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Abstract

When the markets are incomplete, the law of one price no longer guarantees the uniqueness of
the stochastic discount factor (SDF), resulting in a set of admissible SDFs, which complicates
the study of financial market equilibrium, portfolio optimization, and derivative securities. This
paper first proposes a discrete-time framework for estimating this set of SDFs, where there are
extra states that cannot be hedged by the marketed assets. Without specifying the cause of
incompleteness, we show that the constructed incomplete market SDF set has a unique boundary
point, and shrinks to this point only when the market completes. This property allows us to
develop a novel measure for market incompleteness based upon the Wasserstein metric, which
estimates the least distance between the probability distributions of the complete and incomplete
market SDFs. To facilitate the parametrization of market incompleteness for implementation, we
then consider in detail a continuous-time framework, in which incompleteness arises from stochas-
tic jumps in asset prices, and we demonstrate that the theoretical results developed under the
discrete-time setting still hold true. We further apply our results to study the evolution of market
incompleteness in four world’s largest stock markets. Our findings indicate that an increase in
market incompleteness is usually associated with financial crises or policy changes that raise the
likelihood of unanticipated risks.
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1 Introduction

Stochastic discount factor (henceforth SDF) forms the basis for all asset pricing and provides a
summary of investor preferences for payoffs over different states of the world. Under the law of
one price (henceforth LOOP), the asset pricing equation established by Harrison and Kreps (1979),
Harrison and Pliska (1981) and Hansen and Jagannathan (1991) implies that asset prices today are
a function of their expected future payoffs discounted by the SDF. When markets are complete, the
asset pricing equation leads to a unique SDF, whereas there is a multiplicity of admissible SDFs
that satisfy the equation in the absence of complete markets (Hansen and Jagannathan, 1991; Boyle
et al., 2008; Kaido and White, 2009), thus complicating the study of financial market equilibrium,
portfolio optimization, and derivative securities (Skiadas, 2007; Staum, 2007; Boyle et al., 2008). It
is therefore essential to establish a framework for characterizing the incomplete market SDF set, and
assess the extent of market incompleteness.

Markets are incomplete when perfect risk transfer is impossible, and this incompleteness can be
caused by a variety of factors, including but not limited to market frictions, such as trading costs and
portfolio constraints, and an insufficient number of marketed assets relative to the class of risks to be
hedged, such as jumps or volatility in underlying asset prices (Jackwerth, 2004; Staum, 2007; Willems
and Morbee, 2008; Bondarenko and Longarela, 2009; Mnif, 2012; Marroqu et al., 2013; Kwak et al.,
2014; Cheridito et al., 2016; Bouzianis and Hughston, 2020). To model the SDF under incomplete
markets in a general setup, we first consider a discrete-time setting, while the cause of incompleteness
is not specified. Particularly, we regard markets as incomplete when there are extra states relative
to the traded assets, either as a result of frictions or idiosyncratic risk that cannot be diversified by
trading the spanning assets in the market. We demonstrate that the constructed incomplete market
SDF set has a unique boundary point, and only shrinks to this point when the market completes.
This nice property allows us to examine features of the incomplete market SDF set, and enables us
to determine the degree of market incompleteness.

To facilitate the empirical implementation of our results, we parameterize the market incom-
pleteness in a continuous-time setting and propose that the unhedgeable risk is caused by a specific,
but practically realistic source of incompleteness — stochastic jumps, where prices exhibit positive
probabilities of unexpected changes, regardless of the interval between successive observations. Jump
diffusion processes have been frequently used to model asset pricing, and their empirical performance
in fitting the time-series properties of the asset price has been extensively evidenced by a number of

studies (Dritschel and Protter, 1999; Svishchuk et al., 2000; Bellamy, 2001; Andersen et al., 2002; Carr



et al., 2002; Geman, 2002; Willems and Morbee, 2008; Bouzianis and Hughston, 2020; Ait-Sahalia
et al., 2021). In most cases, jumps cause incompleteness, except in very simple or unusual mod-
els, whence the market offers sufficient trading opportunities (Dritschel and Protter, 1999; Staum,
2007). As such, inspired by Merton (1976)’s work, whereby the total change in price should be a
combination of the normal and abnormal price vibrations, our continuous-time framework considers
complete markets as those in which asset prices are subject only to normal fluctuations, and incom-
plete markets as those with a positive likelihood of experiencing unanticipated changes in price. We
demonstrate that the theoretical results developed in the discrete-time counterpart are still valid
in the continuous-time setting, and we further use those results to establish the degree of market
incompleteness.

In the literature, one popular measure for the degree of market incompleteness is through the
correlation between the derivative price and its basis asset values (Cass and Citanna, 1998; Marin and
Rahi, 2000; Davila et al., 2017; Chen et al., 2021), where a lower correlation indicates a greater degree
of incompleteness, and the market is complete only when the correlation reaches 100%. Another
measure employs the root-mean-squared error between the payoff function of the derivative and the
value of the optimal-replication portfolio constructed by the underlying securities (Bertsimas et al.,
2001). The degree of incompleteness is thus determined by the extent to which the replicated portfolio
is able to correctly price the derivative of the underlying assets.

Our approach is distinct from the previous ones in that instead of focusing on the linkage between
the prices of derivative securities and their underlying securities, we only concern the prices of the
primitive assets. In particular, considering that SDFs summarize investor preferences for payoffs
across different states of the world, it is natural to define the degree of market incompleteness as
how much the investor’s risk preference under incomplete markets diverges from that under com-
plete markets. The empirical implementation of this measure is summarized as follows, and we will
elaborate in Section 2 and 3 with discrete- and continuous-time examples. After constructing the
incomplete market SDF set and determining its corresponding complete SDF boundary point using
the asset prices, we employ the distance between their probability distributions to estimate the de-
gree of market incompleteness. As the complete market SDF is the boundary point of the incomplete
market SDF set, this distance vanishes only if the extra-state probability is zero, that is, when the
incomplete market SDF set degenerates into a unique complete market SDF. It can be challenging
to gauge this distance, since the complete and incomplete SDFs have probability distributions of

different dimensions, i.e., there are extra states with positive probabilities under incomplete markets



compared with complete markets. A natural solution to this problem is the Wasserstein metric, a
widely adopted measure in estimating the distance between distributions whose support differs, and
its value reflects the least cost required to transform from one distribution to another (Mallows, 1972;
Del Barrio et al., 1999; Villani, 2009; Nguyen, 2011).

The remainder of this paper proceeds as follows. Sections 2 and 3 sketch the discrete- and
continuous-time frameworks to model SDF under incomplete markets, and show the applicability
of our model in assessing the evolution of market incompleteness. Section 4 provides the empirical
analysis and investigates the evolution of incompleteness in four of the world’s largest stock markets.

Section 5 concludes with a summary and a discussion of directions for future research.

2 Discrete-time Setting

In this section, we model the SDF set and the market incompleteness under three discrete-time
setups, where each case is denoted as one risk-free bond—A asset(s)-T periods—S states with A € N,
and T > 2 € N. The number of traded assets is assumed to be less than the number of states at
the end of each period, i.e., A+ 1 < S, so that the markets are incomplete, while the cause of this
incompleteness is not imposed. Then, there is a set of SDFs identified by the distribution of observed
asset prices (Boyle et al., 2008; Kaido and White, 2009).

To motivate our study, we begin with a two-period market that has only one additional state

relative to the number of traded assets in Sections 2.1 and 2.2. We formalize the setup as follows.

Assumption 2.1. Suppose that there are one risk-free bond and A € N risky assets. We consider
a two-period market, t € {0,1}, with trading occurring on dates t = 0,1. The outcome of the second

period, t = 1, is uncertain, and represented by a finite set Q = {w®}s-1.0...5 comprising S = A + 2

states of nature. Let F be the set of events with all subsets of Q and P be the physical probability
measure such that P: F — R. There exists a set P of complete probability measures on (2, F) such
that P € P. Letting P(w®) = 7° be the probability of state w®, ©° are strictly positive scalars for all

s=1,2,...,5 in incomplete markets, while 7 = 0 when the markets are complete.

Assumption 2.1 has three implications. First, there are only two periods in the economy, and
thus, we do not index the states by time in the subsequent two sections. We will extend our setup to
multiperiods, where ¢ takes the value from a finite sequence of real numbers in [0, 1] that are equally-
spaced, and continuous time, where ¢ is generalized to take any value in [0, 1]. Second, without loss

of generality, the last state is assumed to be the extra one, which is caused by an unknown source



of market incompleteness, resulting in an idiosyncratic risk that cannot be hedged by the existing
marketed assets. Third, our basic design requires the markets to be either complete, with the same
number of marketed assets and states, or incomplete, with only one extra state. In Section 2.4, this
restriction is relaxed to a finite number of extra states, and 7° is extended to a vector such that!
S-1-A

s

[75]5-42.443,..5 € R4 Then, the market completes only when? [%]s-412 443, 5 = 05-1-4.

2.1 One risk-free bond, one risky asset, two periods, three states (1-1-2-3)

Suppose that we have one risk-free bond and one risky primitive asset in the economy, and there are
three states at period ¢ = 1 such that Q = (w!,w?,w?), correspondingly there exists a set of physical

probabilities

3
H:{ﬂz[ﬂl,WQ,w3]TeR?+’+:Eﬂszl}. (2.1)
s=1

As we have two assets, the gross rate of returns realized at the second period are of length two?, i.e.,
r(w®) = [7‘175, 1]T, where r®® denotes the return for risky asset a in state s and, for simplicity, the
return of the bond is 1, suggesting a zero risk-free rate. Let © = [r(w!),r(w?),r(w?)], we assume
that the second-moment matrix of », E[rr"], is nonsingular, so that the cases where the entries of
7 is linearly dependent are ruled out. This restriction also guarantees that LOOP holds trivially for
linear combinations of » (Hansen and Jagannathan, 1991). We can treat r as payoffs for assets with

price one, and the asset pricing equation is expressed in the form*

3
Ex[rM]= Z:lr (w*) M (w®) 7% = 19, (2.2)

where the subscript of E is used to specify which probability measure is being used to compute the
expectation. As discussed in Kaido and White (2009), the SDF M is a non-zero F-measurable
random variable such that M : Q - My, where M, is the set of SDFs under P € P that satisfies
Equation 2.2:

My :={M :Er[rM]=15}. (2.3)

We write v € R?, for a vector that is strictly positive in all its coordinates.
20,, denotes a zero vector of size n.

