-year frequency, the

risk-free wealth to average income ratio is given by -31.5% for the young group, 1.3% for the middle

group, and 57.5% for the old group.

Volatility of aggregate consumption We use the U.S. yearly real gross domestic product per

capita as a measure of aggregate output, and the U.S. real personal consumption expenditures per

capita as a measure of aggregate consumption. We obtain those time series from the FRED database.

We then compute the four-year growth rates between 1960 and 2020. The average four-year growth

rate of output, over the 1960-2020 period, is 8.3%, with the standard deviation of output growth

approximately at 5.1%. The measured standard deviation of consumption growth is 4.4%, i.e. 87%

of the standard deviation of output growth.

The impulse response of aggregate consumption in response to a disaster shock We

compare the impulse response of aggregate consumption generated by our model to the response

estimated by Nakamura et al. (2013). In particular, we target the impulse response of aggregate

consumption for a simulated disaster with eight years duration, corresponding to two periods in

our model, relative to a benchmark simulation without a disaster realization. The impulse response

estimated by Nakamura et al. (2013) corresponds to a long-run decline of log consumption of about

20%, the decline in the first period of the disaster is roughly 20%, as well and the decline in the second

period is roughly 33%. Due to the neoclassical production in our model, the average long-run decline

translates directly into the parameter µθ, which governs the average magnitude of the permanent

productivity effect of disaster events. The first and second period decline have to be calibrated inside

the model and pin down the size µϕ of the transitory shock as well as its persistence. We choose

the standard deviations of the disaster-specific shocks small enough, such that the probability of a

disaster shock having positive effects is small.

5 Results

Now we use our calibrated economy as a laboratory for understanding intergenerational consequences

of rate disasters. In the first section, we examine the unconditional distribution generated by the
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Asset class net-worth to inc. ratio housing share equity share bond share

Model (normal times) 1.77 67% 33% 0%
Data (2007) 1.77 66% 31% 3%

Table 4: The first column reports the wealth to income ratio. The following three columns report
the share of each asset class in net-worth. The data values are obtained from the SCF 2007.

equilibrium dynamics of our economy and compare a set of its moments to their counterparties in

historic US data. Specifically, we focus on the shape of intergenerational asset distribution, and

key business cycle statistics In the second section, we study the aggregate and intergenerational

consequences of a realization of a disaster shock. Then we move to analyze the role of different

model assumptions in shaping our results, in section 5.4. Finally, in section 5.5, we perform a

policy experiment in which we investigate the effect of a decrease in the volume of the social se-

curity redistribution on the transmission of disaster shocks to macroeconomic aggregates and into

generation-specific quantities.

5.1 Equilibrium statistics

Relative size of asset classes We use the data obtained from simulating the unconditional

distribution of equilibrium quantities implied by our model to compute the average wealth to income

ratio and aggregate values of each asset class as a fraction of the aggregate wealth. We compare the

model-implied moments to the statistics obtained from the SCF 2007.18 We summarize the model-

implied statistics and their data counterparts in the table 4. We calibrate the patience parameter

β and the housing preference parameter ψhousing to match the net-worth to income ratio and the

share of housing in the aggregate net-worth. Because we set the net supply of bonds to zero,19 our

model misses the small but positive net amount of risk-free assets on the households’ balance sheet

in the SCF, corresponding of 3% of net-worth.

Portfolio composition by age Figure 3 shows the average beginning-of-period wealth and in-

come life-cycle profiles during the normal times. For this figure, we normalized wealth and income

of each cohort by the aggregate income. Young households are in debt and hold their entire wealth

in housing. Before retiring, households repay their debt and start accumulating equities as well as

buying risk-free bonds (i.e. lending to younger households).

To formally compare the model-implied wealth distribution the data, we aggregate households

into three age-groups, which we call young, corresponding to ages 21 to 40, middle corresponding

to ages 41 to 60, and old, corresponding to ages 61 to 80. We report the share of wealth held by

each group. Since the household bond holdings in the model sum up to zero, we report the bond

holdings of each age group as share aggregate income. The distribution of asset holdings across the

age groups is summarized in table 5.

18Since one model period in our model corresponds to 4 calendar years, we divide the wealth to income ratio
obtained from the SCF data by four.

19We assume that corporate bonds are held by foreign investors outside the model.

24



20 40 60 80
age group

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

va
lu

e 
re

l. 
to

 a
gg

re
ga

te
 in

co
m

e

income
housing
equity
bonds

Figure 3: Average wealth and income distribution in the model during normal times.

Asset class Young Middle Old

Net-worth, model (normal times) 9% 30% 61%
Net-worth, data (2007) 7% 38% 55%

Equity, model (normal times) 0% 28% 72%
Equity, data (2007) 6% 38% 56%

Housing, model (normal times) 23% 35% 42%
Housing, data (2007) 17% 41% 42%

Bonds (share of inc.), model (normal times) -31% -15% 51%
Bonds (share of inc.), data (2007) -31% 1% 58%

Table 5: The average distribution of assets by age groups during normal times. The data values are
obtained from the SCF 2007.
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[
Yt

Yt−1

]
σ
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Yt

Yt−1
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σ
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Ct

Ct−1

)
/σ
(

Yt

Yt−1

)
Fred Data 8.3% 5.1% 0.87
Model, normal times 6.9% 8.3% 0.92
Model, during disaster 8.5% 12.7% 1.17

Table 6: Business cycle statistics in the benchmark model and in the U.S. data between 1960 and
2020, aggregated to four-year values.

mean ret.
bond

std. ret.
bond

mean ret.
equity

std. ret.
equity

mean ret.
housing

std. ret.
housing

equ.
premium

equ. premium
in disaster

Model 26.4% 14.2% 32.7% 18.5% -22.7% 11.5% 6.3% 19%

Table 7: Four year asset returns in the benchmark model.

The model matches the general life-cycle of asset holdings for each asset class. Most importantly,

the portfolio of young households consists almost exclusively of leveraged housing, whereas old

households have a more balanced portfolio with a substantial share of equity and long position in risk-

free bonds. Countrafactually, middle-aged households in our model continue to borrow substantial

amounts, while the average middle-aged household in the SCF sample has approximately zero net

debt.

Business cycle statistics Next, we turn to business cycle statistics. The values are summarized

in table 6. The four-year growth rate of GDP per capita averages to 6.9% during normal times and

to 8.5% during disaster times. These values are roughly in line with the average four-year growth

rate of U.S. GDP per capita over the 1960 to 2020 period, which was 8.3%. The standard deviation

of four-year per capita US output growth over the same period is 5.1% in the data relative to 8.3%

implied by our model. Per capita output in our economy is hence more volatile than per capita

output in the U.S. data.

In line with the US data, the aggregate consumption in our model is less volatile than model-

implied aggregate output when conditioning on normal times. The model features an excessively

high volatility of consumption growth during disasters, stemming from the large increase in capital

depreciation during disaster realizations.

Asset prices Our general equilibrium model features three asset markets, namely the equity

market, the housing market, and the market in one-period risk-free bonds. Hence, our model not

only covers the three most important asset classes on household balance sheets, but also provides us

with a theory of price dynamics of those assets. The model-implied mean four-year asset returns and

their standard deviations are summarized in table 7. Our calibration implies an annualized interest

rate of 6.0%, which is a substantially higher number than observed in the U.S. postwar data. We

model the disaster state as a mixture of transitory and pernament TFP shocks coupled with collateral
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Figure 4: Model implied impulse response of aggregate consumption (solid blue line) and impulse
response estimated by Nakamura et al. (2013). The impulse response corresponds to a disaster
realizing at t = 1 and lasting for two periods, corresponding to 8 calendar years.

constraint tightening. Moreover, the pernament component of TFP shock also leads to accelerated

capital depreciation. Because the magnitude of TFP shock realization during a disaster is stochastic,

economy faces an elevated level of uncertainty during disaster times, leading to a decrease in average

interest rate to an annualized value of 2.2%.

The equity return is given by
(1−δK)ξt+1qt+1+r

K
t+1+π

K
t+1−λ

qt−λpt and its mean annualized value is 7.3%.

The economy hence features an annualized equity premium of 1.5%. These values are smaller than

the equity premium in the data (see e.g. Mehra and Prescott (1985)) In line with the data (see, e.g.,

Chien et al. (2011)), the equity premium is counter-cyclical and more than doubles to annualized

4.4% during disasters.

The return to housing is given by
(1−δH)pHt+1+π

H
t+1

pHt
. The annualized financial return on housing is

−6.2%. This negative financial return is to be expected, since households’ draw utility from owning

housing stock, and hence a part of the return for households is not financial.

The impulse response of aggregate consumption in response to a disaster shock To

calibrate the parameters governing the transitory element of disaster-specific tfp shock, we aim to

replicate the average impulse response of aggregate consumption to a eight-year disaster, as estimated

by Nakamura et al. (2013). The blue line in the figure 4 shows the model implied difference in the

log of aggregate consumption when simulating the economy during normal times (i.e. no disaster

realization) versus alternative paths, where the economy spends two model periods in the disaster

state. For each scenario, we compute 1000 simulated paths of the economy, and compare the averaged

impulse response to the impulse response implied by the estimation in Nakamura et al. (2013). The

model replicates the impulse response of aggregate consumption accurately.
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Figure 5: Difference between the mean of log aggregate quantities conditional on the realization of
average length disaster and conditional on the economy remaining in the normal state. The disaster
occurs at t = 2. The first panel shows output (Y ), aggregate consumption (C), and aggregate
investment (I). The second panel shows the impulse response function for asset prices. The third
panel shows the aggregate value of equity and housing, and the fourth panel shows the financial
payout of one unit of equity and housing purchased in the previous period.

5.2 Aggregate consequences of rare disasters

To study the consequences of a rare disaster through the lens of our model, we simulate the following

scenario: To examine model-implied consequence of a disaster realization, we simulate the following

scenario: We first simulate 1000 different trajectories of over which no disaster realizes. Despite no

disaster occurring, the trajectories differ in the realizations of the normal business cycle risk and the

shocks to the stochastic disaster probability. We then compare two scenarios: in the first, we keep

simulating the economy forward, artificially keeping it in the normal state. In the second scenario,

we put all 1000 states in the disaster state for one period. Those parallel economies exit the disaster

stochastically. Let pexit denote the probability to exit the disaster state. A fraction pexit of the

simulated trajectories will experience a disaster duration of one period. A fraction (1 − pexit)pexit

will experience a disaster duration of two periods, and a fraction (1 − pexit)
2pexit will experience a

disaster duration of three periods, and so on. Once a simulated trajectory exits the disaster state,

it remains in the normal state for the remaining simulation. That way, the difference between the

averages of the two scenarios shows the average effect of a single disaster realization.

