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guishing their separate roles is important in empirical research. For example, the direction of

spillover between two groups (such as banks and industrial sectors linked in a bipartite graph)

has important economic implications, and a researcher may want to learn which direction is

supported in the data. For this, we need to have an empirical methodology that allows for both

directions of spillover simultaneously. In this paper, we develop a dynamic linear panel model

and asymptotic inference with large n and small T , where both directions of spillover are ac-

commodated through multiple networks. Using the methodology developed here, we perform

an empirical study of spillovers between bank weakness and zombie-firm congestion in indus-

trial sectors, using firm-bank matched data from Spain between 2005 and 2012. Overall, we

find that there is positive spillover in both directions between banks and sectors.
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1. Introduction

Many economic outcomes, such as profits of firms or performance of students, evolve over

time, producing spillover effects on other units over multiple large networks. Each net-

work captures a distinct aspect of the relationship between units, and serves as a channel

of spillover effects between them. A researcher may want to investigate the statistical signif-

icance of spillover effects separately for each network. One prominent example is a setting

with two directed bipartite networks between two groups of cross-sectional units, where one

network represents a channel of spillover from one group to the other, and the other network

represents its opposite direction. A researcher may want to see which direction of spillover is

empirically supported. For this, she needs to find an empirical methodology that allows for

both directions of spillovers simultaneously.

Our paper is motivated by one important area of empirical research which concerns the

spillover that arises between banks and firms.1 Banks and firms are naturally interconnected

through their lending relationships and as such heavily influence one another. Bank health,

for one, can be a powerful determinant of firm performance. For example, banks with weak

balance sheets may cut lending to their borrowers, thereby depriving them of the funds they

need to operate and to invest. Firm performance, in turn, can act as an important driver of

bank health: when firms miss payments on their loans, the banks issuing those loans suffer

losses which put them in a worse financial position. In this setting, establishing which direc-

tion of outcome propagation is significant has important policy implications. If the direction

pointing from the banking sector to the real sector is significant, then this makes the case for

having prudential regulation in place which ensures that banks are well capitalized and able

to absorb shocks to their balance sheets. If, additionally, the spillover from the real sector to

the banking sector is significant, then policies that foster a more dynamic business environ-

ment might prove beneficial. This includes making it easier for incumbent firms to adjust the

scale of their activity, as well as facilitating the exit of inefficient firms. These goals could be

achieved, for example, by reducing factor adjustment costs and reforming insolvency regimes.

In this paper, we focus on a dynamic linear panel model where the spillover effects are

captured by averages of past outcomes of neighbors across network measurements. For the

empirical applications we have in mind, the spillover effects along a network are often de-

tected through the correlation between the outcome of a unit in one period and its neighbors’

outcomes in the previous period, after controlling for covariates. However, such correlation

1There is a large and growing empirical literature exploring the real economic effects of bank distress. See,
for example, Peek and Rosengren (2000), Khwaja and Mian (2008) and Chodorow-Reich (2014) for seminal
contributions.
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can arise simply through time effects that are specific to the cluster that those units jointly be-

long to. For example, the outcomes of two firms can be correlated because they belong to the

same industrial sector and there have been industry-specific demand shocks over time. This

correlation between firms has nothing to do with the spillover effects between firms along

a network, and yet contributes to the spillover effects measured through such correlations.

To separate out cross-sectional correlation due to clusters, we include cluster-specific time

effects and define the spillover effect to be one that is due to the spatio-temporal variations

of outcomes net of cluster-specific time averages of the outcomes.

Employing the Helmert transform of Arellano and Bover (1995), we develop an estimation

procedure of the parameters and asymptotic inference on those parameters. Our method of

estimation and inference is simple and does not involve any numerical optimization. We also

propose a simple multiple testing procedure to detect the direction of spillover effect between

two groups while controlling for the familywise error rate (FWER) asymptotically. From an

extensive Monte Carlo simulation study, we find that the asymptotic inference performs very

well, over a wide range of network configurations.

Using the methodology developed in this paper, we perform an empirical study of spillover

between banks and industrial sectors using data from Spain. One of the most striking mani-

festations of the close interdependence between banks and firms is the existence of so-called

zombie firms. These are firms which are known to be in financial distress but are artificially

kept alive by weak banks seeking to avoid, or at least postpone, further damaging their bal-

ance sheets by realizing the losses caused by these firms. The practice of extending credit to

zombie firms, also known as loan evergreening, was first documented in the context of Japan’s

“lost decade” and has attracted renewed attention in light of the weak economic recovery in

Europe following the global financial crisis and the subsequent sovereign debt crisis.2

Keeping zombie firms afloat can have adverse spillover effects on the rest of the economy by

inhibiting the movement of resources from less productive to more productive uses. Indeed,

a number of recent studies provide evidence linking an increase in zombie-firm congestion to

2For early evidence from Japan, see Peek and Rosengren (2005), Caballero, Hoshi, and Kashyap (2008) and
Giannetti and Simonov (2013). For more recent evidence from Europe, see Acharya, Eisert, Eufinger, and
Hirsch (2019), Blattner, Farinha, and Rebelo (2019) and Schivardi, Sette, and Tabellini (2022). For a recent
survey of the theoretical and empirical literature on zombie lending, see Acharya, Crosignani, Eisert, and Steffen
(2022).
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a deterioration in sector-level competition, innovation, and productivity-enhancing realloca-

tion.3 These findings are particularly worrisome, given that sclerotic business environments

with a high degree of resource misallocation have been shown to contribute to sizable losses

in aggregate productivity.4

Motivated by this discussion, we choose to focus our empirical application on the rela-

tionship between bank health and zombie-firm congestion in narrow sectors of activity. Our

application is thematically related to a large body of research on the real effects of the bank

lending channel, however, we depart from this literature in important methodological ways.

Much of the literature has focused on one direction in the causal link, namely the one orig-

inating from banks. A common approach in this literature has been to identify exogenous

shocks to bank health and trace their effect on bank lending and various types of real eco-

nomic activity.5 What makes such an approach challenging is the possibility that, regardless

of one’s definition of a fragile bank, the composition of the bank’s borrower pool contributed

to that fragility.

Our framework allows us to take a more general approach which differs from the previ-

ous empirical literature in two crucial ways. First, we are able to separately measure both

directions of spillover – from sectors to banks and from banks to sectors – and to determine

whether the effect is significant in either or both directions. Second, our analysis is not con-

tingent on a singular source of exogenous variation, such as a crisis or an unexpected policy

announcement. To our knowledge, ours is the first empirical application to jointly estimate

both directions of outcome spillover between the banking sector and the real sector and take

a stand on their joint significance.

We use firm-bank matched data from Spain between 2005 and 2012 to construct a measure

of zombie congestion at the 3-digit sector level based on firms’ interest coverage ratios and a

measure of bank weakness based on reported loan loss provisions. Using directed networks,

which capture the dependence between banks and sectors, we implement our estimator and

test for the presence of spillover effects between zombie-firm congestion and bank fragility

along these networks. We find sizable and significant positive spillover in both directions: a

3For example, Acharya, Eisert, Eufinger, and Hirsch (2019) document a reduction in employment growth and
investment of non-zombie firms in industries with a high presence of zombie firms in the euro area. Adalet Mc-
Gowan, Andrews, and Millot (2018) additionally find high zombie congestion to be linked with less productivity-
enhancing capital reallocation in an international cross-country sample. Schmidt, Schneider, Steffen, and Streitz
(2020) present evidence from Spain which shows capital misallocation from zombie lending to adversely impact
output, competition, and patent applications.
4See Hsieh and Klenow (2009) and, more recently, Gopinath, Kalemli-Ozcan, Karabarbounis, and Villegas-
Sanchez (2017).
5For example, Peek and Rosengren (2000), Khwaja and Mian (2008), Chodorow-Reich (2014), Bentolila,
Jansen, and Jiménez (2018) provide evidence that a decline in bank health can cause banks to contract lending,
raise rates, and/or have an impact on foreign markets or employment.
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one standard deviation increase in the sector-level zombie share increases banks’ loan loss

provisions ratio by about 8.7 p.p. At the same time, weaker banks lead to an increase in the

prevalence of zombie firms: an increase of 8.7 p.p. of the loan loss provision ratio leads to a

1.2 p.p. increase in the share of a sector’s assets that are sunk in zombie firms.

Our results imply that bank fragility and inefficient resource allocation, as proxied by the

degree of zombie congestion, feed into and reinforce each other. From a policy perspective,

this means that a combination of prudential bank regulation and policies fostering a dynamic

business environment is needed to avoid aggregate productivity losses.

Literature Review

The literature of dynamic linear panel models with large n and small T has developed

various ways to accommodate fixed effects by transforming linear models. (See Chamberlain

(1984) and Arellano and Honoré (2001) for an overview of this literature.) Our method

relies on the transform suggested by Arellano and Bover (1995). See Hayakawa (2009) for

a related study of efficient instrumental variables. Our cluster-specific time effects can be

viewed as a special case of interactive effects, where we impose equality among the factor

loadings in the same cluster. See Holtz-Eakin, Newey, and Rosen (1988) and Ahn, Lee, and

Schmidt (2001), and more recently, Kuersteiner and Prucha (2020). The literature of linear

panel models with interactive effects has also developed asymptotic theory with large n and

large T . (See Fernandez-Val and Weidner (2018) for a review of the related literature. See

also Shi and Lee (2017) for a spatial dynamic panel model with interactive effects.)

Econometric models that allow for spillover effects over cross-sectional units and cross-

sectional dependence have been developed in the literature. (The literature is vast. We refer

the reader to Lee (2004), Lee and Yu (2010), Lee, Liu, and Lin (2010), Kuersteiner and

Prucha (2013) and Kuersteiner and Prucha (2020) and references therein.) The perspective

of spillover effects realizing along multiple networks has received attention in the literature.

Egami (2021) developed methods of sensitivity analysis when there are unobserved networks

that capture part of the spillover effects. Drukker, Egger, and Prucha (2022) proposed as-

ymptotic analysis of estimation and inference procedures in a linear spatial model, which

accommodates multiple networks.

To the best of our knowledge, the proposal of Kuersteiner and Prucha (2020) covers the

most general class of linear panel models accommodating interactive effects, lagged depen-

dent variables and spatial dependence both in the explanatory variables and errors within

the large n and small T framework. They proposed a generalized version of the Helmert

transform in Arellano and Bover (1995), and developed asymptotic theory as n→∞ while

T is fixed. While the main focus of Kuersteiner and Prucha (2020) was to develop general

asymptotic inference that covers a wide range of linear panel models, our paper pursues a
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more parsimonious model which is motivated by an area of empirical research on spillover

along multiple networks, where each network carries a distinct economic interpretation as a

channel of causal effects among cross-sectional units. As such, the estimation and inference

procedures and the techniques used for the development of asymptotic theory are different

from those of Kuersteiner and Prucha (2020).

Our paper is organized as follows. In the next section, we present a linear panel model

of spillover along multiple large networks. We also demonstrate how this model can be ex-

tended to accommodate the spillover effects between two groups of cross-sectional units. In

Section 3, we introduce the estimation and inference procedures, and provide conditions un-

der which the procedures are asymptotically valid. We also develop the method of inference

on the direction of spillovers using a multiple testing procedure and show that it controls the

FWER asymptotically. In this section, we present results from our Monte Carlo simulation

study which show that the inference procedures perform well across a wide class of network

structures. In Section 4, we apply our methods to the empirical analysis of spillover effects

between firms and banks in Spain. In Section 5, we conclude. The mathematical proofs of

the asymptotic inference results and further results on the empirical study are found in the

Supplemental Note.

2. Spillover along Multiple Large Networks

2.1. A Linear Panel Model of Spillover along Networks

Let us first present a dynamic linear panel model that can be useful to study the spillover

of outcomes over multiple large networks. Later we extend our model to one that enables

us to study the direction of spillover effects between two groups of cross-sectional units.

We assume that there are L observed large networks over a set N of cross-sectional units,

where each network evolves over time. Each cross-sectional unit may represent a person, a

household, or a firm, depending on the application. The networks may represent friendship

among people or business relations among firms. There are multiple networks capturing

such relations, where each network captures a distinct aspect of the relationships, but the

researcher does not know along which set of networks the spillover effects realize.6 For each

unit i, we denote Nt−1,`(i) to represent the in-neighborhood of unit i in the `-th network in

6This lack of knowledge leads to ambiguity about the networks. Our paper does not necessarily view the net-
works as multiple proxy measurements of a single underlying network. Instead, each network reflects a distinct
aspect of the relationship between cross-sectional units. Estimating the spillover effects with no or partial knowl-
edge of the network structure has received attention in the literature of statistics and econometrics. For example,
see Choi (2017), de Paula, Rasul, and Souza (2020), Zhang (2020), Lewbel, Qu, and Tang (2021), and He and
Song (2022).
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time t. That is, the set Nt−1,`(i) represents the set of units j whose outcome influences the

outcome of unit i. We assume that i /∈ Nt−1,`(i) for each i and `, so that each unit is not its

own neighbor.

Separately from the spillover effect through the networks, each unit i belongs to a cluster

and is subject to time-varying cluster-specific common shocks. For example, the correlation

between two firms’ performance may come from network effects due to their direct inter-

dependence, or just from sector-specific macroeconomic common shocks which affect the

outcomes of all the firms in the sector. It is important to distinguish between the network

effects and sector-specific, time-varying common shocks.

For each cross-sectional unit i, the cluster index is given by µ(i) ∈ {1, ..., c}, so that the

equality µ(i) = c indicates that the unit i belongs to cluster c. Similarly as in the network

notation, we denote the set of units in the same cluster as i by:

NC(i) = { j ∈ N : µ(i) = µ( j)} .(2.1)

(The subscript C in NC(i) is mnemonic for “cluster”.) Throughout this paper, we regard the

networks as random but the cluster structure as non-random.7

Suppose that there is a random variable yi,t representing a continuous outcome for cross-

sectional unit i in time t. We define

yC
i,t =

1
|NC(i)|

∑

j∈NC (i)

y j,t ,(2.2)

which is the cluster average of outcomes. We assume that yi,t ’s are generated as follows:

yi,t = α0 yi,t−1 + Y
>
i,t−1β0 + X>i,tγ0 + ui,t ,

where

y i,t−1,` =
1

|Nt−1,`(i)|

∑

j∈Nt−1,`(i)

(y j,t−1 − yC
j,t−1),(2.3)

and Y i,t−1 = [y i,t−1,1, ..., y i,t−1,L]
>, and ui,t are error terms. (The summation over Nt−1,`(i) is

taken to be zero, if Nt−1,`(i) is empty.) Hence y i,t−1,` is the average of the previous period

mean-deviated outcomes of unit i’s neighbors according to the `-th network. The mean de-

viation is taken to ensure that the parameter β0 correctly captures the network effect, after

controlling for cluster-specific time effects. We will explain this below. It is worth noting that

the covariate vector, X i,t , can contain lagged covariates.