3For vectors and matrices, we shall use the superscript ‘T’ to denote transpose.
41,, is a vector of ones in R™ .



Let M* = M(w®) and a = m°M? € R, be the free variable® %, for any 7 € II, we can think of M

as a vector in R?, where the three coordinates give the values of M on the three possible outcomes.

Thus, Equation 2.3 can be rewritten as”

1 1_pl2 p1,2_,1,3
M LI 12 LI 12
_ 3. al _ PL1_1 -1 PL1_,1.3 -1
My={MEeR,:|M?|= Trors | T -y [T, e R,
M3 0 1

Lastly, we write the combined set C of My’s for all w € IT as C := {M, 7 € IT}.

2.1.1 Set properties of C

The following proposition provides the limit and boundary points of the set of probability measures
in Equation 2.1, which will later be used to explore the boundary point of the constructed incomplete

market SDF set C. The proof is in Appendix A.1.

Proposition 2.1. Consider the metric space (II1,d) such that

3
II = {ﬂ': [7r1,7r2,7r3]T : Zﬂ's =1,7.,72>0,7° 20}
-1

S

and d is the Buclidean distance metric. Then, the set of limit points of II in (I, d) is

3
L(IT) ={ﬂ': [ﬂl,WQ,ﬂg]T 1y = 17W177T2>0,W320}
1

s

and the set of boundary points of IT in II is

3
8]:[:{71': [7T1,7T2,7F3:|T : Zﬂsz 1,7('177r2>0’7r3:0}.
=1

S

The probability set IT has the first two states being strictly positive and the last state being

nonnegative, which therefore, covers all complete and incomplete market scenarios described in As-

® M can be also thought as the discounted Radon-Nikodym derivative, where the Radon-Nikodym derivative D is
defined as a F-measurable random variable such that for any A € F,Q(A) = [, DdP (Kaido and White, 2009) with Q
be the risk-neutral probability measure. In our setup, assuming zero risk-free interest rate, M = E[dQ/dP|F]. Since
Q and P are equivalent in measure, they agree on which events have zero probability, and hence, M is non-zero.

SWe write v € R” for a vector that is non-zero in all its coordinates.

"To simplify our notation, for two vectors A and B of the same dimensions, AB is their element-wise product with
the same dimension as A and its element expressed as (AB); = A; x B;. Similarly, for a vector A, the element-wise

power of a real number z on it is A%, i.e., (A%); = (A;)%; for a real number x, the element-wise power of a vector A
A

i

on it is , ie., (z?); =z



sumption 2.1. Proposition 2.1 implies that there is a unique boundary point for IT in (II,d) when
lim7® — 0, which is compatible with Assumption 2.1 such that the incompleteness is introduced
through a non-tradable risk with positive likelihood of occurrence.

In accordance to Proposition 2.1, the next result presents that the combined incomplete market

SDF set C has the complete market SDF on its boundary, and its proof can be found in Appendix A.2.

Theorem 2.1. Consider a metric space (C’, dl) with C = {}Mﬂ.,ﬂ € l:I} and dy being the Wasserstein

distance such that for x,y €I,

Sm Sy
di (Mg, My) = inf{ Yo D wsyspatdy (M, M) :w e W(w,y)} , (2.4)
w sx=1sy=1
whered W (x,y) := {'w € ]Rfyxsm rw'lg, = T, we = y} is the set of transport plans between x and y.

S is the number of states with non-zero probabilities and the superscript s, is the index of the elements

in the vector under the physical probability z e II. For all s, =1,2,...,S, and sy=1,2,...,5,

do (M?®=, M?®Y) = [v°® = 0| + |u’® —u®Y], (2.5)
where
[ 2 ] [ 12,13
v(x) = % x~! and u(x) = _% x”l, xell;
0 1
[ 1—7’1’2 1 —O
oIz 1 -1
v(x) = x™ and u(x) = x x € OII.
rblq 0
| T 12 | |

Then, the set of limit points of C in (C,dy) is
L(C)={My,m eI} u{M,,m € 011},

where, for any 7 € OI1,
1 1-r12
M PS5 U S 1
M, = = T ,
M2 rbl_1
P o

and the set of boundary points of C is denoted as OC = {My, 7 € OI1} .

8We write A € RV for matrix of dimension M x N that is non-negative in all its elements.



Theorem 2.1 utilizes the Wasserstein metric as the distance measure, which is a natural way
to compare two probability distributions with different supports, and thus, suitable to quantify the
divergence of the incomplete market SDFs from the complete market one. Based on Theorem 2.1,
we have the following Lemma 2.1.1, suggesting that, for every probability measure « € I, there is
a probability measure y* € OII that minimizes the distance between M, € C and M, € C. The
proof of this lemma is presented in Appendix A.3, and we will further utilize it in the discussion of

set properties of C' and the measure for market incompleteness.

Lemma 2.1.1. For every My € C, there ewists My« such that

My = argmin dy (Mg, My).
MyeoC

The next result develops an overview of the incomplete market SDF set, where C' is convex, open,

bounded, and not compact. The proof is provided in Appendix A.4.

Theorem 2.2. Let IT be the set of physical probabilities satisfying Equation 2.1.
Let M, be the identified SDF set in the 1-1-2-8 case satisfying Equation 2.3 under € I1.
Let C be the combined SDF set such that C = {My,m € II}. Then, C is a convex set.
Let (é,dl) be the metric space such that C = {My, 7 € I1} and for z,y € I1, dy is as defined in

Equation 2.4. Then, C is open, bounded and not compact under (C’,dl).

2.1.2 Measure for market incompleteness

As discussed in Theorems 2.1 and 2.2, we can naturally employ the metric d; defined in Equation 2.4
to measure for market incompleteness. Given that at ¢t = 0, the complete and incomplete market
SDFs are assumed to be 1, and the distance between them is 0 following the metric di, for every
x € I, the degree of market incompleteness measured at ¢ = 1 is defined as in Equation 2.6, which is

the least transport cost from the SDF set M, € C to the complete market SDF set My € 0C':
MI(x)= min di(M,, M
() D 1 (Mg, My)

Sz Sy (2.6)
= min inf{ Y > we, s, dy (M=, M) :w e W(w,y) ;.

yeoll w Sg=1sy=1

Let y* = argminygry d1(Mg, My ), since dy is a valid metric and the complete market SDF is the
boundary point of the incomplete market SDF set, the degree of market incompleteness equals zero

only when markets are complete, i.e., limp, - . M1 (x) = 0. As this degree increases (decreases),

8



the cost to transport the incomplete market SDF to the complete market SDF increases (decreases),

which implies more (less) divergence of the current market from completeness.

2.2 One Risk-free Bond, A Risky Assets, Two Periods, A+2 States (1-A-2-(A+2))

This section extends the previous economy by having A > 2 risky primitive assets and A + 2 states at

t =1 such that Q = (w?)s-1,2,... a+2. Correspondingly, for P € P, there is a set of physical probabilities

A+2
H:{[WI,WQ,...,WAJrQ]TeRij: Zﬁﬂ}. (2.7)
s=1

In each state s, assuming a zero risk-free interest rate, the gross rate of return vector realized is of
length A+1 and denoted as r(w®) = [7"1’5,7“275, o A 1]T. Let 7 = [r(w!), 7(w?),..., r(w4*?)], the

second-moment matrix of = is again nonsingular. Recall that based on the asset pricing equation
A+2
Er[rM]=> r(w’) M (w*) 7" =141, (2.8)

s=1

the SDF is a non-zero F-measurable random variable such that M : Q — M, where M is the set

of SDFs under P € P that satisfies Equation 2.8:
My={M:Ez[rM]=1441}. (2.9)

Let M*® = M (w®) and a = 74*2M4+2 ¢ R, be the free variable, for any 7 € I, we can think of
M as a vector in Rf”, where each coordinate gives the value of M on the corresponding outcome.

Thus, Equation 2.9 implies that”
7 M (1441 T (1:4+1)s = Lazr + o (-r"),
where 7’ = (1), (q.451) and 7" = () (419 » and we can be rewrite it as
Mg ={M e RM2: M = v(w) + au(r),a e R.},

where

(P 1|

N1
v(m) = 7w ! and u(w) = () wl.

9For a matrix A, the i*" row of the matrix is denoted as A;. and the 5" column of the matrix is denoted as A,j.



Lastly, the combined set C of My’s for all 7 € IT is defined as C := {My, m € IT}.

2.2.1 Set properties of C

As in the 1-1-2-3 case, we start by showing that the complete market SDF is indeed the boundary
point of the incomplete market SDF set. The following proposition demonstrates that the probability
distribution under complete markets is the boundary point of the set of probabilities under incomplete

markets, and its proof is discussed in Appendix A.5.

Proposition 2.2. Consider the metric space (II1,d) such that

A+2
1:1:{71': [7T1,7T2,...,7TA+2]T3 > 775:1,7rs>0f07’s:1,2,...,A+1,7TA+220}
s=1

and d is the Buclidean distance metric. Then, the set of limit points of II in (II,d) is

L(H):{W= [771,7T2,...,7TA+2:|T2Zﬂ's=1,71'8>0f07“8=1,2,...,A+1,7TA+220}

s=1

and the set of boundary points of IT in II is

A+2
aH:{ﬂ'z CE el IED 7Ts:1,7r‘9>0f07"s:1,2,...,A+1,7rA+2:0}.

s=1

Then, the following result corroborates with Theorem 2.1 that the constructed incomplete SDF
set indeed has its boundary point to be the complete market SDF under the defined metric space.

The proof of this result is presented in Appendix A.6

Theorem 2.3. Consider the metric space (C_’,dl) with C = {My, 7 € II} and dy being the Wasser-

stein distance such that for x,y €I,

Sa: Sy
di (Mg, My) = inf{ YD Weyspx®dy (M=, M) :w e W(a:,y)}, (2.10)
W sp=1 sy=1
where W(x,y) = {w € ]Rfyxsz cw'lg, = x,wx =y} is the set of transport plans between x and y.

