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In an economy with aggregate risk, the equity premium is the difference between
the expected return of a dollar invested in an asset bearing the same (distribution
of) risk as the whole economy and the risk-free interest rate. The equity premium
puzzle is the observation, first put forward by Mehra and Prescott (1985), that
standard macroeconomic models with homogeneous agents and no idiosyncratic

risk fail to explain the equity premia typically observed in the data.*

Shortly after, Mankiw (1986) presented a setting in which the presence of uninsur-
able idiosyncratic risk increases the equity premium predicted by homogeneous
agent models. Furthermore, Constantinides and Duffie (1996) observed that this
is indeed the case for CRRA preferences and counter-cyclically heteroskedastic
idiosyncratic risk.? However, Krueger and Lustig (2010) showed that the same
result does not hold when the representative agent has CRRA preferences and
the distribution of idiosyncratic risk follows a particular form of pro-cyclical het-
eroskedasticity in a two-period economy. Under these assumptions, the equity
premium is not affected by the presence of idiosyncratic risk. For the same class
of preferences, Storesletten et al. (2007) had shown that in an OLG economy;, the
effect of idiosyncratic shocks in the equity premium is significantly smaller than

in the two-period case considered by Constantinides and Duffie.

* This is very preliminary work. All comments and observations are welcome!
T University of California, Davis, and EPGE-FGV; acarvajal@ucdavis.edu

¥ Shanghai University of Finance and Economics; zhouhang@mail.sufe.edu.cn
' See also Mehra (2003).

? See also the empirical results in Cogley (2002).



This paper aims to further our understanding of the effect of idiosyncratic risk on
the equity premium. We consider different classes of preferences and different co-
variations between the idiosyncratic shocks’ variance and the economy’s aggregate
income. For short-lived assets, such as those considered in Constantinides and
Duffie (1996) and Krueger and Lustig (2010), we offer a complete characterization
of the effect, relying on the cross-moments of different derivatives of the utility
function and the aggregate income of the economy. For long-lived assets, such as
those in Storesletten et al. (2007), a full characterization is elusive, but we present
sufficient conditions for the reversal of the effect found by Constantinides and

Duffie.

1 A Two-PERIOD SETTING

In a two-period economy, let non-degenerate random variable W represent the
future wealth of an economy were all agents are identical, and let function u :
R} — R be the agents’ Bernoulli utility index and 3 > O their discount factor.
Suppose that the support of W is a subset W of R, and that uis G3(R.,), strictly

increasing and strictly concave and has non-negative third derivative.

Only one asset can be traded: “equity” in the economy, namely the asset that

pays W in the second period.

1.1 Benchmark: only aggregate risk

In the absence of any other shocks, the present and future consumption of an
individual in this economy are, respectively, c =@ —q-yand ¢ =W +W -y, where
@ > 0 is each individual’s wealth in the first period, g denotes the price of the asset
and y is the quantity of the asset demanded by the individuals. The portfolio

problem of the agents in this economy is, hence,

myax{u(z?a —q-y)+ PE[u(W+W - y)]%

Since all agents are identical, only a no-trade equilibrium is possible and
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If we define the function m : R, - R, as m(w) = pu/(w)/u'(w), this economy’s
stochastic discount factor is the random variable m(WW) and we can re-write Eq. (1) as

g =E[mW) -w].

Using m for pricing other income flows, note that if the agents could also trade a
risk-less asset with payoft E(W), its price would equal
) = BE[W(W)]-E(W)

E[m(W)-EW)] =E[m(W)] - E(W (@)

The equity premium measures how much more expensive this risk-less asset would
be, namely the relative price of the risk-less to the risky asset (minus one). In the

absence of any other risk, thus, the equity premium is

E[m(W) - E(W)] EW)]-EW)  Cov[u'(W),W]

P="Em)-w] 1T R ow] ST E) W] (2)

where Cov is the covariance operator.

REMARK 1. [t is clear from Eq. (2) that the equity premium is independent of the discount
factor B and the present marginal utility u'(@), and does not depend on the assumption that

the Bernoulli function is the same in both periods.

REMARK 2 (Selden preferences). In fact, suppose that the preferences of the individual

over present consumption, ¢, and future risky consumption, C, are represented by

v(c) + fo(u™ (E[w(C)])), (3)

where v and ﬂ capture the agent’s impatience and u her attitude towards risk.

If we re-write the portfolio program, the first-order condition that replaces Eq. (1) is that

B (BLu(V)) Efw(V) W]
9 v(@)  w(u (Eu(W))

The stochastic discount factor now takes the form

P/ (u (E[u(W)])) u'(w)
v'(w) uw(u (E[u(W)))

m(w) =

while the prices of the economy’s equity and the risk-less bond are still given by E[m(W)- W]
and E[m(W)] - E(W). Importantly, the constant

P/ (u (E[u(W)])) 1
v'(®) w(u M (Eu(W)))




cancels out in the computation the relative price E[m(W)] - E(W )/E[m(W) - W], so the eq-
uity premium is still given by Eq. (2).

