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Abstract

When the markets are incomplete, the law of one price no longer guarantees the uniqueness of

the stochastic discount factor (SDF), resulting in a set of admissible SDFs, which complicates

the study of financial market equilibrium, portfolio optimization, and derivative securities. This

paper first proposes a discrete-time framework for estimating this set of SDFs, where there are

extra states that cannot be hedged by the marketed assets. Without specifying the cause of

incompleteness, we show that the constructed incomplete market SDF set has a unique boundary

point, and shrinks to this point only when the market completes. This property allows us to

develop a novel measure for market incompleteness based upon the Wasserstein metric, which

estimates the least distance between the probability distributions of the complete and incomplete

market SDFs. To facilitate the parametrization of market incompleteness for implementation, we

then consider in detail a continuous-time framework, in which incompleteness arises from stochas-

tic jumps in asset prices, and we demonstrate that the theoretical results developed under the

discrete-time setting still hold true. We further apply our results to study the evolution of market

incompleteness in four world’s largest stock markets. Our findings indicate that an increase in

market incompleteness is usually associated with financial crises or policy changes that raise the

likelihood of unanticipated risks.

Keywords: Stochastic discount factor; incomplete market; degree of market incompleteness
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1 Introduction

Stochastic discount factor (henceforth SDF) forms the basis for all asset pricing and provides a

summary of investor preferences for payoffs over different states of the world. Under the law of

one price (henceforth LOOP), the asset pricing equation established by Harrison and Kreps (1979),

Harrison and Pliska (1981) and Hansen and Jagannathan (1991) implies that asset prices today are

a function of their expected future payoffs discounted by the SDF. When markets are complete, the

asset pricing equation leads to a unique SDF, whereas there is a multiplicity of admissible SDFs

that satisfy the equation in the absence of complete markets (Hansen and Jagannathan, 1991; Boyle

et al., 2008; Kaido and White, 2009), thus complicating the study of financial market equilibrium,

portfolio optimization, and derivative securities (Skiadas, 2007; Staum, 2007; Boyle et al., 2008). It

is therefore essential to establish a framework for characterizing the incomplete market SDF set, and

assess the extent of market incompleteness.

Markets are incomplete when perfect risk transfer is impossible, and this incompleteness can be

caused by a variety of factors, including but not limited to market frictions, such as trading costs and

portfolio constraints, and an insufficient number of marketed assets relative to the class of risks to be

hedged, such as jumps or volatility in underlying asset prices (Jackwerth, 2004; Staum, 2007; Willems

and Morbee, 2008; Bondarenko and Longarela, 2009; Mnif, 2012; Marroquı et al., 2013; Kwak et al.,

2014; Cheridito et al., 2016; Bouzianis and Hughston, 2020). To model the SDF under incomplete

markets in a general setup, we first consider a discrete-time setting, while the cause of incompleteness

is not specified. Particularly, we regard markets as incomplete when there are extra states relative

to the traded assets, either as a result of frictions or idiosyncratic risk that cannot be diversified by

trading the spanning assets in the market. We demonstrate that the constructed incomplete market

SDF set has a unique boundary point, and only shrinks to this point when the market completes.

This nice property allows us to examine features of the incomplete market SDF set, and enables us

to determine the degree of market incompleteness.

To facilitate the empirical implementation of our results, we parameterize the market incom-

pleteness in a continuous-time setting and propose that the unhedgeable risk is caused by a specific,

but practically realistic source of incompleteness – stochastic jumps, where prices exhibit positive

probabilities of unexpected changes, regardless of the interval between successive observations. Jump

diffusion processes have been frequently used to model asset pricing, and their empirical performance

in fitting the time-series properties of the asset price has been extensively evidenced by a number of

studies (Dritschel and Protter, 1999; Svishchuk et al., 2000; Bellamy, 2001; Andersen et al., 2002; Carr
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et al., 2002; Geman, 2002; Willems and Morbee, 2008; Bouzianis and Hughston, 2020; Aït-Sahalia

et al., 2021). In most cases, jumps cause incompleteness, except in very simple or unusual mod-

els, whence the market offers sufficient trading opportunities (Dritschel and Protter, 1999; Staum,

2007). As such, inspired by Merton (1976)’s work, whereby the total change in price should be a

combination of the normal and abnormal price vibrations, our continuous-time framework considers

complete markets as those in which asset prices are subject only to normal fluctuations, and incom-

plete markets as those with a positive likelihood of experiencing unanticipated changes in price. We

demonstrate that the theoretical results developed in the discrete-time counterpart are still valid

in the continuous-time setting, and we further use those results to establish the degree of market

incompleteness.

In the literature, one popular measure for the degree of market incompleteness is through the

correlation between the derivative price and its basis asset values (Cass and Citanna, 1998; Marin and

Rahi, 2000; Dávila et al., 2017; Chen et al., 2021), where a lower correlation indicates a greater degree

of incompleteness, and the market is complete only when the correlation reaches 100%. Another

measure employs the root-mean-squared error between the payoff function of the derivative and the

value of the optimal-replication portfolio constructed by the underlying securities (Bertsimas et al.,

2001). The degree of incompleteness is thus determined by the extent to which the replicated portfolio

is able to correctly price the derivative of the underlying assets.

Our approach is distinct from the previous ones in that instead of focusing on the linkage between

the prices of derivative securities and their underlying securities, we only concern the prices of the

primitive assets. In particular, considering that SDFs summarize investor preferences for payoffs

across different states of the world, it is natural to define the degree of market incompleteness as

how much the investor’s risk preference under incomplete markets diverges from that under com-

plete markets. The empirical implementation of this measure is summarized as follows, and we will

elaborate in Section 2 and 3 with discrete- and continuous-time examples. After constructing the

incomplete market SDF set and determining its corresponding complete SDF boundary point using

the asset prices, we employ the distance between their probability distributions to estimate the de-

gree of market incompleteness. As the complete market SDF is the boundary point of the incomplete

market SDF set, this distance vanishes only if the extra-state probability is zero, that is, when the

incomplete market SDF set degenerates into a unique complete market SDF. It can be challenging

to gauge this distance, since the complete and incomplete SDFs have probability distributions of

different dimensions, i.e., there are extra states with positive probabilities under incomplete markets
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compared with complete markets. A natural solution to this problem is the Wasserstein metric, a

widely adopted measure in estimating the distance between distributions whose support differs, and

its value reflects the least cost required to transform from one distribution to another (Mallows, 1972;

Del Barrio et al., 1999; Villani, 2009; Nguyen, 2011).

The remainder of this paper proceeds as follows. Sections 2 and 3 sketch the discrete- and

continuous-time frameworks to model SDF under incomplete markets, and show the applicability

of our model in assessing the evolution of market incompleteness. Section 4 provides the empirical

analysis and investigates the evolution of incompleteness in four of the world’s largest stock markets.

Section 5 concludes with a summary and a discussion of directions for future research.

2 Discrete-time Setting

In this section, we model the SDF set and the market incompleteness under three discrete-time

setups, where each case is denoted as one risk-free bond−A asset(s)−T periods−S states with A ∈ N,

and T ≥ 2 ∈ N . The number of traded assets is assumed to be less than the number of states at

the end of each period, i.e., A + 1 < S, so that the markets are incomplete, while the cause of this

incompleteness is not imposed. Then, there is a set of SDFs identified by the distribution of observed

asset prices (Boyle et al., 2008; Kaido and White, 2009).

To motivate our study, we begin with a two-period market that has only one additional state

relative to the number of traded assets in Sections 2.1 and 2.2. We formalize the setup as follows.

Assumption 2.1. Suppose that there are one risk-free bond and A ∈ N risky assets. We consider

a two-period market, t ∈ {0,1}, with trading occurring on dates t = 0,1. The outcome of the second

period, t = 1, is uncertain, and represented by a finite set Ω = {ωs}s=1,2,...,S comprising S = A + 2

states of nature. Let F be the set of events with all subsets of Ω and P be the physical probability

measure such that P ∶ F → R . There exists a set P of complete probability measures on (Ω,F) such

that P ∈ P . Letting P (ωs) = πs be the probability of state ωs, πs are strictly positive scalars for all

s = 1,2, . . . , S in incomplete markets, while πS = 0 when the markets are complete.

Assumption 2.1 has three implications. First, there are only two periods in the economy, and

thus, we do not index the states by time in the subsequent two sections. We will extend our setup to

multiperiods, where t takes the value from a finite sequence of real numbers in [0,1] that are equally-

spaced, and continuous time, where t is generalized to take any value in [0,1]. Second, without loss

of generality, the last state is assumed to be the extra one, which is caused by an unknown source
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of market incompleteness, resulting in an idiosyncratic risk that cannot be hedged by the existing

marketed assets. Third, our basic design requires the markets to be either complete, with the same

number of marketed assets and states, or incomplete, with only one extra state. In Section 2.4, this

restriction is relaxed to a finite number of extra states, and πS is extended to a vector such that1

[πs̄]s̄=A+2,A+3,...,S ∈ RS−1−A
++ . Then, the market completes only when2 [πs̄]s̄=A+2,A+3,...,S = 0S−1−A.

2.1 One risk-free bond, one risky asset, two periods, three states (1-1-2-3)

Suppose that we have one risk-free bond and one risky primitive asset in the economy, and there are

three states at period t = 1 such that Ω = (ω1, ω2, ω3), correspondingly there exists a set of physical

probabilities

Π = {π = [π1, π2, π3]⊺ ∈ R3
++ ∶

3

∑
s=1

πs = 1} . (2.1)

As we have two assets, the gross rate of returns realized at the second period are of length two3, i.e.,

r (ωs) = [r1,s,1]⊺, where ra,s denotes the return for risky asset a in state s and, for simplicity, the

return of the bond is 1, suggesting a zero risk-free rate. Let r = [r(ω1),r(ω2),r(ω3)], we assume

that the second-moment matrix of r, E[rr⊺], is nonsingular, so that the cases where the entries of

r is linearly dependent are ruled out. This restriction also guarantees that LOOP holds trivially for

linear combinations of r (Hansen and Jagannathan, 1991). We can treat r as payoffs for assets with

price one, and the asset pricing equation is expressed in the form4

Eπ[rM] =
3

∑
s=1

r (ωs)M (ωs)πs = 12, (2.2)

where the subscript of E is used to specify which probability measure is being used to compute the

expectation. As discussed in Kaido and White (2009), the SDF M is a non-zero F-measurable

random variable such that M ∶ Ω → Mπ, where Mπ is the set of SDFs under P ∈ P that satisfies

Equation 2.2:

Mπ ∶= {M ∶ Eπ[rM] = 12} . (2.3)
1We write v ∈ Rn

++ for a vector that is strictly positive in all its coordinates.
20n denotes a zero vector of size n.
3For vectors and matrices, we shall use the superscript ‘⊺’ to denote transpose.
41n is a vector of ones in Rn .
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Let M s ≡M(ωs) and α = π3M3 ∈ R∗ be the free variable5,6, for any π ∈ Π, we can think of M

as a vector in R3
∗, where the three coordinates give the values of M on the three possible outcomes.

Thus, Equation 2.3 can be rewritten as7

Mπ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M ∈ R3
∗ ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−r1,2

r1,1−r1,2

r1,1−1
r1,1−r1,2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

π−1 + α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,2−r1,3

r1,1−r1,2

− r1,1−r1,3

r1,1−r1,2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

π−1, α ∈ R∗

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

.

Lastly, we write the combined set C of Mπ’s for all π ∈ Π as C ∶= {Mπ,π ∈ Π}.

2.1.1 Set properties of C

The following proposition provides the limit and boundary points of the set of probability measures

in Equation 2.1, which will later be used to explore the boundary point of the constructed incomplete

market SDF set C. The proof is in Appendix A.1.

Proposition 2.1. Consider the metric space (Π̄, d) such that

Π̄ = {π = [π1, π2, π3]⊺ ∶
3

∑
s=1

πs = 1, π1, π2 > 0, π3 ≥ 0}

and d is the Euclidean distance metric. Then, the set of limit points of Π in (Π̄, d) is

L(Π) = {π = [π1, π2, π3]⊺ ∶
3

∑
s=1

πs = 1, π1, π2 > 0, π3 ≥ 0}

and the set of boundary points of Π in Π̄ is

∂Π = {π = [π1, π2, π3]⊺ ∶
3

∑
s=1

πs = 1, π1, π2 > 0, π3 = 0} .

The probability set Π̄ has the first two states being strictly positive and the last state being

nonnegative, which therefore, covers all complete and incomplete market scenarios described in As-
5M can be also thought as the discounted Radon–Nikodym derivative, where the Radon–Nikodym derivative D is

defined as a F-measurable random variable such that for any A ∈ F ,Q(A) = ∫ADdP (Kaido and White, 2009) with Q
be the risk-neutral probability measure. In our setup, assuming zero risk-free interest rate, M = E[dQ/dP ∣ F]. Since
Q and P are equivalent in measure, they agree on which events have zero probability, and hence, M is non-zero.

6We write v ∈ Rn
∗ for a vector that is non-zero in all its coordinates.

7To simplify our notation, for two vectors A and B of the same dimensions, AB is their element-wise product with
the same dimension as A and its element expressed as (AB)i = Ai ×Bi. Similarly, for a vector A, the element-wise
power of a real number x on it is Ax, i.e., (Ax)i = (Ai)x; for a real number x, the element-wise power of a vector A
on it is xA, i.e., (xA)i = xAi .
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sumption 2.1. Proposition 2.1 implies that there is a unique boundary point for Π in (Π̄, d) when

limπ3 → 0, which is compatible with Assumption 2.1 such that the incompleteness is introduced

through a non-tradable risk with positive likelihood of occurrence.

In accordance to Proposition 2.1, the next result presents that the combined incomplete market

SDF setC has the complete market SDF on its boundary, and its proof can be found in Appendix A.2.

