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Abstract.   In Nash equilibrium, agents are autarchic in their optimization protocol, 

whereas in Kantian equilibrium, they optimize in an interdependent way.   Typically, 

researchers into the evolution  of homo economicus treat preferences as being determined 

by selective adaptation, but hold fixed the optimization protocol as autarchic.   Here, we 

ask whether natural selection might choose the optimizing protocol to be either autarchic 

or interdependent.    That is, will Kantian players, for whom the stable concept is Kantian 

equilibrium drive Nash players (for whom the stable concept is Nash equilibrium) to 

extinction, or otherwise?   The answer depends upon whether players can signal their 

type to others. 
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1. Introduction 

There exists a literature in economics that considers some of the characteristics of 

agents, normally taken to be primitives, as being shaped by the forces of natural selection.  

This literature considers preferences1 to be a heritable trait, and then examines how homo 

                                                 
a Dept. of Economics, University of Waterloo 
b Depts. of Political Science and Economics,  Yale University 
1 For example, economists have looked at the evolution of how individuals make 

decisions under uncertainty (see Robson [1996] and Curry [2001]), economic rationality 

(see Robson [2003a] and Gossner and Kuzmics [2009]), time preference (see Robson and 

Samuelson [2009] and Netzer [2009]) and altruism (see Bergstrom and Stark [1993] and 

Sethi and Somanathan [2001]).  A more detailed summary of the literature can be found 

in Robson (2001, 2003b). 
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economicus would have evolved.  The present paper examines the notion of Kantian 

optimization in strategic environments as developed in Roemer (1996, 2010, 2012) and 

asks whether there may be an evolutionary advantage to such thinking, particularly in 

relation to the autarchic optimization of Nash equilibrium.  We find that Kantians hold an 

advantage over Nash players as long as they can identify whom they are playing against; 

absent this assumption,   nature would select for Nash optimizers. 

In particular, we examine the evolutionary dynamic in two games: the Prisoners’ 

Dilemma and the Random Dictator Games.  While players choose their strategies when 

playing these games, from an evolutionary standpoint, the meta-strategies are to behave 

as a Nash optimizer or a Kantian optimizer.  We then look for Evolutionarily Stable 

Strategies (ESS’s) as in Maynard Smith (1982, 1989).  The determination of the type of 

player may arise from hard-wiring, or it may be a choice made by the individual based on 

past experiences and observations.  In general, we are agnostic about the specifics 

concerning the determination of type, as the two forms of evolution operate in a similar 

fashion. 

2. Kantian Equilibrium 

 The concept of Kantian equilibrium in games was introduced (see Roemer[1996, 

2010, 2012]) to model the view that individuals in a society might apply the Kantian 

categorical imperative when deciding upon their actions.   One of the simplest examples 

is that of a society of fishers, who own in common a lake, upon which they fish.  Each 

fisher has preferences over fish consumed and labor expended in fishing, represented by a 

concave utility function ui (x, L).   The total fish caught on the lake will be G( Li ) , 

where G is a strictly concave production function of total labor expended.   The catch 

going to fisher i will be proportional, statistically speaking,  to the labor he expends, that 

is: 

 xi(L1,..., Ln ) 
Li

Lj
G( Lj ) . (0.1) 

Thus a game is defined whose strategies are fishing times and whose payoff functions are 

 V i (L1,..., Ln )  ui(xi(L1,..., Ln ), Li ). (0.2) 
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It is well-known that, since G is strictly concave, the Nash equilibria of this game are 

Pareto inefficient; there is over-fishing, as each fisher ignores the congestion effect of his 

behavior on the productivity of labor on the lake, which is decreasing in total fishing time. 

Suppose, however, that fishers reason in the following way.   When facing a 

proposed labor vector L  (L1,..., Ln ) , fisher i thinks:  “I have a right to increase (or 

decrease) my labor by a factor r if and only if I would be happy if all other fishers did so 

as well.”    An equilibrium, with respect to this kind of behavior, is a vector L such that 

nobody would like everybody to alter his behavior by some factor r 1.   The formal 

definition is: 

Definition 1.   A vector L  (L1,..., Ln )  is a multiplicative Kantian equilibrium of the 

fisher game V  if and only if: 

 (j)(argmax
r0

V i(rL1,...,rLn )  1) (0.3) 

 It is easy to prove that if a strictly positive vector L is a multiplicative Kantian 

equilibrium of the fisher game, then it is Pareto efficient (Roemer [2010]).    In other 

words, Kantian behavior in the sense described solves the tragedy of the commons. 