Conceptually, this observation simply says that the equity premium depends on
the (homogeneous) traders’ attitude towards risk and not in their impatience:
while the individual’s tastes on inter-temporal smoothing affect the prices of both
the risky and the risk-less assets, their relative price depends only on the individ-
ual’s attitude towards risk. For the purposes of this paper, it follows that all our
results apply when the individuals preferences are of the form (g), where u is the

Bernoulli function capturing their risk attitude.

1.2 Idiosyncm tic risk

Let random variable S, with E(S | W) = 0O, be the agents’ uninsurable, future
idiosyncratic risk. The agents’ future consumption is ¢ = W + S+ W -Y and,
following the same logic as above, the equity premium is

CEM(C)EW) | EC)-EW) ”
E[m(C)-W] E[W(C)-W] 4

Iterating expectations, this is

~EJE[(W +S) [ WIE-EW)
O EE[W(W +S) | W]-Wi

1. (5)

REMARK 3. Note from Eq. (5) that if the economy displays idiosyncratic risk, using Eq. (2)
instead of Eq. (4) misspecifies the equity premium, as it amounts to assuming the equality

E[W(W +5) | W]=u (W +S|W)),

which in general Tequires that the Bernoulli function be quadmtic.

1.3 Idiosyncmtic risk and the equity premium

Using the second-order expansion

W(w+s) ~u(w) +u'(w) s+ 1 - u"(w) - 57, (6)
we get that
E/W+S) | Wlnd(W)+L-u"(W)-V(S|W), (7)
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where V is the variance operator. This allows us to approximate Eq. (5) by

. E[W) 4 un(W) V(S| W) EW)
b= — —1 (8)
E[w(W)+ - w(w)- (s | w)|-wi

2 TwoIMPORTANT EXAMPLES: CRRA AND CARA PREFERENCES
THEOREM 1 (Irrelevance, 1). If one of the following two conditions holds, idiosyncratic
risk does not affect the equity premium, in the sense that ﬁ = p:

1. the Bernoulli function is quadratic, or

2. the first derivative of the Bernoulli function is homogeneous and V(S | W) = sW? for

some constant ¢ > 0, almost surely.

Proof. That the first condition suffices is straightforward, as mentioned in Re-
mark g: under a quadratic function, u"(w) = O for all w and the equality follows.

To see that the second condition also suffices, suppose that v/(w) = v/(1)w™, for
some p > 0, and hence that u"(w) = p(p + 1)u(l)w 2. Substituting this and the

functional form of the conditional variance of S, we get

E|W= +p(p+1)§ - W0+2 . W2| - E(W)

b= E[We+p(p+1)5 - W2 w2 wi !
B[+ p(p+1)5]- woeb B(W)
_ ] (9)
]Eg[l—kp(p—%l)ﬂ-w (p 1)}
CEW)-EW)
T EW ] -
= b O

REMARK 4. The first case in the theorem generalizes Proposition 1 in Mankiw (1986). The
second case encompasses the whole class of CRRA Bernoulli functions: all homogeneous func-
tions (the case explicitly solved in Krueger and Lustig, 2010) as well as all the logarithmic

functions.

These two cases where one obtains irrelevance, however, appear rather limiting.

Quadratic preferences are the least prudent version of prudent preferences, while
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the assumption that the volatility of idiosyncratic shocks is pro-cyclical and follows
that specific functional may be unsatisfactory, in that it requires the assumption

that the relative shock S/W be independent of W'.
On the other hand:

THEOREM 2 (Relevance, 1). Suppose that the Bernoulli function is exponential, u(w) =
—e " for some a > 0, and that for constants ¢ > 0 andy, V(S | W) = ¢W* almost surely.
The equity premium is larger, equal, or smaller in the presence of idiosyncratic risk depending

on whether idiosyncratic is is counter-, a-, or pro-cyclical. That is, ﬁ % pbey § 0.

Proof” By direct computation, for this Bernoulli function

Efe ™ |14 a2 V(S | W)} -E(W) B
Eie W -1+ La2 - V(s | W)|- Wi

b=

and

_ E (e V) - E(W)

—1.
E (efaW . W)

Whether ﬁ is larger or smaller than p depends thus on the sign of

R e R e A B T N

Substituting V(S | W) =¢W?7 into Eq. (10), we need to determine the sign of
o (e*aW -W7) E (e*aW : W) ~-E (e"’W)JE (e*aW : W7+1).

If we let V be an (ancillary) random variable distributed identically to W and inde-
pendent from it, we can rewrite the latter expression as |& [e—a(ww) W7 (V- W)],

which is proportional, by a factor of Yo Pr(V # W) >0, to

E[e W (V= W) | V> W[+ E e W (VW) |V <W|.
This expression is equivalent to

Ele W (V= W) | V> W+ E[e My (W = V) [W < V],
which, by direct computation, is

B[e W (W= V) (V = W) |V =],
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This number is positive, null, or negative, depending on whether 7 is negative,

null, or positive. O

REMARK §. This theorem covers all CARA Bernoulli functions.