Theorem 2.1. Consider a metric space (C̄, d1) with C̄ ∶= {Mπ,π ∈ Π̄} and d1 being the Wasserstein

distance such that for x,y ∈ Π̄,

d1 (Mx,My) = inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2 (M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭
, (2.4)

where8 W (x,y) ∶= {w ∈ RSy×Sx
+ ∶w⊺1Sy = x,wx = y} is the set of transport plans between x and y.

Sz is the number of states with non-zero probabilities and the superscript sz is the index of the elements

in the vector under the physical probability z ∈ Π̄. For all sx = 1,2, . . . , Sx and sy = 1,2, . . . , Sy,

d2 (M sx ,M sy) = ∣vsx − vsy ∣ + ∣usx − usy ∣ , (2.5)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−r1,2

r1,1−r1,2

r1,1−1
r1,1−r1,2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x−1 and u(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,2−r1,3

r1,1−r1,2

− r1,1−r1,3

r1,1−r1,2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x−1, x ∈ Π;

v(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

1−r1,2

r1,1−r1,2

r1,1−1
r1,1−r1,2

⎤⎥⎥⎥⎥⎥⎥⎦

x−1 and u(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

x−1, x ∈ ∂Π.

Then, the set of limit points of C in (C̄, d1) is

L(C) = {Mπ,π ∈ Π} ∪ {Mπ,π ∈ ∂Π} ,

where, for any π ∈ ∂Π,

Mπ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

M1

M2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1−r1,2

r1,1−r1,2

r1,1−1
r1,1−r1,2

⎤⎥⎥⎥⎥⎥⎦
π−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

and the set of boundary points of C is denoted as ∂C = {Mπ,π ∈ ∂Π} .
8We write A ∈ RM×N

+ for matrix of dimension M ×N that is non-negative in all its elements.
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Theorem 2.1 utilizes the Wasserstein metric as the distance measure, which is a natural way

to compare two probability distributions with different supports, and thus, suitable to quantify the

divergence of the incomplete market SDFs from the complete market one. Based on Theorem 2.1,

we have the following Lemma 2.1.1, suggesting that, for every probability measure x ∈ Π, there is

a probability measure y∗ ∈ ∂Π that minimizes the distance between Mx ∈ C and My ∈ ∂C. The

proof of this lemma is presented in Appendix A.3, and we will further utilize it in the discussion of

set properties of C and the measure for market incompleteness.

Lemma 2.1.1. For every Mx ∈ C, there exists My∗ such that

My∗ = arg min
My∈∂C

d1(Mx,My).

The next result develops an overview of the incomplete market SDF set, where C is convex, open,

bounded, and not compact. The proof is provided in Appendix A.4.

Theorem 2.2. Let Π be the set of physical probabilities satisfying Equation 2.1.

Let Mπ be the identified SDF set in the 1-1-2-3 case satisfying Equation 2.3 under π ∈ Π.

Let C be the combined SDF set such that C = {Mπ,π ∈ Π} . Then, C is a convex set.

Let (C̄, d1) be the metric space such that C̄ = {Mπ,π ∈ Π̄} and for x,y ∈ Π̄, d1 is as defined in

Equation 2.4. Then, C is open, bounded and not compact under (C̄, d1) .

2.1.2 Measure for market incompleteness

As discussed in Theorems 2.1 and 2.2, we can naturally employ the metric d1 defined in Equation 2.4

to measure for market incompleteness. Given that at t = 0, the complete and incomplete market

SDFs are assumed to be 1, and the distance between them is 0 following the metric d1, for every

x ∈ Π̄, the degree of market incompleteness measured at t = 1 is defined as in Equation 2.6, which is

the least transport cost from the SDF set Mx ∈ C̄ to the complete market SDF set My ∈ ∂C ∶

MI(x) = min
My∈∂C

d1(Mx,My)

= min
y∈∂Π

inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2 (M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭
.

(2.6)

Let y∗ = arg miny∈∂Π d1(Mx,My), since d1 is a valid metric and the complete market SDF is the

boundary point of the incomplete market SDF set, the degree of market incompleteness equals zero

only when markets are complete, i.e., limMx→My∗
MI(x) = 0. As this degree increases (decreases),
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the cost to transport the incomplete market SDF to the complete market SDF increases (decreases),

which implies more (less) divergence of the current market from completeness.

2.2 One Risk-free Bond, A Risky Assets, Two Periods, A+2 States (1-A-2-(A+2))

This section extends the previous economy by having A ≥ 2 risky primitive assets and A+2 states at

t = 1 such that Ω = (ωs)s=1,2,...,A+2. Correspondingly, for P ∈ P, there is a set of physical probabilities

Π = {[π1, π2, . . . , πA+2]⊺ ∈ RA+2
++ ∶

A+2

∑
s=1

πs = 1} . (2.7)

In each state s, assuming a zero risk-free interest rate, the gross rate of return vector realized is of

length A+1 and denoted as r(ωs) = [r1,s, r2,s, . . . , rA,s,1]⊺ . Let r = [r(ω1),r(ω2), . . . , r(ωA+2)], the

second-moment matrix of r is again nonsingular. Recall that based on the asset pricing equation

Eπ[rM] =
A+2

∑
s=1

r (ωs)M (ωs)πs = 1A+1, (2.8)

the SDF is a non-zero F-measurable random variable such that M ∶ Ω →Mπ, where Mπ is the set

of SDFs under P ∈ P that satisfies Equation 2.8:

Mπ = {M ∶ Eπ[rM] = 1A+1} . (2.9)

Let M s ≡M(ωs) and α = πA+2MA+2 ∈ R∗ be the free variable, for any π ∈ Π, we can think of

M as a vector in RA+2
∗ , where each coordinate gives the value of M on the corresponding outcome.

Thus, Equation 2.9 implies that9

r′M(1∶A+1)∗π(1∶A+1)∗ = 1A+1 + α (−r′′) ,

where r′ = (r)∗(1∶A+1) and r′′ = (r)∗(A+2) , and we can be rewrite it as

Mπ = {M ∈ RA+2
∗ ∶M = v(π) + αu(π), α ∈ R∗} ,

where

v(π) =
⎡⎢⎢⎢⎢⎢⎣

(r′)−1
1A+1

0

⎤⎥⎥⎥⎥⎥⎦
π−1 and u(π) =

⎡⎢⎢⎢⎢⎢⎣

−(r′)−1 (r′′)

1

⎤⎥⎥⎥⎥⎥⎦
π−1.

9For a matrix A, the ith row of the matrix is denoted as Ai∗ and the jth column of the matrix is denoted as A∗j .
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Lastly, the combined set C of Mπ’s for all π ∈ Π is defined as C ∶= {Mπ,π ∈ Π}.

2.2.1 Set properties of C

As in the 1-1-2-3 case, we start by showing that the complete market SDF is indeed the boundary

point of the incomplete market SDF set. The following proposition demonstrates that the probability

distribution under complete markets is the boundary point of the set of probabilities under incomplete

markets, and its proof is discussed in Appendix A.5.

Proposition 2.2. Consider the metric space (Π̄, d) such that

Π̄ = {π = [π1, π2, . . . , πA+2]⊺ ∶
A+2

∑
s=1

πs = 1, πs > 0 for s = 1,2, . . . ,A + 1, πA+2 ≥ 0}

and d is the Euclidean distance metric. Then, the set of limit points of Π in (Π̄, d) is

L(Π) = {π = [π1, π2, . . . , πA+2]⊺ ∶
3

∑
s=1

πs = 1, πs > 0 for s = 1,2, . . . ,A + 1, πA+2 ≥ 0}

and the set of boundary points of Π in Π̄ is

∂Π = {π = [π1, π2, . . . , πA+2]⊺ ∶
A+2

∑
s=1

πs = 1, πs > 0 for s = 1,2, . . . ,A + 1, πA+2 = 0} .

Then, the following result corroborates with Theorem 2.1 that the constructed incomplete SDF

set indeed has its boundary point to be the complete market SDF under the defined metric space.

The proof of this result is presented in Appendix A.6

Theorem 2.3. Consider the metric space (C̄, d1) with C̄ = {Mπ,π ∈ Π̄} and d1 being the Wasser-

stein distance such that for x,y ∈ Π̄,

d1(Mx,My) = inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2 (M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭
, (2.10)

where W (x,y) ∶= {w ∈ RSy×Sx
+ ∶ w⊺1Sy = x,wx = y} is the set of transport plans between x and y.

Sz is the number of states with non-zero probabilities and the subscript sz is the index of the elements

in the vector under the physical probability z ∈ Π̄. For all sx = 1,2, . . . , Sx and sy = 1,2, . . . , Sy,

d2(M sx ,M sy) = ∣vsx − vsy ∣ + ∣usx − usy ∣ ,

10



where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

(r′)−1
1A+1

0

⎤⎥⎥⎥⎥⎥⎥⎦

x−1 and u(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

−(r′)−1 (r′′)

1

⎤⎥⎥⎥⎥⎥⎥⎦

x−1, x ∈ Π

v(x) = (r′)−1
1A+1x

−1 and u(x) = 0A+1x
−1, x ∈ ∂Π

Then, the set of limit points of C in (C̄, d1) can be denoted as

L(C) = {Mπ,π ∈ Π} ∪ {Mπ,π ∈ ∂Π} ,

where, for any π ∈ ∂Π,

Mπ = {M = [(r′)−1
1A+1π

−1
1∶(A+1)]} ,

and the set of boundary points of C is then ∂C = {Mπ,π ∈ ∂Π} .

Based on Theorem 2.3, we can then derive the following lemma, which will be employed further

in the discussion of set properties and the degree of market incompleteness. Its proof is shown in

Appendix A.7

Lemma 2.2.1. For every Mx ∈ C, there exists My∗ such that

My∗ = arg min
My∈∂C

d1(Mx,My).

The next result establishes the convexity, openness, boundedness, and non-compactness, for C in

the 1-A-2-(A+2) case with its proof discussed in Appendix A.8

Theorem 2.4. Let Π be the set of all the probability density measures under P satisfying Equa-

tion 2.7.

Let Mπ be the identified SDF set in the 1-A-2-(A+2) case satisfying Equation 2.9 given π in Π.

Let C be the combined SDF set such that C = {Mπ,π ∈ Π} . Then, C is a convex set.

Let (C̄, d1) be the metric space such that C̄ = {Mπ,π ∈ Π̄} and for x,y ∈ Π̄, d1 is as defined in

Equation 2.10. Then, C is open, bounded and not compact under (C̄, d1) .

2.2.2 Measure for market incompleteness

Similar to the 1-1-2-3 case, based upon Theorems 2.3 and 2.4, we adopt d1 defined in Equation 2.10

as the measure for market incompleteness. Given that at t = 0, the complete and incomplete market

SDFs are assumed to be 1, and the distance between them is 0 following the metric d1, for every

11



x ∈ Π̄, the degree of market incompleteness is defined as in Equation 2.11, which is the least transport

cost from Mx ∈ C̄ to My ∈ ∂C ∶

MI(x) = min
My∈∂C

d1(Mx,My). (2.11)

Let y∗ = arg miny∈∂Π d1(Mx,My), since d1 is a valid metric and the complete market SDF is the

boundary point of the incomplete market SDF set, the degree of market incompleteness equals zero

only when the markets become complete, i.e., limMx→My∗
MI(x) = 0. A higher (lower) degree

suggests more (less) cost required to transport between the complete and incomplete market SDF

sets, implying that the market diverges more (less) from the complete market.

2.3 One risk-free bond, One Risky Asset, Three Periods, Three States (1-1-3-3)

We now extend our layout to a three-period financial market. Consider a time interval [0,1], let

the complete filtered probability space characterized by (Ω,F ,{F t}t∈[0,1], P ). The filtration {F t} =

{F t}t∈[0,1] is assumed to satisfy the usual properties (Protter, 2005). There are 2 equally-spaced

subperiods in [0,1], and let h = 1/2 be the time window. Suppose we have two long-lived assets,

one risk-free bond and one risky primitive asset, available for trading at time points {0,1/2,1}, and

three states at each t = {kh}k=1,2 such that Ωt = (ω1
t , ω

2
t , ω

3
t ). Letting P (ωs

t ) = πst be the physical

probability of state ωs
t , the corresponding set of physical probabilities under P is

Πt = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∈ R3

++ ∶
3

∑
s=1

πst = 1} . (2.12)

Assuming a zero risk-free interest rate, the gross rate of asset returns realized at t = kh in states s

is of length two and denoted as rt(ωs
t ) = [r1,s

t ,1]⊺, where ra,st is the return of the risky asset a in

state s at time t. Let rt = [rt(ω1
t ),rt(ω2

t ),rt(ω3
t )], we assume as in the previous sections that the

second-moment matrix of rt is nonsingular. Then, each subperiod [(k − 1)h, kh] can be viewed as

a two-period model as in the 1-1-2-3 case, and we have the random variable mt ∶ Ωt → mπt , where

mπt is the set of subperiod SDFs under Pt ∈ Pt that satisfies the asset pricing equation:

mπt ∶= {mt ∶ Eπt[rtmt] = 12} .

Here, we denote the above SDF set as the one-period SDF set with mt being the SDF that discount

the asset payoff at time kh to its price at time (k − 1)h for k = 1,2, and the multiperiod SDF at t is

12



defined asMt = Π
t/h
k=1mkh (Cochrane, 2009), which prices a k-period payoff and satisfies the following

equation

Eπkh
[rkhMkh] =M(k−1)h.

Then, the multiperiod SDF set at t can be written in the form Mπt = Π
t/h
k=1mπkh

.

To examine the evolution of market incompleteness over time, we focus on the single-period SDF

set at time t such that for every πt ∈ Πt

mπt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mt ∈ R3
∗ ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
t

m2
t

m3
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−r1,2
t

r1,1
t −r1,2

t

r1,1
t −1

r1,1
t −r1,2

t

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π−1
t + α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,2
t −r1,3

t

r1,1
t −r1,2

t

− r1,1
t −r1,3

t

r1,1
t −r1,2

t

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π−1
t , α ∈ R∗

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

,

where ms
t ≡mt(ωs

t ) and α = (1−π1
t −π2

t )m3
t , and the set that contains all single-period SDFs in each

period t is ct ∶= {mπt ,πt ∈ Πt} .