7We assume a time-invariant cluster structure only for the sake of simplicity. Our framework allows for the case
where the cluster structure is time-varying so that µt(i) = c represents that unit i belongs to cluster c in time
t, by modifying the definition of filtration later appropriately. The estimation and inference procedures remain
the same.
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We assume that the error term ui,t is decomposed as follows:

ui,t = vi + fi,t + εi,t ,(2.4)

where

fi,t =
c
∑

c=1

1{µ(i) = c}πt,c.(2.5)

The error term (2.4) consists of three components: vi, fi,t and εi,t . The first component vi rep-

resents time-invariant fixed effects. The term εi,t represents unobserved idiosyncratic effects

which are independent across cross-sectional units and time, conditional on the past values

of other random variables and X i,t ’s and networks. (We will make clear this conditioning

on the past values.) The term fi,t represents cluster-specific time effects. For example, each

cluster represents an industry sector and πt,c captures sector-specific common shocks which

are time-varying.

In many applications, the main parameter of interest is β0. The `-th entry of the parameter

vector β0 captures the spillover effect along the `-th network. The model is useful especially

when the researcher does not know which network plays a major role in the spillover of out-

comes. The model, once properly extended, is also useful when she is interested in exploring

the direction of influence between two groups of cross-sectional units. We will demonstrate

this in our empirical application.

The subtraction of yC
i,t−1 in (2.3) distinguishes our model from existing models in the liter-

ature, and requires explanation. The subtraction is made to remove any cumulative cluster-

specific time effects reflected in neighbors’ outcomes. First, let us write

1
|Nt−1,`(i)|

∑

j∈Nt−1,`(i)

y j,t−1 =
1

|Nt−1,`(i)|

∑

j∈Nt−1,`(i)

(y j,t−1 − yC
i,t−1) +

1
|Nt−1,`(i)|

∑

j∈Nt−1,`(i)

yC
i,t−1.

When Nt−1,`(i) 6= ∅ for all i ∈ N , the last term is essentially equal to yC
i,t−1 which can be

absorbed into the cluster time effect fi,t . However, when there are isolated nodes, the last

term cannot be absorbed into the cluster-specific time effects πt,g , and has a cross-sectional

variation within the same cluster, because it is the same as

yC
i,t−11{Nt−1,`(i) 6=∅},

which varies if some units in the same cluster are isolated and others are not. However, this

variation has nothing to do with the neighbors’ outcomes. Hence without subtracting cluster

means, the coefficient β0 would capture not only the effect of variations in the neighbors’

average actions but also variations in the non-emptiness of neighborhoods, which makes
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FIGURE 1. The Causal Diagram of Network Formation and Outcome Realiza-
tion in the Case of Time-Varying Networks

Gt-2 y-i,t-2

!𝑌i,t-2

yi,t-2

Gt-1 y-i,t-1

!𝑌i,t-1

yi,t-1

Gt y-i,t

!𝑌i,t

yi,t

Notes: The figure shows the causal diagram of the networks and outcomes. Here each solid arrow indicates
the causal direction between variables and networks. The notation Gt denotes the set of networks at time t,
which is affected by the previous outcome yi,t−1. The dotted arrow simply represents that Y i,t is constructed
from Gt and y−i,t = (y j,t) j 6=i . The thick solid arrow from Y i,t−1 to yi,t represents the spillover effect. In this
case, we assume that the network Gt is formed based on yt−1, not on yt . Since we do not allow for yt to
influence the formation of the network Gt (except through the fixed effects), we allow the endogeneity of
network formation to arise only through the fixed effects in this case.

it hard to interpret β0 as a measure of spillover effect along the networks. Therefore, we

consider the form with subtracting yC
i,t−1.8

In contrast to the outcome generation, we consider a generic model of evolution of net-

works over time. First, define for each i ∈ N and t,

Vi,t−1 =
�

yi,t−2, X>i,t−1, vi, fi,t−1,ηi,t−1

�>
,(2.6)

where ηi,t−1 is a time-varying idiosyncratic shock that is independent of εi,t−1’s. Let V be the

space from which Vi,t−1 takes values. For the network Gt−1,`, we assume that the link from j
to i is formed if and only if Di j,t−1,` = 1, where

Di j,t−1,` = ϕt,`

�

Vi,t−1, Vj,t−1

�

,

where ϕt,` : V × V → {0,1} is a nonstochastic, time-varying map. Therefore, the network

is formed based on the fixed effects and all the previous-period variables that are observed

or unobserved. For example, our model accommodates the situation where a firm to bank

8The mean deviation form is still required even if we focus on a single cluster setting, i.e., including only time
effects. In this case, we need to consider subtracting the time average of the outcomes.



10

relation is revised in every period, based on their previous period’s performance.9 Throughout

the paper, we do not make a further specification of the functional form of ϕt,` other than

noting that it needs to generate sparse enough networks so that our asymptotic theory works.

(The causal relations between outcome variables and networks are depicted in Figure 1.)

2.2. Extension: Direction of Spillover Between Banks and Firms

Let us explain how our model can be extended to study the direction of spillovers between

two groups of cross-sectional units. First, suppose that the set of cross-sectional units N is

divided into two groups

N = NB ∪ NF ,(2.7)

where we call NB the set of “banks” and NF the set of “firms”. We assume that a bank and a

firm cannot be in the same cluster, that is, the cluster structure is a refinement of the partition

(2.7).

At each time t, each node i is associated with an outcome variable yi,t . As before, the

causal relationship between the variables at each time t is expressed by a set of observed,

directed networks whose neighborhoods of a unit i are written as Nt−1,`(i), ` = 1, ..., L. For

each node i which is either a bank or a firm, we define two in-neighborhoods, one consisting

of banks and the other consisting of firms:

Nt−1,`,B(i) = { j ∈ NB : j ∈ Nt−1,`(i)}, and

Nt−1,`,F(i) = { j ∈ NF : j ∈ Nt−1,`(i)}.

Hence the set Nt−1,`,B(i) denotes the set of banks whose outcome at time t − 1 potentially

influences the outcome at time t of node i according to network `, and similarly, the set

Nt−1,`,F(i) the set of firms whose outcome at time t − 1 potentially influences the outcome at

time t of node i according to the `-th network.

Our primary interest is in the direction of spillover effects between the outcomes of banks

and those of firms. To investigate this, let us consider the following linear model. For each

i ∈ N , we specify the outcomes to be generated as follows:

yi,t =











yi,t−1αB + Y
>
i,t−1,BβBB + Y

>
i,t−1,FβFB + X>i,tγB + ui,t , if i ∈ NB,

yi,t−1αF + Y
>
i,t−1,BβBF + Y

>
i,t−1,FβF F + X>i,tγF + ui,t , if i ∈ NF ,

(2.8)

9Note that while our model can accommodate time-varying networks, the data we employ in our empirical
application only allows for static network definitions.
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where Y i,t−1,B = [y i,t−1,1,B, ..., y i,t−1,L,B]
>, and Y i,t−1,F = [y i,t−1,1,F , ..., y i,t−1,L,F]

>,

y i,t−1,`,B =
1

|Nt−1,`,B(i)|

∑

j∈Nt−1,`,B(i)

(y j,t−1 − yC
j,t−1), and

y i,t−1,`,F =
1

|Nt−1,`,F(i)|

∑

j∈Nt−1,`,F (i)

(y j,t−1 − yC
j,t−1).

Here we specify ui,t as in (2.4). The parameter βBF captures the impact of the average out-

comes of the banks linked to a firm at time t−1 on the firm’s outcome at time t, similarly βFB

that of the average outcomes of the firms linked to a bank at time t−1 on the bank’s outcome.

By computing the joint confidence region for (βBF ,βFB), we can check whether the spillover

works in only one direction and if so, which direction. In a later section, we provide details

on this procedure. We apply this procedure to the investigation of the relation between firms

and banks in Spain in our empirical application.

It is important to note that the outcomes do not need be of the “same type” for banks

and firms. This flexibility is crucial when analyzing firms and banks because these are very

different types of entities and important characteristics defining one group may not be well

defined for the other. For example, for banks, we can take yi,t to be bank health, as measured

by loan loss provisions – a variable which has no natural counterpart on the firm side –

whereas for firms, we can take yi,t to be firm health, as measured by the firm’s zombie status

– a concept which solely applies to firms. In this case, the parameter βBF captures the spillover

effect from the previous period’s bank health on the health of its linked firms, where “health”

has a different meaning for firms than it does for banks.10

3. Estimation and Inference

3.1. Estimation and Inference

In this section, we focus on the extension in Section 2.2 and explain the estimation and

inference procedure. First, we write the dynamic panel model compactly as

yi,t =W>
i,tδi + ui,t ,(3.1)

10Productivity is another prominent example of a concept which is only applicable to firms and which is highly
related to bank performance. Our framework can accommodate analyzing the spillover between the health of
the banking system and firm productivity and hence shed light on aggregate productivity dynamics.
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where Wi,t = [yi,t−1, Y
>
i,t−1,B, Y

>
i,t−1,F , X>i,t]

>, and

δi =







δB ≡ [αB,β>BB,β>FB,γ>B ]
>, if i ∈ NB

δF ≡ [αF ,β>BF ,β>F F ,γ>F ]
>. if i ∈ NF .

Hence the parameter vector δi takes a different value depending on whether the unit i is a

bank or a firm. We construct an estimator of δ ≡ [δ>B ,δ>F ]
> using subgroup units as follows.

First, we define cluster-specific averages:

Y C
i,t =

1
|NC(i)|

∑

j∈NC (i)

y j,t , W C
i,t =

1
|NC(i)|

∑

j∈NC (i)

Wj,t , and uC
i,t =

1
|NC(i)|

∑

j∈NC (i)

u j,t .(3.2)

We combine the Helmert transform in Arellano and Bover (1995) with the between-group

operation in panel models to transform variables as follows:

yH
i,t =

T
∑

s=t

hs,t

�

yi,s − yC
i,s

�

,

W H
i,t =

T
∑

s=t

hs,t

�

Wi,s −W C
i,s

�

, and

uH
i,t =

T
∑

s=t

hs,t

�

ui,s − uC
i,s

�

,

where hs,t ’s are constants defined as

hs,t =















√

√ T − t
T − t + 1

, if s = t

−
1

p

(T − t)(T − t + 1)
, if s = t + 1, ..., T.

The Helmert transform is useful because it removes any serial correlation in the errors (in-

cluding fixed effects), and facilitates the analysis of the asymptotic validity of the inference.

Let Zi,t be a dZ -dimensional vector of instrumental variables, dZ ≥ dW , where dW denotes

the dimension of Wi,t . There are multiple ways to choose instrumental variables in our frame-

work. We will discuss this in more detail later. (Conditions for Zi,t are summarized in As-

sumption 3.2 below.)
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We define nB = |NB| and nF = |NF |, so that nB denotes the number of banks and nF the

number of firms in the sample. For K ∈ {B, F}, we construct

Ât,K =
1
nK

∑

i∈NK

T
∑

s=t

hs,t(Zi,t − ZC
i,t)(yi,s − yC

i,s),

B̂t,K =
1
nK

∑

i∈NK

T
∑

s=t

hs,t(Zi,t − ZC
i,t)(Wi,s −W C

i,s)
>, and

Ût,K =
1
nK

∑

i∈NK

T
∑

s=t

hs,t(Zi,t − ZC
i,t)(ui,s − uC

i,s),

where

ZC
i,t =

1
|NC(i)|

∑

i∈NC (i)

Zi,t .

By construction, we have

Ût,K =
1
nK

∑

i∈NK

T
∑

s=t

hs,t(Zi,t − ZC
i,t)εi,s.

Hence the Helmert transform eliminates the fixed effects vi. The between-group transforma-

tion eliminates the cluster-specific time effects.

We let

ÂK =
T−1
∑

t=1

Ât,K , and B̂K =
T−1
∑

t=1

B̂t,K(3.3)

and define our initial estimator of δK to be

δ̃K =
�

B̂>K B̂K

�−1
B̂>K ÂK .

Using this, we define ûH
i,t,K = Y H

i,t −W H>
i,t δ̃K , and let

Ω̂K =
1
nK

∑

i∈NK

�

T−1
∑

t=1

(Zi,t − ZC
i,t)û

H
i,t,K

��

T−1
∑

t=1

(Zi,t − ZC
i,t)
>ûH

i,t,K

�

.

Then, we take our estimator of δK , K ∈ {B, F}, as

δ̂K =
�

B̂>K Ω̂
−1
K B̂K

�−1
B̂>K Ω̂

−1
K ÂK .

As we show later, we have




p
nB V̂−1/2

B (δ̂B −δB)

p
nF V̂−1/2

F (δ̂F −δF)



→d N (0, I) ,



14

where for K ∈ {B, F},

V̂K =
�

B̂>K Ω̂
−1
K B̂K

�−1
.(3.4)

From the asymptotic normality result, we can obtain the standard error for the j-th parameter

of δB and δF respectively as follows:

σ̂B, j =

Ç

e>j V̂Be j
p

nB
, and σ̂F, j =

Ç

e>j V̂Fe j
p

nF
,

where e j denotes the column vector of zeros except for its j-th entry which is one. Thus, for

each K ∈ {B, F} and α ∈ (0,1), the level (1− α) confidence interval for the j-th parameter

δK , j of δK is given by
�

δ̂K , j −
c1−α/2σ̂K , j
p

nK
, δ̂K , j +

c1−α/2σ̂K , j
p

nK

�

,

where c1−α/2 denotes the (1− α/2)-percentile of the standard normal distribution, and δ̂K , j

denotes the j-th entry of δ̂K .

3.2. Instrumental Variables

In this subsection, we discuss various choices of instrumental variables that can be used in

practice. (Again, the general conditions for the instrumental variable are given in Assumption

3.2 below.) The first practical choice is a simple one which takes Zi,t =Wi,t for all t = 1, ..., T .

While this simple choice is valid in our context, we may improve the accuracy of the estimator

by choosing alternative instrumental variables.

The following IV is motivated by the optimal IV of Arellano (2003). We consider the fol-

lowing:

Zi,t =

�

∑

j∈N

W H
j,tϕ

>
j,t

��

∑

j∈N

ϕ j,tϕ
>
j,t

�−1

ϕi,t ,

where ϕ j,t = ϕt(Wj,t−W C
j,t), for some function ϕt : RdW → Rdr for some dr ≥ dW . The choices

of ϕt in practice can be as follows.