A comparison of the previous two theorems suggests a connection between the
behavior of the coeflicients of risk aversion, the behavior of the conditional vari-
ance of the idiosyncratic shocks, and the effect of the latter on the equity premium.
As is well known, the relative risk aversion coefficient approximates the agents’
willingness to pay to insure against multiplicative shocks of variance 2. The second
statement in Theorem 1 proves that when such willingness to pay is constant on
the agents’ wealth, if the variance of the multiplicative idiosyncratic shock is also

constant, then the shock has no effect on the premium.

The absolute risk aversion coefficient, on the other hand, approximates the willing-
ness to pay to insure against additive shocks of variance 2, and Theorem 2 suggests
that when such willingness to pay is constant, the equity premium changes with
the presence of additive idiosyncratic risk unless the conditional variance of such

risk is constant.

Whether, conditional on aggregate wealth, the idiosyncratic risk is homoskedas-
tic or heteroskedastic is an empirical question and we take no position about it.
The irrelevance result of Krueger and Lustig (and our minimal extension in The-
orem 1) requires a very particular form of heteroskedasticity, as the following

theorem shows.

THEOREM g (Relevance, 2). Suppose that the first derivative of the Bernoulli function
is homogeneous, and that for some constants ¢ > 0 andy, V(S | W) = ¢W?7 almost surely.
Whether the equity premium is larger or smaller in the presence of idiosyncratic risk, depends

on whether 7 is smaller or larger than 2. That is, ﬁ % pea § 2.

Proof. As in the proof of Theorem 1, assume that u'(w) = v/(1)w™, for some p > 0.

Substituting the functional form of the conditional variance of S, we get, instead



of Eq. (9),

E[1+p(p +1)5 - W=2| - Web - (W)

b= E{[Hp(pﬂ)%-WH]-W—(P—U} b

while

E(W ) - E(W)

p= E[W 1] -1

We need to show that 7 <2 is necessary and sufficient for
EJ[L+A-WI 2 woeb BW 0] s BW ) - B+ AW 2w

where A = p(p +1)7/2> 0.

Let us define random variable V as in the proof of Theorem 2. By direct compu-

tation, we need to argue that
E[A- Wyt (w2 — VH)] > 0.

Using the same technique as in the proof of Theorem 2, the left-hand side of this
expression is directly proportional, by a factor of Pr(W > V), to

E[A-W -V (VW) (W= VI [ W > V],
This expression is positive if, and only if, 7 < 2. O

For CRRA Bernoulli functions, the power functional form of the conditional vari-
ance is mathematically useful in Theorem 1, and we conjecture that the irrelevance
cannot be guaranteed without it. More importantly, however, the assumption that
the conditional variance is pro-cyclical implies that idiosyncratic risk is not as sig-
nificant when an economy is in a recession as when it is in a boom, which may be

untenable.

For CARA functions, when the idiosyncratic risk is counter-cyclical (and, again,
of a particular functional form), its presence increases the equity premium. If in
this case the heteroskedasticity is in the direction assumed by Krueger and Lustig

(2010), the equity premium is lower in the presence of idiosyncratic risk.



3 GENERAL PREFERENCES

If we concentrate in the case where the idiosyncratic shock is homoskedastic, we

get the following general result:

THEOREM 4 (Relevance, 3). Suppose that v > 0, and that for some constant ¢ > 0,

V(S | W) =02 almost surely. The equity premium p ranges monotonically from
. E[WW)]-EW) -
-W

WP TEmyw) TP
to

.~ ERTW)-EW)

},L%.}P: E[u’”(W)-W] —L

This monotonicity is increasing yf and only zf
Cov[u/(W),W] Cov[u"(W),W]
EW)]  EWW) (22)

Proof. Under the assumptions of the theorem, Eq. (8) rewrites as
< E/W)]-EW)+ 5 -E[u"(W)]-EW) -0
E/(W) W]+ 5 -E[u"(W)-W]-¢?

The two limits follow, thus, by direct computation.

Since ¢ > 0, note that, p is increasing in ¢ if, and only if,

E[W"(W)]-EW) -E[WW) -W]>E[WW)]-EW)-E[u'(W)-W].

By monotonicity and (strict) prudence, and since W takes only positive values,
and we can rewrite the expression as
E[u"(W)]-E(W) E[w(W)]-EW)
ElwW)-w]  Buw)w] D
which is equivalent to Eq. (11). O

The denominators on both sides of Eq. (11) are positive, and risk aversion implies
that the numerator on the left-hand side is negative, so the ratio on the left-hand
side is negative. None of our assumptions pins down the sign of the numerator on
the right-hand side, though. If the covariance between the economy’s aggregate
income and the third derivative of the Bernoulli function is positive, then the

variance of the idiosyncratic shock decreases the equity premium.