Further, analogous to the results proved in the 1-1-2-3 case, the following proposition and theorems

hold.

Proposition 2.3. For t = kh, consider the metric space (Π̄t, d) such that

Π̄t = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∶

3

∑
s=1

πst = 1, π1
t , π

2
t > 0, π3

t ≥ 0}

and d is the Euclidean distance metric. Then, the set of limit points of Πt in (Π̄t, d) is

L(Πt) = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∶

3

∑
s=1

πst = 1, π1
t , π

2
t > 0, π3

t ≥ 0} ,

and the set of boundary points of Πt in Π̄t is

∂Πt = {πt = [π1
t , π

2
t , π

3
t ]
⊺ ∶

3

∑
s=1

πst = 1, π1
t , π

2
t > 0, π3

t = 0} .

Theorem 2.5. Consider the metric space (c̄t, d1) such that c̄t = {mπt ,πt ∈ Π̄t} and for xt,yt ∈ Π̄t,

d1(mxt ,myt) = inf
wt

⎧⎪⎪⎨⎪⎪⎩

Sxt

∑
sxt=1

Syt

∑
syt=1

w
sxtsyt
t x

sxt
t d2 (m

sxt
t ,m

syt
t ) ∶wt ∈W (xt,yt)

⎫⎪⎪⎬⎪⎪⎭
, (2.13)

where W (xt,yt) ∶= {wt ∈ RSyt×Sxt+ ∶ w⊺
t 1Syt

= xt,wtxt = yt} is the set of transport plans between

xt and yt. Szt is the number of states with non-zero probabilities and the subscript szt is the index
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of the elements in the vector under the physical probability zt ∈ Π̄t. For all sxt = 1,2, . . . , Sxt and

syt = 1,2, . . . , Syt ,

d2 (m
sxt
t ,m

syt
t ) = ∣vsxt − vsyt ∣ + ∣usxt − usyt ∣ ,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(xt) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−r1,2
t

r1,1
t −r1,2

t

r1,1
t −1

r1,1
t −r1,2

t

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x−1
t and u(xt) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,2
t −r1,3

t

r1,1
t −r1,2

t

− r1,1
t −r1,3

t

r1,1
t −r1,2

t

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x−1
t , xt ∈ Πt;

v(xt) =

⎡⎢⎢⎢⎢⎢⎢⎣

1−r1,2
t

r1,1
t −r1,2

t

r1,1
t −1

r1,1
t −r1,2

t

⎤⎥⎥⎥⎥⎥⎥⎦

x−1
t and u(xt) =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

x−1
t , xt ∈ ∂Πt.

Then, the set of limit points of ct in c̄t can be denoted as

L(ct) = {mπt ,πt ∈ Πt} ∪ {mπt ,πt ∈ ∂Πt} ,

where, for any πt ∈ ∂Πt,

mπt =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

m1
t

m2
t

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1−r1,2
t

r1,1
t −r1,2

t

r1,1
t −1

r1,1
t −r1,2

t

⎤⎥⎥⎥⎥⎥⎥⎦

π−1
t

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

and the set of boundary points of ct is then ∂ct = {mπt ,πt ∈ ∂Πt} .

Theorem 2.6. Let Πt be the set of physical probability measures satisfying Equation 2.12. Let mπt

be the identified SDF set in the 1-1-3-3 case given the probability measure πt in Πt, and let ct be the

combined SDF set such that ct = {mπt ,πt ∈ Πt} . Then, ct is a convex set.

Let (c̄t, d1) be the metric space such that c̄t = {mπt ,πt ∈ Π̄t} and for xt,yt ∈ Π̄t, d1 is as defined

in Equation 2.13. Then, ct is open, bounded and not compact under (c̄t, d1).

Last, we derive the degree of market incompleteness based on the set properties in Theorems 2.5

and 2.6. Again, since at time 0, the complete and incomplete market SDFs are assumed to be 1,

the distance between them is 0 following the metric d1. Thus, given {xkh ∈ Π̄kh}
t/h
k=1

, the degree of

market incompleteness at t is defined as in Equation 2.14, which is the average of the least transport

costs from mxkh
∈ c̄kh to mykh ∈ ∂ckh from time h to t, indicating that we weigh the degree of market

incompleteness equally across subperiods.

MI ({xkh}t/hk=0) =
h

t

t/h
∑
k=0

min
mykh

∈∂ckh
d1 (mxkh

,mykh) . (2.14)

14



As the subperiod degrees of market incompleteness are functions of their subperiod asset returns,

which are uncorrelated, we take the average of them so that MI ({xkh}t/hk=0) is not monotonic in

t. Moreover, since d1 is a valid metric and the complete market SDF is the boundary point of the

incomplete market SDF set in each subperiod, the degree of market incompleteness equals zero only

when markets are dynamically complete, i.e., when markets are complete at every subperiods. Hence,

the estimated M̂I ({xkh}1
k=0) and M̂I ({xkh}2

k=0) depict the evolution of market incompleteness over

the time interval [0,1].

2.4 Generalization of the Discrete-time Setting

Finally, we consider a generalized discrete-time setting in which there are a finite number of additional

states rather than only one, while still allowing any type of incompleteness in the market. The setup

is formalized as follows.

Assumption 2.2. Suppose that there are one risk-free bond and A ∈ N risky assets. Let S ≥ A + 2

and (Ω,F ,{F t}t∈[0,1], P ) be the complete filtered probability space, where Ω, F and P are the same

as defined in Assumption 2.1, and the filtration {F t} = {F t}t∈[0,1] is assumed to satisfy the usual

properties (Protter, 2005). Suppose that there are K ≥ 1 equally-spaced subperiods in [0,1], and

let h = 1/K be the time window. All assets are long-lived and available for trading at time points

{0, h, . . . , (K − 1)h,1}, and there are S states at each t = {kh}k=1,2,...,K such that Ωt = (ωs
t )s=1,2,...,S .

Let Pt(ωs
t ) = πst be the physical probability of state ωs

t , where π
s
t are strictly positive scalars for all s

in incomplete markets, while [πs̄
t ]s̄=A+2,A+3,...,S = 0S−A−1 when the markets are complete. There exists

a set Pt of complete probability measures on (Ωt,F t) at each t = {kh}k=1,...,K such that Pt ∈ Pt .

Assumption 2.2 is a generalization of Assumption 2.1, where the number of jumps at time t is no

longer restricted to be one, and we allow for multiple extra states in each subperiod. Correspondingly,

the set of physical probabilities at t when the markets are incomplete is10

Πt = { [π1
t , π

2
t , . . . , π

S
t ] ∈ RS

++ ∶
S

∑
s=1

πst = 1}. (2.15)

At time t = kh, the gross rate of return vector of length A + 1 realized at state s is rt(ωs
t ) =

[r1,s
t , r2,s

t , . . . , rA,s
t , r0

t ]
⊺
, where ra,st denotes the return of the risky asset a in state s, and r0

t denotes

the risk-free rate. Let rt = [rt(ωs
t )]s=1,2,...,S , when the assumption that the second-moment of rt is

10Here, we restrict all πs
t ’s to be strictly positive under incomplete markets, instead of letting πs

t ≥ 0 for s ≥ A + 2,
because the latter can be simply reduced to a lower-dimensional case. For instance, if πS

t = 0 under both complete and
incomplete markets, then, our setup can be reduced to an (S − 1)-dimensional case.
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nonsingular holds, at the end of each subperiod t, we have the random variablemt ∶ Ωt →mπt , where

mπt is the set of SDFs under Pt ∈ Pt that satisfies the asset pricing equation:

mπt ∶= {mt ∶ Eπt[rtmt] = 1A+1.} . (2.16)

Subsequently, let αt = [πs̄tms̄
t ]s̄=A+2,A+3,...,S ∈ RS−A−1

∗ be the vector of free variables, we can derive the

single-period SDF set at time t in the form such that for every πt ∈ Πt

mπt = {mt ∈ RS
∗ ∶mt = vt(πt) +ut(πt)αt,αt ∈ RS−A−1

∗ } ,

where

vt(πt) =
⎡⎢⎢⎢⎢⎢⎣

(r′t)
−1

1A+1

0S−A−1

⎤⎥⎥⎥⎥⎥⎦
π−1
t and ut(πt) =

⎡⎢⎢⎢⎢⎢⎣

−(r′t)
−1 (r′′t )

1S−A−1

⎤⎥⎥⎥⎥⎥⎦
π−1
t

with r′t = (rt)∗(1∶A+1) and r′′t = (rt)∗(A+2∶S) . Lastly, the combined set ct of mπt ’s for all πt ∈ Πt is

defined as ct ∶= {mπt ,πt ∈ Πt}.

Now, we demonstrate that the results in previous special cases hold in the generalized setting.

The following proposition indicates that the probability distribution under complete markets is the

boundary point of the set of probabilities under incomplete markets, and its proof is discussed in

Appendix A.9.

Proposition 2.4. Consider the metric space (Π̄t, d) such that

Π̄t = Πt ∪ {πt = [π1
t , π

2
t , . . . , π

S
t ]

⊺ ∶
S

∑
s=1

πst = 1, πst > 0 for s = 1,2, . . . ,A + 1,

πst = 0 for s = A + 2,A + 3 . . . , S}

and d is the Euclidean distance metric.

Then, the set of limit points of Πt in (Π̄t, d) is L(Πt) = Π̄t, and the set of boundary points of

Πt in Π̄t is

∂Πt = {πt = [π1
t , π

2
t , . . . , π

S
t ]

⊺ ∶
S

∑
s=1

πst = 1, πst > 0 for s = 1,2, . . . ,A + 1,

πst = 0 for s = A + 2,A + 3 . . . , S}.

Then, we can establish the following result such that the constructed incomplete set SDF has its

16



boundary point to be the complete market SDF under the defined metric space. The proof of this

result is presented in Appendix A.10

Theorem 2.7. Consider the metric space (c̄t, d1) with c̄t = {mπt ,πt ∈ Π̄t} and d1 is as defined in

Equation 2.13. Then, the set of limit points of ct in (c̄t, d1) is

L(ct) = {mπt ,πt ∈ Πt} ∪ {mπt ,πt ∈ ∂Πt} ,

where, for any πt ∈ ∂Πt,

mπt = {mt = [(r′t)
−1

1A+1(πt)−1
1∶(A+1)]} ,

and the set of boundary points of ct is then ∂ct = {mπt ,πt ∈ ∂Πt} .

The following lemma, derived from Theorem 2.7, implies that for every probability measure

xt ∈ Πt, there is a probability measure y∗t ∈ ∂Πt that minimizes the distance between mxt ∈ ct and

myt ∈ ∂ct. This lemma enables us to further explore the set properties of the incomplete market

SDF as well as the degree of market incompleteness. Its proof is presented in Appendix A.11.

Lemma 2.4.1. For every mxt ∈ ct, there exists my∗t such that

my∗t
= arg min
myt∈ct

{d1(mxt ,myt)} .

The next result establishes the convexity, openness, boundedness, and non-compactness, for ct in

the generalized case with its proof discussed in Appendix A.12.

Theorem 2.8. Let Πt be the set of all the probability density measures under Pt satisfying Equa-

tion 2.15.

Let mπt be the identified SDF set in the generalized case satisfying Equation 2.16 given πt in Πt.

Let ct be the combined SDF set such that ct = {mπt ,πt ∈ Πt} . Then, ct is a convex set.

Let (c̄t, d1) be the metric space such that c̄t = {mπt ,πt ∈ Π̄t} and for xt,yt ∈ Π̄t, d1 is as defined

in Equation 2.13. Then, ct is open, bounded and not compact under (c̄t, d1) .

Last, based on the set properties in Theorems 2.7 and 2.8, given {xkh ∈ Π̄kh}
t/h
k=1

, the degree of

market incompleteness at t is defined as in Equation 2.17, which is the mean of the least transport
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costs from mxkh
∈ c̄kh to mykh ∈ ∂ckh from time 0 up to t11:

MI ({xkh}t/hk=1) =
h

t

t/h
∑
k=0

min
mykh

∈∂ckh
d1 (mxkh

,mykh) . (2.17)

The subperiod degrees of market incompleteness are functions of their subperiod asset returns, which

are uncorrelated, then by taking the average of these subperiod transport costs, we get the degree

of market incompleteness at t, MI ({xkh}t/hk=0), which is not monotonic in t. Moreover, as d1 is a

valid metric and the complete market SDF is the boundary point of the incomplete market SDF

set in each subperiod, the degree of market incompleteness equals zero only when the markets are

dynamically complete, i.e., when the markets are complete at every subperiods. Hence, the estimated

M̂I ({xkh}t/hk=0) depict the evolution of market incompleteness over the time interval [0,1].

3 Continuous-time Setting

The modelling of the SDF set and the degree of market incompleteness in the continuous-time setting

is similar to that used in its discrete-time counterpart, but there are differences. Particularly, in order

to implement our approach in empirical works, we further parameterize the market incompleteness

by specifying that the asset prices are generated by the jump diffusion processes, which constitute an

important class of incomplete market models and are realistic in practice (Kaido and White, 2009).