To analyze the impact of a disaster realization, we compute statistics across the 1000 trajectories

for each of the scenarios and compare them with each other. Figure 5 shows the log difference

between mean quantities for the simulations with a disaster and the simulations without. The

first panel in figure 5 shows the impact of an average disaster on output Yt, consumption Ct, and

investment It. The disaster has a permanent and a transitory effect. Because of the neoclassical

structure of our model, the permanent effect is identical across all three quantities. The long-run

effect of an average disaster is a reduction of output, consumption, and investment by about 15%.

The transitory responses differ substantially. On impact, aggregate investment declines the most, by

about 25%, while output declines by 21% and aggregate consumption declines by 18%. The second

panel shows the impulse response of asset prices. The disaster leads to large drops in housing and

equity prices and a to a stark increase in the bond price, i.e. a stark decrease in the real interest rate.

The decrease in the interest rate during the disaster is driven by tightening of borrowing constraints

and by an increase in aggregate risk, increasing the motive for precautionary savings and hedging
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Figure 6: Impact response consumption, income, and net-worth to a disaster realization. The left
panel shows the log difference, and the right panel shows the absolute difference.

value of the risk-free asset. The third panel shows the impulse responses of the aggregate values

of different assets in the economy. Those impulse responses reflect both changes in asset quantities

and changes in their prices. The model generates declines in aggregate housing and equity values

that are substantially larger than the declines in output and consumption. On impact, the payout

of equity, which includes the increased depreciation, declines by 26%.

5.3 Intergenerational consequences of rare disasters

To assess the intergenerational consequences of a disaster realization, figure 6 shows the model-

implied impact20 responses of consumption and income (net of taxes, including social security, and

net-worth) by age group. The left panel shows the log difference, and hence relative values. The right

panel shows the absolute difference. All age groups reduce their consumption when the economy

enters a disaster state. The relative consumption response is approximately hump-shaped with

young and old households reducing their consumption the most.

The reasons for the consumption decline, however, are very different for the young and the old.

The young, not yet having accumulated large buffer stock of wealth, suffer from a large decline in

their labor income, coupled with tighter access to credit. The old, while receiving almost risk-free

social security payments, experience a large decline in the net-worth of their retirement savings.

Because households suffer the consequences of the disaster not only on impact but also for the

subsequent periods, examining impact response of various equilibrium quantities provides valuable,

yet only partial picture of disaster consequences. In order to assess the welfare impact of a disaster

realization on the total remaining lifetime utility, we perform the following calculation: First, we

compute the average remaining lifetime utility in both scenarios, with and without the disaster.

The remaining lifetime utility depends on the patience, the survival probability, and the sequences

20Response in the period of the disaster realization relative to the benchmark scenario of no disaster realization.
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Figure 7: Compensation in the disaster scenario in terms of a relative increase in consumption,
housing units, and bequest values, which would be necessary to attain the same remaining lifetime
value as in the scenario without disaster realization.

consumption ceff, housing units heff, end wealth levels, which enter the utility function. For each

age group, we compute a compensating differential, i.e. a percentage by which the remaining

consumption, housing units, and bequest values in all states and periods in the disaster scenario

would have to be increased, for the average remaining lifetime utility to be the same as in the case

without disaster realizations. The resuting numbers are shown in the right panel of figure 7. The

welfare consequences across generations are approximately U-shaped, with young and old households

suffering the most. Young households suffer the largest welfare decline. To be indifferent between

living through the disaster scenario and the scenarion in which the economy remains in the normal

state, young households would require a more than 30% increase in effective consumption, housing,

and bequest values in all subsequent periods of their life. Households around retirement age, on the

other hand suffer the least with a welfare reduction corresponding to a compensating differential of

about 4%.

To better understand the mechanism leading to the unequal welfare consequences across genera-

tions, we now investigate the distribution of income and net-worth losses across age-groups and the

equilibrium responses of households. The top panel of figure 8 shows the changes in the distribution

of income, net-worth, and consumption for young (ages 21 - 40, 32% of the population), middle-

aged (ages 41 - 60, 32% of the population), old (ages 61 - 80, 27% of the population), and very old

households (ages 81 - 92, 9% of the population) in the first period of the disaster, relative to the

scenario, in which no disaster occurs. The distribution of income and net-worth shifts away from

young and middle-aged households towards old and very old households. Young households face the

largest decline in their shares of income and net-worth, old households face the largest increase. In

line with the old households being the relative beneficiaries in terms of both, net-worth and income,

their consumption share increases, while the consumption share of young households decreases.

How do different age groups react to changes in income and wealth distribution? The bottom
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Figure 8: Change in the share of income (top left), net-worth (top middle), consumption (top right),
and assets (bottom row, from left to right: bonds, housing, and equity) for each age-group in the first
period of the disaster, relative to the benchmark scenario without a disaster realization in percentage
points. The changes in the share of bonds, housing, and equity refer to the shares held at the end
of the period, while the share of net-worth refers to the beginning of the period.
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panel in figure 8 shows the differences in the share of asset holdings for the bond, housing, and

equity in the end of the period, hence including the endogenous policy response of households.21

Young households borrow less and purchase less housing. This behavior is driven by the tightening

of collateral constraints, the increased aggregate uncertainty, and the illiquid nature of housing. The

share of all three assets owned by middle aged households declines. Old and very old households

hold less bonds and a larger share of equity and housing, which they purchase at depressed prices.

Those purchases are especially beneficial for old households, who still live long enough to benefit

from price increases as the economy exits the disaster state. Very old households benefit less from

future price increases since they face a significant death probability, and hence may not live long

enough to enjoy those capital gains.

5.4 Inspecting the model assumptions

In this section we investigate how different modeling assumptions we made shape our results. In

particular, we are interested in understanding the role of the unequal exposure of labor income

to cyclical fluctuations across age-groups, the role of borrowing constraints, and the role of the

pay-as-you-go social security.

No collateral constraints To isolate the role of borrowing constraints in our economy, we study

a variant of our model where working-age households can short-sell the bond without being subject

to a collateral requirement. To do this, we set the loan-to-value-ratio to κnormal = κdisaster = 2, high

enough for the collateral constraint to be slack for all households and all states around equilibrium

paths of the economy. We keep the remaining parameters unchanged and redo the same welfare

comparison as in figure 7 for our benchmark calibration. We show the resulting compensating

differential in the left panel of figure 9. In the model with relaxed collateral constraints, the very

youngest households and the households above 77 years old suffer less from the disaster realization,

while all others suffer more. The very youngest group of households suffer less because relaxed

borrowing constraints allows them to smooth their consumption across time and shock realizations

relative to the economy with tight collateral requirements. Households between 25 and 77 suffer

more in the model without collateral requirement because they enter the disaster state with more

debt. Taking up the additional debt is optimal for them ex-ante but exacerbates the consequences of

a disaster, if it realizes. Households above 77 suffer less in the model with uncollateralized borrowing,

because the larger gross suply of bonds generated by increased borrowing by younger age groups

allows them to hold a larger share of risk-free assets in their portfolios.

Equal exposure of labor income to aggregate fluctuations The middle panel in figure 9

compares the compensating differentials in the benchmark model to a variant of the model, in

which we equalize the aggregate-risk exposure of labor income across all working-age households.

This corresponds to parameters ζh = 0 ∀h ∈ {1, . . . ,H} in equation (48). The overall shape of

the compensating differential remains U-shaped and close to the one generated by our benchmark

21Since the bond is in zero net-supply, we look at changes in the ratio of bond holdings relative to the aggregate
wage, instead of shares of the aggregate supply held by each age-group.
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Figure 9: Compensation in the disaster scenario in terms of a relative increase in consumption,
housing units, and bequest values, which would be necessary to attain the same remaining lifetime
value as in the scenario without disaster realization. The solid blue line shows the compensating
differential in the benchmark model. The dashed orange line shows the compensating differential
in model variants without collateral constraints (left panel), with equal exposure of labor income to
aggregate fluctuations (middle panel), and with a constant social security tax (right panel).

economy. The welfare consequences of the disaster for retired households is virtually unchanged.

Households between ages 20 and 42, who faced a comparatively large exposure of their labor income

to output growth in the benchmark model, suffer less. Vice versa, working households above 42

years old, whose labor income is less exposed to aggregate fluctuations in the benchmark economy,

now suffer more. The welfare gain for young households is larger than the corresponding welfare

loss for older working households, reflecting the fact that young households are less able to smooth

consumption and hence incur larger welfare losses from income fluctuations.

Constant social security taxes The pay-as-you-go defined benefit social security implies an

increase in social security taxes when wages decline, as stated in equation (51). The tax increase

during the disaster increases the redistribution of resources from working to retired households.

In a model with government debt, the government could issue debt to finance the social security

payments and pay it back later by raising taxes. The burden to paying back the debt would, to a

larger share, will lie upon the current young households. We now want to understand how much

less young households would suffer from a disaster, if the social security taxes remains constant.

To implement this experiment in a particularly tractable way, we study a version of the model,

where we keep the social security tax constant and equal to the average social security tax in the

benchmark model. We retain the defined benefit social security structure. As a consequence, the

government budget constraint in equation (51) is not satisfied. With this experiment, we aim to

get an approximate lower bound for how much young households would suffer in an economy, in

which the social security obligations would be financed by issuing debt. The resulting compensating

differentials are shown in the right panel in figure 9. The overall shape of the compensating differ-

entials across age-groups remains the same, with the youngest households suffering the most from

a disaster realization. Even though the social security payouts remain unchanged and risk-free, we
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find that households early in their retirement suffer more, while households later in their retirement

suffer less. This is the case because asset prices, in particular house prices, drop substantially less in

the economy with a constant social security tax. This price movement hurts the households early in

retirement, who would otherwise benefit from purchasing cheaper houses in the downturns. At the

same time, the reduced decline in asset prices benefits households later in their retirement because

of a smaller reduction of their wealth, and hence a smaller reduction in utility from bequests.