S is the number of states with non-zero probabilities and the subscript s, is the index of the elements

in the vector under the physical probability z € II. For all s5 =1,2,...,S5 and sy=1,2,...,5,

do(M?®=, M) = [v°® — 0| + |u®® —u’Y|,

10



where

(r) " Lan - () (")
v(x) = 2t and u(x) = x !, xell
0 1
v(z) = () 1anz ! and u(z) =042t x € OI1

Then, the set of limit points of C in (C,dy) can be denoted as
L(C)={Mg,m eI} U{Mg,m e 011},

where, for any m € OI1,
Mw = {M = I:(’f‘,)_l 1A+171'1_:%A+1):|} )

and the set of boundary points of C is then OC = {My,m € OI1}.

Based on Theorem 2.3, we can then derive the following lemma, which will be employed further
in the discussion of set properties and the degree of market incompleteness. Its proof is shown in

Appendix A.7

Lemma 2.2.1. For every My € C, there exists My« such that

My = argmin dy (Mg, My).
MyeoC

The next result establishes the convezxity, openness, boundedness, and non-compactness, for C in

the 1-A-2-(A+2) case with its proof discussed in Appendix A.8

Theorem 2.4. Let II be the set of all the probability density measures under P satisfying FEqua-
tion 2.7.
Let My be the identified SDF set in the 1-A-2-(A+2) case satisfying Equation 2.9 given w in IIL.
Let C be the combined SDF set such that C = {Mg,m € I1}. Then, C is a conver set.
Let (C’,dl) be the metric space such that C = {My, 7 € II} and for x,y € II, dy is as defined in

Equation 2.10. Then, C is open, bounded and not compact under (C_',dl).

2.2.2 Measure for market incompleteness

Similar to the 1-1-2-3 case, based upon Theorems 2.3 and 2.4, we adopt d; defined in Equation 2.10
as the measure for market incompleteness. Given that at t = 0, the complete and incomplete market

SDFs are assumed to be 1, and the distance between them is 0 following the metric dy, for every

11



x € IT, the degree of market incompleteness is defined as in Equation 2.11, which is the least transport

cost from M, € C to M, € oC :
M1 = in di (Mg, My).
(m) Iileln 1( T y) (2.11)

Let y* = argminygry d1(Mg, My ), since dy is a valid metric and the complete market SDF is the
boundary point of the incomplete market SDF set, the degree of market incompleteness equals zero
only when the markets become complete, i.e., limn,-m,. MI(x) = 0. A higher (lower) degree
suggests more (less) cost required to transport between the complete and incomplete market SDF

sets, implying that the market diverges more (less) from the complete market.

2.3 One risk-free bond, One Risky Asset, Three Periods, Three States (1-1-3-3)

We now extend our layout to a three-period financial market. Consider a time interval [0, 1], let
the complete filtered probability space characterized by (2, F,{Ft}e0,1], P). The filtration {F;} =
{}—t}te[o,l] is assumed to satisfy the usual properties (Protter, 2005). There are 2 equally-spaced
subperiods in [0,1], and let h = 1/2 be the time window. Suppose we have two long-lived assets,
one risk-free bond and one risky primitive asset, available for trading at time points {0,1/2,1}, and
three states at each t = {kh}g-12 such that Q = (w},w?,w}). Letting P(wf) = 7§ be the physical

probability of state wyi, the corresponding set of physical probabilities under P is

3
HtZ{Tl't=[7Tt1,7T?,7T§]TERi+:271‘?21}. (2.12)
s=1

Assuming a zero risk-free interest rate, the gross rate of asset returns realized at ¢ = kh in states s
is of length two and denoted as 7;(w) = [r;"%,1]7, where 7"° is the return of the risky asset a in
state s at time t. Let r; = [ri(w}), ¢ (w?), r¢(w))], we assume as in the previous sections that the
second-moment matrix of r; is nonsingular. Then, each subperiod [(k — 1)h,kh] can be viewed as
a two-period model as in the 1-1-2-3 case, and we have the random variable my; : ; - my,, where

iy, is the set of subperiod SDFs under P; € P; that satisfies the asset pricing equation:
My, = {my : Eg,[rymy] = 1o} .

Here, we denote the above SDF set as the one-period SDF set with m; being the SDF that discount
the asset payoff at time kh to its price at time (k- 1)h for k = 1,2, and the multiperiod SDF at ¢ is

12



defined as My = Hz/flmkh (Cochrane, 2009), which prices a k-period payoff and satisfies the following

equation
By (i Min] = M(j_1)p-

t/h

Then, the multiperiod SDF set at ¢ can be written in the form My, = I, my,, .

To examine the evolution of market incompleteness over time, we focus on the single-period SDF

set at time t such that for every m; € I,

1- 1,2 1,3
1 Tt Ty Ty
| R
_ 3. 21 _ -1 -1 Ty -1
My, ={my € R, [m7 | = ,ﬁ T, o _'r'tl’l—rfi’z T, ,aeR, ¢,
t t t t
m} 0 1

where m$ = my(wy) and o = (1 -7} —72)m3, and the set that contains all single-period SDFs in each
period t is ¢; := {mg,, 7 € IL;}.

Further, analogous to the results proved in the 1-1-2-3 case, the following proposition and theorems

hold.

Proposition 2.3. For t = kh, consider the metric space (Il;,d) such that

3
HtZ{ﬂ't—[ﬂ't,T{'t,ﬂ't] Z 1,7}, w2 >0, wtz()}
and d is the Buclidean distance metric. Then, the set of limit points of II; in (II;,d) is
3
L(Ht)Z{ﬂ't—[ﬂ't,ﬂ't,ﬂ't] Z 7Tt,7Tt>0 7Tt>0}
and the set of boundary points of II; in II; is
3
8Ht:{7rt—[7rt,7rt,7rt] Z 1,7}, w2 >0, 7rt—0}.

Theorem 2.5. Consider the metric space (&, d1) such that & = {my,,m € I1;} and for x;,y, € Iy,

Sf”t Syt
d1<mwt,myt>—mf{2 D, wpt ™ dy (mg™, f“)=wteW(mt,yt>}, (2.13)
smt—lsyt—l

where W (@, yt) = {w; € Rfytxs‘” : thlsyt = xy, Wy = Yi} is the set of transport plans between

Ty and Yi. Sz, is the number of states with non-zero probabilities and the subscript s, is the index
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of the elements in the vector under the physical probability z; € TI;. For all sg, = 1,2,..., Sz, and
Sy, = 1,2,...,5,,

do (m:mt mfyt) = |U8c”t - Usyt| + |u5wt — Syt | ,

where
1—pl:2 P12_,1.3
t t
1,1 1,2 1,1 1,2
T 7Tt Ty Ty
v(xy) = U N P! and u(xy) = o rl e I
= m e [ 220 Rt v s -2 e 2 t t
Ty 7T Ty 7T
0 1
[ 1 Tt12 ] [
7‘1 1 1 ,2 1 O 1
v(zy) =" "t |zt and u(xy) =| |zt x; € OI1;.
t -1 0
S )
-’f‘t 7Tt B L

Then, the set of limit points of ¢; in €; can be denoted as

L(ct) = {my,, 7 € I} U {my,, m; € OIL; },

where, for any m; € O,

1,2
1 e
mt 1,1 1,2
My, = =" |t
" m? r 1 t
e

and the set of boundary points of ¢; is then Oc; = {my,, 7 € OIL;} .

Theorem 2.6. Let II; be the set of physical probability measures satisfying Equation 2.12. Let 1y,
be the identified SDF set in the 1-1-3-3 case given the probability measure 7 in Iz, and let ¢; be the
combined SDF set such that ¢; = {mg,, 7 € II;}. Then, ¢; is a convex set.

Let (€,dy) be the metric space such that ¢ = {my,, 7 € lzlt} and for xy,y; € Iy, di is as defined

in Equation 2.13. Then, ¢ is open, bounded and not compact under (¢, dy).

Last, we derive the degree of market incompleteness based on the set properties in Theorems 2.5
and 2.6. Again, since at time 0, the complete and incomplete market SDFs are assumed to be 1,
the distance between them is 0 following the metric di. Thus, given {wkh € ﬂkh}zz , the degree of
market incompleteness at ¢ is defined as in Equation 2.14, which is the average of the least transport
costs from my,, € €xp, to my,, € Ocyy, from time h to t, indicating that we weigh the degree of market

incompleteness equally across subperiods.

t/h
({wkh}t/h)_%z min  dy (mg,,,my,, ). (2.14)

rrnykh eackh
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As the subperiod degrees of market incompleteness are functions of their subperiod asset returns,
which are uncorrelated, we take the average of them so that MT ({wkh}z/ﬁ)) is not monotonic in
t. Moreover, since dj is a valid metric and the complete market SDF is the boundary point of the
incomplete market SDF set in each subperiod, the degree of market incompleteness equals zero only
when markets are dynamically complete, i.e., when markets are complete at every subperiods. Hence,
the estimated M ({wkh}izo) and M ({mkzh}z:o) depict the evolution of market incompleteness over

the time interval [0,1].

2.4 Generalization of the Discrete-time Setting

Finally, we consider a generalized discrete-time setting in which there are a finite number of additional
states rather than only one, while still allowing any type of incompleteness in the market. The setup

is formalized as follows.

Assumption 2.2. Suppose that there are one risk-free bond and A € N risky assets. Let S > A+ 2
and (0, F,{Fi}tef0,1], P) be the complete filtered probability space, where Q, F and P are the same
as defined in Assumption 2.1, and the filtration {Fi} = {Fi}eo,1] is assumed to satisfy the usual
properties (Protter, 2005). Suppose that there are K > 1 equally-spaced subperiods in [0,1], and
let h = 1/K be the time window. All assets are long-lived and available for trading at time points
{0,h,....,(K -=1)h,1}, and there are S states at each t = {kh}p-12 g such that Q; = (wf)s=12,..5-
Let Py(w}) = ] be the physical probability of state wi, where 7w} are strictly positive scalars for all s
i incomplete markets, while [ﬂf]§:A+27A+3,m75 = 0g_4_1 when the markets are complete. There exists

a set Py of complete probability measures on (S, Fy) at each t = {kh}p-1 . i such that P, e Py.