Same as Assumption 2.2, we have the time interval [0,1] and the complete filtered probability

space characterized by (Ω,F ,{F t}t∈[0,1], P ). There exists a set P of complete probability measures

on (Ω,F) such that P ∈ P . Suppose that there are A ∈ N risky assets and that, in incomplete markets,

RA −valued asset price process {St} solves the stochastic differential equation (SDE)

dSt

St−
= µB

t dt +σB
t dBt + JtdÑt, (3.1)

where {µB
t } is an RA-valued adapted drift process, {σB

t } is an RA×A-valued adapted diffusion co-

efficient process. Jt is a random jump amplitude, which is predictable and Jt > −1, implying that

all elements in St remain positive, consistent with the limited liability provision (Aït-Sahalia et al.,

2009). Then, it is convenient to have Jt = exp(Qt) − 1A as in Hanson and Westman (2002), where

Qt follows a normal distribution with mean µJ
t and standard deviation σJ

t . {Bt} is a vector of A

independent Brownian motions under P and Ñt = Nt − vt(dx)t is the compensated martingales of
11Again, we assume that the complete and incomplete market SDFs are 1 at time 0, and the distance between them

is 0 following the metric d1.
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Poisson process Nt with mean measure vt(dx)t, where vt(dx) ≥ 0 is taken to be the Lévy measure

associated with an A-dimensional pure-jump Lévy process. Thus, vt(dx) is a σ-finite measure on

(R,B(R))12 such that vt({0}) = 0, suggesting that v does not have mass on 0, and

∫
R

min (1, ∣x∣2)vt(dx) < ∞, (3.2)

so the jumps have finite variation. {Bt} and Ñt are independent under P and are adapted to {F t}.

We require that

P [∫
t

0
(∣µB

s ∣ +σB
s

2 + J2
s vs(dx))ds < ∞] = 1 (3.3)

for t ≥ 0, which is a sufficient restriction to ensure that the integral with respect to the compensated

Poisson random measure exists for both small and large jumps. We assume that the market is built

with a risk-free bond with a known rate of return of rt.

Given the RA-valued adapted processes {ψt}t≥0 and {γt}t≥0, the Girsanov transformation defines

the new adapted processes {B̄t} and {N̄t} by adjusting the original Brownian motion and the

compensated martingales of Poisson process:

B̄t =Bt + ∫
t

0
ψsds and N̄t = Ñt + ∫

t

0
vs(dx)γsds.

Then, the asset return process under the risk-neutral probability measure is

dSt

St−
= rt1B

Adt +σB
t dB̄t + JtdN̄t

and the existence of the SDF holds only for (ψt,γt) such that

µB
t − rt1A −σB

t ψt − Jtγtvt(dx) = 0, a.s. − P.

Such vectors are called the market prices of risk, where {ψt}t≥0 is the adapted Brownian market price

of risk and {γt}t≥0 is the predictable jump market price of risk, and γt < 1 for t ≥ 0.

Let φt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∈ Φt, where

Φt = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) > 0A}

is an admissible parameter space under P ∈ P . When markets are incomplete, the market prices of
12We use B(R) to denote the Borel σ-algebra.
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risk form a set

Γ(φt) = {(ψt,γt) ∶ µB
t − rt1A −σB

t ψt − Jtγtvt(dx) = 0} . (3.4)

Let αt = ln [(1A − γt)−1], Equation 3.4 can be written in the form

Γ(φt) = { (ψt,γt) ∶ ψt = (σB
t )−1 (µB

t − rt1A) − (σB
t )−1 (Jt (1A − e−αt)vt(dx)) ,

γt = 1A − e−αt ,αt ∈ RA }. (3.5)

Correspondingly, for (ψt,γt) ∈ Γ(φt), the SDF process {M(φt)}t≥0 follows the dynamic form

dM(φt)
M(φt−)

= − [rt1Adt +ψtdBt + γtdÑt]

with the solution

M(φt) = exp(−∫
t

0
rs1Ads − ∫

t

0
ψsdBs −

1

2
∫

t

0
ψ2

sds)

× exp(−∫
t

0
αsdÑs − ∫

t

0
(e−αs − 1A +κs)vt(dx)ds) .

We shall restrict M(φt) to be a P -square integrable martingale over the time interval [0,1], i.e.,

supt∈[0,1]E [M2(φt)] < ∞. Then, the SDF set is

M(φt) = {M(φt) = exp(−∫
t

0
rs1Ads − ∫

t

0
ψsdBs −

1

2
∫

t

0
ψ2

sds)

× exp(−∫
t

0
αsdÑs − ∫

t

0
(e−αs − 1A +αs)vt(dx)ds) ,

αt = ln [(1A − γt)−1] , (ψt,γt) ∈ Γ(φt)},

and the set that contains all SDFs under P ∈ P is defined as Ct ∶= {Mt(φt),φt ∈ Φt}. Analogous to

the discrete case, in order to analyze the evolution of the degree of market incompleteness, we frame

the following discussion in terms of the SDF set including all possible SDFs that price payoff over a
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small time interval dt:

m(φt) = {m(φt) =M(φt)/M(φt−),φt ∈ Φt}

= {m(φt) = exp(−rt1Adt −ψtdBt −
1

2
ψ2

t dt) × exp (−αtdÑt − (e−αt − 1A +αt)vt(dx)dt) ,

αt = ln [(1A − γt)−1] , (ψt,γt) ∈ Γ(φt)}, (3.6)

and this SDF discounts the payoff at t to its price at t − dt. Accordingly, the set that contains all

m(φt) for P ∈ P is ct ∶= {m(φt),φt ∈ Φt} .

3.1 Set properties of Ct

Similar to the discrete setups, we first verify that the boundary point of the proposed SDF set is

indeed the one under the complete market. Let Φ̄t ∶= {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) ≥ 0A} be

the admissible parameter space, the following proposition establishes the limit and boundary points

of Φt under Φ̄t. The proof is shown in Appendix A.13.

Proposition 3.1. Consider the metric space (Φ̄t, d) such that

Φ̄t ∶= {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) ≥ 0A}

and d is the Euclidean norm. Then, the set of limit points of Φt in (Φ̄t, d) is

L(Φt) = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) ≥ 0A} ,

and the set of boundary points of Φt in (Φ̄t, d) is

∂Φt = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) = 0A} .

The next result indicates that with the continuous-time setup, the complete market SDF is indeed

the boundary point of the incomplete market SDF set. The proof is presented in Appendix A.14.

Theorem 3.1. Consider the metric space (c̄t, d3) such that c̄t = {m(φt),φt ∈ Φ̄t}, and for φt,φ
′
t ∈ Φ̄t

satisfies Equation 3.3, let P (φt) and P (φ′t) denote the physical probability measures in P,

d3(m(φt),m(φ′t)) = inf
wt

{∫ d4(m(φt),m(φ′t))dwt ∶ wt ∈W (P (φt), P (φ′t))} , (3.7)
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where W (P (φt), P (φ′t)) ∶= {wt ∶ ∫ wtdP (φ′t) = P (φt), ∫ wtdP (φt) = P (φ′t)} is the set of transport

plans between P (φt) and P (φ′t), and

d4 (m(φt),m(φ′t)) = ∣f(φt) − f(φ′t)∣

with

f(φt) = exp(−rt1Adt − g(φt)dBt −
1

2
g(φt)2dt) × exp (−dÑt − e−1vt(dx)dt) ,

g(φt) = (σB
t )−1 (µB

t − rt1A) − (σB
t )−1 (Jt (1A − e−1A)vt(dx)) ,

and Jt = exp(Qt) − 1A,Qt ∼ N(µJ
t ,σ

J
t

2).

Then, the set of limit points of ct in c̄t can be denoted as L(ct) = {m(φt),φt ∈ Φ̄t} and the set

of boundary points of ct is then ∂ct = {m(φt),φt ∈ ∂Φt} , where for any φt ∈ ∂Φt,

m(φt) = {m(φt) = exp(−rt1Adt −ψtdBt −
1

2
ψ2

t dt) ,µB
t − rt1A −σB

t ψt = 0} . (3.8)

Based on Theorem 3.1, we derive the following lemma, which will later be incorporated in the

discussion of set properties and the degree of market incompleteness. The proof of Lemma 3.1.1 is

presented in Appendix A.15.

Lemma 3.1.1. For every m(φt) ∈ ct, there exists m(φ∗t ) such that

m(φ∗t ) = arg min
m(φ′t)∈∂ct

{d3 (m(φt),m(φ′t))} .

The next theorem establishes the properties of the incomplete market SDF set, and the proof is

provided in Appendix A.16.

Theorem 3.2. Let m(φt) be the identified SDF set given that φt ∈ Φt, and let ct be the combined

SDF set such that ct = {m(φt),φt ∈ Φt}. Then, ct is a convex set.

Let (c̄t, d3) be the metric space such that c̄t = {m(φt),φt ∈ Φ̄t}, and d3 is as defined in Equa-

tion 3.7. Then, ct is open, bounded and not compact under (c̄t, d3).

3.2 Measure for market incompleteness

Based upon Theorems 3.1 and 3.2, given {φi ∈ Φ̄i}i∈[0,t] , the degree of market incompleteness at t is

defined as in Equation 3.9, which is the mean of the least transport cost process from m(φi) ∈ c̄i to
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m(φ′i) ∈ ∂ci over [0, t]13:

MIt ({φi}i∈[0,t]) = Et [ min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))] . (3.9)

Since d3 is a valid metric and the complete market SDF is the boundary point of the incomplete

market SDF set, the degree of market incompleteness equals zero only when the market is dynamically

complete, i.e., the distance between complete and incomplete market SDF sets measured by d3 reduces

to zero at every i over the time period [0, t].

The following pointwise properties of MI(⋅) indicate that MI ({φi}i∈[0,t]) is continuous and not

monotone in t, which enable us to implement our theoretical results in empirical studies and examine

the evolution of market incompleteness over time. The proof is presented in Appendix A.17.

Theorem 3.3. The degree of market incompleteness MI ({φi}i∈[0,t]) is continuous on the time in-

terval [0,1] and is not monotone in t.

4 Application

This section illustrates the degree of market incompleteness estimation with four countries’ major

stock market index composites. We first present the layout of a simple but important special case of

our continuous-time setup, which will be used for the demonstration of our market incompleteness

measure. Then, we describe the data in Section 4.1 and the parameter estimations in Section 4.2.

Throughout this section, we consider a running example as follows.

Assumption 4.1. LetRt ∶= lnSt−lnSt− be a vector of A ∈ N log-returns observed at t ∈ [0,1]. Suppose

the degree of market incompleteness is evaluated at K equally-spaced time points {kh}k=1,...,K with

the time window h = 1/K. To simplify the notation, we use the subscript k to denote the parameter

that characterizes the return in the time period [(k − 1)h, kh].

When markets are incomplete, let {Bt} be a vector of A ∈ N independent standard Brownian motions

under P and Nt be the Poisson process with mean measure vk(dx)t, where vk(dx) ≥ 0 is taken to

be the Lévy measure associated with an A-dimensional pure-jump Lévy process. {Bt} and {Nt} are
13Same as in the discrete setting, we assume that the complete and incomplete market SDFs are 1 at time 0, and

the distance between them is 0 following the metric d3.
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independent and adapted to the filtration {F t}. Rt solves the SDE14

Rt = (µB
k −σB2

k /2 − vk(dx)µJ
k)dt +σB

k dBt +QkdNt,

where µB
k ∈ RA, σB

k ∈ RA×A, Qk follows a normal distribution with mean µJ
k ∈ RA and standard

deviation σJ
k ∈ RA×A, and dt is estimated by the observational interval. Moreover, both σB

k and σJ
k

are diagonal matrices, and the price of the risk-free bond has a known constant rate of return rk.

When the markets are complete, let {Bt} be a vector of A ∈ N independent standard Brownian motions

under P . Rt solves the SDE

Rt = (µC
k −σC2

k /2)dt +σC
k dBt,

where µC
k ∈ RA, σC

k ∈ RA×A .

Assumption 4.1 ensures that the market prices of risk always lie in a nonrandom time-invariant

set over a given time period [(k − 1)h, kh]. Specifically, for t ∈ [(k − 1)h, kh], k = 1, . . . ,K, and

αk = ln [(1A − γk)−1] , Equation 3.5 becomes

Γ(φk) = {(ψ,γ) ∶ ψk = (σB
k )−1 (µB

k − rk1A) − (σB
k )−1 (Jk (1A − e−αk)vk(dx)) ,

γk = 1A − e−αk ,αk ∈ RA} .

Then, under incomplete markets, the SDF set in Equation 3.6 can be written as

m(φk) = {m(φk) = exp(−rk1Adt −ψkdBt −
1

2
ψ2

kdt)

× exp (−αkdÑt − (e−αk − 1A +αk)vk(dx)dt) , (ψk,γk) ∈ Γ(φk)}.

Under complete markets, the SDF set in Equation 3.8 can be written as

m (φC
k ) = {m (φC

k ) = exp(−rk1Adt −ψC
k dBt −

1

2
ψC

k
2
dt) ,µC

k − rk1A −σC
k ψk = 0}.

Hence, given {φi ∈ Φi}ki=1 , the degree of market incompleteness at kh is

MIkh ({φi}ki=1) =
1

k

k

∑
i=1

min
φC

i ∈∂Φi

d3 (m(φi),m(φC
i )) ,

14Given that the value of interest is usually the log-return on asset, we transform Equation 3.1 using the stochastic
chain rule for Markov processes in continuous time, the detailed derivation can be found in Kushner (1967) and Gihman
and Skorohod (2012).
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where

d3 (m(φi),m(φC
i )) = inf

wi

{∫ d4 (m(φi),m(φC
i ))dwi ∶ wi ∈W (P (φi), P (φC

i ))} .

W (P (φi), P (φC
i )) ∶= {wi ∶ ∫ widP (φC

i ) = P (φi), ∫ widP (φi) = P (φC
i )} is the set of transport plans

between P (φi) and P (φC
i ), and d4 (M(φi),M(φC

i )) = ∣f(φi) − f(φC
i )∣ with

f(φi) = exp(−ri1Adt − g(φi)dBt −
1

2
g(φi)2dt) × exp (−dÑt − e−1vi(dx)dt) ,

g(φi) = (σB
i )−1(µB

i − ri1A) − (σB
i )−1 (Ji(1A − e−1)vi(dx)) ,

and Ji = exp(Qi) − 1,Qi ∼ N(µJ
i ,σ

J
i

2);

f (φC
i ) = exp(−ri1Adt − g (φC

i )dBt −
1

2
g2 (φC

i )dt)

and

g (φC
i ) = (σC

i )−1 (µC
i − ri1A) .