 Elinor Ostrom (1990) has studied many small societies like the fisher economy, 

and discovers that they do not play the Nash equilibrium, but rather regulate fishing times 

in order to achieve Pareto efficient outcomes.   These outcomes are ones in which each 

fisher keeps his catch.   So they are efficient outcomes in which output (fish) is 

distributed in proportion to labor expended.   It can be proved that any such allocation is 

a multiplicative Kantian equilibrium of the ‘game’ being played by fishers (see Roemer 

[2012]).   The question arises: Have the fishers in these economies discovered the 

Kantian way of thinking?   Does Kantian optimization play a role in maintaining these 

equilibria?    We do not know.  However, it is worth considering whether there may be an 

evolutionary explanation for the use of Kantian optimization. 

 

3. Natural selection    

In this section, we consider a large population of agents who are pair-wise matched at 

random each period to play a game; a fraction   of these agents optimize in the Nash 

manner, and 1  optimize in the Kantian manner.  We examine the expected payoff to 
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each agent under two regimes.  In the first regime, an agent’s type is observable to his 

opponent.  In the second, an agent’s type is private knowledge. A discussion of these two 

regimes follows in section 4.  

We consider payoffs to be proportional to evolutionary fitness, so that the type with 

the higher expected payoff will grow at a greater rate within the population.  In this 

fashion, we can consider how a player optimizes and we examine whether an 

Evolutionarily Stable Strategy (ESS) exists, as in Maynard Smith (1982, 1989).  We say 

that an ESS exists if either the expected payoff to Nash optimizers is greater when   is 

close to 1, or when the expected payoff to Kantian optimizers is greater when   is close 

to 0.  In the former case, the population is almost all Nash optimizers and a mutant 

Kantian would do worse than the Nash players and so be driven to extinction. In the latter 

case, the population is almost all Kantian optimizers, and a Nash optimizer would do 

worse than the Kantians and so be driven out.   

In the following two sections, we consider whether an ESS exists in two two-person 

games: the prisoners’ dilemma, and the random dictator game. 

 

3.1 The Prisoners’ Dilemma Game 
   

 Consider the prisoners’ dilemma (PD) game: 

   Cooperate  Defect 

Cooperate  (1,1) (a,b) 

Defect (b,a) (0,0) 

 

where b 1 and a  0 .  Suppose that the Row player plays Cooperate with probability p, 

and the Column player Cooperates with probability q.    Then the payoff functions of the 

two players are: 

 
V R( p,q)  pq  p(1 q)a  (1 p)qb

V C ( p,q)  pq  p(1 q)b (1 p)qa
 (1.1) 

A multiplicative Kantian equilibrium of this game is a strategy pair ( p,q) such that  
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 argmax
r

V R (rp,rq)  1 argmax
r

V C (rp,rq), (1.2) 

where r ranges over the interval [0,min[
1

p
,
1

q
]].   We have: 

Proposition 1  

A. (1,1) is a Kantian equilibrium of the PD game if and only if (a  b)  2 , and in this 

case, there is no other (non-trivial) Kantian equilibrium2. 

B. If a  b  2 , then the unique (non-trivial) Kantian equilibrium is given by 

 p*  q* 
a  b

2(a  b 1)
1. 

In particular, p*  1 / 2 . 
 
Proof: See the appendix. 

  

Proposition 1 gives us the payoffs when two Kantian optimizers play each other.  

We know that the only Nash equilibrium in the PD game is p  q  0, since playing 

Defect is a strictly dominant strategy.  We suppose that if a Kantian player knows that he 

faces a Nash player, he optimizes à la Nash:  there is no point using the Kantian protocol 

as he knows the opponent will not use it.  We first observe: 

Proposition 2  

Suppose each player can identify the type of his opponent.  Then the Kantian players will 

drive the Nash players to extinction.   

Proof: 

1. If there is a match between two Kantian players, Proposition 1 tells us what the 

equilibrium is.  The payoff to both players is positive regardless of the values of 

(a,b) . 

                                                 
2 (0,0) is the ‘trivial’ multiplicative Kantian equilibria of this game. 
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2. A Nash player always plays   p  0.   So the payoff to two matched Nash players is 

zero. 

