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In an economywith aggregate risk, the equity premium is the di�erence between

the expected return of a dollar invested in an asset bearing the same (distribution

of) risk as the whole economy and the risk-free interest rate. The equity premium

puzzle is the observation, �rst put forward by Mehra and Prescott (1985), that

standard macroeconomic models with homogeneous agents and no idiosyncratic

risk fail to explain the equity premia typically observed in the data.1

Shortly after, Mankiw (1986) presented a setting inwhich the presence of uninsur-

able idiosyncratic risk increases the equity premium predicted by homogeneous

agent models. Furthermore, Constantinides and Du�e (1996) observed that this

is indeed the case for CRRA preferences and counter-cyclically heteroskedastic

idiosyncratic risk.2 However, Krueger and Lustig (2010) showed that the same

result does not hold when the representative agent has CRRA preferences and

the distribution of idiosyncratic risk follows a particular form of pro-cyclical het-

eroskedasticity in a two-period economy. Under these assumptions, the equity

premium is not a�ected by the presence of idiosyncratic risk. For the same class

of preferences, Storesletten et al. (2007) had shown that in an OLG economy, the

e�ect of idiosyncratic shocks in the equity premium is signi�cantly smaller than

in the two-period case considered by Constantinides and Du�e.

{ This is very preliminary work. All comments and observations are welcome!
ñ University of California, Davis, and EPGE-FGV; acarvajal@ucdavis.edu
ò Shanghai University of Finance and Economics; zhouhang@mail.sufe.edu.cn
1 See also Mehra (2003).
2 See also the empirical results in Cogley (2002).
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This paper aims to further our understanding of the e�ect of idiosyncratic risk on

the equity premium. We consider di�erent classes of preferences and di�erent co-

variations between the idiosyncratic shocks' variance and the economy's aggregate

income. For short-lived assets, such as those considered in Constantinides and

Du�e (1996) and Krueger and Lustig (2010), we o�er a complete characterization

of the e�ect, relying on the cross-moments of di�erent derivatives of the utility

function and the aggregate income of the economy. For long-lived assets, such as

those in Storesletten et al. (2007), a full characterization is elusive, but we present

su�cient conditions for the reversal of the e�ect found by Constantinides and

Du�e.

1 A Two-Period Setting

In a two-period economy, let non-degenerate random variable W represent the

future wealth of an economy were all agents are identical, and let function u :

R+ ! R be the agents' Bernoulli utility index and � > 0 their discount factor.

Suppose that the support of W is a subsetW of R++ and that u is C3(R++), strictly

increasing and strictly concave and has non-negative third derivative.

Only one asset can be traded: ``equity'' in the economy, namely the asset that

pays W in the second period.

1.1 Benchmark: only aggregate risk

In the absence of any other shocks, the present and future consumption of an

individual in this economy are, respectively, c = �wxq yy and C = W +W yy, where

�w > 0 is each individual's wealth in the �rst period, q denotes the price of the asset

and y is the quantity of the asset demanded by the individuals. The portfolio

problem of the agents in this economy is, hence,

max
y

n
u( �wx q yy) + �E[u(W +W yy)]

o
:

Since all agents are identical, only a no-trade equilibrium is possible and

q =
�E[u0(W ) yW ]

u0( �w)
: (1)
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If we de�ne the function m : R++ ! R, as m(w) = �u0(w)=u0( �w); this economy's

stochastic discount factor is the random variablem(W ) and we can re-write Eq. (1) as

q = E[m(W ) yW ].

Using m for pricing other income 
ows, note that if the agents could also trade a

risk-less asset with payo� E(W ), its price would equal

E[m(W ) yE(W )] = E[m(W )] yE(W ) =
�E[u0(W )] yE(W )

u0( �w)
:

The equity premium measures how much more expensive this risk-less asset would

be, namely the relative price of the risk-less to the risky asset (minus one). In the

absence of any other risk, thus, the equity premium is

�p =
E[m(W ) yE(W )]

E[m(W ) yW ]
x 1 =

E [u0(W )] yE(W )

E [u0(W ) yW ]
x 1 = x

Cov[u0(W );W ]

E[u0(W ) yW ]
; (2)

where Cov is the covariance operator.

Remark 1. It is clear from Eq. (2) that the equity premium is independent of the discount

factor � and the present marginal utility u0( �w), and does not depend on the assumption that

the Bernoulli function is the same in both periods.

Remark 2 (Selden preferences). In fact, suppose that the preferences of the individual

over present consumption, c, and future risky consumption, C, are represented by

v(c) + �v(ux1(E[u(C)])); (3)

where v and � capture the agent's impatience and u her attitude towards risk.

If we re-write the portfolio program, the �rst-order condition that replaces Eq. (1) is that

q =
�v0(ux1(E[u(W )]))

v0( �w)

E[u0(W ) yW ]

u0(ux1(E[u(W )]))
:

The stochastic discount factor now takes the form

m(w) =
�v0(ux1(E[u(W )]))

v0( �w)

u0(w)

u0(ux1(E[u(W )]))
;

while the prices of the economy's equity and the risk-less bond are still given byE[m(W ) yW ]

and E[m(W )] yE(W ). Importantly, the constant

�v0(ux1(E[u(W )]))

v0( �w)

1

u0(ux1(E[u(W )]))
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cancels out in the computation the relative price E[m(W )] yE(W )=E[m(W ) yW ]; so the eq-

uity premium is still given by Eq. (2).

Conceptually, this observation simply says that the equity premium depends on

the (homogeneous) traders' attitude towards risk and not in their impatience:

while the individual's tastes on inter-temporal smoothing a�ect the prices of both

the risky and the risk-less assets, their relative price depends only on the individ-

ual's attitude towards risk. For the purposes of this paper, it follows that all our

results apply when the individuals preferences are of the form (3), where u is the

Bernoulli function capturing their risk attitude.