4.1 Data Description

Our empirical study analyzes the financial markets of China, Japan, the United Kingdom (UK), and

the United States (US) using publicly available data from Yahoo Finance. Due to the availability

of data, the Chinese and the US samples begin in 1994, the UK sample begins in 1995, whereas the

Japanese sample begins in 1999, and all samples end in 2021. We use the stock data from CSI 300

index for China, Nikkei 225 index for Japan, and FTSE 350 index for the UK and S&P 500 for the

US15.

The stock data is collected on a daily basis, and to examine the evolution of market incomplete-

ness, we divided the full sample into yearly blocks, i.e., for the US market, there are 27 sub-samples,

then K = 27 and h = 1/27. The daily log return (hereinafter, the return) is calculated, and assuming

252 trading days per year, dt is estimated by ∆ = 1/252. Further, stocks with less than one-month

of data are excluded from each subsample in order to eliminate outliers and ensure the reliability of
15The CSI 300 is a capitalization-weighted index that replicates the performance of the top 300 stocks traded on

the Shanghai Stock Exchange and the Shenzhen Stock Exchange. The Nikkei 225 index measures the performance
of 225 large, publicly owned companies in Japan that span a wide range of industry sectors. The FTSE 350 is a
capitalization-weighted index composed of the 350 largest companies listed on the London Stock Exchange. The S&P
500 index is a capitalization-weighted index that represents around 80% of the market capitalization of the New York
Stock Exchange.
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the estimates.

4.2 Estimation Algorithm

At each subperiod [(k − 1)h, kh], we first estimate the parameters φk under incomplete market

assumption using the maximum likelihood estimation (MLE) method, and the parameters φC
k under

the complete market assumption using the analytical closed-form expression. To the best of our

knowledge, there are not yet an analytic expression of the optimal parameter values for jump diffusion

models, and thus, we employ the MATLAB function fminsearchbnd, which is developed based upon

fminsearch to find the minimum value of the constrained multivariable function using derivative-

free method for our estimation. As a prerequisite to applying the fminsearchbnd method, we must

first establish an initial estimation of the parameters based on the empirical data. Consistent with

Merton (1976)’s definition, in this study, we say that there is a jump in the process when the absolute

value of return exceeds some threshold ε > 0, which is determined as the minimum absolute value

of the 5% and 95% quantiles of returns16, and then, we divide the empirical return data into two

groups B and J , which include returns with absolute values less than or equal to ε and those with

absolute values larger than ε, respectively.

Here, the initial estimation of the intensity parameter, v̂k(dx), is measured as the number of

jumps in period [(k − 1)h, kh], and for simplicity, we estimate the initial parameters φk assuming

that there is only one jump for a return process that belongs to group J . Then, as discussed in

Hanson and Westman (2002), the expectation and variance of the process for t ∈ [(k − 1)h, kh] are

E(RJ
t ) = E[Rt∣Nt = 1] = (µB

k −σB
k

2/2 − vk(dx)µJ
k)∆ +µJ

k

and

Var(RJ
t ) = Var[Rt∣Nt = 1] = σB

k
2
∆ +σJ

k
2
.

Hence, µ̂J
k and σ̂J

k are estimated from the above equations such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ̂J
k = (Ê (RJ

t ) − (µ̂B
k − σ̂B2

k /2)∆) (1A − v̂k(dx)∆)−1

(σ̂J
k )

2 = V̂ar (RJ
t ) − σ̂B2

k ∆,

16Other quantiles can be adopted to determine ε, while as discussed in Tang (2018), in this case MLE is not strongly
depending on the value of ε.
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where Ê(RJ
t ) and V̂ar(RJ

t ) are the sample mean and variance of the empirical returns in group J .

When there are no jumps, the expectation and variance of the return of the process for t ∈

[(k − 1)h, kh] are

E(RB
t ) = E[Rt∣Nt = 0] = (µB

k −σB
k

2/2)∆

and

Var(RB
t ) = Var[Rt∣Nt = 0] = σB

k
2
∆.

The parameters µ̂B
k and σ̂B

k can be estimated from the above formulas such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ̂B
k = (2Ê (RB

t ) + V̂ar (RB
t )∆) (2∆)−1

(σ̂B
k )2 = V̂ar (RB

t ) /∆,
(4.1)

where Ê(RB
t ) and V̂ar(RB

t ) are the sample mean and variance of the empirical returns in group B.

Let R∆t ∶= lnSt− lnSt−∆ denote the log-return observed at t ∈ [(k−1)h, kh], the initial estimates

are then used to numerically optimize the likelihood function, given that the probability density

function of returns at ∆t is:

ϕR∆t
(x;φk) =

∞
∑
z=0

pz(vk(dx)∆)ϕn (x∣ (µB
k −σB

k
2/2 − vk(dx)µJ

k)∆ +µJ
kz,σ

B
k

2
∆ +σJ

k
2
z2) ,

where pz(vk(dx)dt) = p(dNt = z) = exp(−vk(dx)dt)(vk(dx)dt)z/z! for z = 0,1, . . . and ϕn is the

normal density function (Hanson and Westman, 2002). In a multivariate economy defined in As-

sumption 4.1, returns are independent over time, so that the objective function of the MLE method

is

L(φk) = ΠI
i=1ϕR∆t

(xi;φk),

where x = (x1, . . . ,xI) is the empirical log-return data. To estimate the five parameters, we then

minimize the minus log-likelihood function:

− lnL(φk) = −
I

∑
i=1

lnϕR∆t
(xi;φk).

Next, we numerically estimate the degree of market incompleteness at kh given {φ̂i}
k

i=1
and
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{φ̂C
i }k

i=1
as follows.

(i). For each asset a = 1,2, . . . ,A, at time point ih for i = 1, . . . , k, generate 1000 replications of

dBa
n,i ∼ N(0,∆), dÑa

n,i = dNa
n,i − v̂ai (dx)∆ with dNa

n,i ∼ Poisson(v̂ai (dx)∆) and the observation

window ∆ = 1/252 being the approximation for dt, and Ĵa
n,i = exp(Q̂a

n,i)−1 with Q̂a
n,i ∼ N(µ̂J,ai , σ̂J,a

2

i ).

(ii). For each n = 1,2, . . . ,1000 replication, calculate

fn(φ̂ai ) = exp(−r̂i∆ − gn (φ̂ai )dBa
n,i −

1

2
g2
n (φ̂ai )∆) × exp (−dÑa

n,i − e−1v̂ai (dx)∆)

where

gn (φ̂ai ) = (σ̂B,a
i )

−1
(µ̂B,a

i − r̂i) − (σ̂B,a
i )

−1
(Ĵa

n,i(1 − e−1)v̂ai (dx))

under incomplete markets, and

fn (φ̂C,a
i ) = exp(−r̂i∆ − gn (φ̂C,a

i )dBa
n,i −

1

2
g2
n (φ̂C,a

i )∆)

where gn (φ̂C,a
i ) = (σ̂C,a

i )
−1

(µ̂C,a
i − r̂i) with µ̂C,a

i and σ̂C,a
i estimated following Equation 4.1 under

complete markets.

(iii). Using the 1000 observations of fn (φ̂ai ) and fn (φ̂C,a
i ), we find the empirical cumulative distri-

butions F (x; φ̂ai ) and F (x; φ̂C,a
i ) for the probability measures P (φ̂ai ) and P (φ̂C,a

i ) respectively.

(iv). Derive the distance metric for each stock a at time i (Frohmader and Volkmer, 2021)

da3 (m (φ̂ai ) ,m (φ̂C,i
i )) = ∫

R
∣F (x; φ̂ai ) − F (x; φ̂C,a

i )∣dx.

(v). Compute the degree of market incompleteness at kh for k = 1, . . . ,K,

M̂I ({φ̂i}
k

i=1
) = 1

k

k

∑
i=1

1

A

A

∑
a=1

da3 (m (φ̂i) ,m (φ̂C
i )) .

4.3 Estimation Results

Figure 1 displays the evolution of the degree of market incompleteness for the four stock markets.

The market often sees an increase in MI when there is a rising level of panic. Namely, all three

developed markets experienced peaks in MI during the period 2007-2009 due to the global financial

crisis, in which asset prices experienced unexpected jumps due the presence of significant unhedgeable

risks in the market. In a similar manner, the value of MI spiked both during the mini-crash in the
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UK stock market in 1997 (Hua et al., 2020) as well as during the collapse of the Chinese stock

market in 2015 (Han et al., 2019). Government regulation policies toward the stock market can also

influence its completeness. In 1995, the sharp decline in MI on the Chinese market was attributed

to a policy change, which adjusted settlement dates to the next business day (T + 1) instead of the

same day (T +0)17 (Xu, 2000). In the Japanese market, MI rose in 2000 due to deregulation policies,

such as decontrolling brokerage commissions and reducing securities transaction taxes (Takaishi,

2022). We also observe that the Chinese stock market has a significantly higher degree of market

incompleteness, implying that the market is susceptible to more risks that cannot be diversified

away by the spanning of traded assets, which accords with the literature that emerging markets are

inherently riskier (Sharkasi et al., 2006; Saranya and Prasanna, 2014).

Figure 1: Evolution of the degree of market incompleteness

17T + 1 came into effect on January 1, 1995, replacing T + 0.
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5 Conclusion

This paper studies an econometric framework useful for estimating the set of SDFs in the absence of

complete markets. The investigation of set properties reveals that the complete market SDF is the

unique boundary point of the incomplete market SDF set, which only degenerates to its complete

counterpart when the likelihood of unanticipated risks vanish. This feature allows us to introduce a

novel measure for market incompleteness, which is the distance between the probability distributions

of the complete and incomplete market SDFs. We use the Wasserstein metric to construct our

measure since it naturally deals with distributions with different supports.

A possible implementation of this measure is presented in which we examine the evolution of

market incompleteness in the four largest stock markets worldwide, including both emerging and

developed markets. The results are consistent with our construction of incomplete markets, whereby

the increase (decrease) in market incompleteness correlates to financial crises or policy changes that

raise (lower) the likelihood of unhedgeable risks.

To maintain a sharp focus on our results, we have considered in detail a specific but practically

realistic type of incomplete market resulting from stochastic jumps in the continuous-time setting,

and applied the results in the empirical study. Nevertheless, as shown in the discrete-time setting,

our framework applies more broadly, and the extension to asset prices generated by other stochastic

processes is another interesting possibility worth exploring in future work. Methods of estimation

and inference for more general asset-price generating processes will then refine the measurement for

market incompleteness as well as the assessment of misspecification caused by imposing complete

market assumptions in financial market equilibrium, portfolio strategy, and risk pricing studies.
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Appendix: Proofs of Propositions and Theorems

Before proceeding to the proofs, we first recall the following definitions regarding limit and boundary

points, set’s convexity, openness, boundedness, and compactness properties.

Definition 5.1 (Limit Point). Let (S, d) be the metric space and C ⊆ S . x ∈ S is a limit point of

C if ∀ε > 0, there is a point y ∈ C /{x} with d(x, y) < ε

Definition 5.2 (Boundary point). Let (S, d) be the metric space, if C is a subset of S, a point

x ∈ S is a boundary point of C if every neighbourhood of x contains at least one point in C and at

least one point not in C.

Definition 5.3 (Convex set). Let S be an affine space over some ordered field. A subset C of S is

convex if, for all x and y in C, the line segment connecting x and y is included in C. This means

that the affine combination

ρx + (1 − ρ)y ∈ C,

for all x, y ∈ C, and ρ in the interval [0,1].

Definition 5.4 (Open set). A subset C of a metric space (S, d) is open if every element, x, in C

has a neighbourhood centred at x with radius ε lying in the set (i.e., B(x, ε) ⊂ C).

Definition 5.5 (Bounded set). A set C in a metric space (S, d) is bounded if it has a finite

generalized diameter. In other words, there is an R < ∞ such that d(x, y) ≤ R for all x, y ∈ C.

Definition 5.6 (Compact set). For any subset C in a metric space (S, d), an open cover is a

collection of sets {Gn} which are open in (S, d), such that C ⊂ ⋃n{Gn}. C is compact if and only

if every open cover of C has a finite subcover.

A.1 Proof of Proposition 2.1

Proof. Let x = [x1, x2, x3]⊺ be any point in L(Π) and ε > 0, we prove that there is y = [y1, y2, y3]⊺ ∈

Π/{x} such that d(x,y) < ε. Let y1 = x1, y2 = x2−δ, and y3 = x3+δ, where δ < min{x2,1 − x3, ε/
√

2} .

Then, ∑3
s=1 y

s = 1 and ys > 0 for s = 1,2,3 imply that y ∈ Π/{x}. Since d(x,y) =
√

2δ2 <
√
ε2 = ε,

x ∈ L(Π).

Since ∂Π ⊂ L(Π), every x ∈ ∂Π is an element in L(Π). Therefore, for ε > 0, there is at least

one point in B(x, ε) that is also an element of Π. Now, consider y = [y1, y2, y3]⊺ ∈ B(x, ε) in that

y1 = x1 + δ, y2 = x2 − δ, and y3 = x3 = 0, where δ < min{1 − x1, x2, ε/
√

2} . Then, ∑3
s=1 y

s = 1, y1, y2 > 0

and y3 = 0 imply that y ∉ Π. Hence, x ∈ ∂Π.
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A.2 Proof of Theorem 2.1

To prove that d1 is a valid metric, we first show that, d2 in Equation 2.5 is a valid metric satisfying

the following conditions.

1. d2(M sx ,M sy) = 0 if and only if M sx =M sy .