3. Suppose a Nash player faces a Kantian player.  Then they play p  q  0 and their 

payoffs are each zero.  

4. In sum, Nash players always receive zero payoffs in these matches, and Kantian 

players sometimes receive zero payoffs and sometimes positive payoffs.  

Consequently, on average, they are more fit than Nash players, and drive the Nash 

players to extinction.  

 We now study the case when matched players cannot identify the type of their 

opponent.  In this case, a player assumes that with probability   his opponent is a Nash 

optimizer, and with probability 1  she is a Kantian optimizer.   How should a Kantian 

player behave?    Let the payoff function for the Kantian player be P( p,q); the Nash 

player possesses a dominant strategy q  0 .   If the Kantian player knows he is playing a 

Nash player, then he should simply play the Nash best response, since the player is not 

cooperating in the Kantian sense.    However, suppose that if he plays another Kantian 

player, he anticipates will play the same strategy he is contemplating.    Thus we claim 

the equilibrium play for a Kantian must be that probability p such that: 

  argmax
0r1/x

P(rp,0) (1 )P(rp,rp)  1.   (2.4) 

Expression (2.4) says that there is no strategy which does better for the Kantian which is 

both a unilateral best response to the Nash player and a Kantian (bilateral) best response 

to the Kantian player.  

Proposition 3    

If agents cannot identify the type of their matched opponent, then the Nash optimizers 

will drive to extinction the Kantian optimizers. 

Proof: 
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1. Nash players have a dominant strategy: they always play q  0 . 

2. If the first player is Kantian and the second is Nash, ( p,q)  (0,0)  is always an 

equilibrium.   We shall assume that the Kantian player plays zero only if there is 

no other equilibrium. 

3. A Kantian optimizer knows that if he faces a Nash player, then that player will 

play qN  0.   Suppose a Kantian opponent plays qK .   The expected payoff to an 

agent playing p in this situation is, to paraphrase (2.4):  

  pa  (1 )( pqK  p(1 qK )a  (1 p)qKb). (2.4a) 

Suppose p is the equilibrium play of Kantian agent in this game.   Then it must be the 

case that p  qK , and so p must satisfy the following: 

 argmax
r

rpa  (1 )(r 2 p2  rp(1 rp)a  (1 rp)rpb)   1.     (2.5) 

The coefficient of r 2  in this expression is (1 ) p2(1 a  b).   We have a several cases.    

4. Case 1.   If a  b 1, then the maximand is a concave function of r, and achieves 

its maximum where its derivative w.r.t. r is zero.  The statement that this 

derivative is zero at r 1 is: 

  pa  (1 )(2 p2  pa  2 p2a  pb 2 p2b)  0, 

which solves to: 

  p* 
b(1 ) a

2(1 )(1 a  b)
.   (2.6) 

Indeed,  the value p of (2.6) may not lie in the interval [0,1].  So in this Case we have that 

the equilibrium play of a Kantian player is given by: 

 p 

0,  if b(1 ) a  0

1,  if  b(1 ) a  2(1 )(a  b1)

p*,  otherwise










 (2.7) 
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where the three cases correspond to the value of p * being negative, greater than one, or 

in the interval [0,1].  Note that all three of these sub-cases can occur:  the first occurs if  

  is close to 1, the second occurs if   is close to 0 and a  b  2, and the third occurs if 

a  b  2 and   is close to zero.  We denote these three cases as 1a, 1b and 1c. 

5. Case 2. a  b 1.   In this case, the maximand in (2.5) is a convex function of r, 

and so the maximum is achieved at an endpoint of feasible interval of factors r. 

One solution is   p  0.  If p  0, then the interval of  feasible values of r is 

[0,1/ p].    Since 1 must be the argmax, it follows that 1 is the right-hand 

endpoint of that feasible interval,  and so p 1.   It must also be the case that the 

value of the objective in (2.5) is weakly greater at 1 than at 0, which means: 

  a 1   0. 

In sum, we have in this case: 

 Case 2a:  if a 1   0 then p 1 is an equilibrium 

 Case 2b:  if a 1   0, then the only equilibrium is p  0. 