1.2 Idiosyncratic risk

Let random variable S, with E(S j W ) = 0, be the agents' uninsurable, future

idiosyncratic risk. The agents' future consumption is C = W + S + W y Y and,

following the same logic as above, the equity premium is

p =
E [m(C)] yE(W )

E [m(C) yW ]
x 1 =

E [u0(C)] yE(W )

E [u0(C) yW ]
x 1: (4)

Iterating expectations, this is

p =
E fE [u0(W + S) j W ]g yE(W )

E fE [u0(W + S) j W ] yW g
x 1: (5)

Remark 3. Note from Eq. (5) that if the economy displays idiosyncratic risk, using Eq. (2)

instead of Eq. (4) misspeci�es the equity premium, as it amounts to assuming the equality

E [u0(W + S) j W ] = u0 (E(W + S j W )) ;

which in general requires that the Bernoulli function be quadratic.

1.3 Idiosyncratic risk and the equity premium

Using the second-order expansion

u0(w+ s)� u0(w) + u00(w) y s+ 1
2
y u000(w) y s2; (6)

we get that

E [u0(W + S) j W ]� u0(W ) + 1
2
y u000(W ) yV (S j W ); (7)
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where V is the variance operator. This allows us to approximate Eq. (5) by

p̂ =
E
h
u0(W ) + 1

2
y u000(W ) yV (S j W )

i
yE(W )

E
nh
u0(W ) + 1

2
y u000(W ) yV (S j W )

i
yW

o x 1: (8)

2 Two ImportantExamples: CRRAandCARAPreferences

Theorem 1 (Irrelevance, 1). If one of the following two conditions holds, idiosyncratic

risk does not a�ect the equity premium, in the sense that p̂ = �p:

1. the Bernoulli function is quadratic, or

2. the �rst derivative of the Bernoulli function is homogeneous and V (S j W ) = �W 2 for

some constant � � 0, almost surely.

Proof. That the �rst condition su�ces is straightforward, as mentioned in Re-

mark 3: under a quadratic function, u000(w) = 0 for all w and the equality follows.

To see that the second condition also su�ces, suppose that u0(w) = u0(1)wx� , for

some � > 0, and hence that u000(w) = �(� + 1)u(1)wx(�+2). Substituting this and the

functional form of the conditional variance of S, we get

p̂ =
E
h
W x� + �(� + 1) �

2
yW x(�+2) yW 2

i
yE(W )

E
nh
W x� + �(� + 1) �

2
yW x(�+2) yW 2

i
yW

o x 1

=
E
nh
1 + �(� + 1) �

2

i
yW x�

o
yE(W )

E
nh
1 + �(� + 1) �

2

i
yW x(�x1)

o x 1 (9)

=
E[W x�) yE(W )

E(W x(�x1)]
x 1

= �p:

Remark 4. The �rst case in the theorem generalizes Proposition 1 in Mankiw (1986). The

second case encompasses the whole class of CRRA Bernoulli functions: all homogeneous func-

tions (the case explicitly solved in Krueger and Lustig, 2010) as well as all the logarithmic

functions.

These two cases where one obtains irrelevance, however, appear rather limiting.

Quadratic preferences are the least prudent version of prudent preferences, while
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the assumption that the volatility of idiosyncratic shocks is pro-cyclical and follows

that speci�c functional may be unsatisfactory, in that it requires the assumption

that the relative shock S=W be independent of W .

On the other hand:

Theorem 2 (Relevance, 1). Suppose that the Bernoulli function is exponential, u(w) =

xex�w for some � > 0, and that for constants � � 0 and 
 , V (S j W ) = �W � almost surely.

The equity premium is larger, equal, or smaller in the presence of idiosyncratic risk depending

on whether idiosyncratic is is counter-, a-, or pro-cyclical. That is, p̂ Ç �p, 
 Æ 0:

Proof. By direct computation, for this Bernoulli function

p̂ =
E
n
ex�W y

h
1 + 1

2
�2 yV (S j W )

io
yE(W )

E
n
ex�W y

h
1 + 1

2
�2 yV (S j W )

i
yW

o x 1

and

�p =
E
�
ex�W

�
yE(W )

E (ex�W yW )
x 1:

Whether p̂ is larger or smaller than �p depends thus on the sign of

E
h
ex�W yV (S j W )

i
yE

�
ex�W yW

�
xE

�
ex�W

�
yE

h
ex�W yV (S j W ) yW

i
: (10)

Substituting V (S j W ) = �W 
 into Eq. (10), we need to determine the sign of

E
�
ex�W yW 


�
yE

�
ex�W yW

�
xE

�
ex�W

�
E
�
ex�W yW 
+1

�
:

If we let V be an (ancillary) random variable distributed identically toW and inde-

pendent from it, we can rewrite the latter expression as E
h
ex�(W +V ) yW 
 y (V xW )

i
;

which is proportional, by a factor of 1=2Pr(V ä W ) > 0; to

E
h
ex�(W +V ) yW 
 y (V xW ) j V > W

i
+E

h
ex�(W +V ) yW 
 y (V xW ) j V < W

i
:

This expression is equivalent to

E
h
ex�(W +V ) yW 
 y (V xW ) j V > W

i
+E

h
ex�(V +W ) y V 
 y (W x V ) j W < V

i
;

which, by direct computation, is

E
h
ex�(W +V ) y (W 
 x V 
 ) y (V xW ) j V > W

i
:
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This number is positive, null, or negative, depending on whether 
 is negative,

null, or positive.

Remark 5. This theorem covers all CARA Bernoulli functions.