Proof. (⇒) If d2(M sx ,M sy) = 0, we must have ∣vsx − vsy ∣ + ∣usx − usy ∣ = 0 for sx = 1,2, . . . , Sx

and sy = 1,2, . . . , Sy. Since M sx and M sy are non-zero, we must have vsx = vsy and usx = usy ,

and thus, M sx =M sy .

(⇐) If M sx =M sy , we have vsx = vsy and usx = usy , and thus, d2(M sx ,M sy) = 0.

2. d2(M sx ,M sy) = d2(M sy ,M sx).

Proof.

d2(M sx ,M sy) = ∣vsx − vsy ∣ + ∣usx − usy ∣

= ∣vsy − vsx ∣ + ∣usy − usx ∣

= d2(M sy ,M sx).

3. d2(M sx ,M sz) ≤ d2(M sx ,M sy) + d2(M sy ,M sz).

Proof.

d2(M sx ,M sy) + d2(M sy ,M sz)

= ∣vsx − vsy ∣ + ∣vsy − vsz ∣ + ∣usx − usy ∣ + ∣usy − usz ∣

≥ ∣vsx − vsy + vsy − vsz ∣ + ∣usx − usy + usy − usz ∣

= ∣vsx − vsz ∣ + ∣usx − usz ∣

= d2(M sx ,M sz)

Hence, d2 is a valid metric.

Then, let

w∗ = arg inf
w

⎧⎪⎪⎨⎪⎪⎩

Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2(M sx ,M sy) ∶w ∈W (x,y)

⎫⎪⎪⎬⎪⎪⎭

where W (x,y) ∶= {w ∈ RSy×Sx
+ ∶w⊺1Sy = x,wx = y} is the set of transport plans between x and y

and Mx,My,Mz ∈ C̄, we prove that d1 is a valid metric that satisfies the following conditions.
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1. d1(Mx,My) = 0 if and only if Mx =My.

Proof. (⇒) If d1(Mx,My) = 0, then we have

Sx

∑
sx=1

Sy

∑
sy=1

w∗
sysxx

sxd2(M sx ,M sy) = 0,

implying that w∗
sysxx

sxd2(M sx ,M sy) = 0 for all pairs of (sx, sy). Since w∗
sysx ≥ 0 and d2 is a

valid metric, we either have w∗
sysx = 0 or d2(M sx ,M sy) = 0. Since ∑Sy

sy=1w
∗
sysx = 1, we can have

one and only one s′y ≤ Sy such that M sx = M s′y , in which case, we have w∗
s′ysx

= 1, and since

∑Sx
sx=1w

∗
sysxx

sx = ysy , the s′y must be distinct for different sx. Hence, xsx = ysy for the sx such

that M sx =M sy , which entails that Mx =My .

(⇐) If Mx = My, we can have d2(M sx ,M sy) = 0 and w∗
sysx = 1 for every sx = sy. Since

∑Sy

j=1w
∗
sysx = 1 and w∗

sysx ≥ 0, w∗
sysx = 0 for all sx ≠ sy. Hence, d1(Mx,My) = 0.

2. d1(Mx,My) = d1(My,Mx).

Proof.

d1(Mx,My) =
Sx

∑
sx=1

Sy

∑
sy=1

w∗
sysxx

sxd2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗
sysxx

sx
w∗′
sysxy

sy

w∗′
sysxy

sy
d2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗′
sysxy

sy
w∗
sysxx

sx

w∗′
sysxy

sy
d2(M sy ,M sx)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗′
sysxy

syd2(M sy ,M sx)

= d1(My,Mx),

where w∗ ∈W (x,y) and w∗′ ∈W (y,x).

3. d1(Mx,Mz) ≤ d1(Mx,My) + d1(My,Mz).
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Proof.

d1(Mx,Mz) =
Sx

∑
sx=1

Sz

∑
sz=1

w∗′′
sxszz

szd2(M sx ,M sz)

=
Sx

∑
sx=1

Sy

∑
sy=1

Sz

∑
sz=1

w∗
sysxx

sxw∗′
szsyy

sy
w∗′′
sxszz

sz

w∗
sysxx

sxw∗′
szsyy

sy
d2(M sx ,M sz)

≤
Sx

∑
sx=1

Sy

∑
sy=1

Sz

∑
sz=1

w∗
sysxx

sx
w∗′′
sxszz

sz

w∗
sysxx

sx
d2(M sx ,M sy)

+
Sx

∑
sx=1

Sy

∑
sy=1

Sz

∑
sz=1

w∗′
szsyy

sy
w∗
sxszz

sz

w∗′
szsyy

sy
d2(M sy ,M sz)

=
Sx

∑
sx=1

Sy

∑
sy=1

w∗
sysxx

sxd2(M sx ,M sy) +
Sy

∑
sy=1

Sz

∑
sz=1

w∗′
szsyy

syd2(M sy ,M sz)

= d1(Mx,My) + d1(My,Mz),

where w∗ ∈W (x,y), w∗′ ∈W (y,z) and w∗′′ ∈W (x,z).

Hence, (C̄, d1) is a valid metric space.

Now, we are ready to prove for Theorem 2.1.

Proof. Let Mx be any point in L(C), and thus, x = [x1, x2, x3]⊺ ∈ L(Π), and ε > 0, we prove that

there is My ∈ C/Mx such that d1(Mx,My) < ε, where y = [y1, y2, y3]⊺ ∈ Π/{x}. Let y1 = x1 − δ,

y2 = x2, and y3 = x3 + δ. Since d1(Mx,My) = 0 if and only if Mx =My and d1(Mx,My) ≥ 0, thus,

we can choose δ satisfying the following conditions:

d1(Mx,My) < ε and δ < min{x1,1 − x3} ,

so that we have ∑3
s=1 y

s = 1 and ys > 0 for s = 1,2,3, implying that y ∈ Π/{x}. Therefore, My ∈

B(Mx, ε) such that My ∈ C/Mx, and thus, Mx ∈ L(C).

Since ∂C ⊂ L(C), every Mx ∈ ∂C is an element in L(C). Therefore, for ε > 0, there is at

least one point in B(Mx, ε) that is also an element of C. Now, consider My ∈ B(Mx, ε) in that

y1 = x1+δ, y2 = x2−δ, and y3 = x3 = 0, where δ < min{1 − x1, x2} and satisfies the following condition

d1(Mx,My) < ε. Then, ys > 0 for s = 1,2, and y3 = 0, implying that y ∉ Π, and thus,My ∉ C. Hence,

Mx ∈ ∂C.

38



A.3 Proof of Lemma 2.1.1

Proof. Suppose that (M1
n,M

2
n) → (M1,M2) ∈ ∂C with π1

n + π2
n = 1 and 1/π1

n,1/π2
n > 0. If it were

1/π1 = 0, then π1
n →∞, but π1

n ≤ π1
n+π2

n = 1, so that’s impossible. Similarly, we cannot have 1/π2
n = 0.

Then, limn→∞ π1
n + π2

n = π1 + π2 = 1 so that (M1
n,M

2
n) ∈ ∂C, and ∂C is closed. Since ∂C is a non-

empty subspace of C̄, taking Mx ∈ C, there exists a closed ball B = B(Mx, ε) such that B⋂∂C is

a non-empty compact set. So the function My ↦ d1(Mx,My) defined on B⋂∂C must achieve a

minimum. That is, there is some My = M∗
y ∈ B⋂∂C, which minimizes d1(Mx,My). Further, for

My ∈ ∂C/B, we have d1(Mx,My) > ε ≥ d1(Mx,M
∗
y), so it minimizes the distance on the whole of

∂C. Moreover, since M∗
y ∉ C, d1(Mx,M

∗
y) > 0. Hence, for every Mx ∈ C, there exists M∗

y such that

M
∗
y = arg min

My∈∂C
{d1(Mx,My)}.

A.4 Proof of Theorem 2.2

Proof. Let ρ ∈ [0,1] and Mx,My ∈ C. The affine combination of Mx,My is

ρMx +(1 − ρ)My = {M ∶ ρEx[rM] + (1 − ρ)Ey[rM] = ρ12 + (1 − ρ)12}

= {M ∶ ρEx[rM] + (1 − ρ)Ey[rM] = 12} ∈ C.

Hence, C is convex.

Let Mx ∈ C with x = [x1, x2, x3]⊺ ∈ Π. There is η > 0 such that

η = min
My∈∂C

{d1(Mx,My)},

where y ∈ ∂Π. Then, since C = C̄/∂C, by choosing ε < η, we have B(Mx, ε) ⊂ C. Hence, C is open

in (C̄, d1) .

Next, we prove that C is bounded in (C̄, d1) . First, let κv and κu denote the coefficient vectors
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of v(x) and u(x), respectively, for x ∈ Π̄. Given that w ∈W (x,y), we have

D =
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sx(∣κsxv /xsx − κsyv /ysy ∣ + ∣κsxu /xsx − κsyu /ysy ∣)

=
Sx

∑
sx=1

Sy

∑
sy=1

(∣wsysxκ
sx
v −wsysxκ

sy
v x

sx/ysy ∣ + ∣wsysxκ
sx
u −wsysxκ

sy
u x

sx/ysy ∣) .

Since ∑Sx
sx=1wsysxx

sx = ysy , for every sx = 1,2, . . . , Sx, sy = 1,2, . . . , Sy, wsysxx
sx ∈ [0, ysy], and thus,

wsysxκ
sy
v x

sx/ysy ∈ [0, κsyv ]. Therefore, D is bounded, implying that there is 0 < R < ∞ such that

d1 (Mx,My) ≤ R for all Mx,My ∈ C. Hence, C is bounded.

Lastly, to show that C is not compact, we just need one example of an open cover that has no

finite open subcovers. Let {Gn} = {Mπ ∣π ∈ Πn, n ∈ N} , where

{Πn} =
⎧⎪⎪⎨⎪⎪⎩
[π1, π2,1 −

2

∑
i=1

πs]
⊺
∈ R3

++ ∶
2

∑
i=1

πs ∈ ( 1

n
,
n − 1

n
) , n ∈ N

⎫⎪⎪⎬⎪⎪⎭
.

Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty element. Here,

for any b = ∑2
i=1 π

s ∈ (0,1), the Archimedean Property provides an n ∈ N such that n > max{1
b ,

1
1−b}.

Then,

nb > 1 and n − nb > 1

⇒ 1 < nb < n − 1

⇒ b ∈ ( 1

n
,
n

n − 1
) .

Thus, every element of Π is in {Πn} for some n ∈ N, and therefore, every element of C is in {Gn} for

some n ∈ N, suggesting that C ⊂ ⋃∞n=1{Gn}. Moreover, since for any n ∈ N, Gn has a neighbourhood

centred at Gn with radius ε > 0 lying in the set, {Gn} is an open cover of C. Let k, l ∈ N such that

k > l > 2, we have
1

k
< 1

l
< 1 − 1

l
< 1 − 1

k
⇒ {Πl} ⊂ {Πk} ⇒ {Gl} ⊂ {Gk}.

Therefore, for any finite m ∈ N, ⋃m
n=1{Gn} = {Gm} = {Mπ ∣π ∈ Πm,m ∈ N} . However, for any m ∈ N,

there exists Πm+1 /⊂ {Πm}, while Πm+1 ∈ Π. Thus, there exists {Mπ ∣π ∈ Πm+1} /⊂ {Gm}, while

{Mπ ∣π ∈ Πm+1} ∈ C. Therefore, {Gn} is an open cover of C that does not have a finite subcover.
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Hence, C is not compact.

A.5 Proof of Proposition 2.2

Proof. Let x = [x1, x2, . . . , xA+2]⊺ be any point in L(Π) and ε > 0, we prove that there is y =

[y1, y2, . . . , yA+2]⊺ ∈ Π/{x} such that d(x,y) < ε. Let ys = xs for s = 1,2, . . . ,A, yA+1 = xA+1 − δ,

and yA+2 = xA+2 + δ, where δ < min{xA+1,1 − xA+2, ε/
√

2} . Then, ∑A+2
i=1 ys = 1 and ys > 0 for s =

1,2, . . . ,A + 2 imply that y ∈ Π/{x}. Since d(x,y) =
√

2δ2 <
√
ε2 = ε, x ∈ L(Π).

Since ∂Π ⊂ L(Π), every x ∈ ∂Π is an element in L(Π). Therefore, for ε > 0, there is at least one

point in B(x, ε) that is also an element of Π. Now, consider y = [y1, y2, . . . , yA+2]⊺ ∈ B(x, ε) in that

y1 = x1 + δ, y2 = x2 − δ, and ys = xs for s = 3,4, . . . ,A + 2, where δ < min{1 − x1, x2, ε/
√

2} . Then,

∑A+2
s=1 y

s = 1, ys > 0 for s = 1,2, . . . ,A + 1 and yA+2 = 0 imply that y ∉ Π. Hence, x ∈ ∂Π.

A.6 Proof of Theorem 2.3

Proof. First of all, as proved in Appendix A.2, d1 is a valid metric. Let Mx be any point in L(C),

and thus, x = [x1, x2, . . . , xA+2]⊺ ∈ L(Π). Let ε > 0, we prove that there isMy ∈ C/Mx (equivalently,

y = [y1, y2, . . . , yA+2]⊺ ∈ Π/{x}) such that d1(Mx,My) < ε. Let ys = xs for s = 1,2, . . . ,A, yA+1 =

xA+1 − δ, and yA+2 = xA+2 + δ. By choosing δ satisfying the following conditions:

d1(Mx,My) < ε and δ < min{xA+1,1 − xA+2} ,

we have ∑A+2
i=1 ys = 1 and ys > 0 for s = 1,2, . . . ,A + 2 imply that y ∈ Π/{x}. Therefore, we can find

My ∈ B(Mx, ε) such that My ∈ C, and thus, Mx ∈ L(C).