5.5 Change in social security

In this exercise, we study the role of pay-as-you-go social security in the response of the economy

to the disaster shock and both the unconditional distribution as well as disaster response of asset

prices. To do so, we reduce the size of social security payouts Rss to 25% of the benchmark value.

First, we compare the effect of reduction in the size of the social security on aggregate wealth

stock and its composition. Table 8 summarizes the difference between our baseline economy and

the alternative calibration with reduced social security payouts. The reduction in social security

payouts mechanically moves the pension system towards private savings. As a result, the wealth to

income ratio increases by approximately 9%. This increase in savings leads to a larger capital stock.

The share of equity in the aggregate net-worth rises from 33% to 39%. The ratio of housing wealth

to income remains unchanged.

Table 9 compares the asset returns in the benchmark model to the asset returns in the model

with a lower level of social security. The interest rate drops substantially from 26.4% (over a four

year period) to 13.6% and becomes less volatile. The reduction in social security leads to lower

equity returns and a lower equity premium, with increased counter-cyclicality.

Next, we investigate the effect of the reduction in social security on the intergenerational wealth

distribution. Table 10 compares the intergenerational wealth distribution in the benchmark economy

and the economy with reduced social security. The lower taxes and the reduced interest rate induces

young households to borrow more and to own a larger share of housing stock. Middle aged households

hold less debt, a similar share of housing, and a substantially larger share of equity, relative to the

benchmark model. This behavior is driven by the increased need for private retirement savings,

being accommodated by the two purely financial assets (i.e. capital and bonds). Old households

hold a smaller share of housing and equity, but larger amounts of the risk-free bonds.

To investigate the effect of a disaster realization, we again compare two scenarios, starting from

an economy, which remained in the normal state for several periods. In the first scenario, the econ-

Asset class net-worth to inc. ratio housing share equity share bond share

Baseline 1.77 67% 33% 0%
Reduced soc. sec. 1.93 61% 39% 0%

Table 8: The first column reports the wealth-to-income ratio and the following three columns report
the share of each asset class in net-worth. The numbers are averages conditional on the economy
being in normal times.
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mean ret.
bond

std. ret.
bond

mean ret.
equity

std. ret.
equity

mean ret.
housing

std. ret.
housing

equ.
premium

equ. prem.
in disaster

Benchmark 26.4% 14.2% 32.7% 18.5% -22.7% 11.5% 6.3% 19%
Red. soc. sec. 13.6% 10.7% 18.3% 19.8% -22.6% 11.8% 4.6% 19%

Table 9: Four-year asset returns in the benchmark model (first row) and the model with a 25% lower
level of social security payouts (second row).

Asset class Young Middle Old

Net-worth, benchmark (normal times) 9% 30% 61%
Net-worth, red. soc. sec. (normal times) 10% 35% 55%

Equity, benchmark (normal times) 0% 28% 72%
Equity, red. soc. sec. (normal times) 0% 38% 62%

Housing, benchmark (normal times) 23% 35% 42%
Housing, red. soc. sec. (normal times) 28% 36% 36%

Bonds (share of inc.), benchmark (normal times) -31% -15% 51%
Bonds (share of inc.), red. soc. sec. (normal times) -42% -10% 58%

Table 10: Distribution of wealth across age groups by asset class and age group during normal times
in the benchmark calibration, and the economy with reduced size of social security.

omy remains in the normal regime throughout all the simulations whereas in the second scenario, we

simulate a disaster with a stochastic duration as implied by the probability of exiting the disaster

state. Figure 10 shows the impulse response of aggregate quantities to a rare disaster in the calibra-

tion with lower social security. Compared to the benchmark calibration, the aggregate consumption

and the investment decline slightly less on impact. For asset prices, we find a larger decline of the

equity prices in the economy with a lower level of social security.

Next, we compare the intergenerational welfare consequences of a disaster realization in both

economies. Figure 11 shows the necessary percentage increase in consumption throughout their

remaining life for households in the disaster scenario to attain the same utility as the households not

experiencing a disaster. The overall shape of the compensating differential remains the same but

is tilted such that households before retirement suffer less and retired households suffer more. The

compensating differential for households just before retirement remains virtually unchanged. While

this result may not be surprising because social security insures retirees at the expense of working

households, we verify the ex-ante intuition in a rich quantitative general equilibrium model.

To provide additional insight into the mechanics of our economy, in appendix D.1, we solve for

model equilibria under a calibration where a disaster realization does not affect TFP, but leads to a

sharply higher capital depreciation rate.
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Figure 10: Difference between the mean of log aggregate quantities conditional on the realization
of average length disaster and conditional on the economy remaining in the normal state in the
model with reduced social security. The disaster occurs at t = 2. The first panel shows output
(Y ), aggregate consumption (C) and aggregate investment (I). The second panel shows the impulse
response function for asset prices. The third panel shows the aggregate value of equity and housing,
and the fourth panel shows the financial payout of one unit of equity and housing purchased in the
previous period.
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Figure 11: Compensation required by households to be indifferent between normal and disaster
scenarios. The solid blue shows required generation-specific compensation in our baseline economy,
and the dashed orange line shows the same in the economy where the size of social security is reduced
by 25%.
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6 Solution Method

In this section we describe the numerical method we use to solve the rare disaster model described

in section 3. We build on the deep learning based solution method developed by Azinovic et al.

(2022), called deep equilibrium nets, and make two distinct methodological contributions to deal

with challenges posed by macro-finance models with rich portfolio choice. First, we show how to use

the implicit layers concept of Bai et al. (2019) to incorporate market clearing conditions directly

into neural network architectures for solving dynamic economic problems. Second, we introduce a

step-wise solution procedure to solve models with many assets. The main challenge in models with

multiple assets is, that portfolio choice is only pinned down at low errors in the associated optimality

conditions (see, e.g. Christiano and Fisher (2000)). The key idea of our step-wise procedure is to

start from the solution of a nested single-asset model and to slowly transform the model to the

economic model of interest while iteratively training the neural network. That way, the equilibrium

functions encoded by the neural network retain the needed accuracy, leading to a stabilized training

process. Both innovations generalize beyond the details of our model to deep learning based solution

methods more generally.

For clarity and to focus on the method, we detail our two innovations using a simpler, illustrative

model than the benchmark model developed in section 3. Using this illustrative model, which

introduce in the next section, we follow on by explaining the two building blocks of our method:

market clearing layers in section 6.2, and adiabatic algorithm for multi-asset models in section 6.3.

6.1 An illustrative example

We posit a stochastic overlapping generations model, with one representative cohort per age-group

and time separable utility exhibiting constant relative risk aversion. The agents can trade in two as-

sets, risky capital and a risk-free one-period bond, both subject to exogenous borrowing constraints.

The firm-side is kept simple. A representative firm hires labor and rents capital from households,

and produces the consumption good with a neoclassical production function. The only uncertainty

in this model is a stochastic process for total factor productivity, which affects firms’ production

function as well as the depreciation rate of capital.

Uncertainty The log of total factor productivity zt evolves according to an AR(1) process. Let ρz

denote the persistence of AR(1) process and let σz denote the standard deviation of the innovations.

The process is given by

log(zt+1) = ρz log(zt) + σzϵt, (65)

where ϵt ∼ N (0, 1). A summary of the model parameters is given in appendix B. We further assume

that total factor productivity also affects the depreciation of capital, which is given by

δt = δ
2

1 + zt
, (66)
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where δ denotes the depreciation for zt = 0.

Representative firm A representative firm produces with Cobb-Douglas production technology,

using capital and labor as inputs.

F (zt,Kt, Lt) = ztK
α
t L

1−α
t , (67)

where Kt denotes aggregate capital and Lt denotes the aggregate efficient units of labor. Let

wt denote the wage per efficient unit of labor and rt the return per unit of capital. The firm’s

optimization problem yields

wt =
∂F (zt,Kt, Lt)

∂Lt
= αztK

α−1
t L1−α

t (68)

rt =
∂F (zt,Kt, Lt)

∂Kt
= zt(1− α)Kα

t L
α
t . (69)

Households We assume that households live deterministically for H periods. Households age-

specific efficient units of labor supply are given by lh, where h indexes an age-group. Labor is

supplied exogenously and households always work. The life-cycle profile of efficiency units is given

in figure 17 in appendix B. Households can trade two assets, risky capital and a risk-free bond in

net-supply B = 0. We denote the capital holdings of age-group h in period t with kht , analogously

we denote the bond holdings with bht . Households receive utility from consumption and maximize

their remaining lifetime utility, which is given by

H∑
i=h

βi−hu(ch+it+i ). (70)

The patience parameter is denoted with β and u(c) denotes the utility from consumption, which we

assume to be of constant relative risk aversion with coefficient γ

u(c) :=
c1−γ − 1

1− γ
. (71)

Adjusting the capital stock owned by a household is subject to adjustment costs

ψk(kht − kh−1
t−1 )

2, (72)

where ψk is an exogenous parameter determining the strength og the adjustment costs. The house-

holds’ budget constraint is given by

cht = lht wt + bh−1
t−1 + kh−1

t−1 (1− δt + rt)− pbtb
h
t − kht − ψk(kht − kh−1

t−1 )
2 (73)

We assume that there is an exogenous short-sale constraint on bonds, bht ≥ b, capital can’t be sold

short kht ≥ 0. We further assume that households can’t die with debt, bHt = 0.