6. We summarize these five cases as follows: 

1a.    
a  b 1 and  1

a

b
 pK  0

 

1b. 
2  a  b 1 and  

2 (a  b)

2 (a  b) a
 pK  1

 

1c. a  b 1 and 0  p* 1 pK  p*
 

2a.   
a  b 1 and  

1

1 a
 pK  1

 

2b.   
a  b 1 and  

1

1 a
 pK  0

. 

(Regarding case 1b, note that if a  b  2, note that the condition on   associated with 

the middle line of (2.7) is impossible.) 

7. We must now compute the expected utility of  Kantian players and Nash players 

in these five cases.  Nash players always play zero.   If a Nash player faces a Nash 
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player, the payoffs are zero.   If a Nash player faces a Kantian player who plays 

pK , his payoff is  pKb .   So the expected utility of a Nash player is (1 ) pKb. 

 We compute the expected utility of both players in the five cases: 

Case 1a and 2b.    Both Kantian and Nash players receive payoffs of zero. 

Case 1b.  The expected payoff of the Kantian player is greater than the Nash player if and 

only if:  

  a  (1 )  (1 )b , 

or 
  
 

b1

a  b1
.    In this case, this can happen if and only if there is a value of   such 

that : 

  
2 (a  b)

2 (a  b) a
  

b1

a  b1
. 

This inequality reduces to the statement 2b(b1)  a(1 a) , an impossibility, since the 

l.h.s. is positive and the r.h.s. is negative.  So in this case, the Nash players drive out the 

Kantian players. 

Case 1c.   In this case, the Kantian players have a higher payoff than the Nash players if 

and only if: 

  p*a  (1 ) p*( p*  (1 p*)(a  b))  (1 ) p*b , 

an inequality which reduces to the false statement : a  (1 )b.  So the Nash players 

drive out the Kantian players. 

Case 2a.  In this case, the expected payoff for a Kantian player is greater than that for a 

Nash player if and only if a  (1 )  (1 )b , which is equivalent to the false 

statement (a  b1)  b1.  So the Nash players drive out the Kantian players. 

8. We conclude that either Kantian players play pK  0 , in which case their 

behavior is indistinguishable from that of Nash players, or they are driven to 

extinction.    

 

3.2  The Random Dictator Game 
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 In the random dictator game, there are two players, with von Neumann-

Morgenstern utility functions u(x) 
xa

a
,v(x) 

xb

b
.  The game has two stages.  In 

stage 1, Nature chooses the dictator.  In stage 2, the dictator keeps x and gives 1 x  to the 

opponent. 

 Thus, a strategy is a number 0  x 1 for the a player and a strategy   0  y 1 for 

the b player.   The payoff functions are: 

  

Pa (x, y) 
1

2
u(x)

1

2
u(1 y)

Pb(x, y) 
1

2
v( y)

1

2
v(1 x)

. 

 
A multiplicative Kantian equilibrium is a pair (x, y) such that: 

  
  

d

dr
|r1 Pa (rx,ry)  0 and 

d

dr
|r1 Pb(rx,ry)  0. 

In other words, neither player would like to multiply both strategies by any constant other 

than one.  The following proposition proves that there is a unique Kantian equilibrium: 

Proposition 4  The unique multiplicative Kantian equilibrium of the random dictator 

game is 
 
(
1

2
,
1

2
) .   

Proof: In the Appendix. 

 The unique Nash equilibrium to this game is to offer 0 when the dictator (i.e. keep 

1 for oneself).  As in the Prisoners’ Dilemma game, it is assumed that a Kantian plays the 

Nash equilibrium when facing a Nash optimizer.  Note again that we have: 

Proposition 5 In a population with Kantian and Nash agents, if players can identify their 

opponent’s type, then Kantian players drive Nash players to extinction. 

Proof: 

1. When Kantian players meet Kantian players, they each receive a payoff of u(1/ 2), 

whereas when Nash players meet either Kantian or Nash players, both  receive an 

expected payoff of 
  

1

2
u(1).  By concavity, the Kantian players do better in expectation.  
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 We next study the equilibrium when each player knows she faces a Nash player 

with probability   and a Kantian player with probability 1 . 

Proposition 6.  In a population with a positive fraction of Nash players, where agents 

know the probability   but cannot identify their opponent’s type, the Nash players drive 

the Kantian players to extinction. 

Proof: 

1.  We assume that both players have the same utility function, u(x)  xa / a .  The Nash 

player has a dominant strategy: to play y 1. 