(A) ϕt(w j,t) = w j,t .

(B) ϕt(w j,t) = [w>j,t , w2
j,t,1, w2

j,t,2, ...., w2
j,t,dW
]>.

(C)

ϕt(w j,t) =











[w>j,t , w2
j,t,1, w2

j,t,2, ...., w2
j,t,dZ
]>, if t = 1

[w>j,t , w2
j,t,1, w2

j,t,2, ...., w2
j,t,d , w2

j,t−1,1, w2
j,t−1,2, ...., w2

j,t−1,dZ
]>, if t > 1.
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One may include higher order polynomial terms in the definition of IV, but this may induce

a severe finite sample bias. In the context of a panel model with cross-sectionally independent

observations, the optimal choice of IV has been studied in the literature. (See Donald and

Newey (2001) for a general treatment of this problem when there are many choices available

for IVs.)

3.3. Inference on the Direction of Spillover Between Banks and Firms

Let us turn to the problem of detecting the direction of spillovers between banks and firms.

Our parameters of focus are now βFB which captures the spillover from firms to banks and βBF

which captures the spillover from banks to firms. For simplicity, we assume that βFB,βBF ∈ R.

We are interested in testing the following multiple individual hypotheses:

H0,FB : βFB = 0, vs H1,FB : βFB 6= 0, and

H0,BF : βBF = 0, vs H1,BF : βBF 6= 0.

The null hypothesis H0,FB says that there is no spillover from firms to banks and similarly with

H0,BF . We follow Romano and Wolf (2005) and Romano and Shaikh (2010), and introduce

a simple step-down procedure to determine the rejection of the null hypothesis H0,J for each

J ∈ {FB, BF}, in a way that controls the familywise error rate asymptotically. For this we

proceed as follows.

First, we let d be the dimension of δ = [δ>B ,δ>F ]
>. Define δ̂ = [δ̂>B , δ̂>F ]

>. Let us introduce

two d-dimensional column vectors eFB and eBF such that

e>FBδ = βFB, and e>BFδ = βBF .

Hence the vectors eFB and eBF select out parameters βFB and βBF from δ. We also define

v̂2
FB = e>FB V̂eFB, and v̂2

BF = e>BF V̂eBF ,

where

V̂ =

�

V̂B 0

0 V̂F

�

,

and V̂K , K ∈ {B, F}, are defined in (3.4). Define

Q̂FB =
nBβ̂

2
FB

v̂2
FB

, and Q̂BF =
nF β̂

2
BF

v̂2
BF

.

Note that Q̂FB and Q̂BF are squared t-test statistics from β̂FB and β̂BF .
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Now we introduce a procedure to construct a set Ŝ ⊂ {FB, BF} such that when we reject

all the null hypotheses that are outside of this set Ŝ, our decisions are under familywise error

rate control asymptotically. For any τ ∈ (0, 1), we denote cτ to be the 100τ% percentile from

the distribution of χ2(1).

Step 1: Suppose that max
�

Q̂FB, Q̂BF

	

≤ cp1−α. Then, we set Ŝ = {FB, BF} and stop.

Step 2: Suppose that Q̂FB ≤ cp1−α, but Q̂BF > cp1−α. Then, we set Ŝ = {FB}. On the other

hand, suppose that Q̂FB > cp1−α, but Q̂BF ≤ cp1−α. Then, we set Ŝ = {BF}.

Step 3: Suppose that Ŝ = {FB} in Step 2. Then, if Q̂FB > c1−α, we reset Ŝ = ∅ and

otherwise we keep Ŝ = {FB}. On the other hand, suppose that Ŝ = {BF} in Step 2. Then, if

Q̂BF > c1−α, we reset Ŝ =∅ and otherwise we keep Ŝ = {BF}.

We use the set Ŝ to perform multiple hypothesis testing. More specifically, for each J ∈
{FB, BF}, we perform the hypothesis testing as follows:

Reject the null hypothesis H0,J if and only if J /∈ Ŝ.(3.5)

Following the literature of multiple testing (c.f. Lehmann and Romano (2005), Chapter 9),

let us define the familywise error rate (FWER) as follows:

FWERP = P
�

J /∈ Ŝ, for some J ∈ SP

	

,(3.6)

where SP ⊂ {FB, BF} is a subset such that J ∈ SP if and only if H0,J is true under P. Thus

the FWER is the probability of rejecting mistakenly at least one individual null hypothesis by

following the decision in (3.5) when the individual null hypothesis holds true under P. From

the asymptotic results below, we can show that

lim sup
nB ,nF→∞

FWERP ≤ α.

(See Theorem 3.2 below for a formal statement of this result.) Hence this testing procedure

controls the familywise error rate asymptotically.

3.4. Asymptotic Theory

In this section, we present the conditions and the results of asymptotic validity of the

confidence intervals we have proposed previously. Let us first introduce notation. For each

s = 1, ..., T , we define

Z̃i,s =
s∧(T−1)
∑

t=1

hs,t(Zi,t − ZC
i,t),
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and for K ∈ {B, F}, we let

ξs,K =
1
p

nK

∑

i∈NK

Z̃i,sεi,s.(3.7)

Define ÛK =
∑T−1

t=1 Ût,K and rewrite
p

nK(δ̂K −δK) =
�

B̂>K Ω̂
−1
K B̂K

�

B̂>K Ω̂
−1
K
p

nK ÛK .

We observe that (see Lemma 1.1 in the Supplemental Note)

p
nK ÛK =

T
∑

s=1

ξs,K , K ∈ {B, F}.

Hence after removing the fixed effects and cluster-specific time effects through the modified

Helmert transform, the random vector Z̃i,s serves now effectively as our instrumental vector.

It is useful to recall that

Z̃i,s =

√

√ T − s
T − s+ 1

(Zi,s − ZC
i,s) +

s∧(T−1)
∑

t=1

1
p

(T − t)(T − t + 1)
(Zi,t − ZC

i,t).

Hence Z̃i,s does not involve Z j,s, for j 6= i, and has moments bounded as long as Zi,s has

moments bounded uniformly over i.
For the development of the asymptotic theory, let us define Gt to be the σ-field generated

by the neighborhoods Ns,`,K(i), i ∈ N , `= 1, ..., L, K ∈ {B, F}, and s = 0,1, ..., t. We define

Ft = σ (Wt , ...,W0,εt−1, ...,ε0, ft , ft−1, ..., f0,Gt)∨F0,

with ft = ( fi,t)i∈N , Wt = (Wi,t)i∈N , Zt = (Zi,t)i∈N , and F0 = σ
�

(Yi,0, vi)i∈N

�

. The first set of

assumptions is concerned with the error terms εi,s.

Assumption 3.1. For each s = 1, ..., T , the following statements hold.

(i) εi,s’s are conditionally independent across i ∈ N given Fs.

(ii) E[εi,s | Fs] = 0 for all i ∈ N .

(iii) For each K ∈ {B, F}, there exists C > 0 such that for all nK ≥ 1,

max
i∈NK

E[ε4
i,s | Fs]≤ C .

(iv) For each K ∈ {B, F}, σ2
n,s,K ≡ E[ε2

i,s | Fs] is identical across i ∈ NK , and as nK →∞,

σ2
n,s,K →P σ

2
s,K ,

for some random variable σ2
s,K > 0 which is F0-measurable.

Assumption 3.1(i) says that once we condition on Fs, εi,s’s do not exhibit any cross-sectional

dependence. Hence the errors can still be cross-sectionally correlated through the variables
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contained in Fs. Assumption 3.1(iii) requires a conditional fourth moment condition for the

errors, uniformly over i ∈ N . Assumption 3.1(iv) allows for conditional heteroskedasticity for

εi,s, only if the heteroskedasticity arises through the conditioning variables in Fs. We allow

the conditional variance to be different across groups K ∈ {B, F}.
The second assumption below requires that the instrumental variables are approximated

by ones that are constructed from the contemporaneous or past values of Wi,t ’s.

Assumption 3.2. For each i ∈ NK , K ∈ {B, F} and t = 1, ..., T − 1, there exists a random

variable Z∗i,t such that

1
nK

∑

i∈NK








Zi,t − Z∗i,t










4
= oP(1), as nK →∞,(3.8)

and Z∗i,t is an Ft−1-measurable function of (Wi,t , Wi,t−1, ...., Wi,1).

This assumption is satisfied immediately if Zi,t =Wi,t or if one chooses Zi,t to be one based

on backward orthogonal deviation. For the IV’s based on the linear projection, we take

Z∗i,t =

�

∑

j∈N

E
�

W H
j,tϕ

>
j,t | Ft−1

�

��

∑

j∈N

E
�

ϕ j,tϕ
>
j,t | Ft−1

�

�−1

ϕi,t .

Then Assumption 3.2 is satisfied, as long as
�

∑

j∈N

W H
j,tϕ

>
j,t

��

∑

j∈N

ϕ j,tϕ
>
j,t

�−1

=

�

∑

j∈N

E
�

W H
j,tϕ

>
j,t | Ft−1

�

��

∑

j∈N

E
�

ϕ j,tϕ
>
j,t | Ft−1

�

�−1

+ oP(1),

and appropriate moment conditions hold.

The third condition below is a condition requiring the networks to be sparse enough.

Assumption 3.3. There exists ε > 0 such that for K ∈ {B, F}, as nK →∞,

max
t=1,...,T

max
i∈NK

�

�

�

�

�

L
⋃

`=1

Nt−1,`,K(i)

�

�

�

�

�

= OP ((log nK)
ε) .

A similar set of sparsity assumptions have appeared in the literature involving asymptotic

normal inference on network models.11

11For example, see Leung (2020) and Kojevnikov, Marmer, and Song (2021).
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The fourth set of assumptions is concerned with the limit of the components in the condi-

tional variance of the estimator δ̂. Using Z∗i,t in Assumption 3.2, we define

Z̃∗i,s =
s∧(T−1)
∑

t=1

hs,t(Z
∗
i,t − Z∗Ci,t ), with Z∗Ci,t =

1
|NC(i)|

∑

i∈NC (i)

Z∗i,t ,

and for K ∈ {B, F},

ξ∗s,K =
1
p

nK

∑

i∈NK

Z̃∗i,sεi,s.(3.9)

Define

Bn,K =
T
∑

s=1

1
nK

∑

i∈NK

E
�

Z̃∗i,sW
>
i,s | Fs−1

�

, and(3.10)

Ωn,s,K =
1
nK

∑

i∈NK

E
�

σ2
n,s,K Z̃∗i,s Z̃

∗>
i,s | Fs−1

�

, for each s = 1, ..., T,

where we recall σ2
n,s,K = E[ε2

i,s | Fs] for i ∈ NK . As for Bn,K and Ωn,s,K , we make the following

assumption.

Assumption 3.4. For K ∈ {B, F}, and s = 1, ..., T , the following holds.

(i) There exist c > 0 and n0 ≥ 1 such that for all nK ≥ n0,

λmin

 

1
nK

∑

i∈NK

E
�

Z̃∗i,s Z̃
∗>
i,s | Fs−1

�

!

> c,

where λmin(A) for any symmetric matrix A denotes the minimum eigenvalue of A.

(ii) As nK →∞,

Bn,K →P BK and Ωn,s,K →p Ωs,K ,

where both BK and Ωs,K are F0-measurable, and B>K BK and Ωs,K are nonsingular.

The assumption (i) requires that the “effective IVs”, Z̃∗i,s, are not redundant for large enough

sample size. While the convergence assumption (ii) may be replaced by some lower level con-

ditions, it appears that given the heterogeneity of conditional distributions, such convergence

seems necessary for the asymptotic validity of the inference procedure, and has often been

used in the literature in developing asymptotic theory with heterogeneously distributed ran-

dom variables. (For example, see Assumption EX of Kuersteiner and Prucha (2020).)

Lastly, we introduce conditions that control the conditional moments of the data.
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Assumption 3.5. There exist C > 0 and n0 ≥ 1 such that for K ∈ {B, F}, and for all nK ≥ n0,
T
∑

s=1

1
nK

∑

i∈NK

E
�

‖Z̃∗i,s‖
4 | Fs−1

�

≤ C , and
T
∑

s=1

1
nK

∑

i∈NK

E
�

‖Wi,s‖4 | Fs−1

�

≤ C .

Under these assumptions, we can obtain the asymptotic normality for the estimators δ̂B

and δ̂F as follows:

Theorem 3.1. Suppose that Assumptions 3.1-3.5 hold. Then, as nB, nF →∞,




p
nB V̂−1/2

B (δ̂B −δB)

p
nF V̂−1/2

F (δ̂F −δF)



→d N (0, I) .

The theorem shows that
p

nB V̂−1/2
B (δ̂B − δB) and

p
nF V̂−1/2

F (δ̂F − δF) are asymptotically

independent. Our next result shows that the testing procedure based on Ŝ controls the FWER

asymptotically.

Theorem 3.2. Suppose that Assumptions 3.1-3.5 hold. Let FWERP be as defined in (3.6). Then,

lim sup
nB ,nF→∞

FWERP ≤ α.

3.5. Monte Carlo Simulations

3.5.1. Data Generating Process. We consider a simulation study using the model of spillover

between firms and banks described in Section 2.2 above. Let us first explain the data gen-

erating process used in this study. In simulations, we choose nB = nF ∈ {500,5000}. For

the covariates, we simply draw X i,t i.i.d. from N(1, I) across i’s and t ’s, where 1 denotes the

vector of ones and X i,t is a p-dimensional random vector with p = 3.

As for the error components, we first generate fixed effects, vi, independently from N(1, 1).
For the clusters, we consider equal-size clusters for both banks and firms. In particular, we

consider the number of the clusters, c, to be from {10, 100} for banks and firms, and let

banks have the same number of clusters as firms. Thus when c = 100, the banks have 50

clusters and firms have 50 clusters each. Once cluster structures are determined, we generate

cluster-specific time effects πt,c which are drawn from N(1, 1) independently for each cluster

c and time t. Finally we generate idiosyncratic components εi,t from N(0, 1) independently

for each unit i and period t.
For the networks, we use graphs generated based on Barabási-Albert (BA) random graphs

with varied denseness, where we generate four BA graphs on the entire cross-sectional units,

with each graph representing links from firms to firms, firms to banks, banks to banks and
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TABLE 1. Network Characteristics.

Bank - Network.

BA 1 BA 5 BA 9
n 500 5000 500 5000 500 5000

maximum degree 63 144 132 452 198 644
average degree 3.91 3.99 19.23 19.92 34.51 35.85

Firm - Network.