9



COROLLARY 1. Suppose that V(S | W) = ¢? > O almost surely.
1. If'the first dertvative of the Bernoulli function is homogeneous, ;3 is increasing in g.
2. If the Bernoulli function is exponential, ﬁ does not depend on g.

As before, the first claim applies to the class of CRRA Bernoulli functions. It
confirms that the irrelevance result in Krueger and Lustig (2010) depends on the
specific type of heteroskedasticity that they assume for the idiosyncratic shock. If S
is homoskedastic conditional on W, its presence implies a higher equity premium.
The second claim provides another irrelevance result which covers the class of

CARA functions for the homoskedastic case, as expected.

4 HIGHER-ORDER MOMENTS

The empirical work of Guvenen (2016) highlights the importance of higher mo-
ments of the distribution of idiosyncratic shocks, in particular its negative skew-
ness and high kurtosis. To introduce these considerations, suppose that in addi-
tion to the assumptions on the first two moments, namely that E(S | W) = 0 and
V(S | W) = ¢? > 0 almost surely, one further knows that E(S* | W) =¢°-0 <0
and E(S* | W) = ¢*-x > 0. In words, supposed that the idiosyncratic risk is

homoskedastic and negatively skewed, and has constant kurtosis.

To consider, first, the case of the third moment, we can replace Eq. (6) with the

more accurate, third-order approximation
W(w+s) mu/(w) + u'(w) s+ 2w (w)s? + & - ul(w) - 5,
and Eq. (7) with

E[W(W+S8) [ Wmd(W)+ 2w (W) o+ - uI (W) 6% 0.

This results in the equity premium being approximated better by

A~

5y E[w/(W)+ 5w (W) -0+ § - ul (W) - o® - 6] - (W)

ul (W) - g3 - 6] - W}

—1
}E{[u’(W) + % cu"(W)-o? +

b

1,
6
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where we use the sub-index to denote the order of the approximation.3

Using the same technique as in the proof of Theorem 4, it is not difficult to show

that if ul*l < 0,4 then [33 decreases monotonically in ¢ <0 between

im o E W) - EW) |

Pt B [ul (W) - W]

and limgs.o p5 = po if, and only if,

Cov [u’(W) +5-u"(W)- UQ,W] N Cov[u* (W), W]

E. [u’(W) + - u(W)- 09] E[ul*(W)]

Under this condition, the negative skewness of idiosyncratic shocks help to explain

larger equity premia in the same way in which their variance does.

In order to consider the effect of high kurtosis, a fourth-order approximation

yields the premium

E[w(W)+ 1w (W) o2+ 5-uld(W) - 030+ & - ull(W) - o - x| - E(W)

B E{[u’(W) + 5w (W)-o? + 5 ult(W) - 03§ + 5 - ull(W) - ot - K] -W%

=

-1

If we continue to assume that u* > 0 and further suppose that ul® < 0.5, then, as
a function of x > 0, premium p, increases monotonically between lim, .o ps = ps3

and

-1

A Eu[5](W)]'E(W)
lim p, = E [uBI(W) - W]

if, and only if,

. u///(w) o2 4 % ; u[4](W) g3 é,W] COV[u[*ﬂ(W)a W]
- .

Cov [u’(W) +3
FLown (WY -2 4 L (W) - g3 (5] E[uld(W)]

E [u’(W)
Again, under this condition, a significant kurtosis in the distribution of idiosyn-

cratic shocks ameliorates the equity premium puzzle.

3 This means that, for the purposes of this section, we refer to the premium defined in Eq. (8)
as po.
4 That is, if the Bernoulli function displays “temperance”. See Ekern (1980) and Eeckhoudt et

al (1995).
5 That is, that the Bernoulli function exhibits “edginess”.
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These observations can be generalized as follows. Suppose that for any k > 3, the

k™™ standardized moment of the conditional distribution of S is the constant [

almost surely.® The K"™-order approximation to the marginal utility yields the

equity premium

B(Zi, 4 - uf (W) - ok - ] - E(W)
[Zk 1ku' ulk(W) - g - [ ]

A~

Pk = -1

THEOREM 5. Suppose that for allk = 3,..., K, (=1)Ful¥l < 0 and (1), > 0.7 The equity

premium ﬁ k Tanges monotonically between lim,,,o ﬁ K= ﬁK_l and

. EREw)|-EW)
et P TRy Wy

Such monotonicity is increasing, namely

96
s
0}1]{
if, and only if;
 Cov [T w0 ) ot W] Cov [WSIw) 1]
—1)¥ > (— K

[Zf Ly ](W).Uk.#k.w]

The proof of this theorem is very similar to the argument for Theorem 4, so we
defer it, along with the remaining proofs in the paper, to an appendix. For the
canonical families of Bernoulli functions, the following is a consequence of the

theorem:
COROLLARY 2. Under the assumptions of this section:
1. If'the first dertvative of the Bernoulli function is homogeneous, ﬁ is increasing in x.