2. Suppose it is a Kantian equilibrium for both Kantian players to play x in this situation.  

Then expression (2.4) becomes: 

 argmax
0r1/x

Pa (rx,1) (1 )Pa (rx,rx)  1.   (3.3) 

Equation (3.3) can be written: 

 
  
argmax

0r1/x

1

2
u(rx)

1

2
(u(0) (1 )u(1 rx))  1.     (3.4) 

We check whether there is a solution 0  x 1.   Since 1 is interior in the interval [0,1/ x], 

and the expression in (3.4) is concave in r, we must have the FOC: 

  
  

x

2
u (x)

1 
2

x u (1 x)  0,     (3.5) 

or   u (x)  (1 ) u (1 x) .   For the utility function u(x)  xa / a , we have: 

  x*  1 (1 )
1

1a







1

. 

Note that this checks: if   0, the equilibrium is that both players play x 1/ 2. 

3.   Consequently, the expected utility of a Kantian player is 
1

2
u(x*)

1 
2

u(1 x*), 

and the expected utility of a Nash player is 
1

2
u(1)

1 
2

u(1 x*).   Since u(1)  u(x*) , 

the Nash players drive the Kantian players to extinction.    

 

4.  Knowledge of Your Opponent 

4.1 Secret Handshakes 
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 The above section demonstrates that the success of Kantian optimizers hinges on 

their ability to determine whether the opponent is a fellow Kantian or a Nash player.  In 

both games examined, Nash players do better if they are able to hide the fact that they are 

Nash optimizers, and so they have incentive to keep such information private. 

 This problem has been examined in the literature.  Robson (1990) also considers 

agents who are pair-wise matched to play one-shot games with each other.  He allows for 

agents to send a signal to each other, or alternatively, to have some characteristic that is 

observed before the game is played.  Agents would then be able to condition their 

strategies on the signal received (or characteristic observed).  In this context, we could 

consider Kantians to be sending such a signal, Robson’s ‘secret handshake’.  If the two 

agents that have been paired together send the same signal, or possess the same 

characteristic, then each would recognize the other as a Kantian and behave accordingly. 

 Unfortunately, in Robson’s analysis, this solution only works to select the Pareto 

dominant ESS in situations where there are multiple evolutionarily stable strategies.  In 

both the Prisoners’ Dilemma (a game examined by Robson) and the Random Dictator 

game, the unique ESS when the opponent’s type is not known is to be a Nash optimizer, 

and so the secret handshake represents only a short-run solution to the problem.  The 

reason is that a Nash player would like to discover the secret handshake so that he could 

convince Kantians that he was also Kantian, but then behave as a Nash player.  In the 

long run, a mutant would indeed arise who would send the Kantian’s signal but then play 

as a Nash optimizer. 

 That being said, Robson’s secret handshake may be useful for coordination on the 

Kantian equilibrium.  Without question, such signals cannot be useful for animals in the 

context of the two games we examine.  However, we humans have constructed more 

complex environments for ourselves, and so may be able to take advantage of such 

signals in ways that other organisms cannot.  In general, people rarely interact with others 

in such one-shot environments, but unless the repetition is infinite, what is true in a one-
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shot game is also true if it is repeated.  People also interact in many different ways, and 

have developed many ways of punishing others for inappropriate behavior.3   

Without modeling such a complex interaction, in the games we consider it is 

worth noting that for Kantians to succeed, they should play the Kantian equilibrium 

strategy against fellow Kantians and the Nash equilibrium strategy against Nash 

optimizers.  As such, one would not want to base any punishment purely on their play in 

the game, because Kantians should behave as Nash players if they think they are playing 

against a Nash player.  Signals, however, would help others decide if a player should be 

punished for playing as a Nash player.  If a player signaled that she were a Kantian and 

received a Kantian signal, then she should play the Kantian equilibrium.  One would not 

be able to avoid punishment for playing Nash by claiming she thought she were playing 

against a Nash player in this context.  Signals, then, could help establish the Kantian 

equilibrium when agents play these games within a larger context. 

 

4.2 Group Selection 
 

 Group selection has not had a distinguished place in the evolutionary literature.  