A comparison of the previous two theorems suggests a connection between the

behavior of the coe�cients of risk aversion, the behavior of the conditional vari-

ance of the idiosyncratic shocks, and the e�ect of the latter on the equity premium.

As is well known, the relative risk aversion coe�cient approximates the agents'

willingness to pay to insure againstmultiplicative shocks of variance 2. The second

statement in Theorem 1 proves that when such willingness to pay is constant on

the agents' wealth, if the variance of the multiplicative idiosyncratic shock is also

constant, then the shock has no e�ect on the premium.

The absolute risk aversion coe�cient, on the other hand, approximates thewilling-

ness to pay to insure against additive shocks of variance 2, andTheorem 2 suggests

that when such willingness to pay is constant, the equity premium changes with

the presence of additive idiosyncratic risk unless the conditional variance of such

risk is constant.

Whether, conditional on aggregate wealth, the idiosyncratic risk is homoskedas-

tic or heteroskedastic is an empirical question and we take no position about it.

The irrelevance result of Krueger and Lustig (and our minimal extension in The-

orem 1) requires a very particular form of heteroskedasticity, as the following

theorem shows.

Theorem 3 (Relevance, 2). Suppose that the �rst derivative of the Bernoulli function

is homogeneous, and that for some constants � � 0 and 
 , V (S j W ) = �W 
 almost surely.

Whether the equity premium is larger or smaller in the presence of idiosyncratic risk, depends

on whether 
 is smaller or larger than 2. That is, p̂ Ç �p, 
 Æ 2:

Proof. As in the proof of Theorem 1, assume that u0(w) = u0(1)wx� , for some � > 0.

Substituting the functional form of the conditional variance of S, we get, instead
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of Eq. (9),

p̂ =
E
nh
1 + �(� + 1) �

2
yW 
x2

i
yW x�

o
yE(W )

E
nh
1 + �(� + 1) �

2
yW 
x2

i
yW x(�x1)

o x 1;

while

�p =
E(W x�) yE(W )

E[W x(�x1)]
x 1:

We need to show that 
 < 2 is necessary and su�cient for

E
n
[1 +� yW 
x2] yW x�

o
yE[W x(�x1)] > E(W x�) yE

n
[1 +� yW 
x2] yW x(�x1)

o
;

where � = �(� + 1)�=2 > 0.

Let us de�ne random variable V as in the proof of Theorem 2. By direct compu-

tation, we need to argue that

E
h
� yW x� y V x�+1 y (W 
x2 x V 
x2)

i
> 0:

Using the same technique as in the proof of Theorem 2, the left-hand side of this

expression is directly proportional, by a factor of Pr(W > V ), to

E
h
� yW x� y V x� y (V xW ) y (W 
x2 x V 
x2) j W > V

i
:

This expression is positive if, and only if, 
 < 2.

For CRRABernoulli functions, the power functional form of the conditional vari-

ance ismathematically useful inTheorem 1, andwe conjecture that the irrelevance

cannot be guaranteedwithout it. More importantly, however, the assumption that

the conditional variance is pro-cyclical implies that idiosyncratic risk is not as sig-

ni�cant when an economy is in a recession as when it is in a boom, which may be

untenable.

For CARA functions, when the idiosyncratic risk is counter-cyclical (and, again,

of a particular functional form), its presence increases the equity premium. If in

this case the heteroskedasticity is in the direction assumed byKrueger and Lustig

(2010), the equity premium is lower in the presence of idiosyncratic risk.
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3 General Preferences

If we concentrate in the case where the idiosyncratic shock is homoskedastic, we

get the following general result:

Theorem 4 (Relevance, 3). Suppose that u000 > 0, and that for some constant � > 0,

V (S j W ) = �2 almost surely. The equity premium p̂ ranges monotonically from

lim
�!0

p̂ =
E [u0(W )] yE(W )

E [u0(W ) yW ]
x 1 = �p;

to

lim
�!1

p̂ =
E [u000(W )] yE(W )

E [u000(W ) yW ]
x 1:

This monotonicity is increasing if, and only if,

Cov[u0(W );W ]

E[u0(W )]
>
Cov[u000(W );W ]

E[u000(W )]
: (11)

Proof. Under the assumptions of the theorem, Eq. (8) rewrites as

p̂ =
E [u0(W )] yE(W ) + 1

2
yE [u000(W )] yE(W ) y �2

E [u0(W ) yW ] + 1
2
yE [u000(W ) yW ] y �2

x 1:

The two limits follow, thus, by direct computation.

Since � > 0, note that, p̂ is increasing in � if, and only if,

E[u000(W )] yE(W ) yE [u0(W ) yW ] > E[u0(W )] yE(W ) yE [u000(W ) yW ] :

By monotonicity and (strict) prudence, and since W takes only positive values,

and we can rewrite the expression as

E [u000(W )] yE(W )

E [u000(W ) yW ]
x 1 >

E [u0(W )] yE(W )

E [u0(W ) yW ]
x 1 = �p;

which is equivalent to Eq. (11).

The denominators on both sides of Eq. (11) are positive, and risk aversion implies

that the numerator on the left-hand side is negative, so the ratio on the left-hand

side is negative. None of our assumptions pins down the sign of the numerator on

the right-hand side, though. If the covariance between the economy's aggregate

income and the third derivative of the Bernoulli function is positive, then the

variance of the idiosyncratic shock decreases the equity premium.
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Corollary 1. Suppose that V (S j W ) = �2 > 0 almost surely.