Let pbt denote the price of the bond. The households’ optimal savings and portfolio decisions are
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characterized by two sets of Karush-Kuhn Tucker (KKT) conditions. The KKT conditions for the

bond are given by

pbtu
′(cht ) = βE

[
u′(ch+1

t+1 )
]
+ λht (74)

bht − b ≥ 0 (75)

λht ≥ 0 (76)

(bht − bh)λht = 0 (77)

Where bh = b for h ∈ {1, . . . ,H − 1}, and bH = 0. Similarly, the KKT conditions for capital are

given by

(1 + 2ψk(kht − kh−1
t−1 ))u

′(cht ) = βE
[
u′(ch+1

t+1 )(1− δt+1 + rt+1 + 2ψk(kh+1
t+1 − kht )

]
+ µht (78)

kht ≥ 0 (79)

µht ≥ 0 (80)

kht µ
h
t = 0 (81)

Using the Fisher-Burmeister equation (see Jiang (1999) and Maliar et al. (2021)), each of the set

of Karush-Kuhn Tucker conditions can be characterized by a single equation. This is numerically

useful because it reduces the problem of satisfying the four KKT conditions to satisfying a single

equation. Let a, b ∈ R, and let

ψFB(a, b) := a+ b−
√
a2 + b2 (82)

denote the Fisher-Burmeister function. The Fisher-Burmeister function is zero if and only if a ≥
0, b ≥ 0, and ab = 0. Using the Fisher-Burmeister equation, the households’ portfolio choice,

characterized by inequalities (74) to (81), can be characterized by two equations

ψFB
(
pbtu

′(cht )− βE
[
u′(ch+1

t+1 )
]
, bht − b

)
= 0

(83)

ψFB
(
(1 + 2ψk(kht − kh−1

t−1 ))u
′(cht )− βE

[
u′(ch+1

t+1 )(1− δt+1 + rt+1 + 2ψk(kh,endt − kht ))
]
, kht

)
= 0.

(84)

Following Judd (1998) and Azinovic et al. (2022), we express the two terms in the Fischer-Burmeister

function, such that they are interpretable as errors in the respective conditions, relative to consump-
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tion.

ψFB

u′−1
(
βE
[

1
pbt
u′(ch+1

t+1 )
])

cht
− 1,

bht − b

cht

 = 0 (85)

ψFB

u
′−1

(
βE

[
u′(ch+1

t+1 )
(1−δt+1+rt+1+2ψk(kh,end

t −kht )
(1+2ψk(kht −k

h−1
t−1 ))

])
cht

− 1,
kht
cht

 = 0. (86)

Equilibrium An equilibrium is given by policy and price functions, which are consistent with

household and firm optimization, as well as market clearing. We assume that each age-group has

mass one and that the bond is in zero net-supply. Therefore, markets clear when

Kt =

H∑
h=1

kht (87)

0 = B =

H∑
h=1

bht . (88)

We can use equation (87) to construct aggregate capital from household policies, ensuring capital

market clearing is always satisfied. Given aggregate capital, and the (exogenous) supply of efficient

labor units Lt, we can use equations (69) and (68) to construct the return on capital and the wage for

labor, ensuring that firm’s optimization condition are always satisfied. The remaining equilibrium

conditions are the optimality conditions for households, characterized by equations (85) and (86),

and bond market clearing, given in equation (88).

Building on the deep equilibrium nets algorithm, our goal is to compute the equilibrium recur-

sively by approximating all remaining policy and price functions with a deep neural network. The

functions we need to approximate include a price function, mapping the state of the economy to the

bond price and 2 × (H − 1) policies for the savings in the bond and in capital.22 The state of the

economy is given by the exogenous shock zt ∈ R, as well as the asset holdings across the age-groups

bt−1 := {0, b1t−1, . . . , b
H−1
t−1 } ∈ RH ,kt−1 := {0, k1t−1, . . . , k

H−1
t−1 } ∈ RH

xt := [zt,bt−1,kt−1] ∈ R1+2×H . (89)

Let ρ ∈ RNparams denote the Nparams trainable parameters of a neural network we use to approximate

the remaining 2× (H − 1) policy functions and the price function for the bond. Let Nρ denote the

corresponding neural network

Nρ : R1+2×H → R1+2×H−1, Nρ(xt) = [p̂bt , b̂
1
t , . . . , b̂

H−1
t , k̂1t , . . . , k̂

H−1
t ]. (90)

Where the hat-variables, such as b̂ht , denote approximations to the corresponding equilibrium func-

tions in the sense of a functional rational expectations equilibrium (see Spear (1988); Krueger and

22It is H − 1 because with our assumptions, the last age-group will save in neither asset.
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Kubler (2004)). For the approximation to be accurate the policy functions need to be consistent

with the (remaining) optimality conditions, i.e. equations (85) and (86), and bond market clearing,

i.e. equation (88).

6.2 Market Clearing Neural Networks

Following the original deep equilibrium nets algorithm, we would now construct a loss functions by

computing the mean squared error in the remaining equilibrium conditions on a set of states, which

is sampled from the policy encoded by the neural network. The training of the neural network hence

aims to minimize the errors in the equations which characterize the households’ portfolio choice

and market clearing errors. Our first methodological innovation is to show how we can simplify the

loss function by encoding market clearing directly into the architecture of the neural network, thus

ensuring it is always satisfied up to numerical precision.

This has several conceptual advantages. First, we encode prior knowledge about the model

solution into the architecture by design. Consequently, the neural network does not have to learn

an ex-ante known property.

Second, a major advantage of many of the recently developed deep learning-based methods, is

that the neural networks can be trained on simulated data. This is especially important in high

dimensions where, for most economic models, a hyper-cubic domain would be exponentially wasteful

(see, for example, Maliar et al. (2011)). If the policies predicted by the neural network are consistent

with market clearing, then so are the simulated states, focusing the training of the neural network

on the economically relevant subset of potential states from the beginning of training.

Third, the remaining errors in the equilibrium conditions are errors in the households’ first-

order conditions. Formulated in the units of relative consumption errors, as we do above, they are

economically interpretable. Furthermore, errors in the first order conditions lend themselves to the

behavioral interpretation of agents making some level of mistakes when optimizing their portfolio

choice. Thereby we avoid the need to interpret errors in a mixed set of equilibrium conditions, which

include market clearing conditions together with errors in first order conditions.

We will illustrate the market clearing layer in the illustrative example model we introduced

above. We define the market clearing neural network to be a composition of a densely connected

feed-forward neural network, together with a suitable transformation of the neural network outputs.

Let

N pre
ρ : R1+2×H → R1+2×H−1, N pre

ρ (xt) = [p̂bt , b̃
1
t , . . . , b̃

H−1
t , k̂1t , . . . , k̂

H−1
t ]. (91)

denote the neural network, which does not enforce market clearing, in the sense that
∑
h b̃

h
t ̸= B.

Our market clearing layer consists of a transformation

m : R1+2×H−1 → R1+2×H−1, m([p̂bt , b̃
1
t , . . . , b̃

H−1
t , k̂1t , . . . , k̂

H−1
t ]) = [p̂bt , b̂

1
t , . . . , b̂

H−1
t , k̂1t , . . . , k̂

H−1
t ],

(92)

such that the b̂ht are consistent with market clearing, i.e.
∑
h b̂

h
t = B. Given such a transformation
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m (·), we define a market clearing neural network architecture as a composition between the standard

neural network N pre
ρ with the market clearing transformation m (·)

Nρ : R1+2×H → R1+2×H−1,Nρ(xt) = m
(
N pre

ρ (xt)
)
= [p̂bt , b̂

1
t , . . . , b̂

H−1
t , k̂1t , . . . , k̂

H−1
t ]. (93)

The next question is how to choose a suitable transformation function m (·).
In the next two sections we will illustrate two different approaches for possible transformations

m (·). The first transformation, which we propose in section 6.2.1, is a simple additive adjustment.

The advantage is that the adjustment can be computed in closed form and hence is computationally

cheap. The disadvantage is that the adjustment only enforces market clearing, not potentially present

borrowing constraints. Thereafter, in section 6.2.2, we introduce a transformation function m (·),
which additionally enforces borrowing constraints, but has the disadvantage to be computationally

expensive. Heuristically we found the speed advantage of the simple additive adjustment to outweigh

the benefits of ensuring the borrowing constraints. However, we believe that both ways have their

appropriate use cases, depending on the specifics of the model at hand.

6.2.1 Simple Adjustment for Pure Market Clearing

Let BH(x) denote the aggregate bond demand, which is implied by the households’ policies b̃h(x)

before transformation

BH(x) :=

(
H∑
h=1

b̃h(x)

)
. (94)

Without any transformation, these policies would imply an excess demand

∆B(x) = BH(x)−B. (95)

We would like to adjust the policies b̃i(x), such that the adjusted policies b̂i(x) are consistent with

market clearing, i.e. such that the excess demand is zero. There are multiple ways to adjust the

policies b̃i to make up for the excess demand ∆B(x). For example, one way would be to rescale the

policies to obtain new policies

∀h ∈ H : b̂h(x) = b̃h(x)
B

BH(x)
, (96)

where we define H := {1, . . . ,H}. However, in general this algorithm would not be convenient, for

example in settings when BH(x) = 0. Another way would be to adjust the policy of only a single

household h, for example

h ∈ H : b̂h(x) = b̃h(x)−∆B(x) (97)

∀i ∈ H, i ̸= h : b̂i(x) = b̃i(x). (98)
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This would cause an asymmetry in the policies across different households, since only the policy of

one household is adjusted.

We propose the solution to the following problem as a desirable adjustment mechanism:

{b̂h(x)}h∈H = argmin
∑
h∈H

1

2
(b̂h(x)− b̃h(x))2

subject to :
∑
h∈H

b̂h(x) = B. (99)

In that way, the prediction by the initial neural network, b̃h(x), remains closely tied to the adjusted

prediction b̂h(x). The minimization problem has the simple solution that all households’ policies are

adjusted by an equal amount

∀h ∈ H : b̂h(x) = b̃h(x)− 1

H
∆B(x). (100)

Next to maintaining a close and uniform connection between the pre-adjustment predictions b̃h and

the adjusted and model-relevant predictions b̂h, which enter into the loss function, this formulation

has the advantage that it also works for assets in zero net supply, when the households’ demand is

zero or negative, as well as when the net supply is state-dependent.

Despite its computational simplicity, a disadvantage of this approach is that, while the adjusted

policies are consistent with market clearing, they are not necessarily consistent with borrowing

constraints. A softplus activation function, for example, could ensure that b̃h(x) are non-negative,

however this would not imply that the adjusted, market clearing, b̂h(x) are non-negative as well.

Ideally, we would like the adjustment to be able to ensure that both, market clearing and borrowing

constraints, are always satisfied. We address this point with implicit layers in the next section.