2. If the Bernoulli function is exponential, ﬁ does not depend on x.

5 LONG-LIVED ASSETS

Consider, for a specific application, the case of a stationary overlapping generations

economy where individuals live for two periods and the only asset in the economy

6 That is, that E(S® | W) =¢* - jy W-a.s.
7 The first condition is the assumption that the Bernoulli function is Kth—degree risk averse.
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pays W, i.i.d., every period. If the risk is traded using a long-lived asset, its return

must be adjusted to include the price of the asset.

5.1 Benchmark: only aggregate risk

In the absence of any other risk, the problem of the young generation is

I‘Il;X{U(ZE) —q-y)+Eu((W +q)- y)]},

and its first-order condition is that

V(@—q-y)-q=E[L(W+q) p)-(W+q)]

Market clearing requires that q be the solution to

_ E[((W +4q))- (W +q)]
v'(@ —q)

)

while a risk-less asset with the same expected return should be priced at

E[u/ (W +q)] - [E(W) +q]
v'(w — q)

The relative price of the risk-less asset to the risky asset (minus 1) is again the

equity premium:

Eu/(W +q)]- [E(W) +q]

b= Epuv+@4w+@}_L

5.2 Idiosyncmtic risk

Under idiosyncratic risk, the premium is

_E@ﬂv+q+$ymum+ﬂ
Eu/(W +q+S)-(W +q)|

Using the quadratic expansion

W(w+g+s)mu(w+q)+u'(w+q)-s+4

we get the approximation

E[W(W +q)+ L -uw"(W+q)- V(S| W)|- [E(W) + ]

u(w+q)-s

b= E[u/(W +q)+§-u"(W +q)- V(S| W)]- (W + )

13

(13)

2
)

-1 (15)



to the equity premium.

The problem would be a trivial extension of the previous results, were it not
for the dependence of g on the distribution of S. The purpose of this paper is
not to develop the general comparative statics of this dependence, but to deter-
mine how that dependence affects the effect of the distribution of S on the equity

premium.

5.3 Idiosyncmtic risk and the equity premium

Sometimes it will be convenient to write V(S | W = w) = L(w,0), for some dif-
ferentiable function X : R, x R » R, where constant ¢ is a parameter of the

conditional distribution of S such that ¢>./d6 > O.

THEOREM 6 (Relevance, §). Suppose that premium p is decreasing in asset price q, keeping
8 fixed, and that q is increasing in 6.5 Then, a necessary condition for ﬁ to be non-decreasing

inf is that

Cov(U',W) Cov(U"-V,W)
> : (16)
5(U) E({U"-V)

where UM = ulM(W + q) and V = (W, 6).

If; on the other hand, given 6 premium p is non-decreasing in q, then Eq. (16) suffices for p

to be increasing in 6.

Note that the tension between the direct effect of g and the direct effect of 6
arises when the former is negative. A complication when trying to determine
the sign of the latter effect is that it involves the response of the third derivative
of the Bernoulli function, since the asset is traded. Instead of attempting a full

characterization, we find sufficient conditions:

THEOREM 7. Suppose that the Bernoulli functionis differentiable four times, and that ultl <

0. Premium ﬁ 1s decreasing n asset price q 1f

Cov(U" - V,W) <0 (17)

8 As would be the case in Aiyagari (1994), for instance.
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and

~ (Cov(U', W) Cov(U"-V,W) Cov(U", W) Cov(U™ -V, W)
min , > max , , (18)
E(U") E(U" V) E(U") E(UM“.V)

where UMW = ulM(W + q) and V = V(S | W).

5.4 H omoskedastic risk

Considering the case of homoskedastic idiosyncratic risk, with V(S | W) = ¢? almost
surely on W, for the rest of this subsection we assume that g depends differentiably

on ¢?, with first derivative ¢’

It is useful to re-write Eq. (15) as

pe E[u'(W +q)]- [EW)+ql+ 5 - E[u" (W +q)] - [E(W) +q] - o?
E[wW(W +q)- (W +q)|+ 5 -E[W"(W +q)- (W +q)] - 02

-1 (19)

With multiple instances of ¢ and g, a full characterization of the total differential of
{5 with respect to ¢ is possible, but cumbersome and rather uninformative. Instead,
we derive independent necessary and sufficient conditions, focusing on the case

when idiosyncratic risk increases the premium.
Theorems 6 and 7 immediately imply the following two results for this case:

COROLLARY 3 (Relevance, 6). Suppose that premium ﬁ is decreasing in asset price q,
keeping o fixed, and that q is increasing in o. Then, a necessary condition for 13 to be non-

decreasing in o is that

Cov(U',W) Cov(U", W)
E(U/) = E(U”') ' (20)

COROLLARY 4. Suppose that the Bernoulli function 15 dzﬁerentiable jbur times and ul*! < 0.