1. If the �rst derivative of the Bernoulli function is homogeneous, p̂ is increasing in � .

2. If the Bernoulli function is exponential, p̂ does not depend on � .

As before, the �rst claim applies to the class of CRRA Bernoulli functions. It

con�rms that the irrelevance result in Krueger and Lustig (2010) depends on the

speci�c type of heteroskedasticity that they assume for the idiosyncratic shock. If S

is homoskedastic conditional on W , its presence implies a higher equity premium.

The second claim provides another irrelevance result which covers the class of

CARA functions for the homoskedastic case, as expected.

4 Higher-OrderMoments

The empirical work of Guvenen (2016) highlights the importance of higher mo-

ments of the distribution of idiosyncratic shocks, in particular its negative skew-

ness and high kurtosis. To introduce these considerations, suppose that in addi-

tion to the assumptions on the �rst two moments, namely that E(S j W ) = 0 and

V (S j W ) = �2 > 0 almost surely, one further knows that E(S3 j W ) = �3 y � < 0

and E(S4 j W ) = �4 y � > 0. In words, supposed that the idiosyncratic risk is

homoskedastic and negatively skewed, and has constant kurtosis.

To consider, �rst, the case of the third moment, we can replace Eq. (6) with the

more accurate, third-order approximation

u0(w+ s)� u0(w) + u00(w) y s+ 1
2
y u000(w)s2 + 1

6
y u[4](w) y s3;

and Eq. (7) with

E [u0(W + S) j W ]� u0(W ) + 1
2
y u000(W ) y �2 + 1

6
y u[4](W ) y �3 y �:

This results in the equity premium being approximated better by

p̂3 =
E
h
u0(W ) + 1

2
y u000(W ) y �2 + 1

6
y u[4](W ) y �3 y �

i
yE(W )

E
nh
u0(W ) + 1

2
y u000(W ) y �2 + 1

6
y u[4](W ) y �3 y �

i
yW

o x 1;
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where we use the sub-index to denote the order of the approximation.3

Using the same technique as in the proof of Theorem 4, it is not di�cult to show

that if u[4] < 0,4 then p̂3 decreases monotonically in � < 0 between

lim
�!x1

p̂3 =
E
h
u[4](W )

i
yE(W )

E [u[4](W ) yW ]
x 1:

and lim�!0 p̂3 = p̂2 if, and only if,

Cov
h
u0(W ) + 1

2
y u000(W ) y �2;W

i
E
h
u0(W ) + 1

2
y u000(W ) y �2

i >
Cov[u[4](W );W ]

E[u[4](W )]
:

Under this condition, the negative skewness of idiosyncratic shocks help to explain

larger equity premia in the same way in which their variance does.

In order to consider the e�ect of high kurtosis, a fourth-order approximation

yields the premium

p̂4 =
E
h
u0(W ) + 1

2
y u000(W ) y �2 + 1

6
y u[4](W ) y �3 y � + 1

24
y u[5](W ) y �4 y �

i
yE(W )

E
nh
u0(W ) + 1

2
y u000(W ) y �2 + 1

6
y u[4](W ) y �3 y � + 1

24
y u[5](W ) y �4 y �

i
yW

o x 1:

If we continue to assume that u[4] > 0 and further suppose that u[5] < 0.5, then, as

a function of � > 0, premium p̂4 increases monotonically between lim�!0 p̂4 = p̂3

and

lim
�!1

p̂4 =
E
h
u[5](W )

i
yE(W )

E [u[5](W ) yW ]
x 1

if, and only if,

Cov
h
u0(W ) + 1

2
y u000(W ) y �2 + 1

6
y u[4](W ) y �3 y �;W

i
E
h
u0(W ) + 1

2
y u000(W ) y �2 + 1

6
y u[4](W ) y �3 y �

i >
Cov[u[5](W );W ]

E[u[5](W )]
:

Again, under this condition, a signi�cant kurtosis in the distribution of idiosyn-

cratic shocks ameliorates the equity premium puzzle.

3 This means that, for the purposes of this section, we refer to the premium de�ned in Eq. (8)

as p̂2.
4 That is, if the Bernoulli function displays ``temperance''. See Ekern (1980) and Eeckhoudt et

al (1995).
5 That is, that the Bernoulli function exhibits ``edginess''.
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These observations can be generalized as follows. Suppose that for any k � 3, the

kth standardized moment of the conditional distribution of S is the constant �k

almost surely.6 The Kth-order approximation to the marginal utility yields the

equity premium

p̂K =
E
hPK

k=1
1
k! y u

[k](W ) y �k y �k
i
yE(W )

E
hPK

k=1
1
k! y u

[k](W ) y �k y �k yW
i x 1

Theorem 5. Suppose that for all k = 3; : : : ;K, (x1)ku[k] < 0 and (x1)k�k > 0.7 The equity

premium p̂K ranges monotonically between lim�K!0 p̂K = p̂Kx1 and

lim
�K!(x1)K+11

p̂K =
E
h
u[K](W )

i
yE(W )

E [u[K](W ) yW ]
x 1:

Such monotonicity is increasing, namely

@p̂K

@�K
> 0;

if, and only if,

(x1)K
Cov

hPKx1
k=1

1
k! y u

[k](W ) y �k y �k;W
i

E
hPKx1

k=1
1
k! y u

[k](W ) y �k y �k yW
i > (x1)K

Cov
h
u[K](W );W

i
E [u[K](W ) yW ]

: (12)

The proof of this theorem is very similar to the argument for Theorem 4, so we

defer it, along with the remaining proofs in the paper, to an appendix. For the

canonical families of Bernoulli functions, the following is a consequence of the

theorem:

Corollary 2. Under the assumptions of this section:

1. If the �rst derivative of the Bernoulli function is homogeneous, �p is increasing in � .

2. If the Bernoulli function is exponential, �p does not depend on � .

5 Long-Lived Assets

Consider, for a speci�c application, the case of a stationary overlappinggenerations

economywhere individuals live for two periods and the only asset in the economy

6 That is, that E(Sk j W ) = �k y �k W -a.s.
7 The �rst condition is the assumption that the Bernoulli function is Kth-degree risk averse.
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paysW , i.i.d., every period. If the risk is traded using a long-lived asset, its return

must be adjusted to include the price of the asset.