BA 1 BA 5 BA 9
n 500 5000 500 5000 500 5000

maximum degree 76 117 149 368 253 626
average degree 3.91 3.99 19.22 19.92 34.52 35.85

Notes: The tables present the network characteristics of the networks used for the simulation study. Bank-
Networks refers to the overall characteristics of all units within a bank’s in-neighborhood, that is including
both firms and other banks. Analogously for the Firm-Networks. “BA-1”, “BA-5”, and “BA-9” represent
networks generated according to Barabási-Albert graphs with increasing denseness.

banks to firms. See Table 1 for the network characteristics used in this simulation study.

We generate outcomes yi,t according to the model in (2.8). In the generation, we take T ∈
{5,10}, and γK = 1 and αK ,βKK ′ ∈ {0,1} for K , K ′ ∈ {B, F}.

3.5.2. Results. We first focus on the two-sided testing problem of H0 : βFB = β̄FB against

H1 : βFB 6= β̄FB for some values of β̄FB we choose. For the test we use a two-sided t-test

based on our results of Theorem 3.1. We report the empirical rejection probabilities in Tables

2 and 3, and empirical familywise error rate (FWER) in Table 4, using 5000 Monte Caro

simulations.

Table 2 reports the finite sample rejection probabilities under the null hypothesis at levels

0.01, 0.05 and 0.10. First, we note that the finite sample size properties are all reasonably

good. As expected, when the sample size increases from n = 500 to n = 5000, the empirical

sizes get closer to the nominal sizes. When T increases from 5 to 10, we have a slight over-

rejection with the sample size n = 500, but this issue is alleviated when the sample size

increases. Most interestingly, the size properties do not exhibit much noticeable difference as

the network becomes denser. This suggests that our asymptotic inference performs well with

this set of networks.
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TABLE 2. Empirical Rejection Probabilities under the Null Hypothesis

β̄FB = 0, αB = αF = 0, and βBF = βBB = βF F = 0

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 0.065 0.070 0.062 0.061 0.063 0.063
500 (B) 0.055 0.064 0.066 0.062 0.074 0.067

(C) 0.068 0.063 0.065 0.059 0.066 0.066
(A) 0.053 0.057 0.050 0.047 0.054 0.050

5000 (B) 0.047 0.053 0.053 0.045 0.048 0.050
(C) 0.053 0.050 0.055 0.050 0.049 0.049

β̄FB = 1, αB = αF = 1, and βBF = βBB = βF F = 1

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 0.063 0.065 0.054 0.069 0.056 0.065
500 (B) 0.059 0.068 0.062 0.063 0.069 0.065

(C) 0.059 0.058 0.068 0.070 0.076 0.067
(A) 0.051 0.057 0.048 0.052 0.051 0.053

5000 (B) 0.050 0.048 0.049 0.055 0.050 0.050
(C) 0.049 0.051 0.056 0.050 0.059 0.052

β̄FB = 1, β̄BF = 0, with αB = αF = 1, and βBB = βF F = 0

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 0.053 0.060 0.048 0.058 0.057 0.065
500 (B) 0.065 0.069 0.070 0.071 0.069 0.074

(C) 0.068 0.067 0.078 0.076 0.091 0.079
(A) 0.042 0.043 0.047 0.057 0.057 0.053

5000 (B) 0.056 0.050 0.056 0.047 0.054 0.054
(C) 0.049 0.050 0.056 0.057 0.063 0.053

Notes: This table represents the empirical rejection probability under the null hypothesis that βFB = β̄FB,
where we choose β̄FB ∈ {0,1}. As before, “BA-1”, “BA-5”, and “BA-9” represent networks generated ac-
cording to Barabási-Albert graphs with increasing denseness. All tests were run under the nominal level
α = 0.05. The column Z represents the instrument choice taken as introduced in Section 3.2. The Monte
Carlo simulation number was 5,000.
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TABLE 3. Empirical Rejection Probabilities under the Alternative Hypothesis:
βFB = β̄FB +∆ at the Nominal Level 0.05, where ∆= 0.1.

β̄FB = 0, αB = αF = 0, and βBF = βBB = βF F = 0

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 0.999 1.000 0.642 0.957 0.425 0.778
500 (B) 0.999 1.000 0.638 0.956 0.433 0.788

(C) 1.000 1.000 0.646 0.963 0.428 0.790
(A) 1.000 1.000 1.000 1.000 1.000 1.000

5000 (B) 1.000 1.000 1.000 1.000 1.000 1.000
(C) 1.000 1.000 1.000 1.000 1.000 1.000

β̄FB = 1, αB = αF = 1, and βBF = βBB = βF F = 1

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 1.000 1.000 0.258 1.000 0.111 0.992
500 (B) 1.000 1.000 0.276 1.000 0.111 0.993

(C) 1.000 1.000 0.296 1.000 0.110 0.997
(A) 1.000 1.000 0.991 1.000 0.697 1.000

5000 (B) 1.000 1.000 0.991 1.000 0.709 1.000
(C) 1.000 1.000 0.989 1.000 0.716 1.000

β̄FB = 1, β̄BF = 0, with αB = αF = 1, and βBB = βF F = 0

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 0.200 0.761 0.065 0.323 0.064 0.251
500 (B) 0.310 0.897 0.081 0.330 0.071 0.261

(C) 0.372 0.955 0.074 0.367 0.068 0.268
(A) 0.556 1.000 0.380 0.991 0.339 0.983

5000 (B) 0.666 1.000 0.380 0.990 0.331 0.977
(C) 0.718 1.000 0.369 0.991 0.311 0.981

Notes: The table shows the empirical rejection probability under the alternative hypothesis that βFB =
β̄FB +∆ at the nominal level 0.05, where we choose β̄FB = 0 or β̄FB = 1, and ∆ = 0.1. As before, “BA-
1”, “BA-5”, and “BA-9” represent networks generated according to Barabási-Albert graphs with increasing
denseness. The Monte Carlo simulation number was 5,000. As expected, the power of the test increases
with the sample size. It is also worth noting that it also increases substantially as the time T increases from
T = 5 to T = 10. As the network becomes denser, the power decreases. It appears that instrument choices
(B) and (C) both fare best among our suggested instruments.



24

In Table 3, we present the empirical rejection probabilities under the alternative hypothesis

of the following form:

H1 : βFB = β̄FB +∆,

for numbers ∆> 0. We choose ∆ to be from {0.1,0.5} and use the test at the level 0.05. For

brevity, we report only the results with∆= 0.1. As expected, when the sample size increases

from n= 500 to n= 5000, the power of the test increases substantially. Also, it is interesting

to note that the power increases with the number of the time periods.

However, the power decreases with the denseness of the networks. Such a reduction in

power with denser networks has been observed in the literature. (See Kojevnikov, Marmer,

and Song (2021).) In many situations, the reduction in power happens due to an increase

in the cross-sectional dependence of the observations. This increase is reflected in the HAC

(Heteroskedasticity-Autocorrelation Consistent) estimation of the asymptotic variance, and

this estimator usually depends on the network. However, in our case, our asymptotic variance

estimator does not involve networks. Furthermore, even when all the parameters are set to

be zero, that is, there is no cross-sectional dependence created along the network, the power

of the test decreases with the denseness of the network. This suggests that the reduction

in power in this case is not due to the increase in the cross-sectional dependence of the

observations. In fact, this is due to the decrease in the variations of y i,t as the network

becomes denser. Recall that y i,t is the average of the outcomes of the neighbors of unit i.
When the size of the neighborhood increases, and the outcomes are weakly dependent and

distributionally similar, as in our simulation design, the law of large numbers can reduce the

variations of y i,t , as the network becomes denser, eventually, leading to the weak power. We

expect that this reduction in power will be alleviated when the heterogeneity in distribution

of the outcomes is large.

Finally, we investigate the finite sample performance of the multiple testing procedure

explained in Section 3.3. In particular we consider two settings. The first setting focuses on

the case with βFB = 0.0 and βBF = 0.5, so that we have SP = {FB}, and the second setting

focuses on the case with βFB = 0 and βBF = 0.0, so that we have SP = {FB, BF}. In Table 4,

we report the finite sample FWER of the multiple testing procedure, as the empirical average

of the incidence of Ŝ failing to contain SP as a subset. The results show that the finite sample

performance of the FWER is reasonable. When the sample sizes are large, the finite sample

FWER gets closer to its nominal counterparts.

Let us summarize our findings from the Monte Carlo simulation study. First, the finite

sample size properties of the tests are quite stable, regardless of the denseness of the networks

used in this study. However, when the network becomes denser, the power of the tests gets

weaker, and this is mostly due to the reduced variation of the prior average outcomes over
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TABLE 4. Empirical Familywise Error Rate

β̄FB = 0, β̄BF = 0, with αB = αF = 0, and βBB = βF F = 0

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 0.067 0.074 0.064 0.064 0.066 0.069
500 (B) 0.065 0.072 0.069 0.070 0.071 0.069

(C) 0.075 0.063 0.070 0.066 0.071 0.067
(A) 0.049 0.049 0.052 0.051 0.049 0.049

5000 (B) 0.047 0.055 0.052 0.052 0.047 0.052
(C) 0.050 0.055 0.053 0.051 0.047 0.049

β̄FB = 1, β̄BF = 0, with αB = αF = 1, and βBB = βF F = 0

BA 1 BA 5 BA 9
n Z T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

(A) 0.053 0.067 0.059 0.071 0.059 0.064
500 (B) 0.057 0.060 0.062 0.060 0.059 0.066

(C) 0.067 0.069 0.056 0.066 0.058 0.061
(A) 0.055 0.044 0.055 0.051 0.049 0.055

5000 (B) 0.053 0.050 0.055 0.054 0.050 0.050
(C) 0.055 0.052 0.049 0.047 0.050 0.052

Notes: The table presents the empirical familywise error rate (FWER) for the step down procedure explained
in Section 3.3. The nominal FWER is set to be α = 0.05. As the sample size n increases, the FWER comes
closer to the nominal rate.

the neighborhood, as the neighborhood gets larger. Second, the power of the tests increases

with the sample size n and the number of the time periods T . Third, the finite sample FWER

performs reasonably well across the network configurations and time periods.

4. Empirical Analysis of Spillover between Industrial Sector Out-
comes and Bank Weakness

4.1. Data

In order to put our methodology to the test, we collect detailed data from Spain between

2005 and 2012 which links narrow sectors of real economic activity to the credit institutions

providing them with external funding.

Our sector-level data is derived from annual firm-level balance sheets from Bureau van

Dijk’s (BvD) Orbis dataset. The coverage of the firm-level data is comprehensive: firms in the

sample account for 69-82% of Spanish gross output in the period 2005-2012 and the share

of activity accounted for by small, medium and large firms closely resembles that observed
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in aggregate data.12 We drop firm-year observations with non-positive values for total assets,

tangible fixed assets, and number of employees as well as entries with negative liabilities

and net worth. We drop firms in the financial sector (NACE Rev. 2 codes 64-66) and only

keep observations for which basic accounting identities are satisfied.13 Nominal quantities

are deflated using sector-specific GDP deflators from Eurostat.

In order to match firms to their banks, we exploit the banker variable in Orbis, which

reports the names of up to ten credit institutions with which the firm has a relationship. We

take the fact that a firm reports the name of a bank to also mean that the bank lends to

the firm, an assumption commonly made in the literature on firm-bank relationships.14 The

banker variable does not include a time stamp, meaning that we cannot determine when a

lending relationship started or whether it changed over time. This shortcoming is mitigated

by evidence that lender-borrower relationships tend to be sticky over the business cycle.15

We match the bank names reported in the firm-level data with bank financial statements

from BvD’s Bankscope dataset.16 We exclude credit institutions specializing in consumer

credit, such as credit card and leasing companies, as well as private security and asset man-

agement companies. We construct our yearly panel of banks so as to maximize both the

number of banks and the number of time periods, as both dimensions are important for our

methodology. To do so, we prioritize unconsolidated accounts over consolidated ones where

possible, while making sure to avoid double-counting issues.17 By using unconsolidated ac-

counts we also avoid the possibility that variation at the individual bank level is lost at the

consolidated level.

After cleaning the data according to the procedure outlined above, we are left with 188,923

unique firms matched to 97 unique banks and operating in 600 three-digit NACE Rev 2.

sectors. The number of cross-sectional units underlying the main results in Section 4.5 are

lower because our estimation procedure requires strongly balanced panels. To mitigate the

loss of observations, we interpolate gaps in our variables of interest of up to three years.

The following section details the definitions of the variables of interest for our spillover

analysis and presents some basic stylized facts.

12See Kalemli-Ozcan, Sorensen, Villegas-Sanchez, Volosovych, and Yesiltas (2015). 2006 gross output shares
for small (< 19 employees), medium (20−249 employees) and large (> 250 employees) firms are, respectively,
(0.22,0.39, 0.40) in the Orbis data and (0.21,0.38, 0.41) if the aggregate data from Eurostat.
13The criteria are as in Gopinath, Kalemli-Ozcan, Karabarbounis, and Villegas-Sanchez (2017).
14See, for example, Kalemli-Ozcan, Laeven, and Moreno (2022) and Laeven, McAdam, and Popov (2018) who
also infer a lending relationship from the same data source.
15Giannetti and Ongena (2012) look at different vintages of the banker variable and find it to be very persistent.
Chodorow-Reich (2014) finds consistent evidence using different data from the U.S.
16The matching is done based on names for lack of a common identifier in the two data sources.
17We follow the steps outlined in Duprey and Le (2016) to create consistent time series.
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4.2. Definitions and Stylized Facts

Zombie lending is the practice of extending credit to distressed firms that would exit the

market under normal conditions. The incentive to evergreen loans to ailing firms is especially

strong for weak banks seeking to avoid further damaging their balance sheet by reporting their

losses.

Zombie Firms. Several ways of identifying zombie firms have been proposed in the literature,

and they are all designed to capture persistent financial weakness of the firm and/or the extent

to which the firm is receiving subsidized credit. In this paper we follow Adalet McGowan,

Andrews, and Millot (2018) and use a definition based on the interest coverage ratio defined

as the ratio of profits (EBIT) to interest payments. According to this definition, a firm is

considered a zombie in a given year if it has reported an interest coverage ratio below one

for three consecutive years. This definition, which we will refer to as the baseline definition,

states that a zombie firm is not profitable enough to make its debt payments. We interpret

the fact that such firms are kept afloat as evidence of bank forbearance.