Some early proponents of group selection were Sir Alexander Carr-Saunders (1922) and 

V. C. Wynne-Edwards (1962, 1963).  However, the early general consensus was that 

group selection could not occur, although it could at times be indistinguishable from kin 

selection (see Maynard Smith [1964], Williams [1966], Dawkins [1976] and Grafen 

[1984]).   

Yet the intuitive appeal of group selection is strong: groups that can avoid the 

deleterious effects of competition among themselves will do better than groups that 

succumb to inefficient outcomes induced by selfish behavior.  For example, groups that 

solve the Prisoners’ Dilemma will grow faster than groups that do not.  Furthermore, 

humans are inherently social animals and in many ways the concept of the ‘selfish gene’ 

does not mesh with what we observe in our daily lives.   

                                                 
3 Lomas (2011) provides a survey of different ways that hunter gatherer societies attempt 

to deter undesirable behavior.  Common methods include ostracism (exclusion for later 

interactions) and gossip (relaying of information about past behavior). 
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Bergstrom (2002) and Henrich (2004) provide overviews of how evolutionary 

theory has continually attempted to bring group selection into the fold.  Some 

examinations of group selection could be applied to any species.  First, it has been noted 

that ‘selfish genes’ often have incentive to do what’s best for the group (rather than 

what’s best for the individual) if the gene is prevalent within the group.  In other words, 

when organisms tend to interact with genetic relatives, then there is little to distinguish 

between group selection and kin selection.  Second, as alluded to above in the discussion 

of Robson’s secret handshake, if there exist mechanisms for punishment of anti-social 

behavior, such as defecting in the Prisoner’s Dilemma, then individuals’ incentives can 

be brought in line with the group’s (see Boyd and Richerson [1990,1992,2002] and 

Henrich and Boyd [2001]). 

In addition to the above two concepts, Henrich (2004) considers that culture may 

play a role in facilitating group selection among humans.  Culture can certainly influence 

who one interacts with as well as enable mechanisms for punishment of anti-social 

behavior.  The effect of culture on the evolution of our species is not yet well understood, 

although it certainly appears to be important (see Boyd and Richerson [1985, 1996] and 

Henrich [2001]).  This paper suggests that, in addition to kin selection and punishment, if 

culture can help reveal an agent’s true type then natural selection can favor what is good 

for the group rather than the individual. 

 

5. Conclusion 
 
 We consider Kantian equilibrium in an evolutionary light.  We find that the 

Kantian way of thinking can be evolutionarily advantageous if agents can observe the 

type of their opponent.  This leads to the question of how agents could credibly signal 

their type, a problem that is not new to evolutionary biologists.  Indeed, there is much in 

common with this problem and that of group selection.  The results of this paper are 

somewhat novel in that we present a way for individual incentives to be aligned with 

social incentives while maintaining the assumption of purely self-regarding preferences.  

 To put the present paper in context, we can form a 2 2 taxonomy of models.  

With regard to preferences, individuals can be Selfish or Altruistic; with regard to 

optimizing protocol, individuals can be Nash or Kantian.   The model of classical 
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economics and biology is {Selfish, Nash}.   Much work in recent years has been done on 

the model {Altruistic, Nash}.    In this paper, we have studied the model {Selfish, 

Kantian}.    Why are the Kantian agents selfish in this paper? Because they are concerned 

only with their own utility, not the utility of others.  Finally, we could study the model 

{Altruistic, Kantian}, in which agents care about others and optimize in the Kantian 

manner.  This model is studied in Roemer (2012), although not in prisoners’ dilemma or 

dictator games of this paper, but rather for large economies where allocation of the social 

product is the issue. 

  The present paper suggests that, while the literature has thus far looked to the 

evolution of altruistic preferences as a way of solving the group selection problem,  some 

traction can be had by shifting focus to the optimizing protocol agents use.   

 

Appendix 

 

Proof to Proposition 1: 

1. Note that V C  is monotone increasing in p  and V R is monotone increasing in q.  

Therefore, if (p,q) is a Kantian equilibrium where p=0 and q  0  it must be that q=1  

(because player 1 would advocate a change in scale factor of the efforts by r  1/ q )  

and if  (p,q) is a Kantian equilibrium where q=0 and p  0 then p = 1.  It is easy to 

check that neither (0,1) nor (1,0) is Kantian.   Therefore, the only non-trivial Kantian 

equilibria must be strictly positive. 

Proof of Part A.    