Premium [3 is decreasing in asset price q, given variance o, if

_ gCov(U’,W) COV(UW,W)g ;COV(UN,W) COV(UH],W)g
min > max (21)

EU)  EU) EU" T EUMA)

To be sure, note that the condition that Cov[U"”, W] < 0, which specializes Eq. (17)
to the case at hand, does not need to be assumed explicitly, as it is implied by the

assumption that ul* < 0.
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5.5 Foxample: CARA prefe"rences and homoskedastic Tisk

Unfortunately, the previous two corollaries fail to provide a full characterization

of the sign of the effect of ¢ on p. Still,

THEOREM 8 (Relevance, 6). Ifv' =1 and the Bernoulli function u is exponential, then the
equity premium ﬁ is decreasing ing.

5.6 Example: CRRA preferences and heteroskedastic risk

Considering now the case where V(S | W = w) = 0w?, with ¢ > 0.9 As before, we a

assume that g depends differentiably on ¢, with first derivative ¢'.

THEOREM ¢ (Relevance, 7). Suppose that v’ =1 and the Bernoulli function u is homoge-

Neous Qf degree —p <O0. If

qémingp’l}-infw,

then the equity premium 15 18 decreasing mao.

9 The result can be extended to any power 1 < } <3, at the expense of some analytical compli-

cations.
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APPENDIX; PROOFS

Proof of Corollary 1: For the first statement, by Theorem 4 it suffices to show that Eq. (11)
holds strictly. Assume, as in the proof of the second part of Theorem 1, that v/(w) =
u'(1)ww ¢, where p > O since u is strictly concave. By direct computation, it suffices to show
that

EW Y. EW ) —EW ). EW*)>0.

Letting V be an (ancillary) random variable distributed identically to W and independent
from it, the latter expression is equivalent to

E(VH W -V W) > 0,

Now, this expectation equals
{00y - =) - 2l )

Note that the first summand of the last expression is strictly positive, since both random
variables are non-degenerate and take only strictly positive values, so the integrand is
positive. The second summand is null, since they are identically distributed. It follows
that the sum is strictly positive, as needed.

To prove the second claim, suppose that u(w) = —e~**, where ¢ > 0. Note that

E[W(W)- W] E(e - W) E["W) W]

Ew(W) — EE™)  E(W)

It follows from Theorem 4 that ﬁ = p, regardless of the variance of the idiosyncratic
risk. O

Proof'of Theorem 5: The computation of the two limits is straightforward. Similarly, by
direct computation, dﬁK/é’/JK >0 if, and only if,

(K] AL [] AL
Epw)]-E| Y U (W) - W| > EpSwW)-w]-E| ) R (W)|.
=1 =1
Since (—1)% ux > 0, the latter is equivalent to
K Ukpk K Ok/lk
(—l)KE[u[K](W)] F [Z - u[k](W) . W} ~ (—I)KE[U[K](W) W]-E Z o u[k](W)} ]
k=t k=1
This is
Uk 3
. E | & 'u[k](W)] E[ulEw))
1 , <(-npFkt Y
LT w] R
which can be re-writtem as Eq. (12). O

Proof'of Corollary 2: For the first claim, note that the proof of the first claim in Corollary 1
consists of arguing that
E(wW—+)  EWr)
> .
EW=) = E(Wr?)
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By the same argument, note also that

EW=)  EW3)
EW 72 EW ¢4

It follows that when v/(w) = v/(1)w ™, with p> 0,

E[/(W)-W] _E["(W)-w] _E[uPlw) W]
EWW) T ERIW) T ERIW)]

and hence that
E[u/(W) - WIE [l (W)] > E[u/ (W)]E [ul?l(W) - W]
and
E[w" (W) - WE[ull(W)] > E [u"(W)]E [u*(w) - W)
Aggregating,
B[ W)+ 5w (W) 2| W B[l W) > B [w(W) + §-u"(W) - o?|- E [l (w) - W],
which is equivalent to Eq. (??).

For the second claim, note again that when u(w) = —e %, with ¢ > 0,

EW(W)-W] E(e ™ -W) E["(W) W] B [ull(w) - W]

EW) — E(e)  EW)  EPIW)]

so it follows from Theorem ?? that ﬁ = ﬁ = p, regardless of the variance and the kurtosis
of the idiosyncratic shocks. O

Proof of Theorem 6: Obviously,

dp _dp dq  dp

46~ dg do 98’

For the first result, note that the first summand on the right-hand side of the last expression
is negative, so a necessary condition for the sum to be positive is that the second summand
be positive. For the second result, under the assumptions the first summand is non-
negative, so the sum is positive if so is the second summand. In both cases, all one needs
to observe is that dp/df > O. The proof that this inequality is equivalent to Eq. (16)
resembles to the arguments for Theorems 4 and ??, so we omit it. O