It is worth pointing out that our baseline measure, unlike the one proposed by Caballero,

Hoshi, and Kashyap (2008) or Acharya, Eisert, Eufinger, and Hirsch (2019), does not seek to

identify firms receiving subsidized credit, that is, firms paying lower interest rates than their

most creditworthy counterparts. The reasons behind this are twofold. First, we do not have

information on the interest rates on individual loans, so we would have to infer the “average”

interest rate paid by a firm from the ratio of interest payments to total debt. Second, we would

need an appropriate benchmark to compare our interest rate proxy to. Other papers use the

interest rate paid by AAA-rated publicly listed firms for this purpose, however, this benchmark

is hardly relevant for our sample which mainly consists of unlisted, small- to medium-sized

enterprises which are very different from large public corporations.18

Table 5 summarizes some firm characteristics by zombie status. We can see that zombie

firms, on average, exhibit markedly lower sales, profitability, and investment while at the

same time being more leveraged and more likely to exit. Zombie firms are also older.19

Weak Banks. Our choice of a variable to capture bank weakness is informed by the previ-

ous literature on zombie lending and on the bank lending channel more generally. Some

papers, such as Acharya, Eisert, Eufinger, and Hirsch (2019), define weak banks to be those

with a low ratio of regulatory capital, while others build on that to create an index which

18To get a sense of how exceptional listed firms are in Spain, the average value-added share of listed firms in
manufacturing was approximately 14% in 2006 (Garcia-Macia (2017)).
19Some zombie firm definitions also impose a firm age of over ten years to avoid misidentifying potentially
successful start-ups as zombies. However, less than 25% of observations attributed to zombies come from firms
under ten years of age so we omit this criterion.



28

TABLE 5. Firm characteristics by zombie status

Non-zombie Zombie

Mean Median Mean Median
Firm age 15.172 14.000 17.293 16.000
Total assets (million euro) 3.040 0.757 4.782 1.003
Sales (million euro) 2.700 0.697 1.987 0.362
Number of employees 16.707 7.000 16.238 5.000
Return on assets 0.020 0.014 −0.060 −0.031
Investment ratio 0.429 −0.045 0.224 −0.039
Leverage ratio 0.270 0.223 0.315 0.273
Interest coverage ratio 210.656 2.119 −385.585 −2.764
Debt service capacity 39.113 0.324 −15.119 −0.001
Exit 0.089 0.000 0.113 0.000

Observations 1,309,561 135,573

Notes: This table shows a break-down of firm characteristics by zombie status according to the baseline
definition. The sample period is 2005-2012. The return on assets is the ratio of net income to total assets;
the investment ratio is the percent change in real fixed assets from the year before; the leverage ratio is
the ratio of total debt to total assets; the interest coverage ratio is the ratio of profits to the amount of
interest paid; the debt service capacity is the ratio of profits to total debt; exit is an indicator equal to
one if a firm is dissolved or declares bankruptcy in the future.

includes additional balance sheet items such as non-performing loans (Storz, Koetter, Setzer,

and Westphal (2017), Andrews and Petroulakis (2019)). A different approach relies on the

receipt of government aid (Laeven, McAdam, and Popov (2018), Acharya, Borchert, Jager,

and Steffen (2021)), while yet another is to exploit the decline in the creditworthiness of

some European sovereigns during 2010-2012 to measure bank weakness as the exposure to

risky government debt (Kalemli-Ozcan, Laeven, and Moreno (2022)).

The ideal measure of bank weakness in the context of our methodology is one that, in

addition to capturing balance sheet vulnerability, also displays substantial within-bank time

variation and is available for many banks, especially for smaller ones. We therefore settle

for the ratio of loan loss provisions to gross loans as our preferred bank weakness measure.

Loan loss provisions are an expense set aside by banks to cover different kinds of loan losses,

including non-performing loans. The loan loss provisions are then added to the loan loss

reserves, which banks are required to maintain as a buffer against potential future losses.

Table 6 shows how our bank weakness measure is related to other bank characteristics.

Bank weakness is negatively correlated with profitability, as proxied by the return on average

assets and the return on average equity. Weaker banks also have larger sovereign bond hold-

ings, which is not surprising given that our sample period contains the European sovereign
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TABLE 6. Bank outcome: Correlation with other characteristics

Loan loss provisions
Corr. p-value Obs.

Return on avg. assets −0.104 0.000 1246
Return on avg. equity −0.065 0.021 1244
Capital ratio (equity to assets) 0.179 0.000 1246
Loan loss reserves (share of gross loans) 0.316 0.000 513
Sovereign exposure (share of total assets) 0.114 0.023 396
Non-performing loans (share of gross loans) 0.136 0.008 378

Notes: This table shows the correlation between our baseline measure of bank weakness, given by the
share of loan loss provisions in gross loans, and other bank characertistics. The sample period is 2005-
2012.

debt crisis.20 Somewhat surprisingly, banks reporting higher loan loss provisions also seem to

be better capitalized. While a higher capital ratio is generally considered a sign of a healthy

balance sheet, Andrews and Petroulakis (2019) point out that it could also be the result of

low risk-taking and little lending activity. Conversely, banks possessing high-quality assets

which generate a steady flow of income with limited risk may afford to have relatively lower

levels of capital adequacy.21

It should be noted that, ultimately, any balance sheet item is subject to manipulation on

the part of the bank, as documented by Blattner, Farinha, and Rebelo (2019) using granular

loan-level data from Portugal. This is why, in a future extension of the paper, we will explore

measuring bank weakness through government aid. More work needs to be done to make

such a variable continuous and time-varying.

Figure 2 plots the time averages of the our main outcome variables: Panel (a) refers to the

bank outcome measured by the loan loss provision share, while Panel (b) shows the asset-

weighted average of zombie firms based on the interest-coverage definition. We can see that

both measures vary significantly over our sample period and that a surge in bank weakness

around 2008 is followed by an increase in sectoral zombie-firm congestion two years later.

4.3. Networks

Having fixed our outcomes of interest at both the bank and the sector level, we now move

on to defining the network structure governing the spillover between these outcomes.

Identifying the networks along which we expect sector-level outcomes to have an effect on

bank performance and vice versa is a crucial part of our analysis. This section is devoted to

20The sovereign debt variable in Bankscope includes the debt of all sovereigns, not just that of the home country.
However, in the case of Spain, most of the sovereign debt held by banks was that of the Spanish government.
21A better capital-based measure would be one based on risk-weighted capital or Tier 1 capital ratios, however,
both these variables are riddled with data availability issues in our sample.
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FIGURE 2. Evolution of outcomes over time

(A) Bank outcome

-.01

0

.01

.02

.03

.04

Ba
nk

 w
ea

kn
es

s

2004 2006 2008 2010 2012

(B) Sector outcome

.14

.15

.16

.17

.18

Zo
m

bi
e 

co
ng

es
tio

n

2004 2006 2008 2010 2012

Notes: This figure plots the outcomes of interest over time. Panel (a) plots bank weakness as measured
by the average loan loss provision ratio, while Panel (b) plots sector-level zombie congestion as measured
by the asset-weighted share of zombie firms in each sector according to the baseline definition.

a careful discussion of how to define the networks which best capture the causal channels

going from sectors to banks and from banks to sectors.

At its core, the interdependence between the real sector and the financial sector comes

from the former borrowing from the latter. It makes sense, then, to assume that a firm is

related to a bank if the firm borrows from that bank. However, when we move past the level

of the individual firm and look at the sector in which the firm is active, the exact definition of

what it means for that sector to be tied to the bank becomes less clear-cut. In what follows,

we take each spillover direction in turn and discuss the associated network definition.

4.3.1. Sector to Bank. For the sector-to-bank spillover, we want to explain a bank’s health

using the share of distressed firms in the sectors that the bank caters to. Some sectors will be

more important for a bank than others, so we should only expect spillover to occur if a bank

is sufficiently exposed to a given sector. A natural measure of exposure to a given sector can

be obtained by looking at what share in the total amount of loans originating from a bank

goes to that sector. A bank’s solvency relies on the ability of its borrowers to pay back their

debt, so if a bank is heavily invested in a sector where many firms are experiencing financial

distress, then we should expect that bank to suffer losses.

This definition of exposure makes sense in light of the bank and sector outcomes we are in-

terested in. On the bank side, we are interested in bank health as measured by the provisions

set aside by the bank to absorb losses from missed loan payments. On the sector side, we

are interested in the prevalence of zombie firms as measured by a chronic inability to make

interest payments on their debt.
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FIGURE 3. Network characteristics (25th prc.)
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Notes: This figure shows the network characteristics for the baseline specification. Panel (a) shows the
distribution of the number of sectors per bank, while Panel (b) shows the distribution of the number
of banks per sector. The network thresholds in Panels (a) and (b) are set to the 25th percentile of the
relevant debt share and asset share, respectively.

Ideally, we would derive our exposure measure from loan-level data which would contain

the identity of the bank, the identity of the firm and the firm’s sector of activity. Unfortunately,

our data does not possess this level of granularity since we do not observe a bank’s individual

loans or their breakdown by sector. We do, however, observe firms’ total amount of debt and

sector of activity as well as the identity of the banks they are related to.22

We define a sector-to-bank relationship based on the share of a sector’s debt in the total

debt associated with a bank, measured in the year before our sample starts. If that share is

higher than the 25th percentile of all bank-sector pairs, we assume that the sector potentially

affects the bank.

4.3.2. Bank to Sector. For the bank-to-sector spillover, we want to explain the degree of a

sector’s zombie congestion using the health of its main lenders. Following a similar logic as

above, we would expect a bank to matter for a sector if the bank lends to a sizable segment

of that sector. Given that we are interested in measuring a bank’s impact on a sector, and that

our sector-level outcome is the asset-weighted share of zombie firms, it makes sense to look

at the asset share in that sector that is accounted for by that bank.

We define a bank-to-sector relationship based on the share of a sector’s assets belonging

to the firms which borrow from a bank, measured in the year before our sample starts. If

22Around 36% of firms in our sample report more than one bank. We use all bank relationships for our baseline
specification, but we will also explore the robustness of our results to using only the first bank mentioned by
each firm.
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that share is higher than the 25th percentile of all bank-sector pairs, we assume that the bank

potentially affects the sector.

The choice of threshold for both spillover directions is faced with the following trade-off:

the higher the threshold, the more sparse our network structure will be and the more statisti-

cal power our estimation will have; however, a higher threshold also means dropping smaller

banks or sectors from the analysis, which could introduce a bias. Figure 3 summarizes the

network characteristics for both directions for a threshold set to equal the 25th percentile of

the relevant debt share (in the sector-to-bank direction) and asset share (in the bank-to-sector

direction), which our empirical analysis has chosen to focus on. In the Supplemental Note,

we report results from different choices of the threshold.

4.4. Specification Details

We are now equipped with a sector- and a bank-level outcome, as well as with a set of

directed networks along which to analyze the spillover between the two outcomes. It remains

to discuss the control variables for our regressions.

Both regressions of the bank-to-sector and the sector-to-bank equations include the lagged

outcome as well as time- and individual-specific fixed effects. Here we assume that the clus-

ter structure on the cross-sectional units coincides with their partition into banks and sectors.

Hence cluster-specific time effects consist of two kinds of time effects, one that is common

among banks and the other that is common among sectors. These time effects absorb any

variation that is common across all banks or all sectors in a given year, such as adverse aggre-

gate demand shocks. Similarly, individual sector (bank) effects control for any time-invariant

characteristics that may influence sector (bank) performance. In the case of sectors, such

characteristics could include the extent of government regulation, while for banks they could

be management practices or overall institutional quality.

In the bank-level equation, we opt for the most parsimonious specification which only

includes the lagged outcome and the time- and bank effects. The reason behind this is that

most bank assets and liabilities are not marked to market, meaning that these balance sheet

variables are very stable and do not register large enough movements over time to distinguish

them from the time-invariant effects. Including additional controls would also reduce our

sample size while providing little in terms of explanatory power.

In the sector-level equation, the richness of our data permits the inclusion of additional

time-varying controls. We control for previous-period market concentration (Herfindahl in-

dex), sales growth, and capital intensity (share of fixed assets). A priori, a higher market

concentration could affect the zombie share in a sector either positively – by distorting com-

petition – or negatively – by favoring large firms with high enough profit margins that make
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TABLE 7. Summary statistics

Mean Std. dev. 5th prc. 50th prc. 95th prc.
Bank weakness 0.008 0.040 0.001 0.005 0.026
Zombie congestion 0.142 0.125 0.019 0.103 0.404
Market concentration 0.040 0.088 0.001 0.013 0.153
Sales growth −0.020 0.175 −0.282 0.005 0.162
Capital intensity 0.729 1.230 0.133 0.356 2.555

Observations 35,144

Notes: This table shows summary statistics of the variables included in the baseline estimation. The
sample consists of bank-to-sector pairs observed between 2005 and 2012. Bank weakness is given by the
ratio of loan loss provsions to total assets; zombie congestion is the asset-weighted share of zombie firms
in a sector according to the baseline definition; market concentration is the HHI index of sector-level
sales; sales growth is computed as the log difference in total sector sales from the year before; capital
intensity is the share of a sector’s fixed assets in total sales.

them more resilient to shocks. As for sales growth, we would expect it to have a negative

impact on zombie congestion, since a boost in sales can provide firms with a buffer that in-

sulates them against falling behind on loan payments. Finally, capital intensity is meant to

capture the degree to which a sector is dependent on banks. We include this control to make

sure that it is the characteristics of the banks driving the zombie share, and not the sector’s

intrinsic reliance on banks. Table 7 provides summary statistics of our outcome and control

variables.

4.5. Results

Our main results are shown in Table 8. Panel A refers to the bank-level equation where

we are interested in how the sector-level zombie share affects bank weakness. Panel B refers

to the sector-level equation where we are interested in the opposite spillover direction. In

both panels, the first row represents the persistence of the outcome and the second row is

our main coefficient of interest.

Focusing first on the sector-to-bank direction (Panel A), we see that a higher level of zombie

congestion in a bank’s neighboring sectors leads to a significant increase in bank weakness.

To get a sense of the magnitude of the effect, note that the average zombie share increased

by about 4 percentage points from peak to trough (see Figure 2). Such an increase in the

zombie share translates to a an increase in the bank’s loan loss provisions of 4 × .96 = 3.8

percent of gross loans. This means that banks tied to sectors where resources are tied up in

distressed firms suffer bigger losses.