Assumption 2.2 is a generalization of Assumption 2.1, where the number of jumps at time ¢ is no
longer restricted to be one, and we allow for multiple extra states in each subperiod. Correspondingly,

the set of physical probabilities at ¢ when the markets are incomplete is'°

S
Ht:{[wg,wf,...,wf]eRi;2@:1}, (2.15)
s=1

At time ¢ = kh, the gross rate of return vector of length A + 1 realized at state s is ry(wy) =

1,s 2 A T . :
[rt o, T?] , where r® denotes the return of the risky asset a in state s, and r{ denotes

the risk-free rate. Let 7 = [ry(w;)]s.1 5 g, When the assumption that the second-moment of r; is

Here, we restrict all 7’s to be strictly positive under incomplete markets, instead of letting 7§ > 0 for s > A + 2,
because the latter can be simply reduced to a lower-dimensional case. For instance, if 77 = 0 under both complete and
incomplete markets, then, our setup can be reduced to an (S — 1)-dimensional case.
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nonsingular holds, at the end of each subperiod ¢, we have the random variable my : {0y - my,, where

my, is the set of SDFs under P; € P; that satisfies the asset pricing equation:
my, = {my :Ex,[rimy] =1441.}. (2.16)

Subsequently, let a; = [mfm] 52412 443, € R5~471 be the vector of free variables, we can derive the

single-period SDF set at time ¢ in the form such that for every 7 € Il
My, = {my € RSty = vy () + wp () o, g € Rfﬂ%l%

where
-1
(7'2) 1aa| _
v(7ry) = ;1 and ug () =
05-4-1 l1s-a1

-1
- (,,.2) (7‘2’ -1
7Ty

with 7f = (7¢) 1441y and 77 = (7¢) . (442.5) - Lastly, the combined set ¢; of my,’s for all m € II; is
defined as ¢; := {m,, m € II; }.

Now, we demonstrate that the results in previous special cases hold in the generalized setting.
The following proposition indicates that the probability distribution under complete markets is the
boundary point of the set of probabilities under incomplete markets, and its proof is discussed in

Appendix A.9.

Proposition 2.4. Consider the metric space (II;,d) such that
_ ST S
Ht:Htu{wt:[ﬂg,wf,...,ﬂt] :Zﬂf:1,7r,f>0fors:1,2,...,A+1,
s=1
Wf:Ofors:A+2,A+3...,S}

and d is the FEuclidean distance metric.
Then, the set of limit points of II; in (II;,d) is L(IL;) = II;, and the set of boundary points of
Ht m ]-:-[t 18
ST S
oIl = {ﬂ'tz [7Ttl,7l't2,...,71't] : Zﬂf =17 >0 fors=1,2,..., A+1,
s=1

ﬂf:Ofors:A+2,A+3...,S}.
Then, we can establish the following result such that the constructed incomplete set SDF has its
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boundary point to be the complete market SDF under the defined metric space. The proof of this

result is presented in Appendix A.10

Theorem 2.7. Consider the metric space (&, d1) with & = {my,, 7 € I1;} and dy is as defined in

Equation 2.13. Then, the set of limit points of ¢; in (€, dy) is
L(ct) = {my,, 7 € II;} U {m,, ™ € OIL; },

where, for any m; € OI1,
My, = {mt = [(7’2)_1 1A+1(7rt)I=l(A+1)]} 7

and the set of boundary points of ¢; is then dcy = {my,, w € OTL;} .

The following lemma, derived from Theorem 2.7, implies that for every probability measure
x; € IT;, there is a probability measure y; € OII; that minimizes the distance between mg, € ¢; and
my, € Oc;. This lemma enables us to further explore the set properties of the incomplete market

SDF as well as the degree of market incompleteness. Its proof is presented in Appendix A.11.

Lemma 2.4.1. For every mgy, € ¢, there exists my« such that

m = argmin {dl(mmtamyt)}'

]Inyt €Ct

Y

The next result establishes the converity, openness, boundedness, and non-compactness, for ¢; in

the generalized case with its proof discussed in Appendix A.12.

Theorem 2.8. Let II; be the set of all the probability density measures under P; satisfying Fqua-
tion 2.15.
Let my, be the identified SDF set in the generalized case satisfying Equation 2.16 given my in IL;.
Let ¢; be the combined SDF set such that ¢; = {mg,, 7 € II;}. Then, ¢; is a convex set.
Let (€, d1) be the metric space such that & = {my,, 7 € II;} and for x;,y; € II;, dy is as defined

in Equation 2.13. Then, ¢; is open, bounded and not compact under (€;,dy) .

Last, based on the set properties in Theorems 2.7 and 2.8, given {mkh € l:[kh};/fl , the degree of

market incompleteness at ¢ is defined as in Equation 2.17, which is the mean of the least transport
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costs from myg,, € Cxp, to my,, € dcgy, from time 0 up to 1

 tlh .
MI({mkh}Z/:hl) ==Y min di (mg,,,my,,). (2.17)

t k=0 Myp Eackh

The subperiod degrees of market incompleteness are functions of their subperiod asset returns, which
are uncorrelated, then by taking the average of these subperiod transport costs, we get the degree
of market incompleteness at ¢, MI({mkh}Z/:hO), which is not monotonic in ¢. Moreover, as d; is a
valid metric and the complete market SDF is the boundary point of the incomplete market SDF
set in each subperiod, the degree of market incompleteness equals zero only when the markets are
dynamically complete, i.e., when the markets are complete at every subperiods. Hence, the estimated

MI ({wkh}fﬁo) depict the evolution of market incompleteness over the time interval [0, 1].

3 Continuous-time Setting

The modelling of the SDF set and the degree of market incompleteness in the continuous-time setting
is similar to that used in its discrete-time counterpart, but there are differences. Particularly, in order
to implement our approach in empirical works, we further parameterize the market incompleteness
by specifying that the asset prices are generated by the jump diffusion processes, which constitute an
important class of incomplete market models and are realistic in practice (Kaido and White, 2009).

Same as Assumption 2.2, we have the time interval [0,1] and the complete filtered probability
space characterized by (€2, F,{Ft}[0,1], ). There exists a set P of complete probability measures
on (2, F) such that P € P. Suppose that there are A € N risky assets and that, in incomplete markets,

R4 —valued asset price process {S;} solves the stochastic differential equation (SDE)

s,

5 - pldt + oBdB, + J,dNy, (3.1)
t_

AxA_valued adapted diffusion co-

where {pf} is an R4-valued adapted drift process, {oF} is an R
efficient process. J; is a random jump amplitude, which is predictable and J; > —1, implying that
all elements in S; remain positive, consistent with the limited liability provision (Ait-Sahalia et al.,
2009). Then, it is convenient to have J; = exp(Q:) — 14 as in Hanson and Westman (2002), where

Q; follows a normal distribution with mean p; and standard deviation ;. {B;} is a vector of A

independent Brownian motions under P and Nt = N; — vi(dx)t is the compensated martingales of

1 Again, we assume that the complete and incomplete market SDFs are 1 at time 0, and the distance between them
is 0 following the metric d;.
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Poisson process IN; with mean measure vy(dz)t, where v;(dx) > 0 is taken to be the Lévy measure
associated with an A-dimensional pure-jump Lévy process. Thus, vi(dzx) is a o-finite measure on

(R, B(R))'2 such that v;({0}) = 0, suggesting that v does not have mass on 0, and

/ﬂ%min(l, |£L‘|2) vi(dz) < oo, (3.2)

so the jumps have finite variation. {B;} and Ny are independent under P and are adapted to {F;}.

We require that
t
P[‘/o (‘uf‘+af2+J§vs(d:c))ds<oo]:1 (3.3)

for t > 0, which is a sufficient restriction to ensure that the integral with respect to the compensated
Poisson random measure exists for both small and large jumps. We assume that the market is built
with a risk-free bond with a known rate of return of r;.

Given the R“4-valued adapted processes {¥}150 and {7 }+>0, the Girsanov transformation defines
the new adapted processes {B;} and {IN;} by adjusting the original Brownian motion and the

compensated martingales of Poisson process:
_ t _ - t
B,- B, + f Weds and Ny = N; + f s (dz)vsds.
0 0

Then, the asset return process under the risk-neutral probability measure is

6‘;—& = Tt]_gdt + O'thBt + Jtht
t—

and the existence of the SDF holds only for (2);,4;) such that

“’tB i Y U'tB’lbt - Jiyyvi(de) =0, a.s.— P.

Such vectors are called the market prices of risk, where {1); }+>0 is the adapted Brownian market price
of risk and {7 }s0 is the predictable jump market price of risk, and ~; <1 for ¢ > 0.
Let ¢, = (uf,af,uz],a'tj,vt(dx)) € ®,, where

@, = {(u, 0l u] o vi(dr)) : vi(dr) > 04}

is an admissible parameter space under P € P. When markets are incomplete, the market prices of

2We use B(R) to denote the Borel o-algebra.
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risk form a set

T(¢r) = {(t, %) - =14l a - o ah — Jyypvp(d) = 0} . (3.4)
Let o =1In [(lA - 'yt)_l], Equation 3.4 can be written in the form
_ -1 _
T(p1) = { (e, 70) 1 = (o) (1w —ri1a) = (07)  (Ji(1a—e ™) vi(da)),
F)It:]_A—e_at,atGRA}. (35)
Correspondingly, for (1,7:) € T'(¢;), the SDF process { M (¢;) }>0 follows the dynamic form

M s
aM(¢r) _ [reladt + ¢dBy + v dIN |

M(¢pi-)

with the solution

t t 1 1t
M(d)t):exp(—f 7«51Ads—f szst——f ¢§ds)
0 0 2 Jo
t - t
><exp(—v[0 asts—fO (e‘o‘s—lA+f§5)vt(d:c)ds).