Proof of Theorem 7: We can write Eq. (15) as
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g(q) = JE["'(W +q)- V] [EW) +q],

p(q) =E[/(W +q)- (W +q)]
and

1(q) = %E[u”'(W +q)-V - (W +q)].
With this formulation, 13 is decreasing in q if, and only if,

f(q)+0”-8'(q) - [p(g) + 0”1 @) < [0 (@) + 0”7 (@] - [ (q) +° - 5(q)],
which holds true if

S e(q) <¢'(q)- f(g) (22)
S99 =¢'(9) 5(g) (23)
(@@ =7() f(g) (24)
2919 <79 g(q) (25)

Upon substitution, Eq. (22) is equivalent to
JEUEW) +q] + EUR-E[U- (W +q)] <E[U" - (W +q)] + E(U)}- EU') - [E(W) +4],
which is, by direct computation,
SE(U")-EU - (W +q)] —EU")-E[U" - (W + q))}- [E(W)+q]+E(U')- Cov(U', W) < 0. ()
Since v/ > 0 and u” < 0, we have that E(U’) > 0 and Cov(U’,W) <0, so it suffices that
EU")-EU - (W +q)] <EU")-E[U"- (W +q)],

for inequality (*) to hold, as (W) +g > 0. As in the proof of Theorem 4, this is equivalent
to
Cov(U', W) . Cov(U", W)
EU) — EU")

which is one of the inequalities that are part of Eq. (18).
Similarly, Eq. (23) is equivalent to the requirement that the sum of
{EU)-E[U"-V-(W+g]-E[U"-V]-E[U"-(W +q)]}- [E(W) + q] (%)
and
E(U') - Cov[U" -V, W] (%)
be non-positive.

Since v’ > 0 and Cov[U" - V,W] < 0, we have that the expression in (++x) is non-positive.
On the other hand, since E(W) + g > 0, for inequality (*+) to hold it suffices that

EU"-E[U" -V - (W—l—q)] <E[U".V]-E[U"- (W—l—q)],
which is equivalent to

Cov[U" -V, W] . Cov(U",W)
BEUTV] C E{UY)
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For Eqgs. (22) and (23) to hold true, it thus suffices that

. NCov(U', W) Cov[U" -V, W] >(COV(U”,W)
MY T EUY) T BTV (T EBUY

By a virtually identical analysis, using that v/ > 0 and ul*l <0, one can prove that

- (Cov(U’, W) Cov[U"”-V,W] >cov[U[4l-V,W]
MY TEW) T EUT VI E[UM-V]

suffices for Eqs. (24) and (25) O
Proof of Theorem 8: Let u(w) = —e~, for some @ > 0. Then,
u[n](w) — (_1)n+1an€—aw — (—cz)”u(w)

which implies that ul*l < 0. Also,

)

Cov[ul™(W + q), @] = (—a)"Cov[u(W +q),w]
and

E[ul(W +q)] = (—)"E[u(W +q)],
which imply that

Covlul®(W + q), @] _ Cov[u(W +q), w]
E[ul"(W + q)] E[u(W +q)]

for all orders of differentiation. Corollary 4 implies that, with ¢ fixed, ﬁ is decreasing in q.
If we can argue that the price of the asset is increasing in ¢, then Corollary g implies that
condition (16), which does not hold true, is necessary for p to be non-decreasing in X.

To see that, indeed, ¢’ > 0, note that
g=EW+qg+5)-(W+q)

since v’ = 1. This expression re-writes, in the case of exponential preferences, as
g=e¢ T AE[L/(W +8) - W]+ E[W'(W +5)] - ¢4,

SO

e?9 = E[UI(W; $)- W] + E[W' (W +.9)].

This expression is transcendental, so we can only obtain g’ by implicit differentiation:
B E[W (W +S)-W] . dNE[W(W +S)-W]
e q -|- . q gp—
g’ da q
Since exponential preferences are strictly increasing and strictly prudent, we know that

E[/(W +5)- W] =E{E[W/(W +S) | W]- W1

+E[W(W —I-S)]g.

and
E[u(W +95)] = EJE[W(W +S) | W]}

are both increasing in ¢, which implies that ¢’ > 0, as needed. O
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Proof of Theorem g: The strategy for the proof is the same as in Theorem 8: we will argue

that, under the assumption of the theorem, all the conditions that make Eq. (16) necessary

for p to be non-decreasing in ¢ are satisfied, but not Eq. (16) itself. Using the functional

forms u/(w) = v/(1)w? and V(S | W) = ¢W?, we need to prove the following:

(@) that g is increasing in ¢, namely that implicitly differentiating
g=u@Q)-E[(W+g+S5)7"-(W+q)] (26)

with respect to ¢ yields g’ > 0;
(b) Equation (17);
(c) that

Cov(U', W) _ Cov(U", W) Cov[U"” - V(S| W), W] Cov[UH - V(S| W),W]
an

EU)  © RO B[O V(S |WY - B[O V(S [W)]

two of the inequalities in Eq. (18), which in the case are

E(W+q)*-W] _ E[W +q) - W] (27)
E(W+q)?] — E[W+q) )] 7

and

=

B[(W +q)7*2 W)
B[V +q) 7 W7

(W + gy W]
(W +q) W]