Turning now to Panel B, we see that the spillover effect is still highly significant when

looking at the bank-to-sector direction. Weaker banks lead to a significant increase in the
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TABLE 8. Baseline specification (using IV based on LP with option B)

Coef. Std. err. p-value [95% Conf. interval]
Panel A: Sector to bank
Bank weakness t−1 0.330 0.002 0.000 0.326 0.334
Zombie congestion t−1 0.964 0.322 0.003 0.333 1.596
Number of banks 48
Number of sectors 541
Observations 35 144

Panel B: Bank to sector
Zombie congestion t−1 0.698 0.049 0.000 0.603 0.793
Bank weakness t−1 0.138 0.047 0.003 0.046 0.230
Market concentration t−1 −0.025 0.099 0.803 −0.218 0.169
Sales growth t−1 −0.001 0.008 0.908 −0.016 0.014
Capital intensity t−1 −0.015 0.009 0.092 −0.031 0.002
Number of banks 57
Number of sectors 550
Observations 37 448

Direction of spillover
with FWER control S↔ B at 1%

Notes: This table shows the results from estimating equation (2.8). Panel A refers to the direction from
sectors to banks while Panel B refers to the direction from banks to sectors. The network thresholds in
Panels A and B are set to the 25th percentile of the relevant debt share and asset share, respectively.
The sample contains all reported firm-bank relationships and covers the period between 2005 and 2012.
Results are obtained using using IVs based on Linear Projection with Option B. Bank weakness is given by
the ratio of loan loss provsions to total assets; zombie congestion is the asset-weighted share of zombie
firms in a sector according to the baseline definition; market concentration is the HHI index of sector-level
sales; sales growth is computed as the log difference in total sector sales from the year before; capital
intensity is the share of a sector’s fixed assets in total sales.

prevalence of zombie firms in their neighboring sectors. An increase of 4 percentage points

in the loan loss provision share of a bank (as was observed on average from peak to trough)

leads to a 4×.14= .6 percentage point increase in a sector’s share of resources sunk in zombie

firms. Interestingly, the control variables do not appear to play a significant role explaining

the next period zombie share of the sectors.

Our evidence suggests that there is significant spillover originating from banks to sectors,

as well as from sectors to banks.

4.6. Robustness

Here we explore how our results vary as we modify specifications of networks and instru-

ments. To save space, we provide a summary of the results here, and present details of the

results in the Supplemental Note.
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4.6.1. Varying Networks. As a robustness check, we first varied the denseness of the net-

works, by taking a threshold of 10 percent to generate a denser network, and a threshold of

50 percent for a sparser network. (See Figures 4 and 5 for the summary of network statistics

and Tables 9 and 10 for results in the Supplemental Note.) When we used the denser network,

the results remain robust; both directions of the spillover between banks and sectors are pos-

itive with statistical significance at 1%. Interestingly, when we used the sparser network, the

spillover from banks to sectors becomes statistically insignificant whereas the spillover from

sectors to banks remain significant. This change mostly stems from the links eliminated from

the network rather than from a reduction of the set of banks and sectors, which suggests that

by using the sparser network, one loses information on the spillover from banks to sectors.

Second, we considered an alternative definition of links from banks to sectors, which is

based on debt, rather than assets. More specifically, bank i is linked to sector j if the firms in

sector j with which bank i has a relationship account for more than the 25% percentile of the

shares for all firms in sector j. We believe that this alternative definition is less reasonable

than our previous choice; for example, if there is a large zombie firm (in terms of assets) in

sector j and that firm is tied to a weak bank, but at the same time, the debt of that firm is

not too high, then it would appear that the zombie congestion in sector j (which will be very

large because the firm is very large) is unrelated to the bank’s weakness when in fact it is.

Nevertheless, we followed our estimation procedure using this specification for a robustness

check. The result is reported in Table 11 in the Supplemental Note. While the spillover

from banks to sectors remains positive, the statistical significance is reduced from a p-value

of 0.003 to 0.146. This appears to suggest that the spillover from banks to sectors is better

captured using asset-based links rather than debt-based links.

4.6.2. Varying Instruments. In the baseline specification, we considered the IVs based on

Linear Projection with Option B. We also obtained estimates using Options A and B. Recall

that Option A uses just-identification, taking Zi,t =Wi,t and Option C uses overidentification

like the baseline specification but with more IVs based on the past values of Wi,t . The results

are reported in Tables 13 (with Option A) and 14 (with Option C).

When we use Option A, the result shows that while the spillover from banks to sectors re-

mains almost the same, the positive spillover from sectors to banks exhibits reduced statistical

significance from a p-value of 0.003 to 0.133. This suggests that the quadratic transformation

of Wi,t as IVs is strongly relevant for explaining the spillover from sectors to banks. On the

other hand, when we used Option C, the statistical significance of positive spillovers between

the banks and the sectors is restored at 5% in both directions.

4.6.3. Alternative Definition of Bank Relationships. As mentioned previously, we have es-

timated the same model but using the sector-bank networks resulting from only using the
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first reported bank relationship for each firm. Other papers in the literature restrict their

attention to the first bank named by each firm based on the assumption that the ranking of

the firm’s banks represents the strength of the relationship (see Ferrando, Popov, and Udell

(2019) for example). The results are shown in Table 12. The spillover effect from banks to

sectors remains significant at the 1% level. In the opposite direction, however, the coefficient

is still positive but no longer significant. This could be due to the resulting smaller number

of linked sector-bank pairs which leads to a loss of statistical power.

5. Conclusion

In many empirical settings, a researcher is interested in the influence of the outcomes of one

group of units on those of another group. However, in many such settings, it is also plausible

that the influence in the other direction also exists. In such a situation, we would like to

have an empirical model where the directions are assigned a separate role in the model. In

this paper, we introduce a new approach of empirical modeling through the use of multiple

networks in the context of dynamic linear panel models, and develop asymptotic inference

on those spillover effects. Our method is quite simple to use, and shown to perform very well

in finite samples in Monte Carlo simulations.

Using bank-firm data from Spain, we demonstrate how our methodology can be harnessed

to measure the spillover effects between banks and sectors, with the direction of spillover

explicitly distinguished in the model. From the analysis, we find that there is positive spillover

between banks and sectors in both directions.

While we believe that our empirical study has its own value as a contribution to the liter-

ature that studies the relation between financial sectors and real sectors, our methodology is

quite generally applicable in various contexts of group-wise spillovers, with both directions

of spillover allowed in the same model. Furthermore, our model allows for within group

spillover along a network. Such flexibility can be quite useful, for example, in studying peer

effects between two groups of students, where each group of students has their own friend-

ship network.
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SUPPLEMENTAL NOTE TO “ESTIMATING DYNAMIC SPILLOVER

EFFECTS ALONG MULTIPLE NETWORKS IN A LINEAR PANEL

MODEL”

Clemens Possnig23, Andreea Rotărescu24, and Kyungchul Song25

The Supplemental Note consists of two sections. The first section provides the mathemati-

cal proofs of the results in the main paper. The second section gives details on further results

from the empirical study of bank-sector spillover in Spain.

1. Mathematical Proofs

In this section, we provide mathematical proofs of Theorems 3.1-3.2. Throughout this

section, we assume that Assumptions 3.1-3.5 hold. The following representation shows the

advantage of the Helmert transform: the error term ÛK after the transform can be written as

a sum of martingale difference arrays with filtration {Fs}Ts=1.

Lemma 1.1. For K ∈ {B, F},

p
nK ÛK =

T
∑

s=1

ξ∗s,K + oP(1), as nK →∞,

where ξ∗s,K is defined in (3.9).

Proof: Let

εC
i,s =

1
|NC(i)|

∑

i∈NC (i)

εi,s, and vC
i =

1
|NC(i)|

∑

i∈NC (i)

vi.(1.1)

23Vancouver School of Economics, University of British Columbia
24Department of Economics, Wake Forest University
25Vancouver School of Economics, University of British Columbia
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We write

p
nK ÛK =

p
nK

T−1
∑

t=1

Ût,K =
1
p

nK

T−1
∑

t=1

T
∑

s=t

hs,t

∑

i∈NK

(Zi,t − ZC
i,t)(ui,s − uC

i,s)

=
1
p

nK

T−1
∑

t=1

T
∑

s=t

hs,t

∑

i∈NK

(Zi,t − ZC
i,t)(εi,s + vi − (εC

i,s + vC
i ))

=
1
p

nK

T−1
∑

t=1

T
∑

s=t

hs,t

∑

i∈NK

(Zi,t − ZC
i,t)(εi,s + vi).

The last equality follows due to the mean deviation Zi,t − ZC
i,t . By the definition of hs,t , we

have
∑T

s=t hs,t = 0, and hence the last sum is equal to

1
p

nK

∑

i∈NK

T−1
∑

t=1

(Zi,t − ZC
i,t)

T
∑

s=t

hs,tεi,s =
T
∑

s=1

1
p

nK

∑

i∈NK

s∧(T−1)
∑

t=1

hs,t(Zi,t − ZC
i,t)εi,s.

Now, by Assumptions 3.1-3.2, we have
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nK
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i∈NK
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i∈NK
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�

ε2
i,s | Fs
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nK
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i∈NK








Zi,t − Z∗i,t










2
= oP(1),

and

p
nK ÛK =

T
∑

s=1

1
p

nK

∑

i∈NK

s∧(T−1)
∑

t=1

hs,t(Z
∗
i,t − Z∗Ci,t )εi,s + oP(1).

�

Recall the definition: for K ∈ {B, F},

Nt−1,`,K(i) = { j ∈ NK : j ∈ Nt−1,`(i)}.

For each t = 1, ..., T and i ∈ N , define

Nt−1(i) =
�

j ∈ N : j ∈ Nt−1,`,K(i), for some `= 1, ..., L, and some K ∈ {B, F}
	

,

and N t−1(i) = Nt−1(i) ∪ {i}. Thus Nt−1(i) represents the union of the in-neighborhoods

Nt−1,`,K(i), `= 1, ..., L and K ∈ {B, F}.

Lemma 1.2. For K ∈ {B, F}, as nK →∞,

1
nK

∑

i∈NK

�

Z̃i,sW
>
i,s − E

�

Z̃∗i,sW
>
i,s | Fs−1

��

→P 0.
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Proof: By Assumptions 3.2 and 3.5, it is not hard to see that

1
nK

∑

i∈NK

�

Z̃i,s − Z̃∗i,s
�

W>
i,s = oP(1).

For k = 1, ..., dZ and m= 1, ..., dW , we let Z̃∗i,s,k be the k-th entry of Z̃∗i,s and Wi,s,m be the m-th

entry of Wi,s. For any such k, m, once we condition onFs−1, the randomness of Z̃∗i,s,kWi,s,m solely

comes from (ε j,s−1) j∈N s−1(i). Furthermore, N s−1(i) is already Fs−1-measurable. By Assumption

3.1(i), we have

Cov
�

Z̃∗i,s,kWi,s,m, Z̃∗j,s,kWj,s,m | Fs−1

�

= 0,

whenever N s−1(i)∩ N s−1( j) =∅. Therefore,

Var

 

1
nK

∑

i∈NK

Z̃∗i,s,kWi,s,m | Fs−1

!

=
1
n2

K

∑

i, j∈NK :N s−1(i)∩N s−1( j)6=∅

Cov
�

Z̃∗i,s,kWi,s,m, Z̃∗j,s,kWj,s,m | Fs−1

�

.

By Assumptions 3.3 and 3.5, we find that the last term is oP(1). �

Lemma 1.3. For each K ∈ {B, F}, B̂K − Bn,K →P 0, as nK →∞, where B̂K and Bn,K are defined
in (3.3) and (3.10).

Proof: First we write
T−1
∑

t=1

1
nK

∑

i∈NK

�

Zi,t − ZC
i,t

�

W H>
i,t =

T
∑

s=1

1
nK

∑

i∈NK

Z̃i,s

�

Wi,s −W C
i,s

�>
=

T
∑

s=1

1
nK

∑

i∈NK

Z̃i,sW
>
i,s.

Then we write that for each s = 1, ..., T ,

1
nK

∑

i∈NK

Z̃i,sW
>
i,s =

1
nK

∑

i∈NK

E
�

Z̃∗i,sW
>
i,s | Fs−1

�

+ oP(1),

by Lemma 1.2. This gives the desired result. �

Lemma 1.4. For K ∈ {B, F}, as nK →∞, δ̃K −δK = oP(1).

Proof: We first show that ÛK = oP(1). By Lemma 1.1,

p
nK ÛK =

1
p

nK

T
∑

s=1

ξ∗s,K + oP(1).

Note that
T
∑

s=1

Var(ξ∗s,K | Fs) =
T
∑

s=1

1
nK

∑

i∈NK

σ2
n,s,K Z̃∗i,s Z̃

∗>
i,s

=
T
∑

s=1

1
nK

∑

i∈NK

E
�

σ2
n,s,K Z̃∗i,s Z̃

∗>
i,s | Fs−1

�

+ oP(1) = ΩK + oP(1),
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by following the same arguments as in the proof of Lemma 1.2 and Assumptions 3.1 and 3.4.

Since E
�

ξ∗s,K

�

= 0, by Assumption 3.5, we have

E

�

T
∑

s=1

Var(ξ∗s,K | Fs)

�

= O(1),

as nK →∞. Hence, for K ∈ {B, F}, ξ∗s,K = OP(1), as nK →∞. We conclude that

ÛK = OP(n
−1/2
K ) = oP(1).

Hence

δ̃K −δK =
�

B̂>K B̂K

�−1
B̂>K ÛK(1.3)

=
�

B>K BK

�−1
B>K ÛK + oP(1) = oP(1),

by Lemma 1.3 and Assumption 3.4. �

Define

Ωn,K =
T
∑

s=1

Ωn,s,K ,

and Ωn,s,K is defined in (3.10).

Lemma 1.5. For K ∈ {B, F}, Ω̂K −Ωn,K →P 0, as nK →∞.

Proof: Since ûH
i,t,K − uH

i,t =W H>
i,t (δK − δ̃K), we write

Ω̂K =
T−1
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t=1

T−1
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1
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ûH
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i,t ′,K

=
T−1
∑

t=1

T−1
∑

t ′=1

1
nK

∑

i∈NK

�

Zi,t − ZC
i,t

��

Zi,t ′ − ZC
i,t ′

�>
uH

i,tu
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where
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with W H
i,t, j denoting the j-th entry of W H

i,t and similarly with δK , j and δ̃K , j. Note that

T−1
∑

t=1

T−1
∑

t ′=1

1
nK

∑

i∈NK

W H
i,t, j

�

Zi,t − ZC
i,t

��

Zi,t ′ − ZC
i,t ′

�>
W H

i,t ′, j′

=
T
∑

s=1

T
∑

s′=1

1
nK

∑

i∈NK

Wi,s, j Z̃i,s Z̃
>
i,s′Wi,s′, j′

=
1
nK

∑

i∈NK

�

T
∑

s=1

Wi,s, j Z̃i,s

��

T
∑

s=1

Wi,s, j′ Z̃i,s

�>

.