We shall restrict M (¢¢) to be a P-square integrable martingale over the time interval [0,1], i.e.,
Supyero,1] E [M2(¢)t)] < co. Then, the SDF set is

M(¢p) = {M(@) :exp(—fotrslAds—fotzpsst—%fotibgds)
X exp (— AtastS - fot (e -1+ ozs)'vt(dx)ds) ,
ar=In[(La—7)"], (¥, %) € F(¢t)}7

and the set that contains all SDFs under P € P is defined as Cy := {M¢(¢¢), ¢ € ®;}. Analogous to
the discrete case, in order to analyze the evolution of the degree of market incompleteness, we frame

the following discussion in terms of the SDF set including all possible SDFs that price payoff over a
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small time interval dt:
m(¢) = {m(¢¢) = M () M(Pi-), pr € P}
= {m(@) = exp (—rtlAdt —1p;dB; — %@bfdt) x exp (—audNy — (7™ = 14 + o) vy(dz)dt)

=1 [(La =70 ]. (Y ve) € r«m)}, (36)

and this SDF discounts the payoff at t to its price at ¢ — dt. Accordingly, the set that contains all
m(¢y) for PeP is ¢; := {m(¢p;), pr € B, }.

3.1 Set properties of C;

Similar to the discrete setups, we first verify that the boundary point of the proposed SDF set is
indeed the one under the complete market. Let ®; = {(p?, 08, uf, o/, v:(dz)) : vi(dz) > 04} be
the admissible parameter space, the following proposition establishes the limit and boundary points

of ®; under ®;. The proof is shown in Appendix A.13.

Proposition 3.1. Consider the metric space (®4,d) such that
®; = {(uf,a’f,u{,ag],vt(dx)) vy (de) > 04}
and d is the Buclidean norm. Then, the set of limit points of ®; in (®y,d) is
L(®y) = {(uf,af,ug,ag,vt(dx)) rvy(de) > OA},
and the set of boundary points of ®; in (P, d) is
0P, = {(pf,af,u;},agj,vt(d:v)) cv(de) = OA}.

The next result indicates that with the continuous-time setup, the complete market SDF is indeed

the boundary point of the incomplete market SDF set. The proof is presented in Appendix A.14.

Theorem 3.1. Consider the metric space (¢, ds) such that & = {m(¢¢), ¢s € ®;}, and for ¢y, P} € Py
satisfies Equation 3.3, let P(¢¢) and P(¢}) denote the physical probability measures in P,

dy(an(pn) (@) = inf { [ daCen(o0)m(@)dunw e WP, P@))}, (37
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where W(P(¢t), P(¢})) = {wy: [ widP(p;) = P(¢pr), [ widP(dr) = P(p})} is the set of transport
plans between P(¢;) and P(¢y), and

ds (m(er), m(e})) = |f (1) - £(o})]

with
() = exp (—mlAdt - 9(¢:)dB; - %g(@)th) x exp (~dN; - e v (dz)dt)
9(t) = (UtB)_l (MtB - TtlA) - (O'tB)_l (Jt (1A - 6_1A) vt(da;)) ,

2
and Jy = exp(Qr) ~ 14, Q¢ ~ N(pf . o]").
Then, the set of limit points of ¢; in & can be denoted as L(c;) = {m(¢y), P € ®;} and the set
of boundary points of ¢, is then Ocy = {m(¢y), Py € 0P}, where for any ¢y € 0Py,

m(¢py) = {m(¢t) = exp (—TtlAdt - dBy - %%th) P —rla - ol = 0} : (3.8)

Based on Theorem 3.1, we derive the following lemma, which will later be incorporated in the
discussion of set properties and the degree of market incompleteness. The proof of Lemma 3.1.1 is

presented in Appendix A.15.

Lemma 3.1.1. For every m(¢;) € ¢, there exists m(¢p;) such that

m(¢;) = argmin {d3 (m(¢),m(¢}))} -
m (¢} )edey
The next theorem establishes the properties of the incomplete market SDF set, and the proof is

provided in Appendix A.16.

Theorem 3.2. Let m(¢p;) be the identified SDF set given that ¢ € ®y, and let ¢ be the combined
SDF' set such that ¢, = {m(dy), oy € ®i}. Then, ¢; is a convex set.
Let (&;,d3) be the metric space such that & = {m(¢;),p; € ®;}, and ds is as defined in Equa-

tion 3.7. Then, ¢ is open, bounded and not compact under (€, ds).

3.2 Measure for market incompleteness

Based upon Theorems 3.1 and 3.2, given {qbl € (i,i}ie[o i the degree of market incompleteness at ¢ is

defined as in Equation 3.9, which is the mean of the least transport cost process from m(¢;) € ¢; to
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m(¢!) € de; over [0,t]'3:

MI (650 = B [ min_ds (m(0), m(4))| (39)

PLe0®;

Since ds is a valid metric and the complete market SDF is the boundary point of the incomplete
market SDF set, the degree of market incompleteness equals zero only when the market is dynamically
complete, i.e., the distance between complete and incomplete market SDF sets measured by ds reduces
to zero at every ¢ over the time period [0, ¢].

The following pointwise properties of MI(+) indicate that MT ({¢i}ie[0,t]) is continuous and not
monotone in ¢, which enable us to implement our theoretical results in empirical studies and examine

the evolution of market incompleteness over time. The proof is presented in Appendix A.17.

Theorem 3.3. The degree of market incompleteness M1 ({¢i}i€[07t]) 1s continuous on the time in-

terval [0,1] and is not monotone in t.

4 Application

This section illustrates the degree of market incompleteness estimation with four countries’ major
stock market index composites. We first present the layout of a simple but important special case of
our continuous-time setup, which will be used for the demonstration of our market incompleteness
measure. Then, we describe the data in Section 4.1 and the parameter estimations in Section 4.2.

Throughout this section, we consider a running example as follows.

Assumption 4.1. Let R; := In S;—In S;_ be a vector of A € N log-returns observed at t € [0,1]. Suppose
the degree of market incompleteness is evaluated at K equally-spaced time points {kh}p-1 . x with
the time window h = 1/K. To simplify the notation, we use the subscript k to denote the parameter
that characterizes the return in the time period [(k —1)h, kh].

When markets are incomplete, let { B} be a vector of A € N independent standard Brownian motions
under P and N be the Poisson process with mean measure vi(dx)t, where vi(dx) > 0 is taken to

be the Lévy measure associated with an A-dimensional pure-jump Lévy process. {By} and {INy} are

13Same as in the discrete setting, we assume that the complete and incomplete market SDFs are 1 at time 0, and
the distance between them is 0 following the metric ds.
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independent and adapted to the filtration {F;}. Ry solves the SDE™

2
Ry = (pf - of 2 - vp(dw) ) di + o dBy + Qud Ny,

RAXA

where uk e R4, o’k € , Qi follows a mormal distribution with mean ug ¢ R4 and standard

RAXA

deviation O'k , and dt is estimated by the observational interval. Moreover, both 0',]5 and ag

are diagonal matrices, and the price of the risk-free bond has a known constant rate of return ry.
When the markets are complete, let { By} be a vector of A € N independent standard Brownian motions
under P. R; solves the SDE

R, = (ukc - 01?2/2) dt + ol dB,,

where pf € R4, ol e RA*A

Assumption 4.1 ensures that the market prices of risk always lie in a nonrandom time-invariant
set over a given time period [(k — 1)h,kh]. Specifically, for t € [(k - 1)h,kh], k = 1,..., K, and
ap =1n [(1A - 'yk)’l] , Equation 3.5 becomes

(@dw) = {0 = (o) (1 =re1a) = (o) (Ji (14— ) vi(da)),

’ykZIA—eiak,akERA}.

Then, under incomplete markets, the SDF set in Equation 3.6 can be written as

m((bk) = {m((j)k) = exp (—TklAdt — ’l/)kdBt — %’lﬁ]gdt)

x exp (—adNy — (67 — 14 + o) vy (dz)dt) , (Yp, Vi) € F(¢k)}~
Under complete markets, the SDF set in Equation 3.8 can be written as
m () = {m(¢£) - exp (-rutadi B, - Syt - nda - of - 0}.
Hence, given {¢; € ‘1’1'}111 , the degree of market incompleteness at kh is

M ({6:15,) = 2 min ds (m (), m(¢7)).

14 Given that the value of interest is usually the log-return on asset, we transform Equation 3.1 using the stochastic
chain rule for Markov processes in continuous time, the detailed derivation can be found in Kushner (1967) and Gihman
and Skorohod (2012).
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where
d (sn(p0),mn(8)) = inf { [ d(m(0),m(@)) duwy s wi € W (P(60).P(#)}.

W (P(¢:), P(¢Y)) = {w; : [widP(pF) = P(¢;), [ widP(¢;) = P(¢$)} is the set of transport plans
between P(g) and P(¢C), and d (M(¢1), M(6C)) = |£() - £(¢7)| with

f(g;) =exp (—rilAdt - g(¢;)dB; - %g(([)i)th) X exp (—dNt - e_lfvi(dx)dt) ,

9(i) = (@) (i’ —rila) = (67) 7 (Ji(1a ~ e Hwi(da)),

and J; = exp(Q) - 1,Qi ~ N(uf . o/”);
£(67) = exp (-ritadt - g (6F) aB. - 5g* (7))

and

4.1 Data Description

Our empirical study analyzes the financial markets of China, Japan, the United Kingdom (UK), and
the United States (US) using publicly available data from Yahoo Finance. Due to the availability
of data, the Chinese and the US samples begin in 1994, the UK sample begins in 1995, whereas the
Japanese sample begins in 1999, and all samples end in 2021. We use the stock data from CSI 300
index for China, Nikkei 225 index for Japan, and FTSE 350 index for the UK and S&P 500 for the
Usts,

The stock data is collected on a daily basis, and to examine the evolution of market incomplete-
ness, we divided the full sample into yearly blocks, i.e., for the US market, there are 27 sub-samples,
then K =27 and h =1/27. The daily log return (hereinafter, the return) is calculated, and assuming
252 trading days per year, dt is estimated by A = 1/252. Further, stocks with less than one-month

of data are excluded from each subsample in order to eliminate outliers and ensure the reliability of

5The CSI 300 is a capitalization-weighted index that replicates the performance of the top 300 stocks traded on
the Shanghai Stock Exchange and the Shenzhen Stock Exchange. The Nikkei 225 index measures the performance
of 225 large, publicly owned companies in Japan that span a wide range of industry sectors. The FTSE 350 is a
capitalization-weighted index composed of the 350 largest companies listed on the London Stock Exchange. The S&P
500 index is a capitalization-weighted index that represents around 80% of the market capitalization of the New York
Stock Exchange.
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the estimates.