5.1 Benchmark: only aggregate risk

In the absence of any other risk, the problem of the young generation is

max
y

n
v( �wx q yy) +E[u((W + q) yy)]

o
;

and its �rst-order condition is that

v0( �wx q yy) y q = E[u0((W + q) yy) y (W + q)]:

Market clearing requires that q be the solution to

q =
E[u0((W + q)) y (W + q)]

v0( �wx q)
;

while a risk-less asset with the same expected return should be priced at

E[u0(W + q)] y [E(W ) + q]

v0( �wx q)
:

The relative price of the risk-less asset to the risky asset (minus 1) is again the

equity premium:

�p =
E
h
u0(W + q)

i
y [E(W ) + q]

E
h
u0(W + q) y (W + q)

i x 1: (13)

5.2 Idiosyncratic risk

Under idiosyncratic risk, the premium is

p =
E
h
u0(W + q+ S)

i
y [E(W ) + q]

E
h
u0(W + q+ S) y (W + q)

i x 1: (14)

Using the quadratic expansion

u0(w+ q+ s)� u0(w+ q) + u00(w+ q) y s+ 1
2
y u000(w+ q) y s2;

we get the approximation

p̂ =
E
h
u0(W + q) + 1

2
y u000(W + q) yV (S j W )

i
y [E(W ) + q]

E
nh
u0(W + q) + 1

2
y u000(W + q) yV (S j W )

i
y (W + q)

o x 1 (15)

13



to the equity premium.

The problem would be a trivial extension of the previous results, were it not

for the dependence of q on the distribution of S. The purpose of this paper is

not to develop the general comparative statics of this dependence, but to deter-

mine how that dependence a�ects the e�ect of the distribution of S on the equity

premium.

5.3 Idiosyncratic risk and the equity premium

Sometimes it will be convenient to write V (S j W = w) = �(w;�), for some dif-

ferentiable function � : R++ z R ! R+, where constant � is a parameter of the

conditional distribution of S such that @�=@� > 0.

Theorem 6 (Relevance, 5). Suppose that premium p̂ is decreasing in asset price q, keeping

� �xed, and that q is increasing in � .8 Then, a necessary condition for p̂ to be non-decreasing

in � is that

Cov(U 0;W )

E(U 0)
>
Cov(U 000 y V;W )

E(U 000 y V )
; (16)

where U [n] = u[n](W + q) and V = �(W;�).

If, on the other hand, given � premium p̂ is non-decreasing in q, then Eq. (16) su�ces for p̂

to be increasing in � .

Note that the tension between the direct e�ect of q and the direct e�ect of �

arises when the former is negative. A complication when trying to determine

the sign of the latter e�ect is that it involves the response of the third derivative

of the Bernoulli function, since the asset is traded. Instead of attempting a full

characterization, we �nd su�cient conditions:

Theorem 7. Suppose that the Bernoulli function is di�erentiable four times, and thatu[4] <

0. Premium p̂ is decreasing in asset price q if

Cov(U 000 y V;W ) � 0 (17)

8 As would be the case in Aiyagari (1994), for instance.
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and

min

(
Cov(U 0;W )

E(U 0)
;
Cov(U 000 y V;W )

E(U 000 y V )

)
�max

(
Cov(U 00;W )

E(U 00)
;
Cov(U [4] y V;W )

E(U [4] y V )

)
; (18)

where U [n] = u[n](W + q) and V = V (S j W ).

5.4 Homoskedastic risk

Considering the case of homoskedastic idiosyncratic risk, withV (S j W ) = �2 almost

surely onW , for the rest of this subsectionwe assume that q depends di�erentiably

on �2, with �rst derivative q0.

It is useful to re-write Eq. (15) as

p̂ =
E[u0(W + q)] y [E(W ) + q] + 1

2
yE[u000(W + q)] y [E(W ) + q] y �2

E[u0(W + q) y (W + q)] + 1
2
yE[u000(W + q) y (W + q)] y �2

x 1: (19)

Withmultiple instances of � and q, a full characterization of the total di�erential of

p̂with respect to � is possible, but cumbersome and rather uninformative. Instead,

we derive independent necessary and su�cient conditions, focusing on the case

when idiosyncratic risk increases the premium.

Theorems 6 and 7 immediately imply the following two results for this case:

Corollary 3 (Relevance, 6). Suppose that premium p̂ is decreasing in asset price q,

keeping � �xed, and that q is increasing in � . Then, a necessary condition for p̂ to be non-

decreasing in � is that

Cov(U 0;W )

E(U 0)
>
Cov(U 000;W )

E(U 000)
: (20)

Corollary 4. Suppose that the Bernoulli function is di�erentiable four times and u[4] < 0.

Premium p̂ is decreasing in asset price q, given variance � , if

min

(
Cov(U 0;W )

E(U 0)
;
Cov(U 000;W )

E(U 000)

)
�max

(
Cov(U 00;W )

E(U 00)
;
Cov(U [4];W )

E(U [4])

)
: (21)

To be sure, note that the condition thatCov[U 000;W ] � 0, which specializes Eq. (17)

to the case at hand, does not need to be assumed explicitly, as it is implied by the

assumption that u[4] < 0.
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5.5 Example: CARA preferences and homoskedastic risk

Unfortunately, the previous two corollaries fail to provide a full characterization

of the sign of the e�ect of � on p. Still,

Theorem 8 (Relevance, 6). If v0 = 1 and the Bernoulli function u is exponential, then the

equity premium p̂ is decreasing in � .