6.2.2 Implicit Layer to Encode Market Clearing and Borrowing Constraints

The market clearing adjustment described in the previous section does not ensure that borrowing

constraints are satisfied. One way to deal with this, is to use the Fischer-Burmeister function

(see, e.g., Jiang, 1999; Maliar et al., 2021), to encode the Euler equation error and the violation

of the borrowing constraint into a single error term (as we did in equations (85) and (86)). Here

we show a modification to the simple market clearing mechanism described in section 6.2.1, which

simultaneously ensures market clearing and that the borrowing constraints are satisfied, by adding

the borrowing constraint to the above minimization problem:

{b̂h(x)}h∈H = argmin
∑
h∈H

1

2
(b̂h(x)− b̃h(x))2

subject to :
∑
h∈H

bh(x) = B

bh(x) ≥ bh(x) (101)
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where bh(x) denotes the borrowing limit of agent h. The solution to this problem can be obtained

with solvers for box-constrained Quadratic Programs, which are meanwhile implemented in modern

deep learning libraries, such as JAX, and provide efficiently computed derivatives for the use in

backpropagation algorithms.23 For further details on implementation of implicit market clearing

layers, see Appendix A.

6.2.3 Choosing Between the Two Market-Clearing Algorithms

In sections 6.2.1 and 6.2.2 we laid out two ways to ensure that market clearing is satisfied exactly.

The simple algorithm described in section 6.2.1 has the advantage that we can obtain the solution to

problem (99) in closed form, as given in equation (100). The market clearing policies can hence be

computed with minimal computational complexity. The disadvantage is that the adjusted policies

may violate the borrowing constraints. Consequently, the borrowing constraints must be encoded

in the loss function, for example by using the Fischer-Burmeister function.

The solver-based adjustment described in section 6.2.2 has the advantage that the solution to

the problem (101) ensures that, additionally to market clearing, all borrowing constraints are always

satisfied. The disadvantage is that a closed form solution for constrained quadratic programs is not

available and we therefore need to invoke a solver, which slows down the training. Furthermore, the

solver-based adjustment faces the problem that we need to add auxiliary terms to the loss-function

in order to ensure that the neural network weights are updated if an agent is falsely predicted to be

constrained, as described in the Appendix A.

Which of the two market clearing algorithm is more advantageous may depend on the model at

hand and on whether a strict enforcement of the borrowing constraints adds stability to the training

algorithm. In a model featuring tight borrowing or no-short sale constraints small violations of those

constraints punished by Fisher-Burmeister error might not be critical for stability of algorithm, and

additive algorithm allows for a dramatic speed-up relative to the full implicit layer. On the other

hand, if an economy features only a natural borrowing constraint, in the spirit of Aiyagari (1994),

and agents visit a neighborhood of that constraint sufficiently often, a fully implicit layer might

be worth of the computational effort, since violation of natural borrowing constraint pose a dire

stability problem to the simulation-based sampling algorithm used to generate states for training

model solution.24

6.3 Step-wise Algorithm for Multiple Assets

While market clearing layers address the issue of market clearing errors typically arising in multi-asset

models, portfolio choice problems pose another fundamental problem. Portfolio choice problems tend

to be ill-behaved, in the sense that small errors in the equilibrium conditions allow for vastly different

policy functions. To gain an intuition about the source of the problem, consider a life-cycle problem

23We used the BoxOSQP solver from the jaxopt library: https://jaxopt.github.io/stable/quadratic_

programming.html.
24Violation of natural borrowing constraint leads to a debt trap problem, where the income of some agents is lower

than their debt service, forcing them on a trajectory of either ever-increasing borrowing or negative consumption,
resulting in large equilibrium errors, which may harm training.
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with two purely financial assets. The consumption-savings intertemporal margin of the associated

dynamic decision problem tends to be sharply identified, hence even relatively large errors in the

optimality condition pinning-down consumption-savings choice do not change approximate overall

saving policies dramatically.

In contrast to the consumption-savings choice, the portfolio is only pinned down at comparatively

low errors in the associated first order conditions. Relatively small errors in the optimality conditions

can generate rather different portfolio allocations (see, e.g., Christiano and Fisher (2000)), and hence

the approximate portfolio weights are prone to rapid changes during the training process. Although

this problem also affects classical solution methods, it poses a particularly dire threat to the stability

of deep learning based solution algorithms. In contrast to classical solution methods which operate

on an ex-ante fixed grid on the selected area of state space, deep learning solution methods typically

solve the model on states sampled by iterative simulations of the preliminary solution itself. Rapid

changes in the approximate solution hence lead to rapid changes in the approximation domain, often

steering the economy towards previously non-visited areas of the state space with potentially very

high error. States with very large approximation errors then in turn generate large gradients and

hence the algorithm is prone to overwriting the previously learned information and to decrease the

quality of approximation on previously seen states.

To ameliorate this problem, we propose a new decomposition approach that starts from four

simple observations. First, standard single asset economies are relatively easy to solve using deep

learning. Second, a single-asset economy is nested in a two-asset economy as a special case for a zero

net supply of the second asset coupled with strict no-short sale constraint. Third, given a solution

of the one asset economy, one can construct the price of the second asset in the zero net supply

limit by plugging policies of the one-asset economy into optimality condition for the second asset.

Fourth, a small change in net supply of an asset, or a small change in short sale constraint should

lead to a small change in the equilibrium dynamics of the economy. Lastly, this logic generalizes to

a N − 1 asset economy to be a special case of a N asset economy.

Our algorithm starts by solving a single-asset version of the economy up to a high level of

precision. Since a single-asset economy by construction doesn’t allow for portfolio choice we avoid

the possibility of portfolio oscillations. The solution of a single-asset economy allows us to construct

a high-quality initial guess for solving a two-asset economy with a ϵ > 0 net supply of the second

asset.25 In the context of our algorithm, we refer to the construction of an initial guess for the

equilibrium functions, which are encoded by a deep neural network, as pre-training the neural

network. Pre-training the neural network to solve the single-asset economy, provides us with a good

initial guess for the equilibrium functions for the economy with a small supply of the second asset. For

policy functions, this argument is rather trivial: relative to the single-asset solution, an introduction

of small ϵ of supply of the second asset leads only to a small change in policy functions for the first

asset. Furthermore, given the ϵ net supply of the second asset, a zero function26 provides a good

initial guess for the policy functions of the second asset. To construct an initial guess for the price

25Or ϵ relaxed short-sale constraint
26To generate approximately zero policy guess, we simply multiply neural network outputs corresponding to that

asset by a small number, e.g. 0.001.
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function of the second asset, we resort to a procedure resembling the proposition of Lucas (1978).

Plugging the equilibrium consumption function into an Euler equation of the asset of interest allows

us to solve for the implied price function of that asset. In the case of Lucas (1978), this argument

was straightforward, in his endowment economy, market clearing implies that consumption is an

exogenous endowment process.

Our case is more convoluted since we operate in an incomplete market environment with het-

erogeneous agents and short sale constraints,27 but the essence of the approach remains the same.

The solution of a single-asset economy provides us with valid consumption functions for the limiting

case of the two-asset economy with zero net supply and strict no-short sale constraint on the second

asset. Ignoring borrowing constraints for a moment, we plug the policy functions obtained from the

single-asset economy into Euler equations for the second asset.28 Given the implied consumption

and given payoff characteristics of the asset of interest, each Euler equation becomes a functional

equation with one unknown: the price of that asset. In the absence of binding borrowing constraints,

all those Euler equations should imply the same price. Since some agents might be constrained, one

needs to take a maximum over the prices generated by Euler equations of different agents to obtain

the correct price function for this limiting case. For short-lived assets, such as one one-period bond,

it is usually possible to invert Euler equations for price analytically. The case of long-lived assets,

such as houses or Lucas trees, is slightly more complicated because even in the zero supply limit, the

price of such an asset solves a fixed-point problem, where the price today depends on expectations

of the price tomorrow. Nevertheless, those price functions can be calculated by simple backwards-

in-time iteration. In both cases, one obtains the price function, or the current iterate of the price

function in the case of long-lived assets, typically in closed form. Thanks to that, the neural network

can learn the limiting price function with supervised learning, rather than directly tackling the more

complex problem of directly minimizing the residual of some equilibrium condition.

Consistent with the model decomposition idea, the whole initial guess is constructed only by

means of objects readily available after solving the single-asset economy.29 Furthermore, we propose

a particularly convenient way, how to operationalize this decomposition idea in an algorithm. Instead

of writing a separate code for each i ∈ {1, .., N} asset version of the economy, we write a single code,

whose input includes a set of masks and weights. Each of masks multiplies all network outputs that

correspond to policy functions for one particular asset, and each element of the weight vector controls

the weight of one element of the loss function. For the limiting zero-supply and tight no-short sale

parameterization, setting both the mask and the Euler equation weight for the second asset to zero

allows us to ignore the complexities of solving an asset economy

6.4 Step by step application of the solution method to the simple model

We now give a concrete and in-depth illustration of the step-wise solution procedure, applied to our

illustrative model.

27Hence we can not simply use the stochastic discount factor of representative household to price arbitrary payoffs.
28Because of the OLG environment, each cohort has a different Euler equation.
29Or N − 1 asset economy more in general.
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Calibration While the model is meant to illustrate the computational method, we deliberately

keep it conceptually close to our main model by solving an OLG model with two assets. The details

of the calibration are given in appendix B.

The economics-inspired market clearing architecture We design the neural network archi-

tecture to ensure that the bond market is clearing, by construction, in every period. We do this by

applying the market clearing architecture described in section 6.2.1.

Step 1: Solving the single asset economy To solve the single-asset version of the illustrative

economy, we first set the net supply of the bonds to zero, and we impose tight borrowing constraints.

In this setting, we know that equilibrium bond policies are zero functions. Instead of training neural

network to learn zero-asset policies we multiply the corresponding neural network outputs by a

constant mbond = 0. We call this procedure masking. Since zero bond demand is consistent with the

zero net supply, the market clearing layer will perform no adjustment. Furthermore, we set the loss

function weight on the Euler equation of that asset to zero. Hence, the neural network will focus

entirely on learning solutions of the single-asset economy fulfilling our model decomposition idea.