4.2 Estimation Algorithm

At each subperiod [(k — 1)h,kh], we first estimate the parameters ¢ under incomplete market
assumption using the maximum likelihood estimation (MLE) method, and the parameters ¢g under
the complete market assumption using the analytical closed-form expression. To the best of our
knowledge, there are not yet an analytic expression of the optimal parameter values for jump diffusion
models, and thus, we employ the MATLAB function fminsearchbnd, which is developed based upon
fminsearch to find the minimum value of the constrained multivariable function using derivative-
free method for our estimation. As a prerequisite to applying the fminsearchbnd method, we must
first establish an initial estimation of the parameters based on the empirical data. Consistent with
Merton (1976)’s definition, in this study, we say that there is a jump in the process when the absolute
value of return exceeds some threshold ¢ > 0, which is determined as the minimum absolute value
of the 5% and 95% quantiles of returns'®, and then, we divide the empirical return data into two
groups B and J, which include returns with absolute values less than or equal to € and those with
absolute values larger than e, respectively.

Here, the initial estimation of the intensity parameter, op(dz), is measured as the number of
jumps in period [(k - 1)h,kh], and for simplicity, we estimate the initial parameters ¢y assuming
that there is only one jump for a return process that belongs to group J. Then, as discussed in

Hanson and Westman (2002), the expectation and variance of the process for ¢ € [(k - 1)h, kh] are
E(R]) = E[RIN, =1] = (] - o /2~ wp ()l ) A+ ]
and
Var(R/) = Var[R;|N; = 1] = JEZA + O'k‘]2
Hence, ;lg and o“,{ are estimated from the above equations such that

i1y = ( ( -6l )A)(lA—f)k(dﬂﬁ)AY1

(&,;’) = Var (R{) 6P A,

6Other quantiles can be adopted to determine €, while as discussed in Tang (2018), in this case MLE is not strongly
depending on the value of e.
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where E(R{) and Var(R{) are the sample mean and variance of the empirical returns in group 7.
When there are no jumps, the expectation and variance of the return of the process for t

[(k-1)h,kh] are
E(RF) = E[R,|N; = 0] = (nf’ - 052/2) A
and
Var(RP) = Var[R;|N; = 0] = O'EQA.
The parameters ﬂf and &E can be estimated from the above formulas such that

if = (2E (RP) + Var (RP) A) (24)7!

(65)% = Var (RP) /A,

(4.1)

where E(RP) and Var(RP) are the sample mean and variance of the empirical returns in group B.
Let Ra; :=1nS;—1nS;_a denote the log-return observed at ¢ € [(k—1)h, kh], the initial estimates
are then used to numerically optimize the likelihood function, given that the probability density

function of returns at At is:

>, 2 2 2
PR (@5 01) = Y. - (vr(d2)A) o (2l (11 = o [2 = wi(do)p] ) A+ pilz, 0 A+ o] 27,
z=0

where p,(vi(dz)dt) = p(dNy = z) = exp(—vg(dz)dt)(vi(dz)dt)? /2! for z = 0,1,... and ¢, is the
normal density function (Hanson and Westman, 2002). In a multivariate economy defined in As-
sumption 4.1, returns are independent over time, so that the objective function of the MLE method
is

L(¢w) = T 0R,, (i; d1),
where © = (x1,...,25) is the empirical log-return data. To estimate the five parameters, we then

minimize the minus log-likelihood function:
I
~InL(pr) = - ). Inpr,, (xi; pr).
i=1
Ak
Next, we numerically estimate the degree of market incompleteness at kh given {¢i}i:1 and
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{qﬁlc}f:l as follows.

(i). For each asset a = 1,2,..., A, at time point ¢h for i = 1,...,k, generate 1000 replications of
dBy; ~ N(0,A), dN“- = dNy; - 07 (dr)A with dNy; ~ Poisson(9{(dz)A) and the observation
window A = 1/252 being the approximation for dt, and J. = = exp(Q2 i)~ 1 with Qa ~ N(ji; T AJ“ ).

(ii). For each n=1,2,...,1000 replication, calculate
Fu(01) = exp (~738 = gu (82) B, - 22 (60) A) x exp (=N, - 7100 (d) )

where
00 (60) = (620) " (P —31) — (629) " (Ju(1 — e V)i (da))

under incomplete markets, and

i (85) = exp (=~ g (67) az, - S92 (67) &)
where g, (gbca) = (&ic,a)‘l ([Lf’a —7%-) with ﬂic,a and c“ric’“ estimated following Equation 4.1 under
complete markets.
(iii). Using the 1000 observations of f, (qgf) and fj, (qgloa), we find the empirical cumulative distri-
butions F (x; gﬁf) and F (x; ggzca) for the probability measures P(g?)f) and P(nglca) respectively.

(iv). Derive the distance metric for each stock a at time ¢ (Frohmader and Volkmer, 2021)

dx.

5 (m (92),m (67)) = [ [P (w368) - F (:60)

(v). Compute the degree of market incompleteness at kh for k=1,..., K,

L5 i (m (1) o (60)).

=1 a:l

ANk 1
mr({e) =5
4.3 Estimation Results

Figure 1 displays the evolution of the degree of market incompleteness for the four stock markets.
The market often sees an increase in M when there is a rising level of panic. Namely, all three
developed markets experienced peaks in M I during the period 2007-2009 due to the global financial
crisis, in which asset prices experienced unexpected jumps due the presence of significant unhedgeable

risks in the market. In a similar manner, the value of M I spiked both during the mini-crash in the
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UK stock market in 1997 (Hua et al., 2020) as well as during the collapse of the Chinese stock
market in 2015 (Han et al., 2019). Government regulation policies toward the stock market can also
influence its completeness. In 1995, the sharp decline in M I on the Chinese market was attributed
to a policy change, which adjusted settlement dates to the next business day (7" + 1) instead of the
same day (T'+0)7 (Xu, 2000). In the Japanese market, MT rose in 2000 due to deregulation policies,
such as decontrolling brokerage commissions and reducing securities transaction taxes (Takaishi,
2022). We also observe that the Chinese stock market has a significantly higher degree of market
incompleteness, implying that the market is susceptible to more risks that cannot be diversified
away by the spanning of traded assets, which accords with the literature that emerging markets are

inherently riskier (Sharkasi et al., 2006; Saranya and Prasanna, 2014).

China Japan
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Figure 1: Evolution of the degree of market incompleteness

T 4+ 1 came into effect on January 1, 1995, replacing T + 0.
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5 Conclusion

This paper studies an econometric framework useful for estimating the set of SDFs in the absence of
complete markets. The investigation of set properties reveals that the complete market SDF is the
unique boundary point of the incomplete market SDF set, which only degenerates to its complete
counterpart when the likelihood of unanticipated risks vanish. This feature allows us to introduce a
novel measure for market incompleteness, which is the distance between the probability distributions
of the complete and incomplete market SDFs. We use the Wasserstein metric to construct our
measure since it naturally deals with distributions with different supports.

A possible implementation of this measure is presented in which we examine the evolution of
market incompleteness in the four largest stock markets worldwide, including both emerging and
developed markets. The results are consistent with our construction of incomplete markets, whereby
the increase (decrease) in market incompleteness correlates to financial crises or policy changes that
raise (lower) the likelihood of unhedgeable risks.

To maintain a sharp focus on our results, we have considered in detail a specific but practically
realistic type of incomplete market resulting from stochastic jumps in the continuous-time setting,
and applied the results in the empirical study. Nevertheless, as shown in the discrete-time setting,
our framework applies more broadly, and the extension to asset prices generated by other stochastic
processes is another interesting possibility worth exploring in future work. Methods of estimation
and inference for more general asset-price generating processes will then refine the measurement for
market incompleteness as well as the assessment of misspecification caused by imposing complete

market assumptions in financial market equilibrium, portfolio strategy, and risk pricing studies.
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Appendix: Proofs of Propositions and Theorems

Before proceeding to the proofs, we first recall the following definitions regarding limit and boundary

points, set’s convexity, openness, boundedness, and compactness properties.

Definition 5.1 (Limit Point). Let (S,d) be the metric space and C€ S . x €S is a limit point of
C if Ve >0, there is a point y € C\{x} with d(x,y) <e

Definition 5.2 (Boundary point). Let (S,d) be the metric space, if C is a subset of S, a point
z €S8 is a boundary point of C if every neighbourhood of x contains at least one point in C and at

least one point not in C.

Definition 5.3 (Convex set). Let S be an affine space over some ordered field. A subset C of S is
convezx if, for all x and y in C, the line segment connecting x and y is included in C. This means

that the affine combination

pr+(1-pyeC,
for all z,y € C, and p in the interval [0,1].

Definition 5.4 (Open set). A subset C of a metric space (S,d) is open if every element, z, in C
has a neighbourhood centred at x with radius € lying in the set (i.e., B(x,e) cC).

Definition 5.5 (Bounded set). A set C in a metric space (S,d) is bounded if it has a finite

generalized diameter. In other words, there is an R < oo such that d(x,y) < R for all z,y €C.

Definition 5.6 (Compact set). For any subset C in a metric space (S,d), an open cover is a
collection of sets {G,} which are open in (S,d), such that C c U,{Grn}. C is compact if and only

if every open cover of C has a finite subcover.

A.1 Proof of Proposition 2.1

Proof. Let x = [iCl,iL‘Q,ZL'B]T be any point in L(IT) and € > 0, we prove that there is y = [yl,yQ,yB’]T €
IT\{x} such that d(z,y) < e. Let y' = 2!, y? = 226, and 3> = 23+ 6, where § < min {mQ, 1-a3, e/\/§}
Then, ¥3_,4° =1 and y° > 0 for 5 = 1,2,3 imply that y € IT\{z}. Since d(x,y) = V262 < Ve = ¢,
x € L(II).