Since ∂C ⊂ L(C), every Mx ∈ ∂C is an element in L(C). Therefore, for ε > 0, there is at least

one point in B(Mx, ε) that is also an element of C. Now, consider My ∈ B(Mx, ε) in that y1 = x1 + δ

y2 = x2 − δ, and ys = xs for s = 3,4, . . . ,A+2, where δ < min{1 − x1, x2} and satisfies d1(Mx,My) < ε.

Then, ys > 0 for s = 1,2, . . . ,A + 1, and yA+2 = 0, implying that y ∉ Π, and thus, My ∉ C. Hence,

Mx ∈ ∂C.

A.7 Proof of Lemma 2.2.1

Proof. Suppose that (M1
n,M

2
n, . . . ,M

A+1
n ) → (M1,M2, . . . ,MA+1) ∈ ∂C with ∑A+1

s=1 π
s
n = 1 and 1/πsn >

0 for s = 1,2, . . . ,A + 1. If it were 1/π1 = 0, then π1
n →∞, but π1

n ≤ ∑A+1
s=1 π

s
n = 1, so that’s impossible.

Similarly, we cannot have 1/πsn = 0 for any s = 2,3, . . . ,A + 1. Then, limn→∞∑A+1
s=1 π

s
n = ∑A+1

s=1 π
s = 1
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so that (M1
n,M

2
n, . . . ,M

A+1
n ) ∈ ∂C, and ∂C is closed. Since ∂C is a non-empty subspace of C̄,

taking Mx ∈ C, there exists a closed ball B = B(Mx, ε) such that B⋂∂C is a non-empty compact

set. So the function My ↦ d1(Mx,My) defined on B⋂∂C must achieve a minimum. That is,

there is some My =M∗
y ∈ B⋂∂C, which minimizes d1(Mx,My). Further, for My ∈ ∂C/B, we have

d1(Mx,My) > ε ≥ d1(Mx,M
∗
y), so it minimizes the distance on the whole of ∂C. Moreover, since

M
∗
y ∉ C, d1(Mx,M

∗
y) > 0.

A.8 Proof of Theorem 2.4

Proof. Let ρ ∈ [0,1] and Mx,My ∈ C. The affine combination of Mx,My is

ρMx +(1 − ρ)My = {M ∶ ρEx[rM] + (1 − ρ)Ey[rM] = ρ1A+1 + (1 − ρ)1A+1}

= {M ∶ ρEx[rM] + (1 − ρ)Ey[rM] = 1A+1} ∈ C.

Hence, C is convex.

Let Mx ∈ C with x ∈ Π. There is η > 0 such that

η = min
My∈∂C

{d1(Mx,My)},

where y ∈ ∂Π. Then, since C = C̄/∂C, by choosing ε < η, we have B(Mx, ε) ⊂ C. Hence, C is open

in (C̄, d1) .

Next, we prove that C is bounded in (C̄, d1) . First, let κv and κu denote the coefficient vectors

of v(x) and u(x), respectively, for x ∈ Π̄. Given that w ∈W (x,y), we have

D =
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sxd2(M sx ,M sy)

=
Sx

∑
sx=1

Sy

∑
sy=1

wsysxx
sx(∣κsxv /xsx − κsyv /ysy ∣ + ∣κsxu /xsx − κsyu /ysy ∣)

=
Sx

∑
sx=1

Sy

∑
sy=1

(∣wsysxκ
v
i −wsysxκ

sy
v x

sx/ysy ∣ + ∣wsysxκ
sx
u −wsysxκ

sy
u x

sx/ysy ∣)

Since ∑Sx
sx=1wsysxx

sx = ysy , for every sx = 1,2, . . . , Sx, sy = 1,2, . . . , Sy, wsysxx
sx ∈ [0, ysy], and thus,

wsysxκ
sy
v x

sx/ysy ∈ [0, κsyv ]. Therefore, D is bounded, implying that there is 0 < R < ∞ such that

d1 (Mx,My) ≤ R for all Mx,My ∈ C. Hence, C is bounded.

Last, to show that C is not compact, we just need one example of an open cover that has no
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finite open subcovers. Let {Gn} = {Mπ ∣π ∈ Πn, n ∈ N} , where

{Πn} =
⎧⎪⎪⎨⎪⎪⎩
[π1, π2, ..., πA+1,1 −

A+1

∑
s=1

πs]
⊺
∈ (R)A+2

++ ∶
A+1

∑
s=1

πs ∈ ( 1

n
,
n − 1

n
) , n ∈ N

⎫⎪⎪⎬⎪⎪⎭
.

Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty element. Here,

for any b = ∑A+1
s=1 π

s ∈ (0,1), the Archimedean Property provides an n ∈ N such that n > max{1
b ,

1
1−b}.

Then,

nb > 1 and n − nb > 1

⇒ 1 < nb < n − 1

⇒ b ∈ ( 1

n
,
n

n − 1
) .

Thus, every element of Π is in {Πn} for some n ∈ N, and therefore, every element of C is in {Gn} for

some n ∈ N, suggesting that C ⊂ ⋃∞n=1{Gn}. Moreover, since for any n ∈ N, Gn has a neighbourhood

centred at Gn with radius ε > 0 lying in the set, {Gn} is an open cover of C. Let k, l ∈ N such that

k > l > 2, we have
1

k
< 1

l
< 1 − 1

l
< 1 − 1

k
⇒ {Πl} ⊂ {Πk} ⇒ {Gl} ⊂ {Gk}.

Therefore, for any finite m ∈ N, ⋃m
n=1{Gn} = {Gm} = {Mπ ∣π ∈ Πm,m ∈ N} . However, for any m ∈ N,

there exists Πm+1 /⊂ {Πm}, while Πm+1 ∈ Π. Thus, there exists {Mπ ∣π ∈ Πm+1} /⊂ {Gm}, while

{Mπ ∣π ∈ Πm+1} ∈ C. Therefore, {Gn} is an open cover of C that does not have a finite subcover.

Hence, C is not compact.

A.9 Proof of Proposition 2.4

Proof. We first prove by induction that, for all n ∈ Z+ and S = A+1+n, there is xt = [x1
t , x

2
t , . . . , x

S
t ]

⊺ ∈

L(Πt) and yt = [y1
t , y

2
t , . . . , y

S
t ]

⊺ ∈ Πt/{xt} such that d(xt,yt) < ε for ε > 0.

Base case: When n = 1, S = A + 2, let xt = [x1
t , x

2
t , . . . , x

A+2
t ]⊺ be any point in L(Πt). Let ε > 0 and

yt = [y1
t , y

2
t , . . . , y

S
t ]

⊺ ∈ Πt/{xt} such that yst = xst for s = 1,2, . . . ,A, yA+1
t = xA+1

t −δ, and yA+2
t = xA+2

t +δ

and δ < min{xA+1
t ,1 − xA+2

t , ε/
√

2} . Then, ∑A+2
i=1 yst = 1 and yst > 0 for a = 1,2, . . . ,A+2, implying that

yt ∈ Πt/{xt}. Since d(xt,yt) =
√

2δ2 <
√
ε2 = ε, xt ∈ L(Πt).

Induction step: Let k ∈ Z+ be given and suppose our statement is true for n = k. Then, if xA+k+2
t =

η > 0, holding all other elements in xt(n = k) and yt(n = k) fixed, for any i < A + k + 2 with
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xit(n = k) > η18, given xit(n = k + 1) = xit(n = k) − η, there is yit(n = k + 1) = yit(n = k) − η such that

(xit(n = k + 1) − yit(n = k + 1))2 = (xit(n = k) − γ − yit(n = k) + γ)2

= (xit(n = k) − yit(n = k))2

and (xA+k+2
t (n = k + 1) − yA+k+2

t (n = k + 1))2 = 0. Therefore, d(xt(n = k+1),yt(n = k+1)) = d(xt(n =

k),yt(n = k)) < ε. If xA+k+2
t = 0, for any xit(n = k) > yit(n = k), holding all other elements in yt(n = k)

fixed, let yA+k+2
t (n = k + 1) = γ < xit(n = k) − yit(n = k) and yit(n = k + 1) = yit(n = k) − γ, then

(xit(n = k + 1) − yit(n = k + 1))2 + (xA+k+2
t (n = k + 1) − yA+k+2

t (n = k + 1))2

= (xit(n = k) − yit(n = k) + γ)2 + γ2

= (xit(n = k) − yit(n = k))2 − 2γ (xit(n = k) − yit(n = k)) + 2γ2

< (xit(n = k) − yit(n = k))2
.

Therefore, d(xt(n = k + 1),yt(n = k + 1)) < d(xt(n = k),yt(n = k)) < ε.

Conclusion: By the principal of induction, for all n ∈ Z+ and S = A + 1 + n, there is xt =

[x1
t , x

2
t , . . . , x

S
t ]

⊺ ∈ L(Πt) and yt = [y1
t , y

2
t , . . . , y

S
t ]

⊺ ∈ Πt/{xt} such that d(xt,yt) < ε for ε > 0.

Since ∂Πt ⊂ L(Πt), every xt ∈ ∂Πt is an element in L(Πt). Therefore, for ε > 0, there is at least

one point in B(xt, ε) that is also an element of Πt. Now, consider yt = [y1
t , y

2
t , . . . , y

S
t ]

⊺ ∈ B(xt, ε) in

that y1
t = x1

t + δ, y2
t = x2

t − δ, and yst = xst for s = 3,4, . . . , S, where δ < min{1 − x1
t , x

2
t , ε/

√
2} . Then,

∑S
s=1 y

s
t = 1, yst > 0 for s = 1,2, . . . ,A + 1, and yst = 0 for s = A + 2,A + 3, . . . , S imply that yt ∉ Πt.

Hence, xt ∈ ∂Πt.

A.10 Proof of Theorem 2.7

First notice that, similar to the proof in the 1-1-2-3 case, d1 is a valid metric. Then, we prove by

induction that, for all n ∈ Z+ and S = A + 1 + n, let mx be any point in L(ct) and ε > 0, we want to

prove that there is myt ∈ ct/mxt such that d1(mxt ,myt) < ε, where yt ∈ Πt/{xt}.

Base case: Since mx ∈ L(ct), xt ∈ L(Πt). Let yst = xst for s = 1,2, . . . ,A, yA+1
t = xA+1

t − δ, and

yA+2
t = xA+2

t + δ. By choosing δ satisfying the following conditions:

d1(mxt ,myt) < ε and δ < min{xA+1
t ,1 − xA+2

t } ,

18We use xit(n = k) to denote the ith element in xt for n = k.
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so that we have ∑A+2
i=1 yst = 1 and yst > 0 for s = 1,2, . . . ,A + 2 imply that yt ∈ Πt/{xt}. Therefore, we

can find myt ∈ B(mxt , ε) such that myt ∈ ct, and thus, mxt ∈ L(ct).

Induction step: Let k ∈ Z+ be given and suppose our statement is true for n = k. Then, for every

xt(n = k+1) such that xA+k+2
t = η > 0 and xit(n = k+1) = xit(n = k)−λiη for i = 1,2, . . . ,A+k+1, where

∑A+1
i=1 λi = 1 and λi > 0. By setting yA+k+2

t = η and yit(n = k+1) = yit(n = k)−λiη > 0 i = 1,2, . . . ,A+k+1,

we have d1(mxt(n=k+1),myt(n=k+1)) = d1(mxt(n=k),myt(n=k)) < ε. If xA+k+2
t = 0, by choosing η and

λi ≥ 0 i = 1,2, . . . ,A+k+1 such that yA+k+2
t = η > 0, yit(n = k+1) = yit(n = k)−λiη > 0, and ∑A+1

i=1 λi = 1,

and satisfies the condition that d1(mxt(n=k+1),myt(n=k+1)) < ε so that we have ∑A+k+2
i=1 yst = 1 and

yst > 0 for s = 1,2, . . . ,A+ k + 2 imply that yt ∈ Πt/{xt}. Therefore, we can find myt ∈ B(mxt , ε) such

that myt ∈ ct, and thus, mxt ∈ L(ct).

Since ∂ct ⊂ L(ct), every mxt ∈ ∂ct is an element in L(ct). Therefore, for ε > 0, there is at least

one point in B(mxt , ε) that is also an element of ct. Now, consider myt ∈ B(mxt , ε) in that y1
t = x1

t +δ

y2
t = x2

t − δ, and yst = xst for s = 3,4, . . . ,A+ 2, where δ < min{1 − x1
t , x

2
t} and satisfies d1(mx,my) < ε.

Then, yst > 0 for s = 1,2, . . . ,A + 1, and yst = 0 for s = A + 2,A + 3, . . . , S, implying that yt ∉ Πt, and

thus, myt ∉ ct. Hence, mxt ∈ ∂ct.

A.11 Proof of Lemma 2.4.1

Proof. Suppose that (m1
t,n,m

2
t,n, . . . ,m

A+1
t,n ) → (m1

t ,m
2
t , . . . ,m

A+1
t ) ∈ ∂ct with ∑A+1

s=1 π
s
t,n = 1 and

1/πst,n > 0 for s = 1,2, . . . ,A + 1. If it were 1/π1
t = 0, then π1

t,n →∞, but π1
t,n ≤ ∑A+1

s=1 π
s
t,n = 1, so that’s

impossible. Similarly, we cannot have 1/πst,n = 0 for any s = 2,3, . . . ,A + 1. Then, limn→∞∑A+1
s=1 π

s
t,n =

∑A+1
s=1 π

s
t = 1 so that (m1

t,n,m
2
t,n, . . . ,m

A+1
t,n ) ∈ ∂ct, and ∂ct is closed. Since ∂ct is a non-empty subspace

of c̄t, taking mxt ∈ ct, there exists a closed ball B = B(mxt , ε) such that B⋂∂ct is a non-empty com-

pact set. So the function myt ↦ d1(mxt ,myt) defined on B⋂∂ct must achieve a minimum. That is,

there is some myt =m∗
y ∈ B⋂∂ct, which minimizes d1(mxt ,myt). Further, for myt ∈ ∂ct/B, we have

d1(mxt ,myt) > ε ≥ d1(mxt ,m
∗
yt), so it minimizes the distance on the whole of ∂ct. Moreover, since

m
∗
yt ∉ ct, d1(mxt ,m

∗
yt) > 0.