At this stage the predictions of the neural network are given by

N pre
ρ (xt) = [k̂1t+1, . . . , k̂

32
t+1, 0b̃

1
t+1, . . . , 0b̃

32
t+1, p̂

b
t ] (102)

⇒ Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, 0, . . . , 0, p̂

b
t ]. (103)

Since all bond policies are zero by construction, the predicted bond price is irrelevant and the pre-

dicted policies correspond to a single asset economy, with capital as the only asset. Correspondingly,

the weights on the optimality condition for the bond in the loss function are set to zero, such that

the loss function consists of the errors in the optimality conditions for capital

ℓρ(xt) := 1×
(
H−1∑
h=1

(
ϵk,ht

)2)
︸ ︷︷ ︸
opt. cond. cap.

+0×
(
H−1∑
h=1

(
ϵb,ht

)2)
︸ ︷︷ ︸
opt. cond. bond︸ ︷︷ ︸

=0

. (104)
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Figure 12: Left panel: learned policies by age-group. The solid line shows the mean over 16000
simulated states of the economy, the dashed line shows the maximum and the dash-dotted line
shows the minimum. The red lines shows the capital policy and the blue lines the bond policy.
Right panel: errors in the equilibrium conditions for capital. The solid red line shows the mean
across 16000 simulated states and dashed blue line shows the 99th percentile.

Figure 12 shows statistics on the resulting policy functions and the errors in the equilibrium

conditions for capital. As intended, the bond policies are masked to zero and the model corresponds

to an economy with capital as the only asset. The right panel shows that the model is well solved,

with the 99th percentile of errors in the equilibrium conditions remaining below 1%.

Step 2: Pre-training the price for the second asset The solution of the capital-only version

of the economy allows us to construct an initial guess for the capital and bond economy with a small

positive supply of bonds. Our initial guess consists of three components. In this step, we show how

to obtain a good initial guess for the bond price. For context, we also describe the initial guesses

for the capital and bond policies, which will be used in step 3 as a starting point to solve the two

asset economy.

As a guess for new equilibrium policies for capital, we use capital policies obtained by solving

the single-asset economy. The rationale behind this initial guess is that we expect that introducing

a small amount of a new asset induces only a small change in demand for the first asset. Second,

we employ a zero function as an initial guess for policy functions for the bonds. The reason for

this guess is analogous to the case of policies for capital: we know that in the single-asset economy,

equilibrium allocations of the second asset are always zero, and we are perturbing the capital-only

economy by introducing a small amount of bonds, hence policy functions for bonds should be close

to zero.

To construct the initial bond policy functions, we use themask mbond introduced in step 1. In step

1, we set the mask to zero, in order to enforce zero equilibrium allocations of bonds. Multiplying the

neural network outputs for bond policies with mbond = 0 generates zero function, but also prevents

the network from learning a new solution, since regardless of network weights, both, predicted bond

allocations and their gradients, will be zero. Therefore, to train the bond policies while retaining

a good initial guess close to zero, we set the mask mbond to a small but positive number in the

next step. The small positive mask allows us to shrink random initial network outputs toward the
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desired zero function, while, at the same time, allowing the neural network to learn new solutions.

Empirically, we found that mbond = 0.01 constitutes a good trade-off between shrinking initial

network predictions towards zero initial guess and avoiding numerical difficulties associated with

multiplication with very small numbers. Note that, to construct the initial guess for the bond price

in this step, the bond policies remain masked with mbond = 0.

Given the policy functions of the capital-only economy, we construct implied bond prices by ana-

lytically inverting the bond optimality conditions and evaluating them at the consumption functions

implied by the capital-only economy.

pb,ht =
βE
[
u′(ch+1

t+1 )
]

u′(cht )
∀h ∈ H (105)

These equations hold only for unconstrained households. For constrained households, they would

hold only with inequality because the full Kuhn-Tucker first-order condition involves a non-zero

Lagrange multiplier. Hence equation (105) may predict different bond prices for different agents,

specifically the optimality conditions of constrained agents would imply lower prices than those of

unconstrained agents. In equilibrium, all agents face the same price, specifically the price determined

by the marginal buyer, who is willing to pay the highest price. Given that, at any state, we can

compute the bond price implied by the equilibrium dynamics of the capital-only economy by taking

a maximum over bond prices implied by equation (105).

This way we construct a closed expression for the bond price in the limit of the capital-only

economy, which is given by

pb,pretraint := max
h∈H

{
pb,ht

}
. (106)

Given this closed-form expression for bond price implied by the capital-only economy, we can train

the neural network to approximate this price function in a purely supervised fashion. Keeping bond

policies masked by mbond = 0, we introduce a positive weight on the so-called pre-train error, which

we define as the mean square difference between the closed-form bond price expression and network

prediction.

ϵpretraint := pb,pretraint − p̂bt (107)

The neural networks prediction is now given by

Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, 0, . . . , 0, p̂

b
t ]. (108)

The loss function now continues to include the optimality conditions for capital and also the pre-train
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Figure 13: Equilibrium policies, optimality condition error, and Euler equation wedge for the bond.
Solid lines denote the average value computed across 16000 simulated states. Dashed lines in the
left panel denote the minimum and maximum values over simulation, whereas in the second figure,
it denotes a 99th percentile across the simulated states.

error which will ensure that the bond price is learned.

ℓρ(xt) := 1×
(
H−1∑
h=1

(
ϵk,ht

)2)
︸ ︷︷ ︸
opt. cond. cap.

+0×
(
H−1∑
h=1

(
ϵb,ht

)2)
︸ ︷︷ ︸
opt. cond. bond︸ ︷︷ ︸

=0

+1×
(
ϵpretraint

)2
︸ ︷︷ ︸

price pretrain error

(109)

Figure 13 shows results after pretraining the bond price in this way. The left panel shows the capital

policy in red and the bond policy in blue. The solid lines show the mean across 16000 simulated

states and the dashed and dash-dotted line show the minimum and the maximum. The bond policies

are still masked to be zero and the capital policies remain unchanged. The right panel shows the

difference between the left hand side and the right hand side of the Euler equations for the bond,

averaged over 16000 simulated states. This difference is given by

pbtu
′(cht )− βE

[
u′(ch+1

t+1 )
]
. (110)

The right panel in figure 13 shows that this difference is positive for all age groups, except for one.

This is precisely the “exactly unconstrained” age group, whose Euler equation is pricing the bond

in the zero-supply limit. As we will see in the next step, this is exactly the age group that will first

start purchasing the bond when a small supply is introduced to the economy.

Step 3: Incrementally introducing the second asset After the network learns to approximate

the bond price implied by the capital-only economy, we now introduce a small positive aggregate

bond supply B1 > 0 to the economy. As explained in step 2, we now set the mask for bond policies to

a small but positive valuembond > 0. At the same time, we now set the weight on a pre-train error to

zero, and set the weight on the bond Euler equation error to one. Given the aggregate bond supply

B1, the loss function now contains all remaining equilibrium conditions of the two-asset economy.
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The neural network is now given by

N pre
ρ (xt) = [k̂1t+1, . . . , k̂

32
t+1, 0.01× b̃1t+1, . . . , 0.01× b̃32t+1︸ ︷︷ ︸

bond policies active

, p̂bt ] (111)

⇒ Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, b̂1t+1, . . . , b̂

32
t+1︸ ︷︷ ︸

always add up the B

, p̂bt ]. (112)

The loss function is given by

ℓρ(xt) := 1×
(
H−1∑
h=1

(
ϵk,ht

)2)
︸ ︷︷ ︸
opt. cond. cap.

+ 1×︸︷︷︸
bond equ. cond. active

(
H−1∑
h=1

(
ϵb,ht

)2)
︸ ︷︷ ︸
opt. cond. bond

. (113)

Since the initial guess is constructed using a high-quality solution of the capital-only economy,

it ensures low equilibrium error in the close neighborhood of the capital-only economy, i.e. for

economies with small bond supply and/or marginally relaxed borrowing constraints. Since well-

behavedness of portfolio choice critically depends on achieving a very low level of error, we use

our initial guess as a starting point for solving an economy with a very small aggregate bond

supply B1 > 0. Because the training algorithm starts very close to the solution of the slightly

perturbed economy, we achieve convergence in relatively few steps. Once convergence is achieved,

we marginally increase the bond supply to B2 > B1 and use the previous solution as an initial

guess for solving this large-bond supply economy. Since we again start very close to the solution

of the B2 bond supply economy, the equilibrium error does not increase too much, and again, we

achieve convergence in relatively few steps. Then, we continue iterating on this procedure (increasing

bond supply and retraining), until the supply target B is reached. Analogous operation can be

performed for borrowing constraint, where borrowing constraint is iteratively relaxed, allowing for

more intergenerational borrowing and savings. The left panel in figure 14 shows the evolution

of the loss function when we gradually increase the aggregate net supply of bonds from B0 = 0

to B10000 = 10. Predictably, the loss rises as more households become unconstrained since the

errors for constrained households are trivially zero. However, because of our iterative procedure, it

remains low and hence the portfolio choice is always well-identified. The right panel in figure 14

shows statistics on the corresponding household policies across simulated path.

Step 4: Assessing the final accuracy At the final step of the adiabatic algorithm, i.e. once

we arrive at the target parameterization of the economy, we apply further training round to check

convergence and improve the quality of the final approximation. Figure 15 shows the final policies

and statistics on errors in the remaining equilibrium conditions. The model is accurately solved with

mean and 99th percentile of errors in the equilibrium conditions below 0.1% and 1% respectively for

each of the age groups.

Details on the neural network and the training procedure For details on neural network

architecture and other hyperparameters of the algorithm we used to solve the illustrative model,

51



0 100 200 300 400 500 600
Adiabatic Step

−6.10

−6.05

−6.00

−5.95

−5.90

L
os

s
[l
og

10
]

20 40 60 80
Age

0

1

2

3

4

5

A
ss

et
h

ol
d

in
gs

capital

bond

0 1000 2000 3000 4000
Adiabatic Step

−6.1

−6.0

−5.9

−5.8

−5.7

L
os

s
[l

og
10

]

20 40 60 80
Age

0

1

2

3

4

A
ss

et
h

ol
d

in
gs

capital

bond

0 2000 4000 6000 8000 10000
Adiabatic Step

−6.2

−6.1

−6.0

−5.9

−5.8

−5.7

L
os

s
[l

og
10

]

20 40 60 80
Age

0

1

2

3

4

A
ss

et
h

ol
d

in
gs

capital

bond

Figure 14: The top row shows the evolution of the loss function and the asset policies for a bond
supply B600 = 0.6. The second row corresponds to a bond supply of B4000 = 4.0, and the third
row corresponds to B9800 = 9.8. The left panel shows the evolution of the loss function during the
step-wise increase in aggregate bond supply.
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Figure 15: Asset policies and errors in the optimality conditions. Solid lines depict an average of over
16000 simulated states. In the first figure, dashed lines show the minimum and maximum over the
simulated states, in figures two and three, dashed lines depict the 99th percentile over the simulated
states.

please see Appendix C.