Since OII c L(II), every x € OII is an element in L(II). Therefore, for € > 0, there is at least
one point in B(x,e) that is also an element of II. Now, consider y = [yl,y2,y3]T € B(x,¢€) in that
yl =2l +6, y? =22 -4, and y3 = 23 = 0, where 6 < min{l —xl,xQ,e/\/ﬁ}. Then, Z§=1 v =1,y 4%>0
and y3 = 0 imply that y ¢ II. Hence, x € OTI. O
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A.2 Proof of Theorem 2.1

To prove that d; is a valid metric, we first show that, do in Equation 2.5 is a valid metric satisfying

the following conditions.

1. do(M?= M?>v) =0 if and only if M** = M*v.

Proof. (=) If do(M?®=,M*¥) = 0, we must have |[v% — v*¥| + [u®* —u®¥| =0 for so = 1,2,...,5%
and sy =1,2,...,5y. Since M** and M*®¥ are non-zero, we must have v* = v*v and u*® = u’v,

and thus, M%= = My,

(<) If M= = M*v, we have v** = v*¥ and v** = u*¥, and thus, dy(M?*=, M*v) = 0. O
2. do(M?®* M®v) = do(M®¥, M**).

Proof.

do(M?®=, M) = |v°® —0°¥| + |u’® — u®Y|
S

= % — 0% | + [u®Y — u®|

= do(M®v, M>*®).

O
3. do(M?®= M?5%) < do(M?*=, M%) + do(M?®¥, M**).
Proof.
dQ(MSI,MSy) +d2(Msy,Msz)
= |Usw _ Usy| + |U5y _ USZ| + |u$$ — usy| + |usy - U5z|
> [0°® — 0% + 0% —0%F| + U - Y+ uY -
= [ — 02| + |u®® — u®*|
= dy(M°®, M)
Hence, ds is a valid metric. O
Then, let
S:c S’.’J
w” =arginfi Y Y w0 da (M=, M) i w e W(x,y)
w sp=1s5y=1
where W (2, y) = {w e R : w1, = =y is the set of t t plans bet d
,Y) = 1w eRY rw'lg, =z, wx =y, is the set of transport plans between = and y

and Mg, My, M, € C, we prove that d; is a valid metric that satisfies the following conditions.
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1. dy (Mg, My) = 0 if and only if M, = M,.

Proof. (=) If di(Mg, M) =0, then we have

S.
S5 w0 M) =0
wsyswa7 2( ; )— ,

sp=1sy=1

implying that wy , z**da(M**, M*v) = 0 for all pairs of (sg,sy). Since w; , >0 and d is a

S

S

. =0or dy(M?=, M) = 0. Since Zi’/’:l wy . =1, we can have

valid metric, we either have wg SySa

! . . .
one and only one s; < Sy such that M*® = M®v, in which case, we have w, . =1, and since
Y
S. * Sx _ ,,8 ’ fot s : Sz _ ,,S \
Yomg Wy 6, T =YY, the s, must be distinct for different s. Hence, 2°® = y*¥ for the sz such

that M®® = M*®v, which entails that My = M,, .

(<) If Mg = My, we can have do(M**,M*) = 0 and wy , = 1 for every sy = sy. Since

Sx
fol wy s, =1and wy o >0, w; ;. =0 forall s #sy. Hence, di(Mg, My) = 0. O
2. di(Mg, My) = di(My, M).
Proof.
S:z: S’y
di(Mg, My) = D, D) wi , a™da(M™, M™)
sx=1sy=1
Sz Sy w?! ysy
=3 3wl a2 dy (M=, M)
sx=1sy=1 wsysm v
= 2 2 Whye U —dy (MY, M)
sx=1sy=1 wsysmy v
Sm Sy
-3 S g ar, 4
sx=1sy=1
= dl(Mya Mm)7
where w* € W(x,y) and w*' € W(y,x). O

3. dl(MmaMz) < dl(Mma My) + dl(MyaJMZ)-
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Proof.

Se Sz
1/ s s S
di(Mg, M) = > > wi 2°*dy(M*®, M**)
Sx=1sz=1
Sz Sy S» *I Sy
* s */ s Sz S s s
= 20 2 2wl v Wl y o do (M=, M**)
ySx zSy w* xsmw*l ySy
sx=1sy=1sz= SySax Sz8y
Se Sy S, w*" 5=
* Sz SxSz S Sy
<53 S w, et gy e, )
sx=1sy=1sz=1 SySax
S S. S * s
2 4 = */ syzusmsz *

DD D Wiy

sx=1sy=1sz=1

Sm Sy

= Z Z w;ysmxsmdQ(Msm7Msy)+ Z Z wszsy

sz=15y=1

z
Sy Sz
e dy (MY, M)
525y

Sy Sz
*/

ySde(MSy , MSZ)

sy=lsz=1

= dl(M:wMy) + dl(MyaMz)a

where w* e W(x,y), w*' ¢ W(y, z) and w*" e W(x, 2).

Hence, (C_' , d1) is a valid metric space.

Now, we are ready to prove for Theorem 2.1.

2
y LT, T

Proof. Let Mg be any point in L(C), and thus, @ = [xl 3]T € L(IT), and € > 0, we prove that
there is My € C\ Mg such that di (Mg, My) < €, where y = [yl,yQ,y3]T e IM\{x}. Let y! = 2! - ¢,
y? = 22, and 3 = 23 + 4. Since di(Mg,My) =0 if and only if My = My and di (Mg, My) > 0, thus,

we can choose § satisfying the following conditions:
di(Mg,My) < € and ¢ < min {3:1, 1- x3} ,

so that we have Y3, %° = 1 and y* > 0 for s = 1,2,3, implying that y € IT\{z}. Therefore, M,y €

s
B(Mg, €) such that My € C\ M, and thus, My € L(C).

Since 9C c L(C), every My € OC is an element in L(C'). Therefore, for ¢ > 0, there is at
least one point in B(Mg,€) that is also an element of C. Now, consider M, € B(Mg,€) in that
yt =2t +0, y? = 22 -6, and 3® = 2% = 0, where § < min {1 -zt x2} and satisfies the following condition

di (Mg, My) <e. Then, y* >0 for s =1,2, and y* = 0, implying that y ¢ IT, and thus, M, ¢ C. Hence,
M, € OC. O
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A.3 Proof of Lemma 2.1.1

Proof. Suppose that (M} M2) - (M*', M?) € OC with 7} + 72 = 1 and 1/7},1/72 > 0. If it were

1
n

Then, limy,co )2 + 72 = 7 + 7% = 1 so that (M}, M?) € 9C, and dC is closed. Since OC is a non-

1/7! =0, then 7r711 — o0, but 7r,11 <7 +7r721 =1, so that’s impossible. Similarly, we cannot have l/w,% =0.

empty subspace of C, taking M, € C, there exists a closed ball B = B(Mg,¢) such that BNOC is
a non-empty compact set. So the function My = di(Mz, My ) defined on BNIC must achieve a
minimum. That is, there is some My = JM; e BNOC, which minimizes di(Mg, My ). Further, for
My € OC\ B, we have di (Mg, My) > € > di (Mg, M), so it minimizes the distance on the whole of
0C'. Moreover, since My ¢ C, di (Mg, M;) > 0. Hence, for every M, € C, there exists M,, such that

M,, = argmin{d; (Mg, My)}.
My edC

A.4 Proof of Theorem 2.2

Proof. Let pe[0,1] and Mg, My € C. The affine combination of Mg, M, is

pMg+(1=p) My ={M : pEg[rM]+ (1= p)Ey[rM]=ply+(1-p)l2}

— {MpEz['rM]+(1—p)Ey[’l"M] :12} eC.

Hence, C' is conver.

Let M, € C with @ = [z, 22, 2%]" € II. There is 7 > 0 such that
= min {d;(M,, M
n MTQQC{ 1(Mg, My) },
where y € OII. Then, since C = C’\@C’, by choosing € < 7, we have B(Mg,€) c C. Hence, C is open

in (é,dl)

Next, we prove that C' is bounded in ((_3' ,dl) . First, let K, and K, denote the coefficient vectors
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of v(x) and u(x), respectively, for & € IT. Given that w € W(x,y), we have

Sm Sy
D= Z Z wsysmxswd2(MsmaMsy)

Sg=1sy=1
Sm S’.‘J

= D0 D Weyso T (K57 [2°% = Ky [y™Y] + |kep [2™ — il [y™¥])
Sp=1sy=1
Sa S’.‘J s s

= Z Z (|w5ysm K’f)m T Wsyse Hvy:l:sw/ysy| + |w5y5m’l<"fl,m T Wsysq I{uy$sw/ysy|) :
sz=1s5y=1

Since ZSS::I Ws, s, T°% =YY, for every sz =1,2,...,5z,8y =1,2,..., 5y, Ws,s,°" € [0,y°¥], and thus,

wsyswmf,”a:“”z/ysy € [0, k¢ ]. Therefore, D is bounded, implying that there is 0 < R < oo such that
di (Mg, My) < R for all Mg, My, € C. Hence, C is bounded.