By Cauchy-Schwarz inequality, we bound the (m, m′)-th entry of the last term by
√

√

√

√

1
nK

∑

i∈NK

�

T
∑

s=1

Wi,s, j Z̃i,s,m

�2

×

√

√

√

√

1
nK

∑

i∈NK

�

T
∑

s=1

Wi,s, j Z̃i,s,m′

�2

,

where Z̃i,s,m denotes the m-th entry of Z̃i,s. We write

1
nK

∑

i∈NK

�

T
∑

s=1

Wi,s, j Z̃i,s,m

�2

=
T
∑

s=1

T
∑

s′=1

1
nK

∑

i∈NK

Wi,s, jWi,s′, j Z̃i,s,m Z̃i,s′,m

≤
T
∑

s=1

T
∑

s′=1

√

√

√

1
nK

∑

i∈NK

Z̃2
i,s,mW 2

i,s, j

√

√

√

1
nK

∑

i∈NK

Z̃2
i,s′,mW 2

i,s′, j.

Using the same arguments as in the proof of Lemma 1.2,

1
nK

∑

i∈NK

Z̃2
i,s,mW 2

i,s, j =
1
nK

∑

i∈NK

E
�

Z̃∗2i,s,mW 2
i,s, j | Fs−1

�

+ oP(1)

≤

√

√

√

1
nK

∑

i∈NK

E
�

‖Wi,s‖4 | Fs−1

�

×

√

√

√

1
nK

∑

i∈NK

E
�

‖Z̃∗i,s‖4 | Fs−1

�

+ oP(1).

By Assumptions 3.2 and 3.5, we find that

1
nK

∑

i∈NK

W H
i,t, j

�

Zi,t − ZC
i,t

��

Zi,t ′ − ZC
i,t ′

�>
W H

i,t ′, j′ = OP(1).

Since δ̃K = δK + oP(1) by Lemma 1.4, the leading term in the definition of Rn is oP(1). We

can deal with the second term similarly to show that it is oP(1). Hence, we have

1
nK

∑

i∈NK

�

Zi,t − ZC
i,t

��

Zi,s − ZC
i,s

�>
ûH

i,t,K ûH
i,s,K

=
1
nK

∑

i∈NK

�

Zi,t − ZC
i,t

��

Zi,s − ZC
i,s

�>
uH

i,tu
H
i,s + oP(1).
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This gives us

Ω̂K =
1
nK

∑

i∈NK

�

T−1
∑

t=1

�

Zi,t − ZC
i,t

�

uH
i,t

��

T−1
∑

t=1

�

Zi,t − ZC
i,t

�

uH
i,t

�>

+ oP(1)

=
1
nK

∑

i∈NK

�

T
∑

s=1

Z̃i,sεi,s

��

T
∑

s=1

Z̃i,sεi,s

�>

+ oP(1)

=
1
nK

∑

i∈NK

�

T
∑

s=1

Z̃∗i,sεi,s

��

T
∑

s=1

Z̃∗i,sεi,s

�>

+ oP(1),

where the first equality is due to our derivation above, and the third equality due to (1.2).

For s 6= s′, we have for all j, j′ = 1, ..., dZ ,

E
��

Z̃∗i,s, j Z̃
∗
i,s′, j′

�

εi,sεi,s′ | F0

�

= 0,

by Assumption 3.1(i). Hence for s 6= s′,

Var

 

1
nK

∑

i∈NK

Z̃∗i,s, j Z̃
∗
i,s′, j′εi,sεi,s′ | F0

!

=
1
n2

K

∑

i∈NK

E
h
�

Z̃∗i,s, j Z̃
∗
i,s, j′

�2
ε2

i,sε
2
i,s′ | F0

i

≤
1
nK

√

√

√

1
nK

∑

i∈NK

E
h
�

Z̃∗i,s, jεi,s

�4
| F0

i

√

√

√

1
nK

∑

i∈NK

E
h
�

Z̃∗i,s, j′εi,s

�4
| F0

i

.

Since
1
nK

∑

i∈NK

E
�

Z̃∗4i,s, jε
4
i,s | Fs

�

≤
1
nK

∑

i∈NK

Z̃∗4i,s, j max
i∈N

E
�

ε4
i,s | Fs

�

= OP(1),

we find that whenever s 6= s′, for all j, j′ = 1, ..., dZ ,

Var

 

1
nK

∑

i∈NK

Z̃∗i,s, j Z̃
∗
i,s′, j′εi,sεi,s′ | F0

!

= OP

�

n−1
K

�

.
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Hence

Ω̂K =
1
nK

∑

i∈NK

T
∑

s=1

Z̃∗i,s Z̃
∗>
i,s ε

2
i,s + oP(1)

=
1
nK

∑

i∈NK

T
∑

s=1

Z̃∗i,s Z̃
∗>
i,s σ

2
n,s,K + oP(1)

=
1
nK

∑

i∈NK

T
∑

s=1

E
�

σ2
n,s,K Z̃∗i,s Z̃

∗>
i,s | Fs−1

�

+ oP(1) = Ωn,K + oP(1).

�

For each s = 1, ..., T , recall the definition of ξ∗s,K , K ∈ {B, F} in (3.9). Let ξ∗s = [ξ
∗>
s,B,ξ∗>s,F]

>,

and

Ω̃n,s = Var
�

ξ∗s | Fs

�

.(1.4)

We can write

ξ∗s =
1
p

n

∑

i∈N

Λi,sεi,s,

where Λi,s = [Z̃∗>i,s 1i,B, Z̃∗>i,s 1i,F]>, and

1i,B =
1{i ∈ NB}

p
n

p
nB

, and 1i,F =
1{i ∈ NF}

p
n

p
nF

.

After some algebra, it is not hard to see that for each s = 1, ..., T ,

Ω̃n,s =









1
nB

∑

i∈NB

σ2
n,s,B Z̃∗i,s Z̃

∗>
i,s 0

0
1
nF

∑

i∈NF

σ2
n,s,F Z̃∗i,s Z̃

∗>
i,s









.(1.5)

For K ∈ {B, F}, recall the definition of Ωn,s,K in (3.10) and let Ωs,K be the matrix in Assumption

3.4. For each s = 1, ..., T , let

Ω=

�

ΩB 0

0 ΩF

�

, Ωs =

�

Ωs,B 0

0 Ωs,F

�

and Ωn,s =

�

Ωn,s,B 0

0 Ωn,s,F

�

,(1.6)

where for K ∈ {B, F},

ΩK =
T
∑

s=1

Ωs,K .
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For each b ∈ R2dZ with b>b = 1, we define

qn,s(b) =

1
n

∑

i∈N

|b>Λi,s|3E
�

|εi,s|3 | Fs

�

 

b>
 

1
n

∑

K∈{B,F}

∑

i∈NK

Λi,sΛ
>
i,sσ

2
n,s,K

!

b

!3/2
.

Lemma 1.6. For each s = 1, ..., T, and each b ∈ R2dZ with b>b = 1,

qn,s(b) = OP(1),

as nB, nF →∞.

Proof: By the same arguments in the proof of Lemma 1.2,

1
n

∑

i∈N

|b>Λi,s|3E
�

|εi,s|3 | Fs

�

≤max
i∈N

E
�

|εi,s|3 | Fs

� 1
n

∑

i∈N

|b>Λi,s|3

=max
i∈N

E
�

|εi,s|3 | Fs

� 1
n

∑

i∈N

E
�

|b>Λi,s|3 | Fs−1

�

+ oP(1).

Thus, by Assumptions 3.1 and 3.5, we have

max
i∈N

E
�

|εi,s|3 | Fs

� 1
n

∑

i∈N

E
�

|b>Λi,s|3 | Fs−1

�

= OP(1),

as nB, nF →∞.

There exist n0 ≥ 1 and c > 0 such that for K ∈ {B, F}, for all nK ≥ n0, σ2
n,s,K > c and

λmin

�

1
n

∑

i∈N

E
�

Λi,sΛ
>
i,s | Fs−1

�

�

≥ c,

by Assumption 3.4(i). Hence we obtain the desired result. �

Lemma 1.7. For any vector b ∈ R2dZ such that b>b = 1, and for each s = 1, ..., T,

sup
c̃∈R

�

�P
�

b>ξ∗s ≤ c̃ | Fs

	

− P
�

b>ξ̃∞s ≤ c̃ | Fs

	�

�= oP(1),

as nB, nF → ∞, where ξ̃∞s = Ω1/2
s Zs, Zs ∈ R2dZ , are i.i.d. standard normal random vectors

independent of all other random variables and Ωs is defined in (1.6).

Proof: Define ξ̃s = Ω̃1/2
n,s Zs, where Ω̃n,s is as defined in (1.6). Since εi,s, i = 1, ..., n, are

conditionally independent given Fs by Assumption 3.1(i), we use the Berry-Esseen bound
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(Theorem 3 of Chow and Teicher (1988), p.304) to deduce that26

sup
c̃∈R

�

�P
�

b>ξ∗s ≤ c̃ | Fs

	

− P
�

b>ξ̃s ≤ c̃ | Fs

	�

�≤
7.5qn,s(b)p

n
.

The last bound is oP(1) by Lemma 1.6. Furthermore, by Assumption 3.4 and as we saw in

the proof of Lemma 1.5,

Ω̃n,s = Ωs + oP(1),

as nB, nF →∞. Hence

sup
c̃∈R

�

�P
�

b>ξ̃∞s ≤ c̃ | Fs

	

− P
�

b>ξ̃s ≤ c̃ | Fs

	�

�

= sup
c̃∈R

�

�

�P
�

b>ξ̃∞s ≤ c̃ | Fs

	

− P
¦

b>ξ̃∞s ≤ c̃ + b>(Ω1/2
s − Ω̃

1/2
n,s )Zs | Fs

©

�

�

�

= sup
c̃∈R

�

�P
�

b>ξ̃∞s ≤ c̃ | Fs

	

− P
�

b>ξ̃∞s ≤ c̃ + oP(1) | Fs

	�

�= oP(1),

as nB, nF →∞, because b>ξ̃∞s is a random variable whose conditional distribution given Fs

is equal to that given F0, and its conditional distribution given F0 is absolutely continuous

with respect to the Lebesgue measure due to Ωs being positive definite by Assumption 3.4.

Hence we obtain the desired result. �

Lemma 1.8. For any vector b ∈ R2dZ such that b>b = 1 and for c̃ ∈ R,

P

¨

T
∑

s=1

b>ξ∗s ≤ c̃ | F0

«

− P

¨

T
∑

s=1

b>ξ̃∞s ≤ c̃ | F0

«

=
T
∑

s=1

E
�

∆s−1

�

c̃ − b>Rs−1

�

| F0

�

,

where

∆s−1

�

c̃ − b>Rs−1

�

= P

¨

b>ξ∗s ≤ c̃ −
T
∑

t=s+1

b>ξ̃∞t − b>Rs−1 | Fs

«

− P

¨

b>ξ̃∞s ≤ c̃ −
T
∑

t=s+1

b>ξ̃∞t − b>Rs−1 | Fs

«

and Rs =
∑s

t=1ξ
∗
t , R0 = 0, and ξ̃∞s , with s = 1, ..., T, are defined in Lemma 1.7.

Proof: First, we write

P

¨

T
∑

s=1

b>ξ∗s ≤ c̃ | FT

«

= P
�

b>ξ∗T ≤ c̃ − b>RT−1 | FT

	

= P
�

b>ξ̃∞T ≤ c̃ − b>RT−1 | FT

	

+∆T−1(c̃ − b>RT−1),

26The theorem itself is concerned with the sum of independent random variables. However, with appropriate
modifications, the same bound with replacing the moments by the conditional moments given the common
shock applies to a sum of conditionally independent random variables given the common shocks.
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where

∆T−1(c̃ − b>RT−1) = P
�

b>ξ∗T ≤ c̃ − b>RT−1 | FT

	

− P
�

b>ξ̃∞T ≤ c̃ − b>RT−1 | FT

	

.

(Note that RT−1 is FT -measurable.) We write

P
�

b>ξ̃∞T ≤ c̃ − b>RT−1 | FT−1

	

= P
�

b>ξ∗T−1 ≤ c̃ − b>ξ̃∞T − b>RT−2 | FT−1

	

= P
�

b>ξ̃∞T−1 + b>ξ̃∞T ≤ c̃ − b>RT−2 | FT−1

	

+∆T−2(c̃ − b>RT−2).

We continue this procedure until we have

P
�

b>ξ̃2 ≤ c̃ − b>ξ̃∞T − b>ξ̃∞T−1 · · · − b>ξ̃∞3 − b>R1 | F1

	

= P
�

b>ξ∗1 ≤ c̃ − b>ξ̃∞T − b>ξ̃∞T−1 · · · − b>ξ̃∞2 | F1

	

= P
�

b>ξ̃∞T + b>ξ̃∞T−1 · · ·+ b>ξ̃2 + b>ξ̃∞1 ≤ c̃ | F1

	

+∆0(c̃ − b>R0),

where R0 = 0, and

∆0(c̃ − b>R0) = P
�

b>ξ∗1 ≤ c̃ − b>ξ̃∞T − b>ξ̃∞T−1 · · · − b>ξ̃∞2 | F1

	

− P
�

b>ξ̃∞1 ≤ c̃ − b>ξ̃∞T − b>ξ̃∞T−1 · · · − b>ξ̃∞2 | F1

	

.

By taking conditional expectations given F0 of all the conditional probabilities above, we

obtain the desired result. �

Lemma 1.9. As nB, nF →∞, for any vector b ∈ R2dZ such that b>b = 1,

sup
c̃∈R

�

�

�

�

�

P

¨

b>
T
∑

s=1

ξ∗s ≤ c̃ | F0

«

− P
�

b>Ω1/2Z≤ c̃ | F0

	

�

�

�

�

�

→P 0,

where Z ∈ R2dZ is a standard normal random vector independent of other random variables, and
Ω is defined in (1.6).