5.6 Example: CRRA preferences and heteroskedastic risk

Considering now the case where V (S j W = w) = �w2, with � � 0.9 As before, we a

assume that q depends di�erentiably on � , with �rst derivative q0.

Theorem 9 (Relevance, 7). Suppose that v0 = 1 and the Bernoulli function u is homoge-

neous of degree x� < 0. If

q �
min

n
�; 1

o
2

y infW ;

then the equity premium p̂ is decreasing in � .

9 The result can be extended to any power 1 < � < 3, at the expense of some analytical compli-

cations.
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Appendix: proofs

Proof of Corollary 1: For the �rst statement, by Theorem 4 it su�ces to show that Eq. (11)
holds strictly. Assume, as in the proof of the second part of Theorem 1, that u0(w) =
u0(1)wx� , where � > 0 since u is strictly concave. By direct computation, it su�ces to show
that

E(W x�+1) yE(W x�x2)xE(W x�x1) yE(W x�) > 0:

Letting V be an (ancillary) random variable distributed identically to W and independent
from it, the latter expression is equivalent to

E(V x�+1 yW x�x2 x V x� yW x�x1) > 0:

Now, this expectation equals

E
h
(V yW )x� y

�
V
W x 1

�
y
�
1
W x 1

V

�i
+E

h
(V yW )x� y

�
1
W x 1

V

�i
:

Note that the �rst summand of the last expression is strictly positive, since both random
variables are non-degenerate and take only strictly positive values, so the integrand is
positive. The second summand is null, since they are identically distributed. It follows
that the sum is strictly positive, as needed.

To prove the second claim, suppose that u(w) = xex�w, where � > 0. Note that

E [u0(W ) yW ]

E [u0(W )]
=
E(ex�W yW )

E(ex�W )
=
E [u000(W ) yW ]

E [u000(W )]
:

It follows from Theorem 4 that p̂ = �p, regardless of the variance of the idiosyncratic
risk.

Proof of Theorem 5: The computation of the two limits is straightforward. Similarly, by
direct computation, @p̂K=@�K > 0 if, and only if,

�KE[u
[K](W )] yE

"
KX
k=1

�k�k
k!

y u[k](W ) yW

#
> �KE[u

[K](W ) yW ] yE

"
KX
k=1

�k�k
k!

y u[k](W )

#
:

Since (x1)K�K > 0, the latter is equivalent to

(x1)KE[u[K](W )] yE

"
KX
k=1

�k�k
k!

y u[k](W ) yW

#
> (x1)KE[u[K](W ) yW ] yE

"
KX
k=1

�k�k
k!

y u[k](W )

#
:

This is

(x1)K
E

�PK
k=1

�k�k
k! y u[k](W )

�

E
hPK

k=1
�k�k
k! y u[k](W ) yW

i < (x1)K
E[u[K] yW ])

E[u[K]]
;

which can be re-writtem as Eq. (12).

Proof of Corollary 2: For the �rst claim, note that the proof of the �rst claim in Corollary 1
consists of arguing that

E(W x�+1)

E(W x�)
>
E(W x�x1)

E(W x�x2)
:
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By the same argument, note also that

E(W x�x1)

E(W x�x2)
>
E(W x�x3)

E(W x�x4)
:

It follows that when u0(w) = u0(1)wx� , with � > 0,

E [u0(W ) yW ]

E [u0(W )]
>
E [u000(W ) yW ]

E [u000(W )]
>
E
h
u[5](W ) yW

i
E
�
u[5](W )

� ;

and hence that

E
�
u0(W ) yW

�
E
h
u[5](W )

i
> E

�
u0(W )

�
E
h
u[5](W ) yW

i
and

E
�
u000(W ) yW

�
E
h
u[5](W )

i
> E

�
u000(W )

�
E
h
u[5](W ) yW

i
:

Aggregating,

n
E
h
u0(W ) + 1

2 y u
000(W ) y �2

i
W

o
yE

h
u[5](W )

i
> E

h
u0(W ) + 1

2 y u
000(W ) y �2

i
yE

h
u[5](W ) yW

i
;

which is equivalent to Eq. (??).

For the second claim, note again that when u(w) = xex�w, with � > 0,

E [u0(W ) yW ]

E [u0(W )]
=
E(ex�W yW )

E(ex�W )
=
E [u000(W ) yW ]

E [u000(W )]
=
E
h
u[5](W ) yW

i
E
�
u[5](W )

� ;

so it follows from Theorem ?? that �p = p̂ = �p, regardless of the variance and the kurtosis
of the idiosyncratic shocks.

Proof of Theorem 6: Obviously,

dp̂

d�
=
@p̂

@q
y
dq

d�
+
@p̂

@�
:

For the �rst result, note that the �rst summand on the right-hand side of the last expression
is negative, so a necessary condition for the sum to be positive is that the second summand
be positive. For the second result, under the assumptions the �rst summand is non-
negative, so the sum is positive if so is the second summand. In both cases, all one needs
to observe is that @p̂=@� > 0: The proof that this inequality is equivalent to Eq. (16)
resembles to the arguments for Theorems 4 and ??, so we omit it.