=

(d) that

Cov[U" - V(S| W), W] . Cov(U", W)
E[gm-v(siw) —  E@W")

another one of the inequalities in Eq. (18), which is

E[(W+q) @™ - W?) E[W +q) ") - W]
E[(W +q)~+2) w2~ T E(W + q)~ 1]

; (29)

(e) that

Cov(U', W) . Cov[UM - V(S | W), W]
EW)  — [UH V(S [W)]

the final inequality in Eq. (18), which is

E[W +q)*-W] _ E(W +q) 9 W?] o
E[(W+q) f] ~ B[W+q) ¢ W 3

under the functional forms; and

(f) that Eq. (16) fails, namely that

E(W +q)" - W] _E[W +q) .- W]
E(W+q)f] ~ E[W+q) 2 -w2]
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Of course, we proceed one by one:

(a)

From Eq. (26), by the implicit function theorem ¢’ equals the product of
u'(1)
E[L+p(W +q+8)) - (W +q) — (W +q+ )7

and
EgdiE[(WJqurS)_P ] W]-(W+q)§, (%)

so long as the denominator on the former expression is non-zero. We actually want
that denominator to be strictly positive, which is the case, since p> 0, W + g > 0 with
probability one by assumption, and

p(w+q) 1

p(w+q)>0®1+(w+q+s)f’+1 > CErEn

Since u/(1) > 0, it follows that the term in Eq. () is strictly positive.

That the term in Eq. (++) is also positive is immediate, since (w 4+ g+ 5) is strictly
convex in s, and an increase in ¢ is a mean-preserving spread of S given W.

For Eq. (17), it suffices for us to argue that v”/(W +¢) - V(S | W) and W are anti-
comonotone with probability one. Letting the function

N(w)=u"(w+q) V(S| W =w)=0p(p + 1)u/(1)w?,

we have that 7/(w) < 0 so long as w > 2g/p. Since g < ¢/2inf W, by assumption, we have
that this inequality holds with probability 1, as needed.

Define now the function

h(n) = E[(W +q)™ W]
n= E[(W +q) 7-Wm 1]

over n > 0, given any m > 0. For Eqgs. (277) and (28), it suffices to observe that q is
non-increasing in n.

By direct computation, h'(n) <0 if, and only if,
E[(W +q)™"- W™ In(W +q)]- E[(W +q)7"- W]

is at least as large as
E[(W+q)™- W™ In(W +q)] - E[(W +q) - W™].

Letting random variable V' be i.i.d. with W, this is the requirement that
EJW —V)- (VW)™ [(V 4+ q)(W +q)] " In(W + g)} = 0.

This expectation is proportional, by a factor of Pr(V # W)/2, to the sum of

B0V V) (VI [V 4 )W + ) W+ q) [V = W
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and

EJW —V)- (VW)™ [(V 4+ q)(W +q)] ™ In(W +q) |V < W},
Since V and W follow the same distribution, the latter is

EJ(V =W)- (VW)™ [(V +q)(W +q)] " In(V +q) | V> W},
so the sum equals

EJW V) (VW)™ [(V + )W +q)] ™" [In(W +q) —In(V +)] | V > W{,
which is, indeed, non-negative.
Note that Eq. (29) is equivalent to the requirement that

E[(W +q) ¢ IW3] - E[(W + q)~ ¢ V] > E[(W +q)"¢IW 2 E[(W +q)~ W],

With V defined as above, this is

VQ WQ
gV [(V + )W +q)) e+ (m—WJrq)gzO,

or

VQ WQ
Eg(V—W)-[(V+q)(W+q)] (e+d). (V+q—W+q) ‘V>W220.

In order to guarantee this, we need to argue that

2 2

v w

z )
v+qg wHqg

U>Ww>

or, equivalently, that the ratio w?/(w + q) is non-decreasing for w € W. By direct
computation, this is true since W SR, and g > 0.
Using the same technique, Eq. (30) is equivalent to the requirement that

BV =W)-W2-(V +q)7- (W +q) ] =0,

or, equivalently, that

E%(V—W)-[(V+q)(W+q)]P-( LA )‘V>W%zo.
W+q)P® (V+q)?

For this, it suffices that the ratio w?/(w + q)3 be non-increasing at all w € W. This is
guaranteed, indeed, by the assumption that g <1/2inf W.

Finally, note again that Eq. (31) is equivalent to
E[(V-W)- V2 (V+q) W +¢)7F] >

or

E%(V—W)-[(V+q)(W+q)]—P. v:_ W )‘xuwgzo
Viq? (WiqP

For this inequality to hold true, it suffices that w/(w + g) be non-increasing at all
w € W, which is true since W C R, and g > 0. O
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