2. We write  out the objective function for player R when he is choosing r: 

 V R(rp,rq)  r 2 pq  rp(1 rq)a  (1 rp)rqb  (1.3) 

We first show that (1,1) is a Kantian equilibrium if and only if a  b  2 . 

There are three cases to consider. 

Case 1. a  b 1.   Then the objective function in (2.3) is concave in r, and so (2.3) is true 

if and only if  the derivative of the objective is non-negative at 1, that is, when 

  a  b  2 . 
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Case 2. a  b  1.  Then the objective function is linear, and 1 is a maximum if and only if

a  b  0 , which is true. 

Case 3. a  b 1.  Then the objective function is convex in r, and 1 is a maximum if and 

only if its value at 1 is at least as large as its value at zero, that is: 

 (1 a  b) a  b  0  

which is surely true. 

Putting these three cases together gives the result. 

3. We next show that when a  b  2 , there is no other non-trivial Kantian 

equilibrium.    

  Case i). 2  a  b 1and 0  p,q  1.    The payoff functions are 

V R (rp,rq)  r2 pq(1 b  a) r( pa  qb)

V C (rp,rq)  r2 pq(1 a  b) r( pb  qa)
 

which are concave functions of r when a  b 1.   If (p,q) is Kantian and p and q are less 

than one then the necessary and sufficient first-order conditions are: 

 
2 pq(1 a  b) pa  qb  0

2 pq(1 a  b) pb  qa  0
 

which imply that p  q  and hence that p 
a  b

2(a  b 1)
.   But this value is at least one, a 

contradiction.   

4. Case ii).  It is easy to check that there is no Kantian equilibrium when a  b 1 and 

either p or q is one, unless both are one. 

5. Case iii). a  b 1.  Since we know that p and q must both be positive in a (non-

trivial) Kantian equilibrium (step 1), the functions V i (rp,rq)  are strictly convex in r.   

Consequently, if neither p nor q is one, then the value r  1 is in the interior of the 

interval of admissible scale factors, for both agents.  But  V i (rp,rq)  must be 

maximized at a corner of the admissible interval of acceptable r’s.   Therefore such a 

vector of probabilities cannot be Kantian.    On the other hand, if p=1, then player one 

will recommend a scale change of r  1/ q , since his payoff is increasing in the 

other’s probability.   Similarly if q  1.   Hence the only Kantian equilibrium is (1,1).  

Proof of Part B.   
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6. Since a  b  2 , the functions V i (rp,rq)  are strictly concave functions of r if

p  0  q .  Consequently, (p,q)is (non-trivial)  Kantian only if either: 

(i) at least one of {p,q} is one, or 

(ii) 

dV i

dr
(rp,rq)

r1

 0.
 

We examine possibility (ii) first.  This expands to the equations: 

 
2 pq(1 a  b) pa  qb  0

2 pq(1 a  b) pb  qa  0
, 

which imply that p  q , which gives p 
a  b

2(a  b 1)
.   As this number is positive and  

less than one (since a  b  2 ), this is indeed a Kantian equilibrium, as the statement in 

the proposition claims.     

 We investigate possibility (i).   At most one of p or q can equal 1, by Part A of the 

proposition.  Suppose p  1.  Then the first-order conditions for (1,q) to be Kantian are: 

 
2q(1 a  b) a  qb  0

2q(1 a  b) b  qa  0
 

which  imply that a  bq  b  qa and therefore that q  1, a contradiction.  In like 

manner, it follows that (p,1) is not Kantian.      

Proof to Proposition 4: 

The FOC conditions defining K   equilibrium are: 

 
x

y


u (1 y)

u (x)
,

y

x


v (1 x)

v ( y)
. (3.1) 

Eliminating y from these equations, and using the explicit utility functions defined above, 

(3.1) can be written: 

   

 
x

1

b
a

(1 x)
1

b
1
 1

x
1

b

(1 x)
1

b
1















1a

     (3.2) 
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We claim that 
  
x 

1

2
 is the unique solution of this equation.   Note that the left-hand side 

becomes 
1

2







1a

.  So to demonstrate the claim, we need to show that  
(1/ 2)

1

b

(1/ 2)
1

b
1


1

2
, 

which is true.  Furthermore, x is the unique solution, because the left-hand side is 

increasing in x, and the right-hand side is decreasing in x.   
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