Proof of Theorem 7: We can write Eq. (15) as

p̂ =
f (q) + �2 y g(q)

'(q) + �2 y 
(q)
;

where

f (q) = E[u0(W + q)] y [E(W ) + q];

19



g(q) = 1
2E[u

000(W + q) y V ] y [E(W ) + q];

'(q) = E[u0(W + q) y (W + q)]

and


(q) = 1
2E[u

000(W + q) y V y (W + q)]:

With this formulation, p̂ is decreasing in q if, and only if,

[f 0(q) + �2 y g 0(q)] y ['(q) + �2 y 
(q)] < ['0(q) + �2 y 
 0(q)] y [f (q) + �2 y g(q)];

which holds true if

f 0(q) y '(q) < '0(q) y f (q) (22)

f 0(q) y 
(q) � '0(q) y g(q) (23)

g 0(q) y '(q) � 
 0(q) y f (q) (24)

g 0(q) y 
(q) � 
 0(q) y g(q): (25)

Upon substitution, Eq. (22) is equivalent to�
E(U 00)[E(W ) + q] +E(U 0)

	
yE[U 0 y (W +q)] <

�
E[U 00 y (W + q)] +E(U 0)

	
yE(U 0) y [E(W )+q];

which is, by direct computation,�
E(U 00) yE[U 0 y (W + q)]xE(U 0) yE[U 00 y (W + q)]

	
y [E(W )+q]+E(U 0) yCov(U 0;W ) < 0: ({)

Since u0 > 0 and u00 < 0, we have that E(U 0) > 0 and Cov(U 0;W ) < 0, so it su�ces that

E(U 00) yE[U 0 y (W + q)] � E(U 0) yE[U 00 y (W + q)];

for inequality ({) to hold, as E(W )+q > 0. As in the proof of Theorem 4, this is equivalent
to

Cov(U 0;W )

E(U 0)
�
Cov(U 00;W )

E(U 00)
;

which is one of the inequalities that are part of Eq. (18).

Similarly, Eq. (23) is equivalent to the requirement that the sum of�
E(U 00) yE[U 000 y V y (W + q)]xE[U 000 y V ] yE[U 00 y (W + q)]

	
y [E(W ) + q] ({{)

and

E(U 0) yCov[U 000 y V;W ] ({{{)

be non-positive.

Since u0 > 0 and Cov[U 000 y V;W ] � 0, we have that the expression in ({{{) is non-positive.
On the other hand, since E(W ) + q > 0, for inequality ({{) to hold it su�ces that

E(U 00) yE[U 000 y V y (W + q)] � E[U 000 y V ] yE[U 00 y (W + q)];

which is equivalent to

Cov[U 000 y V;W ]

E[U 000 y V ]
�
Cov(U 00;W )

E(U 00)
:
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For Eqs. (22) and (23) to hold true, it thus su�ces that

min

(
Cov(U 0;W )

E(U 0)
;
Cov[U 000 y V;W ]

E[U 000 y V ]

)
�
Cov(U 00;W )

E(U 00)
:

By a virtually identical analysis, using that u000 > 0 and u[4] < 0, one can prove that

min

(
Cov(U 0;W )

E(U 0)
;
Cov[U 000 y V;W ]

E[U 000 y V ]

)
�
Cov[U [4] y V;W ]

E[U [4] y V ]

su�ces for Eqs. (24) and (25)

Proof of Theorem 8: Let u(w) = xex�w, for some � > 0. Then,

u[n](w) = (x1)n+1�nex�w = (x�)nu(w);

which implies that u[4] < 0. Also,

Cov[u[n](W + q);w] = (x�)nCov[u(W + q);w]

and

E[u[n](W + q)] = (x�)nE[u(W + q)];

which imply that

Cov[u[n](W + q);w]

E[u[n](W + q)]
=
Cov[u(W + q);w]

E[u(W + q)]

for all orders of di�erentiation. Corollary 4 implies that, with � �xed, p̂ is decreasing in q.
If we can argue that the price of the asset is increasing in � , then Corollary 3 implies that
condition (16), which does not hold true, is necessary for p̂ to be non-decreasing in �.

To see that, indeed, q0 > 0, note that

q = E
�
u0(W + q+ S) y (W + q)

�
since v0 = 1. This expression re-writes, in the case of exponential preferences, as

q = ex�q y
�
E[u0(W + S) yW ] +E[u0(W + S)] y q

	
;

so

e�q =
E[u0(W + S) yW ]

q
+E[u0(W + S)]:

This expression is transcendental, so we can only obtain q0 by implicit di�erentiation:(
e�q +

E[u0(W + S) yW ]

q2

)
y q0 =

@

@�

(
E[u0(W + S) yW ]

q
+E[u0(W + S)]

)
:

Since exponential preferences are strictly increasing and strictly prudent, we know that

E[u0(W + S) yW ] = E fE[u0(W + S) j W ] yW g

and

E[u0(W + S)] = E fE[u0(W + S) j W ]g

are both increasing in � , which implies that q0 > 0, as needed.
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Proof of Theorem 9: The strategy for the proof is the same as in Theorem 8: we will argue
that, under the assumption of the theorem, all the conditions that make Eq. (16) necessary
for p̂ to be non-decreasing in � are satis�ed, but not Eq. (16) itself. Using the functional
forms u0(w) = u0(1)wx� and V (S j W ) = �W 2, we need to prove the following:

(a) that q is increasing in � , namely that implicitly di�erentiating

q = u0(1) yE[(W + q+ S)x� y (W + q)] (26)

with respect to � yields q0 > 0;

(b) Equation (17);

(c) that

Cov(U 0;W )

E(U 0)
�
Cov(U 00;W )

E(U 00)
and

Cov[U 000 yV (S j W );W ]

E[U 000 yV (S j W )]
�
Cov[U [4] yV (S j W );W ]

E[U [4] yV (S j W )]
;

two of the inequalities in Eq. (18), which in the case are

E[(W + q)x� yW ]

E[(W + q)x�]
�
E[(W + q)x(�+1) yW ]

E[(W + q)x(�+1)]
(27)

and

E[(W + q)x(�+2) yW 3]