A.12 Proof of Theorem 2.8

Proof. Let ρ ∈ [0,1] and mxt ,myt ∈ ct. The affine combination of mxt ,myt is

ρmxt +(1 − ρ)myt = {mt ∶ ρExt[rtmt] + (1 − ρ)Eyt[r1mt] = ρ1A+1 + (1 − ρ)1A+1}

= {mt ∶ ρExt[rtmt] + (1 − ρ)Eyt[rtmt] = 1A+1} ∈ ct.
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Hence, ct is convex.

Then let mxt ∈ ct with xt ∈ Πt. There is η > 0 such that

η = min
myt∈ct

{d1(mxt ,myt)} ,

where yt ∈ ∂Πt. Then, since ct = c̄t/∂ct, by choosing ε < η, we have B(mxt , ε) ⊂ ct. Hence, ct is open

in (c̄t, d1).

Next, we prove that ct is bounded in (c̄t, d1) . First, let κvt and κut denote the coefficient vectors

of vt(xt) and ut(xt), respectively, for xt ∈ Π̄t. Given that wt ∈W (xt,yt), we have

D =
Sxt

∑
sxt=1

Syt

∑
syt=1

wsytsxt
x
sxt
t d2(m

sxt
t ,m

syt
t )

=
Sxt

∑
sxt=1

Syt

∑
syt=1

wsytsxt
x
sxt
t (∣κsxt

vt /xsxt
t − κsytvt /ysytt ∣ + ∣κsxt

ut /xsxt
t − κsytut /ysytt ∣)

=
Sxt

∑
sxt=1

Syt

∑
syt=1

(∣wsytsxt
κ
sxt
vt −wsytsxt

κ
syt
vt x

sxt
t /ysytt ∣ + ∣wsytsxt

κ
sxt
ut −wsytsxt

κ
syt
ut x

sxt
t /ysytt ∣) .

Since ∑Sxt
sxt=1wsytsxt

x
sxt
t = ysytt , for every sxt = 1,2, . . . , Sxt , syt = 1,2, . . . , Syt , wsytsxt

x
sxt
t ∈ [0, ysytt ].

Thus, wsytsxt
κ
syt
vt x

sxt
t /ysytt ∈ [0, κsytvt ] and wsytsxt

κ
syt
ut x

sxt
t /ysytt ∈ [0, κsytut ]. Therefore, D is bounded,

implying that there is 0 < R < ∞ such that d1 (mxt ,myt) ≤ R for all mxt ,myt ∈ ct. Hence, ct is

bounded.

Last, to show that ct is not compact, we just need one example of an open cover that has no

finite open subcovers. Let {Gt,n} = {mπt ,πt ∈ Πt,n, n ∈ N} , where

{Πt,n} =
⎧⎪⎪⎨⎪⎪⎩
[π1

t , π
2
t , ..., π

S−1
t ,1 −

S−1

∑
s=1

πst ]
⊺
∈ (R)S++ ∶

S−1

∑
s=1

πst ∈ ( 1

n
,
n − 1

n
) , n ∈ N

⎫⎪⎪⎬⎪⎪⎭
.

Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty element. Here,

for any b = ∑S−1
s=1 π

s
t ∈ (0,1), the Archimedean Property provides an n ∈ N such that n > max{1

b ,
1

1−b}.

Then,

nb > 1 and n − nb > 1

⇒ 1 < nb < n − 1

⇒ b ∈ ( 1

n
,
n

n − 1
) .
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Thus, every element of Πt is in {Πt,n} for some n ∈ N, and therefore, every element of ct is in

{Gt,n} for some n ∈ N, suggesting that ct ⊂ ⋃∞n=1{Gt,n}. Moreover, since for any n ∈ N, Gt,n has a

neighbourhood centred at Gt,n with radius ε > 0 lying in the set, {Gt,n} is an open cover of ct. Let

k, l ∈ N such that k > l > 2, we have

1

k
< 1

l
< 1 − 1

l
< 1 − 1

k
⇒ {Πt,l} ⊂ {Πt,k} ⇒ {Gt,l} ⊂ {Gt,k}.

Therefore, for any finite m ∈ N, ⋃m
n=1{Gt,n} = {Gt,m} = {mπt ,πt ∈ Πt,m,m ∈ N} . However, for any

m ∈ N, there exists Πt,m+1 /⊂ {Πt,m}, while Πt,m+1 ∈ Πt. Thus, there exists {mπt ,πt ∈ Πt,m+1} /⊂

{Gt,m}, while {mπt ,πt ∈ Πt,m+1} ∈ ct. Therefore, {Gt,n} is an open cover of ct that does not have a

finite subcover. Hence, ct is not compact.

A.13 Proof of Proposition 3.1

Proof. Let φt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) be any point in L(Φt). Let ε > 0, we want to prove that

there is φ′t = (µB′

t ,σB′

t ,µJ ′
t ,σ

J ′
t ,v

′(dx)) ∈ Φt/{φt} such that d(φt,φ
′
t) < ε. Let µB′

t = µB
t ,σ

B′

t =

σB
t ,µ

J ′
t = µJ

t ,σ
J ′
t = σJ

t , and v′(dx) = vt(dx) + δ, whence Equation 3.2 and 3.3 hold. Then, we have

v′(dx) > 0A, implying that φ′t ∈ Φt/{φt} and d(φt,φ
′
t) < ε. Hence, φt ∈ L(Φt).

Since ∂Φt ⊂ L(Φt), every φt ∈ ∂φt is an element in L(Φt). Therefore, for ε > 0, there is at

least one point in B(Φt, ε) that is also an element of φt. Now, consider φ′t = (µB′

t ,σB′

t ,µJ ′
t ,σ

J ′
t ,

v′(dx)) ∈ B(Φt, ε) in that d(µB
t ,µ

B′

t ) < ε, σB′

t = σB
t ,µ

J ′
t = µJ

t ,σ
J ′
t = σJ

t , v′(dx) = vt(dx), and

Equation 3.3 holds. Then, vt(dx) = 0, implying that φt ∉ Φt. Hence, φt ∈ ∂Φt.

A.14 Proof of Theorem 3.1

Proof. Let c(φt) be any point in L(Ct), and thus, φt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∈ L(Φt). Let ε > 0,

we want to prove that there is m(φ′t) ∈ ct/m(φt) such that d3(m(φt),m(φ′t)) < ε, where φ′t =

(µB′

t ,σB′

t ,µJ ′
t ,σ

J ′
t ,v

′
t(dx)) ∈ Φt/{φt}. Let µB′

t = µB
t ,σ

B′

t = σB
t ,µ

J ′
t = µJ

t ,σ
J ′
t = σJ

t , and v′t(dx) =

vt(dx) + δ. By choosing δ satisfying d3(m(φt), m(φ′t)) < ε, and Equation 3.2 and 3.3 hold, we

have v′t(dx) > 0A implying that φ′t ∈ Φt/{φt}. Therefore, m(φ′t) ∈ B(m(φt), ε) such that m(φ′t) ∈

ct/m(φt), and thus, m(φt) ∈ L(ct).

Since ∂ct ⊂ L(ct), every m(φt) ∈ ∂ct is an element in L(ct). Therefore, for ε > 0, there is at

least one point in B(m(φt), ε) that is also an element of ct. Now, consider m(φ′t) ∈ B(m(φt), ε)

in that ∣µB
t − µB′

t ∣ < δ, σB′

t = σB
t ,µ

J ′
t = µJ

t ,σ
J ′
t = σJ

t , v′t(dx) = vt(dx), and δ is chosen to satisfy
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d3(m(φt),mt(φ′t)) < ε and Equation 3.3 holds. Then, v′(dx) = 0, implying that φ′t ∉ Φt, and thus,

mt(φ′t) ∉ ct. Hence, m(φt) ∈ ∂ct.

A.15 Proof of Lemma 3.1.1

Since ∂ct is a non-empty closed subspace of c̄t, taking m(φt) ∈ ct, there exists a closed ball B =

B(m(φt), ε) such that B⋂∂ct is a non-empty compact set. So the functionm(φ′t) ↦ d3(m(φt),m(φ′t))

defined on B⋂∂ct must achieve a minimum. That is, there is some m(φ′t) = m(φ∗t ) ∈ B⋂∂ct,

which minimizes d3(m(φt),m(φ′t)). Further, for m(φ′t) ∈ ∂ct/B, we have d3(m(φt),m(φ′t)) > ε ≥

d3(m(φt),m(φ∗t )), so it minimizes the distance on the whole of ∂ct. Moreover, since m(φ∗t ) ∉

ct, d3(m(φt),m(φ∗t )) > 0.

A.16 Proof of Theorem 3.2

Proof. Let ρ ∈ [0,1] andm(φt),m(φ′t) ∈ ct. Recall that the setm(φt) contains all the SDF that prices

the payoff over a small time interval dt, and satisfies the asset pricing formula E[Rtm(φt)] = 1A,

where Rt is the gross return vector from t − dt to t. Then, the affine combination of m(φt),m(φ′t)

can be expressed in the form

ρm(φt) + (1 − ρ)m(φ′t) = {m(φ′′t ) ∶ ρE[Rtm(φt)] + (1 − ρ)E[R1m(φ′t)] = ρ1A + (1 − ρ)1A}

= {m(φ′′t ) ∶ ρE[Rtm(φt)] + (1 − ρ)E[R1m(φ′t)] = 1A} ∈ ct.

Hence, ct is convex.

Let m(φt) ∈ ct with φt = (µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∈ Φt. There is η > 0 such that

η = min
m(φ′t)∈∂ct

{d3 (m(φt),m(φ′t))} ,

where φ′t ∈ ∂φt. Then, since ct = c̄t/∂ct, by choosing ε < η, we have B(m(φt), ε) ⊂ ct. Hence, ct is

open in (c̄t, d3).

Next, we prove that c is bounded in (c̄, d3) . Suppose there is a positive upper bound R < ∞

and let (m(φ∗t ),m(φ′t
∗),w∗

t ) = arg maxm(φt),mt(φ′t)∈ct d3 (m(φt),m(φ′t)) . Then, any divergence of

(φt,φ
′
t) from φt

∗, (φ′t
∗) can be offset by the corresponding change in the optimal transport plan w∗

t ,

as w∗
t ∈W (P (φt), P (φ′t)) is a function of (φt,φ

′
t) with

W (P (φt), P (φ′t)) ∶= {wt ∶ ∫ wtdP (φ′t) = P (φt),∫ wtdP (φt) = P (φ′t)} .
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Hence, ct is bounded.

Lastly, to show that ct is not compact, we just need one example of an open cover that has no

finite open subcovers. Let {Gt,n} = {m(φt),φt ∈ Φt,n, n ∈ N}}, where

{Φt,n} = {(µB
t ,σ

B
t ,µ

J
t ,σ

J
t ,vt(dx)) ∶ vt(dx) >

1

n
,n ∈ N} .

Thus, every element of φt is in {Φt,n} for some n ∈ N, and therefore, every element of ct is in

{Gt,n} for some n ∈ N, suggesting that Gt ⊂ ⋂∞n=1{Gt,n}. Moreover, since for any n ∈ N, Gt,n has a

neighbourhood centred at Gt,n with radius ε > 0 lying in the set, {Gt,n} is an open cover of ct. Let

k, l ∈ N such that k > l > 2, we have

1

k
< 1

l
⇒ {Φt,l} ⊂ {Φt,k} ⇒ {Gt,l} ⊂ {Gt,k}.

Hence, for any finite m ∈ N, ⋃m
n=1{Gt,n} = {Gt,m} = {m(φt),φt ∈ Φt,m,m ∈ N}. However, for any

m ∈ N, there exists Φt,m+1 /⊂ {Φt,m}, while {m(φt),φt ∈ Φt,m+1} ∈ ct. Therefore, {Gt,n} is an open

cover of ct that does not have a finite subcover. Hence, ct is not compact.

A.17 Proof of Theorem 3.3

Proof. Let t0 ∈ [0,1], ε > 0, we show that for any t ∈ [0,1] such that ∣t − t0∣ < δ, we have

∣MI ({φi}i∈[0,t]) −MI ({φi}i∈[0,t0])∣

= ∣Et [ min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))] −Et0 [ min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))]∣

= ∣1
t
∫

t

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di −
1

t0
∫

t0

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di∣

≤ ∣1
t
∫

t

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di −
1

t
∫

t0

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di∣

+ ∣1
t
∫

t0

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di −
1

t0
∫

t0

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di∣

= 1

t
∣∫

t

t0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di∣ + ∣1
t
− 1

t0
∣ ∣∫

t0

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di∣

< ε.

(A.1)

Thus, by choosing δ = δ(t0, ε) > 0 satisfying Equation A.1, we have

∣MI ({φi}i∈[0,t]) −MI ({φi}i∈[0,t0]) ∣ < ε,
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and therefore, MI ({φi}i∈[0,t]) is continuous on the time interval [0,1].

Next, we prove that MI ({φi}i∈[0,t]) is not monotonic. Let

F (t) =MI ({φi}i∈[0,t])

= Et [ min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))]

= 1

t
∫

t

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di.

Then,

F ′(t) = −t−2∫
t

0
min
φ′i∈∂Φi

d3 (m(φi),m(φ′i))di + t−1 min
φ′t∈∂Φt

d3 (m(φt),m(φ′t))

= t−1 ( min
φ′t∈∂Φt

d3 (m(φt),m(φ′t)) − F (t)) .

Therefore, whether the sign of F ′(t) depends on the difference between the sub-period market in-

completeness at t and the average of sub-periods market incompleteness up to t, which is not strictly

increasing nor decreasing. Hence, MI ({φi}i∈[0,t]) is not monotonic.
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