Proof: By Lemma 1.8,

sup
c̃∈R

�

�

�

�

�

P

¨

T
∑

s=1

b>ξ∗s ≤ c̃ | F0

«

− P

¨

T
∑

s=1

b>ξ̃∞s ≤ c̃ | F0

«

�

�

�

�

�

≤
T
∑

s=1

E
�

sup
c̃∈R
∆s−1(c̃) | F0

�

,

because Rs−1 is Fs-measurable. Note that

sup
c̃∈R
∆s−1(c̃)≤ sup

c̃∈R

�

�P
�

b>ξ∗s ≤ c̃ | Fs

	

− P
�

b>ξ̃∞s ≤ c̃ | Fs

	�

� ,

because Zt ’s that constitute ξ̃∞t ’s are independent of Fs, and Ωt ’s are all F0-measurable by

Assumption 3.4. The last supremum is oP(1) by Lemma 1.7. Since supc̃∈R∆s−1(c̃) is bounded
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by 1, it is uniformly integrable. Hence we find that

E
�

sup
c̃∈R
∆s−1(c̃) | F0

�

= oP(1),

for each s = 1, ..., T . Thus, we obtain the desired result. �

Proof of Theorem 3.1: We write

T
∑

s=1









1
p

n

∑

i∈N

Z̃∗i,s1i,Bεi,s

1
p

n

∑

i∈N

Z̃∗i,s1i,Fεi,s









=
T
∑

s=1









1
p

nB

∑

i∈NB

Z̃∗i,sεi,s

1
p

nF

∑

i∈NF

Z̃∗i,sεi,s









=

� p
nBÛBp
nF ÛF ,

�

+ oP(1),(1.7)

by Lemma 1.1. Let Û = [pnBÛ>B /
p

n,
p

nF Û>F /
p

n]>. Hence




p
nB V̂−1/2

B (δ̂B −δB)

p
nF V̂−1/2

F (δ̂F −δF)



=







�

B̂>B Ω̂
−1
B B̂B

�−1/2
B̂>B Ω̂

−1
B 0

0
�

B̂>F Ω̂
−1
F B̂F

�−1/2
B̂>F Ω̂

−1
F







p
nÛ .(1.8)

By Lemma 1.9, (1.7), and Cramér-Wold device, we find that

Ω−1/2pnÛ →d N(0, I),

as nB, nF →∞, with the matrix Ω defined in (1.6). This implies that
p

nÛ = OP(1).
Since

p
nÛ = OP(1), we use Lemmas 1.3 and 1.5, and Assumption 3.4 to rewrite the last

term in (1.8) as






�

B>BΩ
−1
B BB

�−1/2
B>BΩ

−1
B 0

0
�

B>F Ω
−1
F BF

�−1/2
B>F Ω

−1
F







p
nÛ + oP(1)

=







�

B>BΩ
−1
B BB

�−1/2
B>BΩ

−1/2
B 0

0
�

B>F Ω
−1
F BF

�−1/2
B>F Ω

−1/2
F






Ω−1/2pnÛ + oP(1).

The leading term on the right hand side converges in distribution to N(0, I), which is our

desired result. �

Proof of Theorem 3.2: In view of Theorem 2.1 of Romano and Shaikh (2010), it suffices to

show the following three statements:

(a) limnB ,nF→∞ P
�

Q̂FB ≤ c1−α

	

= 1−α.

(b) limnB ,nF→∞ P
�

Q̂BF ≤ c1−α

	

= 1−α.

(c) limnB ,nF→∞ P
�

max{Q̂FB, Q̂BF} ≤ cp1−α

	

= 1−α.
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The statements (a) and (b) follow from Theorem 3.1 immediately by the Continuous Map-

ping Theorem (CMT). We show (c). Again, by the CMT applied to Theorem 3.1, we find

that as nB, nF →∞,
�

Q̂FB, Q̂BF

�>
→d [Q1,Q2]>, where Q1 and Q2 are independent random

variables that follow χ2(1). Since the maximum is a continuous map, by the CMT, we have

as nB, nF →∞,

P
�

max{Q̂FB, Q̂BF} ≤ cp1−α

	

= P
�

max{Q1,Q2} ≤ cp1−α

	

+ o(1)

= P
�

Q1 ≤ cp1−α

	

P
�

Q2 ≤ cp1−α

	

+ o(1)

=
�p

1−α
�2
+ o(1) = 1−α+ o(1).

Thus, we have the desired result. �

2. Further Results from the Empirical Application

Here we report results cited from Section 4.6 which discusses robustness of our results.

In Figures 4 and 5, we present the network characteristics based on the 10-th percentile

thresholds and the 50-th percentile thresholds. Figure 6 presents the characteristics of the

networks based on the debt share of firms in the sectors.

The estimation results are presented in Tables 9-14. We refer the reader to Section 4.6 for

the discussion of these additional results.
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FIGURE 4. Network characteristics (10th prc.)
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(B) Bank to sector
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Notes: This figure shows the network characteristics for the baseline specification. Panel (a)
shows the distribution of the number of sectors per bank, while Panel (b) shows the distribution
of the number of banks per sector. The network thresholds in Panels (a) and (b) are set to the
10th percentile of the relevant debt share and asset share, respectively.

FIGURE 5. Network characteristics (50th prc.)
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(B) Bank to sector
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Notes: This figure shows the network characteristics for the baseline specification. Panel (a)
shows the distribution of the number of sectors per bank, while Panel (b) shows the distribution
of the number of banks per sector. The network thresholds in Panels (a) and (b) are set to the
50th percentile of the relevant debt share and asset share, respectively.
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TABLE 9. Robustness: Sparser network (using IV based on LP with option B)

Coef. Std. err. p-value [95% Conf. interval]
Panel A: Sector to bank
Bank weakness t−1 0.333 0.002 0.000 0.329 0.338
Zombie congestion t−1 0.963 0.290 0.001 0.395 1.531
Number of banks 48
Number of sectors 529
Observations 23 616

Panel B: Bank to sector
Zombie congestion t−1 0.695 0.049 0.000 0.599 0.791
Bank weakness t−1 0.607 3.485 0.862 −6.224 7.438
Market concentration t−1 −0.033 0.097 0.737 −0.224 0.158
Sales growth t−1 0.000 0.008 0.951 −0.016 0.015
Capital intensity t−1 −0.011 0.007 0.134 −0.024 0.003
Number of banks 57
Number of sectors 550
Observations 26 176

Direction of spillover
with FWER control S→ B at 1%

Notes: This table shows the results from estimating equation (2.8). Panel A refers to the di-
rection from sectors to banks while Panel B refers to the direction from banks to sectors. The
network thresholds in Panels A and B are set to the 50th percentile of the relevant debt share
and asset share, respectively. The sample contains all reported firm-bank relationships and cov-
ers the period between 2005 and 2012. Results are obtained using option B. Bank weakness is
given by the ratio of loan loss provsions to total assets; zombie congestion is the asset-weighted
share of zombie firms in a sector according to the baseline definition; market concentration
is the HHI index of sector-level sales; sales growth is computed as the log difference in total
sector sales from the year before; capital intensity is the share of a sector’s fixed assets in total
sales.
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TABLE 10. Robustness: Denser network (using IV based on LP with option B)

Coef. Std. err. p-value [95% Conf. interval]
Panel A: Sector to bank
Bank weakness t−1 0.330 0.002 0.000 0.326 0.334
Zombie congestion t−1 0.920 0.298 0.002 0.335 1.505
Number of banks 48
Number of sectors 548
Observations 41 840

Panel B: Bank to sector
Zombie congestion t−1 0.696 0.048 0.000 0.601 0.791
Bank weakness t−1 0.150 0.056 0.007 0.041 0.260
Market concentration t−1 −0.027 0.099 0.786 −0.220 0.167
Sales growth t−1 −0.001 0.008 0.908 −0.016 0.014
Capital intensity t−1 −0.014 0.009 0.091 −0.031 0.002
Number of banks 57
Number of sectors 550
Observations 43 936

Direction of spillover
with FWER control S↔ B at 1%

Notes: This table shows the results from estimating equation (2.8). Panel A refers to the
direction from sectors to banks while Panel B refers to the direction from banks to sectors.
The network thresholds in Panels A and B are set to the 10th percentile of the relevant debt
share and asset share, respectively. The sample contains all reported firm-bank relationships
and covers the period between 2005 and 2012. Results are obtained using option B. Bank
weakness is given by the ratio of loan loss provisions to total assets; zombie congestion is the
asset-weighted share of zombie firms in a sector according to the baseline definition; market
concentration is the HHI index of sector-level sales; sales growth is computed as the log differ-
ence in total sector sales from the year before; capital intensity is the share of a sector’s fixed
assets in total sales.
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FIGURE 6. Network characteristics (25th prc.)
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Notes: This figure shows the network characteristics for the baseline specification. Panel (a)
shows the distribution of the number of sectors per bank, while Panel (b) shows the distribution
of the number of banks per sector. The network thresholds in Panels (a) and (b) are set to the
25th percentile of the relevant debt share.
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TABLE 11. Robustness: Networks based on debt only (using IV based on LP
with option B)

Coef. Std. err. p-value [95% Conf. interval]
Panel A: Sector to bank
Bank weakness t−1 0.330 0.002 0.000 0.326 0.334
Zombie congestion t−1 0.964 0.322 0.003 0.333 1.596
Number of banks 48
Number of sectors 541
Observations 35 144

Panel B: Bank to sector
Zombie congestion t−1 0.695 0.049 0.000 0.599 0.791
Bank weakness t−1 0.140 0.096 0.146 −0.049 0.328
Market concentration t−1 −0.028 0.099 0.777 −0.221 0.165
Sales growth t−1 −0.001 0.008 0.898 −0.016 0.014
Capital intensity t−1 −0.015 0.009 0.090 −0.032 0.002
Number of banks 57
Number of sectors 549
Observations 35 680

Direction of spillover
with FWER control S→ B at 1%

Notes: This table shows the results from estimating equation (2.8). Panel A refers to the
direction from sectors to banks while Panel B refers to the direction from banks to sectors. The
network thresholds in Panels A and B are set to the 25th percentile of the relevant debt share.
The sample contains all reported firm-bank relationships and covers the period between 2005
and 2012. Results are obtained using option B. Bank weakness is given by the ratio of loan
loss provsions to total assets; zombie congestion is the asset-weighted share of zombie firms in
a sector according to the baseline definition; market concentration is the HHI index of sector-
level sales; sales growth is computed as the log difference in total sector sales from the year
before; capital intensity is the share of a sector’s fixed assets in total sales.
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TABLE 12. Robustness: First bank only (using IV based on LP with option B)

Coef. Std. err. p-value [95% Conf. interval]
Panel A: Sector to bank
Bank weakness t−1 0.335 0.002 0.000 0.331 0.339
Zombie congestion t−1 0.751 0.519 0.148 −0.266 1.769
Number of banks 46
Number of sectors 537
Observations 26 552

Panel B: Bank to sector
Zombie congestion t−1 0.696 0.049 0.000 0.601 0.792
Bank weakness t−1 0.133 0.040 0.001 0.053 0.212
Market concentration t−1 −0.027 0.098 0.784 −0.219 0.166
Sales growth t−1 −0.001 0.008 0.914 −0.016 0.014
Capital intensity t−1 −0.015 0.009 0.090 −0.032 0.002
Number of banks 57
Number of sectors 550
Observations 28 512

Direction of spillover
with FWER control B→ S at 1%

Notes: This table shows the results from estimating equation (2.8). Panel A refers to the
direction from sectors to banks while Panel B refers to the direction from banks to sectors. The
network thresholds in Panels A and B are set to the 25th percentile of the relevant debt share
and asset share, respectively. The sample only includes the first reported bank relationship for
each firm and covers the period between 2005 and 2012. Results are obtained using option B.
Bank weakness is given by the ratio of loan loss provsions to total assets; zombie congestion
is the asset-weighted share of zombie firms in a sector according to the baseline definition;
market concentration is the HHI index of sector-level sales; sales growth is computed as the
log difference in total sector sales from the year before; capital intensity is the share of a sector’s
fixed assets in total sales.
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TABLE 13. Baseline specification (using IV based on LP with option A)

Coef. Std. err. p-value [95% Conf. interval]
Panel A: Sector to bank
Bank weakness t−1 0.281 0.010 0.000 0.262 0.300
Zombie congestion t−1 5.715 3.801 0.133 −1.734 13.164
Number of banks 48
Number of sectors 541
Observations 35 144

Panel B: Bank to sector
Zombie congestion t−1 0.710 0.059 0.000 0.595 0.825
Bank weakness t−1 0.147 0.050 0.003 0.050 0.245
Market concentration t−1 −0.086 0.110 0.434 −0.302 0.130
Sales growth t−1 0.001 0.008 0.890 −0.015 0.017
Capital intensity t−1 −0.014 0.011 0.208 −0.037 0.008
Number of banks 57
Number of sectors 550
Observations 37 448

Direction of spillover
with FWER control B→ S at 1%

Notes: This table shows the results from estimating equation (2.8). Panel A refers to the di-
rection from sectors to banks while Panel B refers to the direction from banks to sectors. The
network thresholds in Panels A and B are set to the 25th percentile of the relevant debt share
and asset share, respectively. The sample contains all reported firm-bank relationships and cov-
ers the period between 2005 and 2012. Results are obtained using option A. Bank weakness is
given by the ratio of loan loss provsions to total assets; zombie congestion is the asset-weighted
share of zombie firms in a sector according to the baseline definition; market concentration
is the HHI index of sector-level sales; sales growth is computed as the log difference in total
sector sales from the year before; capital intensity is the share of a sector’s fixed assets in total
sales.
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TABLE 14. Baseline specification (using IV based on LP with option C)

Coef. Std. err. p-value [95% Conf. interval]
Panel A: Sector to bank
Bank weakness t−1 0.330 0.002 0.000 0.326 0.333
Zombie congestion t−1 0.712 0.312 0.023 0.100 1.325
Number of banks 48
Number of sectors 541
Observations 35 144

Panel B: Bank to sector
Zombie congestion t−1 0.688 0.050 0.000 0.589 0.787
Bank weakness t−1 0.134 0.047 0.005 0.041 0.227
Market concentration t−1 0.014 0.099 0.891 −0.181 0.208
Sales growth t−1 −0.002 0.008 0.808 −0.018 0.014
Capital intensity t−1 −0.007 0.005 0.136 −0.016 0.002
Number of banks 57
Number of sectors 550
Observations 37 448

Direction of spillover
with FWER control B↔ S at 1%

Notes: This table shows the results from estimating equation (2.8). Panel A refers to the di-
rection from sectors to banks while Panel B refers to the direction from banks to sectors. The
network thresholds in Panels A and B are set to the 25th percentile of the relevant debt share
and asset share, respectively. The sample contains all reported firm-bank relationships and cov-
ers the period between 2005 and 2012. Results are obtained using option C. Bank weakness is
given by the ratio of loan loss provsions to total assets; zombie congestion is the asset-weighted
share of zombie firms in a sector according to the baseline definition; market concentration
is the HHI index of sector-level sales; sales growth is computed as the log difference in total
sector sales from the year before; capital intensity is the share of a sector’s fixed assets in total
sales.
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