E[(W + q)x(�+2) yW 2]
�
E[(W + q)x(�+3) yW 3]

E[(W + q)x(�+3) yW 2]
; (28)

(d) that

Cov[U 000 yV (S j W );W ]

E[U 000 yV (S j W )]
�
Cov(U 00;W )

E(U 00)
;

another one of the inequalities in Eq. (18), which is

E[(W + q)x(�+2) yW 3]

E[(W + q)x(�+2) yW 2]
�
E[(W + q)x(�+1) yW ]

E[(W + q)x(�+1)]
; (29)

(e) that

Cov(U 0;W )

E(U 0)
�
Cov[U [4] yV (S j W );W ]

E[U [4] yV (S j W )]

the �nal inequality in Eq. (18), which is

E[(W + q)x� yW ]

E[(W + q)x�]
�
E[(W + q)x(�+3) yW 3]

E[(W + q)x(�+3) yW 2]
(30)

under the functional forms; and

(f) that Eq. (16) fails, namely that

E[(W + q)x� yW ]

E[(W + q)x�]
�
E[(W + q)x(�+2) yW 3]

E[(W + q)x(�+2) yW 2]
: (31)
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Of course, we proceed one by one:

(a) From Eq. (26), by the implicit function theorem q0 equals the product of

u0(1)

E
h
1 + �(W + q+ S)x(�+1) y (W + q)x (W + q+ S)x�

i ({)

and

E

(
@

@�
E[(W + q+ S)x� j W ] y (W + q)

)
; ({{)

so long as the denominator on the former expression is non-zero. We actually want
that denominator to be strictly positive, which is the case, since � > 0, W + q > 0 with
probability one by assumption, and

�(w+ q) > 0, 1 +
�(w+ q)

(w+ q+ s)�+1
>

1

(w+ q+ s)�
:

Since u0(1) > 0, it follows that the term in Eq. ({) is strictly positive.

That the term in Eq. ({{) is also positive is immediate, since (w + q + s)x� is strictly
convex in s, and an increase in � is a mean-preserving spread of S given W .

(b) For Eq. (17), it su�ces for us to argue that u000(W + q) y V (S j W ) and W are anti-
comonotone with probability one. Letting the function

�(w) = u000(w+ q) yV (S j W = w) = ��(� + 1)u0(1)w2;

we have that �0(w) � 0 so long as w � 2q=�: Since q � �=2 infW , by assumption, we have
that this inequality holds with probability 1, as needed.

(c) De�ne now the function

h(n) =
E[(W + q)xn yW m]

E[(W + q)xn yW mx1]

over n > 0, given any m � 0. For Eqs. (27) and (28), it su�ces to observe that q is
non-increasing in n.

By direct computation, h0(n) � 0 if, and only if,

E[(W + q)xn yW m y ln(W + q)] yE[(W + q)xn yW mx1]

is at least as large as

E[(W + q)xn yW mx1 y ln(W + q)] yE[(W + q)xn yW m]:

Letting random variable V be i.i.d. with W , this is the requirement that

E
n
(W x V ) y (V W )mx1 y [(V + q)(W + q)]xn y ln(W + q)

o
� 0:

This expectation is proportional, by a factor of Pr(V ä W )=2, to the sum of

E
n
(W x V ) y (V W )mx1 y [(V + q)(W + q)]xn y ln(W + q) j V > W

o
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and

E
n
(W x V ) y (V W )mx1 y [(V + q)(W + q)]xn y ln(W + q) j V < W

o
:

Since V and W follow the same distribution, the latter is

E
n
(V xW ) y (V W )mx1 y [(V + q)(W + q)]xn y ln(V + q) j V > W

o
;

so the sum equals

E
n
(W x V ) y (V W )mx1 y [(V + q)(W + q)]xn y [ln(W + q)x ln(V + q)] j V > W

o
;

which is, indeed, non-negative.

(d) Note that Eq. (29) is equivalent to the requirement that

E[(W + q)x(�+2)W 3] yE[(W + q)x(�+1)] � E[(W + q)x(�+2)W 2] yE[(W + q)x(�+1)W ]:

With V de�ned as above, this is

E

(
V y [(V + q)(W + q)]x(�+1) y

 
V 2

V + q
x

W 2

W + q

!)
� 0;

or

E

(
(V xW ) y [(V + q)(W + q)]x(�+1) y

 
V 2

V + q
x

W 2

W + q

! ���� V > W

)
� 0:

In order to guarantee this, we need to argue that

v > w )
v2

v+ q
�

w2

w+ q
;

or, equivalently, that the ratio w2=(w + q) is non-decreasing for w 2 W . By direct
computation, this is true since W �R++ and q � 0.

(e) Using the same technique, Eq. (30) is equivalent to the requirement that

E
h
(V xW ) yW 2 y (V + q)x� y (W + q)x(�+3)

i
� 0;

or, equivalently, that

E

(
(V xW ) y [(V + q)(W + q)]x� y

 
W 2

(W + q)3
x

V 2

(V + q)3

! ���� V > W

)
� 0:

For this, it su�ces that the ratio w2=(w + q)3 be non-increasing at all w 2 W . This is
guaranteed, indeed, by the assumption that q � 1=2 infW .

(f) Finally, note again that Eq. (31) is equivalent to

E[(V xW ) y V 2 y (V + q)x(�+2)(W + q)x�] � 0;

or

E

(
(V xW ) y [(V + q)(W + q)]x� y

 
V 2

(V + q)2
x

W 2

(W + q)2

! ���� V > W

)
� 0:

For this inequality to hold true, it su�ces that w=(w + q) be non-increasing at all
w 2 W , which is true since W �R++ and q � 0.
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