7 Numerical solution method applied to the benchmark model

7.1 Implementation

To solve the benchmark economy we build on the deep equilibrium nets algorithm introduced in

Azinovic et al. (2022), additionally leveraging the two innovations introduced in this paper.

The neural network and market clearing layer The functional rational expectations equi-

librium defined in section 3.7 consists of 3×H + 1 functions with associated 3×H + 1 non-trivial

equilibrium conditions, which have to be satisfied for every state of the economy. The 3 × H + 1

equilibrium functions to approximate are the 3 × H policy functions, one for each of the H age

groups and each of the 3 assets, and the function for the bond price. Given the households’ policies,

the remaining equilibrium objects, such has consumption or the prices if housing and capital, can

be obtained in closed form. For H = 18 age groups, the neural network, before the application of

the market clearing layer, predicts

N pre
ρ (xt) = [k̂end,1t , . . . , k̂end,18t , ĥend,1t , . . . , ĥend,18t , b̃end,1t , . . . , b̃end,18t , pbt ] ∈ R55 (114)

For equity and housing, we already obtain the final predictions, since market clearing is trivially

satisfied. We apply the simple market clearing transformation described in section 6.2 and obtain

b̂end,ht = b̃end,ht −∆Bt, (115)
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where, since the bond is in zero net-supply,

∆Bt =

18∑
h=1

b̃end,ht , (116)

with µh denoting the mass of age-group h. The full prediction of the neural network, including the

market clearing layer, is given by

Nρ(xt) = [k̂end,1t , . . . , k̂end,18t , ĥend,1t , . . . , ĥend,18t , b̂end,1t , . . . , b̂end,18t , pbt ] ∈ R55. (117)

We use a densely connected feed forward neural network with hidden layers. The first hidden layer

consists of 508, and the second of 381 selu activated nodes. In the output layer, the predictions for

capital, housing and the bond-price are softplus activated, ensuring non-negative predictions.

Loss function Since market clearing in the bond market is always satisfied, the only equilibrium

conditions entering the loss function are the 3 × 18 = 54 first order conditions characterizing the

optimal asset choices. As for the simple model in section 6.1, we can encode each set of Karush

Kuhn Tucker conditions into a single equation using the Fisher-Burmeister function. The final loss

function is given by

ℓρ(xt) :=

H−1∑
j=1

(
ϵk,jt

)2
︸ ︷︷ ︸

opt. cond. cap.

+

H−1∑
j=1

(
ϵb,jt

)2
︸ ︷︷ ︸
opt. cond. bond

+

H−1∑
j=1

(
ϵh,jt

)2
︸ ︷︷ ︸
opt. cond. housing

. (118)

Step-wise solution algorithm To train the neural network to solve this three asset economy, we

follow the step-wise algorithm described in section 6.3.

Step 1: we first set the allowed borrowing to zero and mask the bond policies and the corre-

sponding term in the loss function. Furthermore we set firm leverage to zero, The resulting economy

is an economy with only capital and housing and without any borrowing (i.e. κ = 0), since all bond

policies are set to zero.

Step 2: following the step-wise algorithm described in section 6.3, we then pre-train the bond-

price in the zero net-supply limit, obtaining a closed form expression for the bond price from the

households’ Euler equations for the bond choice.

Step 3: subsequently we slowly increase κ and firm leverage λ while iteratively retraining the

neural network on the slightly modified model until we reach the desired values for κ and λ.

After the final values are reached, we keep training the neural network to increase precision and

ensure full convergence.
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Figure 16: Error statistics for the benchmark model. The statistics are based on 30’000 simulated
states of the economy, after training the neural network. The left panel shows the errors in the
optimality condition for the equity choice, the middle panel for the housing choice, and the right
panel for the bond choice.

7.2 Accuracy

To assess the accuracy of our numerical solution, we report comprehensive statistics on errors in

each equilibrium condition on simulated states of the economy. Thanks to the use of our market

clearing neural network architecture, which we introduced in section 6.2, all markets clear with

machine precision and the only remaining equilibrium conditions are the optimality conditions for

each age-group and each of the three assets. Using the Fisher-Burmeister function we hence obtain

3×H equilibrium conditions at each state of the economy, expressed in units of relative consumption

errors, following Judd (1998). Statistics for each age-group separately are given in figure 16.

The model is accurately solved with mean errors below 0.05% for each age groups and asset.

The 90th percentile of errors is below 0.1% and even the 99.9th percentile of errors remains below

0.5% for all age groups and assets. The very low errors for young agents in the optimality condition

for equity, stems from the fact that young households are trivially constrained, leading to very low

errors in the optimality condition.

8 Conclusion

We study the intergenerational consequences of large economic disasters. For young households, the

disaster manifests as a large decline in earnings and tighter borrowing constraints, delaying house

ownership. Retired households loose a large part of their retirement savings held in risky assets.

The relative winners of a disaster are households around retirement age. These households are

substantially less exposed to earnings fluctuations, financially unconstrained and young enough to

benefit from large returns of assets, bought at a discount price during the disaster.

Due to aggregate risk, uncertainty, and borrowing constraints being at the center of our question,

solving our model poses a substantial computational challenge. To this end, we introduce two

independent but complementary innovations in the context of deep learning based solution methods.

We introduce market-clearing layers, an economics-inspired neural network architecture that
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ensures that the policy functions encoded by the neural network are always consistent with market

clearing. Market-clearing layers ex-ante reduce the search space in the space of policy functions to the

economically relevant subset, which is consistent with market clearing. Furthermore, market clearing

layers reduce the trade-offs between the accuracy of different equilibrium conditions, resulting in a

more interpretable measure of solution accuracy.

While deep learning based solution methods have been successful at handling a high dimensional

state spaces and non-linear equilibrium functions, solving portfolio choice problems with multiple

assets has thus far been difficult, due to the need of very accurate solutions to correctly pin down

the asset decomposition. To overcome this difficulty, we introduce a step-wise solution procedure to

enable deep learning based solution methods to solve many asset problems. To do so, we show how

a single asset version of the model of interest can be slowly transformed into the final version with

multiple assets. Through this step-wise procedure, we keep training a neural network to accurately

approximate the equilibrium functions at every step, such that portfolio choice is always pinned

down.
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Bayer, C., Lütticke, R., Pham-Dao, L., and Tjaden, V. (2019). Precautionary savings, illiquid assets,

and the aggregate consequences of shocks to household income risk. Econometrica, 87(1):255–290.

Bretscher, L., Fernández-Villaverde, J., and Scheidegger, S. (2022). Ricardian business cycles. Avail-

able at SSRN 4278274.

56



Brumm, J., Feng, X., Kotlikoff, L. J., and Kubler, F. (2021). When interest rates go low, should

public debt go high? Working Paper 28951, National Bureau of Economic Research.

Brumm, J. and Scheidegger, S. (2017). Using adaptive sparse grids to solve high-dimensional dynamic

models. Econometrica, 85(5):1575–1612.

Chien, Y., Cole, H., and Lustig, H. (2011). A multiplier approach to understanding the macro

implications of household finance. The Review of Economic Studies, 78(1):199–234.

Christiano, L. J. and Fisher, J. D. (2000). Algorithms for solving dynamic models with occasionally

binding constraints. Journal of Economic Dynamics and Control, 24(8):1179–1232.

Duarte, V. (2018). Machine learning for continuous-time economics. Available at SSRN 3012602.

Ebrahimi Kahou, M., Fernández-Villaverde, J., Perla, J., and Sood, A. (2021). Exploiting symmetry

in high-dimensional dynamic programming. Working Paper 28981, National Bureau of Economic

Research.

Favilukis, J., Ludvigson, S. C., and Van Nieuwerburgh, S. (2017). The macroeconomic effects

of housing wealth, housing finance, and limited risk sharing in general equilibrium. Journal of

Political Economy, 125(1):140–223.

Folini, D., Kübler, F., Malova, A., and Scheidegger, S. (2021). The climate in climate economics.

arXiv preprint arXiv:2107.06162.
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Appendix

A Details on Solver-Based Market Clearing Layers

As mentioned in the section 6.2.2, quadratic programs generated by the constraint-enforcing market

clearing layer, given by (101), can be tackled using readily available box-constrained solvers, such

as the BoxOSQP solver from the jaxopt library. The draw-back of these algorithms is that they sub-

stantially slow down the training process and are often programmed for a general class of Quadratic

Programs and do not exploit symmetries, which are often present in economic models.

Consider, for example, a borrowing constraint at zero for all agents: ∀h : b̂h(x) ≥ 0. In this

case we can ensure that b̃h ≥ 0 by using a softplus activation function in the output layer of the

neural network. If the excess demand is negative, i.e. ∆B(x) < 0, the solution to the constrained

quadratic program coincides with the simple solution described in section 6.2.1. The adjusted asset

demand of all agents is given by b̂h(x) = b̃h(x)−∆B(x) and no constrained is violated. When the

excess demand is positive, all asset choices b̃j below a threshold value b̃threshold are adjusted to lie

on the borrowing constraint and all remaining asset holdings are adjusted by the same amount such

that markets clear. Let J denote the set of households j with b̃j < b̃threshold. The solution to the

constrained quadratic program is given by

b̂h =


0 for h ∈ J
b̃h − (∆B(x)−

∑
j∈J

(b̃j − 0))︸ ︷︷ ︸
remaining excess demand

for h ∈ H \ J (119)

Solving the constrained quadratic program hence simplifies to finding a single number b̃threshold.

Since b̃threshold ∈ [minh b̃
h,maxh b̃

h+ ϵ], for ϵ > 0, it can be efficiently computed with a few bisection

steps. For our examples, this turned out to be faster than using the general solver for constrained

quadratic programs.

One problem, when ensuring the borrowing constraint as described above, is that for constrained

households, i.e. households with b̃h < b̃threshold and b̂h = 0, an infinitesimal change in the pre-

transformation neural network output b̃h does not influence the transformed policy b̂h, which will

remain on the constraint. For a loss function purely based on the post-transformation predictions

{b̂h}h∈H, this is a problem if an agent is predicted to be constrained, though it should not be. The

derivative of the loss function with respect to the pre-transformation prediction b̃h would be zero and

the gradient would hence not help to improve the corresponding parameters in the neural network.30

To address this issue, the next section provides a way to propagate the signal from the loss function

to the neural network Ñρ, so that the gradient descent step will lead to improved neural network

parameters, which increase the prediction for b̃h in such cases.

30A similar problem could arise in models where the last layer has a softplus activation when the pre-activated
value is very negative. While the softplus activation would still guarantee a positive derivative, the derivative could
be vanishingly small.
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A.1 Restoring the signal from the loss to the network for falsely con-

strained agents

When using our solver based method, there would be no feedback from the loss function to a neural

network prediction b̃h when the solver sets the household onto the borrowing constraint. This is

problematic when the household is predicted to be constrained, but should not be. In such cases,
b̂ht −b
cht

= 0, while

u′
−1
(
βE
[

1
p̂bt
u′(ch+1

t+1 )
])

cht
− 1 < 0.

Where cht denotes the consumption implied by the encoded policies b̂ht . This would correctly lead

the Fisher-Burmeister function to be different from zero:

ψFB

u′−1
(
βE
[

1
p̂bt
u′(ch+1

t+1 )
])

cht
− 1,

b̂ht − b

cht

 ̸= 0. (120)

The problem is that there would be no feedback to the neural network parameters to increase the

prediction b̃h.

To restore this feedback, we add the square of the following term to the loss function

errh,false binding
t,ρ :=

1

1 + b̃h+1
t+1

× e−
(b̂h+1

t+1
−b)

2

10−5 ×max

−
u′

−1
(
βE
[

1
p̂bt
u′(ch+1

t+1 )
])

cht
+ 1, 0

 . (121)

The intuition behind these terms is as follows. The last term,

max

−
u′

−1
(
βE
[

1
p̂bt
u′(ch+1

t+1 )
])

cht
+ 1, 0

 ,

is always non-negative and only different from zero, when the household is currently saving too

little, in which case it should not be on the borrowing constraint. The second term, e−
(b̂h+1

t+1
−b)

2

10−5 , is a

differentiable approximation to a function, which is always zero, except when b̂h+1
t+1 − b, in which case

it is equal to one. Hence, it is always non-negative and only positive if the household is predicted

to be constrained. Taken together, the last two terms in equation (121) ensure that the term is

only positive if the household is falsely predicted to be constrained. Finally, the first term, 1

1+b̃h+1
t+1

,

ensures that the overall error term is reduced by increasing b̃h+1
t+1 and is thus restoring a pass through

from the loss function to the neural network parameters governing the prediction for the household’s

policy.
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Parameters H β γ ψ ρ σ α B δ lh

Values 32 0.912 4 0.1 0.693 0.052 1
3

10 0.211
see

figure 17

Meaning
num.

age groups
patience RRA

adj.
costs

pers.
tfp

std.
innov.
tfp

cap.
share
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supp.

depreciation
for z = 0

labor
endowment

Table 11: Parameters for the illustrative model described in section 6.
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Figure 17: Labor endowment over the life-cycle for the illustrative model described in section 6.

B Calibration of the Illustrative Model

The illustrative model serves to provide a clean setting to introduce market clearing layers and our

step-wise solution algorithm for economic models with multiple assets. We choose an overlapping

generations model with a neo-classical production structure, so that it is nevertheless closely con-

nected to the full economic model. The parameters for the illustrative model are set exogenously,

and are roughly based on standard parameters when one period corresponds to two years. We

model H = 32 age-groups, which we map to ages 20 to 83. Households have a patience parameter

of β = 0.912 and a constant relative risk aversion of γ = 4. The adjustment costs on capital are

ψ = 0.1, rendering capital an illiquid asset. The persistence of the productivity process is ρ = 0.693

and the standard deviation of the innovations is set to 0.052. The capital share in production is

given by α = 1
3 The parameters are summarized in table 11. The efficiency units over the lify-cycle

are shown in figure 17.

C Network Architecture and Training Hyperparameters for

the Illustrative Model

We represent the solution of the illustrative model using a standard feed-forward neural network

with two hidden layers. To encode the a-priori known economic structure of the problem, we activate
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Parameters N trajectories N epochs Nminibatch N integration αlearn

Values 8192 3 64 6 10−5

Table 13: Hyperparameters for training steps within homotopy loop.

network outputs corresponding to capital policies and bond prices with softplus to ensure their non-

negativity and apply an additive market clearing layer to outputs corresponding bond policies. In

the case of physical capital, we have access to a closed-form formula for market clearing prices, hence

we do not need to apply a market clearing layer to capital policies. Our architectural choices are

summarized in the table 12.

Parameters N input Nhidden 1

Activations

Nhidden 2

Activations

Noutput

Activations

Values 65
320

selu

320

selu
63

Table 12: Network Architecture chosen for the illustrative model.

We train the network using adam algorithm of Kingma and Ba (2014) with learning rate set

to αlearn = 10−5. For each training episode, data were obtained by simulating N trajectories = 8192

state trajectories one period forward. Each state was re-used N epochs = 3 times. At each training

episode, we split the simulated dataset into mini-batches of size Nminibatch = 64. We integrate

conditional expectations in model optimality conditions using Gauss-Hermite quadrature of order

N integration = 6. Training algorithm hyperparameters are summarized in the table 13.

To solve the capital-only version of the illustrative economy, we perform N episodes = 1024

training-simulation episodes under hyperparameters defined in tables 12 and 13. We use the same

N episodes = 1024 number of episodes in the pre-training stage, where the network learns the bond

price implied by the capital-only economy. While employing so many training steps in the pre-

training phase might seem overly conservative, it also serves as an additional fine-tuning of con-

vergence of the capital-only solution. As a first step in solving the capital and bond economy, we

introduced Bintro = 0.02 supply of bonds and also trained for 1024 episodes. After solving the first

version of the capital and bond economy, we ran an adiabatic loop with Nadiabatic = 10000, in which

we linearly increased bond supply from Bintro = 0.02 to Bfull = 10.0. At each adiabatic step, we

performed one training episode. Finally, we performed further N episodes
post train = 4608 training episodes

to check the convergence of the final version of the capital and bond economy. Adiabatic algorithm

hyperparameters are summarized in the table 14
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Figure 18: Difference between the mean of log aggregate quantities conditional on the realization of
a disaster and conditional on the economy remaining in the normal state for the model with capital
depreciation disasters. The disaster occurs at t = 2. The first panel shows output (Y ), aggregate
consumption (C), and aggregate investment (I). The second panel shows the impulse response
function for asset prices. The third panel shows the aggregate value of equity and housing.

Parameters N episodes N episodes
post train Nadiabatic Binit Bfull

Values 1024 4608 10000 0.02 10.0

Table 14: Homotopy loop hyperparameters

D Numerical Experiments

D.1 Pure depreciation disasters

Throughout the main text, we examined the intergenerational consequences of classical total factor

productivity (TFP) disasters in a spirit of Barro (2006) and Nakamura et al. (2013). Although this

specification is popular in the literature, there are other large-scale risks (i.e. potential disasters) that

do not easily map into a Barro (2006) style TFP disaster process. In this appendix, we consider an

alternative disaster shock, which is not modeled as a decline of TFP. Instead, we consider pure capital

depreciation disasters, i.e. the disaster state is associated with a sharply higher capital depreciation

rate, but the TFP remains unaffected. Specifically, we assume, that the capital depreciation rate

is 50% higher in a disaster state than in the normal state. This structure allows us to generate

large movements in asset prices, with much smaller effects on output and consumption relative to

the benchmark model. In the following, we investigate the intergenerational consequences of such a

disaster, that affects the economy mainly through temporary decline in asset prices.

Figure 18 shows that relative to the disaster in the benchmark model, a pure depreciation disaster

leads to a substantially milder decline in aggregate consumption and output. Aggregate investment

spikes on an impact, as more physical investment is required to prevent a sharp drop in capital

stock. Asset prices drop significantly more than aggregate consumption, with the drop in equity

prices being approximately four times larger than the drop in aggregate consumption. The large

decline in equity prices is accompanied by a large reduction in house prices and an increase in the

risk-free interest rate. While the ratio between asset price decline to aggregate consumption decline
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Figure 19: Impact response consumption, income, and net-worth to a disaster realization. The left
panel shows the log difference and the right panel shows the absolute difference.

is significantly higher for the depreciation disaster scenario relative to the benchmark disaster, the

average asset price decline induced by a depreciation disaster is less persistent, and the disaster has

no permanent consequences.

While a depreciation disaster leads to a sharp drop in the net-worth of almost all cohorts (see

figure 19), household consumption declines much less, except for the very old cohorts. Older cohorts

are losing more net-worth and consumption than younger cohorts, both in absolute and relative

terms. Figure 20 shows that this decline is naturally reflected in the compensating differential

required by households to be indifferent between living through a disaster vis-à-vis normal times. The

compensating differential is close to being monotonically increasing in age, showing that a disaster

realization hurts older cohorts substantially more than younger cohorts. The oldest households,

suffer most from a temporary decline in asset prices, because of their larger death probabilities and

the resulting importance of the bequest motive. The utility households derive from bequests depends

on the current market value of their assets, hence a decline in the value of their assets leads to a lower

utility from bequests. This affects the oldest households, who have a low survival probability, the

most. Households early in retirement hold most of the equity, but also benefit when prices recover

later in their life. The youngest households, who enter the economy without assets, benefit from the

reduced house-prices, but suffer from reduced wages in subsequent periods until the aggregate stock

of capital has recovered.

65



20 40 60 80
age group

0

2

4

6

8

10

12

14

co
m

pe
ns

at
in

g 
di

ff
er

en
tia

l [
%

]

Figure 20: Compensation in the disaster scenario in terms of a relative increase in consumption,
housing units, and bequest values, which would be necessary to attain the same remaining lifetime
value as in the scenario without disaster realization.
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