Lastly, to show that C' is not compact, we just need one example of an open cover that has no
finite open subcovers. Let {G,,} = {Mg |7 € IL,,n € N}, where

- —
n n

_ 1.2 4 2 s ! 3 . 2 s 1 n-1
{IL,} =[x, 7% 1-Y 7| eR}, : > 7°¢ ,neNt.
i1 i=1

Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty element. Here,
for any b= Y2, 7 € (0,1), the Archimedean Property provides an n € N such that n > max {%, ﬁ}

Then,

nb>1land n-nb>1

=1l<nb<n-1

Thus, every element of IT is in {IL,,} for some n € N, and therefore, every element of C is in {G,,} for
some n € N, suggesting that C' c U;2,{Gy}. Moreover, since for any n € N, Gy, has a neighbourhood
centred at G,, with radius € > 0 lying in the set, {G,,} is an open cover of C. Let k,[ € N such that
k>1>2, we have

1 1 1 1
E<7<1_?<1_E:>{Hl}c{ﬂk}:>{Gl}c{Gk}

Therefore, for any finite m e N, U 1{G,,} = {Gy,} = {My | € IL,,,m € N} . However, for any m €N,
there exists IL,,41 ¢ {IL,,}, while II,,,; € II. Thus, there exists {Mg|m € IL,,41} ¢ {Gy,}, while

{Mpg |w eIl,41} € C. Therefore, {G,} is an open cover of C that does not have a finite subcover.
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Hence, C is not compact. O

A.5 Proof of Proposition 2.2

Proof. Let « = [a:l,m2,...,xA+2]T be any point in L(IT) and € > 0, we prove that there is y =
[yl,yQ,...,yA+2]T e I\{x} such that d(x,y) < e. Let y* = 2° for s = 1,2,..., A, y2*! = z4*1 _ ¢,
and y4*? = 242 + §, where § < min {:EA+1,1 —:CA+2,6/\/§}. Then, Z;ff y®*=1and y° >0 for s =
1,2,...,A+2 imply that y € II\{z}. Since d(x,y) = V202 < V€2 = ¢, x € L(II).

Since OIT c L(II), every @ € OII is an element in L(IT). Therefore, for € > 0, there is at least one
point in B(x,€) that is also an element of II. Now, consider y = [yl,yQ, - ,yA+2]T € B(x,¢€) in that
yl=a' +6, y> =22 -6, and y° = 2° for s = 3,4,..., A+ 2, where § < min{l—xl,x2,e/\/§}. Then,
At20s =1,y >0for s=1,2,...,A+1 and y4*2 = 0 imply that y ¢ IT. Hence, @ € 9IL O

s=1

A.6 Proof of Theorem 2.3

Proof. First of all, as proved in Appendix A.2, d; is a valid metric. Let M, be any point in L(C'),
and thus, x = [9:1,332, ... ,xAJfQ]T € L(IT). Let € > 0, we prove that there is M, € C\ M, (equivalently,
y = [yl,gﬂ,...,yA*?]T e II\{x}) such that di(Mg, M) < e. Let y* = 2° for s = 1,2,..., A, y2*! =

AT =5, and yA*2 = 2442 + 6. By choosing 0 satisfying the following conditions:
di(Mg, My) <€ and § < min {xA+1, 1- xA+2} ,

we have Zf:{Q y*=1and y* >0 for s =1,2,..., A+ 2 imply that y € II\{x}. Therefore, we can find
My € B(Mg, €) such that My € C, and thus, My € L(C).

Since 0C c L(C), every My € OC is an element in L(C'). Therefore, for € > 0, there is at least
one point in B(Mg, €) that is also an element of C. Now, consider My, € B(My, €) in that y' = 2! +§
y? = 2% -0, and y° = 2° for s = 3,4,..., A+2, where 0 < min{l - acl,xQ} and satisfies di (Mg, My) <.
Then, y* >0 for s = 1,2,..., A+ 1, and y**? = 0, implying that y ¢ II, and thus, M, ¢ C. Hence,
M, € OC. O

A.7 Proof of Lemma 2.2.1

Proof. Suppose that (M} M2, ... M2 » (MY, M? ..., M4*) e C with Zfzﬁl 7y =1and 1/7) >
0for s=1,2,...,A+1. If it were 1/7! =0, then 7} — oo, but 7}, < 224;11 m, =1, so that’s impossible.

Similarly, we cannot have 1/75 = 0 for any s = 2,3,..., A+ 1. Then, lim, o Y45 78 = S 75 = 1
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so that (M, M2, ..., MA*") € 9C, and OC is closed. Since OC is a non-empty subspace of C,
taking M, € C, there exists a closed ball B = B(Mg, €) such that BNOC' is a non-empty compact
set. So the function My ~ di(Mg, My) defined on BNOC must achieve a minimum. That is,
there is some My = My € BNJC, which minimizes di (Mg, My). Further, for M, € 0C\ B, we have
di1(Mg, My) > € > di(Mg, My), so it minimizes the distance on the whole of JC. Moreover, since

M;, ¢ C, di(Mg, M) > 0. 0

A.8 Proof of Theorem 2.4

Proof. Let p€[0,1] and Mg, M, € C. The affine combination of Mg, M, is

pMy +(1-p) My, = {M : pEa[rM]+ (1 - p) Ey[rM] = plat + (1 - p)Liss}

={M:pEz[rM]+(1-p)Ey[rM]=14,1}€C.

Hence, C' is conver.

Let M, € C with @ € IL. There is 17 > 0 such that
= min {d;(Mg, M
U MTégc{ 1(Mz, My)},

where y € OII. Then, since C = C\OC, by choosing € < 1, we have B(Mg,¢) c C. Hence, C is open
in (C’, dl) .
Next, we prove that C' is bounded in ((_7 ,dl) . First, let k, and K, denote the coefficient vectors

of v(x) and u(x), respectively, for & € II. Given that w € W(x,y), we have

S(v Sy
D: Z Z wSySmmSwdz(MSw’MSy)

Sp=1sy=1
Saz Sy

= D0 D Weys (KT /2% = Ky [y ] + Ry [2° — kel YY)
sp=1sy=1
= Sy v S S S S S S s

= Z Z (|w3y5m’{i _wSySm“vyx ®[y™] + |w5'y5mK”Ll,w _wsysm’iuyx =y y|)
sp=1sy=1

Since Zf;zl Wi, s, °° = Y, for every sz =1,2,..., 82,5y = 1,2,..., 8y, ws, s, v°® € [0,y°], and thus,

wsysznf,yx‘gm/ysy € [0, ks?]. Therefore, D is bounded, implying that there is 0 < R < oo such that
di (Mg, My) < R for all Mg, My € C. Hence, C is bounded.

Last, to show that C' is not compact, we just need one example of an open cover that has no
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finite open subcovers. Let {G,,} = {Mg |7 € IL,,n € N}, where

A+1 T A+1 1 n-1
{I1,,} = |:7T1,7T2,...,7TA+1,1 — Z 7 e (R fIQ: Z e (—7 —) neNp.
s=1 s=1 n n

Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty element. Here,
for any b= Y24 7% € (0,1), the Archimedean Property provides an n € N such that n > max {%, l%b}

Then,

nb>1landn-nb>1

=1l<nb<n-1

Thus, every element of IT is in {II,,} for some n € N, and therefore, every element of C is in {G,,} for
some n € N, suggesting that C c U;~;{G,}. Moreover, since for any n € N, Gy, has a neighbourhood
centred at G,, with radius € > 0 lying in the set, {G,} is an open cover of C. Let k,[ € N such that
k>1>2, we have

1 1 1

E<7<1—7<1—%:{HZ}C{Hk}z{Gl}C{Gk}.

Therefore, for any finite m e N, U1 {G,,} = {Gp,} = {Mx |7 € IL,,,m e N} . However, for any m e N,
there exists IL,,+1 ¢ {IL,,}, while II,,,1 € II. Thus, there exists {Mg|m € IL,+1} ¢ {G,}, while
{Mpg|w eIl,,1} € C. Therefore, {G,,} is an open cover of C that does not have a finite subcover.

Hence, C' is not compact. O

A.9 Proof of Proposition 2.4

Proof. We first prove by induction that, for all n € Z, and S = A+1+n, thereis x; = [x,}, z?, ... ,xf]T €

L(IL;) and y; = [y, v7, - .,yf]T € IT,\{x;} such that d(x;,y;) < € for € > 0.
Base case: Whenn=1, S=A4+2, let ¢y = [x%,x%, .. ,xf*Q]T be any point in L(II;). Let € >0 and
Yy = [ytl,yg, e, yf]T e I\ {x;} such that y§ = 25 for s = 1,2,..., A, y{*! = 216, and y*? = 1246
and ¢ < min {xf”, 1- xf”,e/ﬂ}. Then, Z,’;SQ y; =land y; >0 fora=1,2,...,A+2, implying that
yy € IL\{x}. Since d(zy, ;) = V262 < Ve = €, ¢, € L(IL,).

Induction step: Let k € Z, be given and suppose our statement is true for n = k. Then, if

A+k+2 _
i =

n > 0, holding all other elements in x;(n = k) and yi(n = k) fixed, for any i < A+ k + 2 with
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zi(n=k)>n'8 given 2i(n=k+1)=2i(n=k)-n, there is y!(n =k +1) = yi(n = k) — 7 such that

(zi(n=k+1)-yin=k+1))" = (zi(n=k) —y-yi(n=k) +~)’

= (zi(n=k) - yi(n=k))*

and ($f+k+2(n =k+1) -y (n=k+ 1))2 = 0. Therefore, d(xi(n=k+1),y:(n=k+1)) =d(xs(n =
k), y:(n=k)) <e If zf***2 =0, for any zi(n = k) > yi(n = k), holding all other elements in y;(n = k)
fixed, let y/ "2 (n=k+1)=y<zi(n=k) —yi(n=k) and yi(n=k +1) = yi(n = k) -, then

(xft(n =k+1)- yé(n =k+ 1))2 + (xf+k+2(n =k+1)- yt‘4+k+2(n =k+ 1))2
= (2i(n=k) - yi(n=k) +7)" +7°
(zi(n=k) -yi(n=k))" -2y (zi(n =k) - yi(n =k)) +29?
(

<(ai(n=k)-gi(n=h))".

Therefore, d(xi(n=k+1),ys(n=k+1)) <d(zi(n=k),ys(n=k)) <e.
Conclusion: By the principal of induction, for all n € Z, and S = A+ 1+ n, there is x; =
[21,27,... ,xf]T e L(IL;) and y; = [y}, o7, ... ,yf]T € IL\{x;} such that d(x:,y;) < € for e > 0.

Since OII; ¢ L(I1;), every x; € OI; is an element in L(II;). Therefore, for € > 0, there is at least
one point in B(xy,€) that is also an element of IT;. Now, consider y; = [ytl,yg, e ,yf]T € B(xy,€) in
that y} =z + 6, y? = 22 -6, and y; = x5 for s = 3,4,..., S, where § < min{l —:ztl,a:%,ﬁ/\/i}. Then,
Zilyf =1, y/>0fors=1,2,...,A+1,and y; =0 for s = A+2,A+3,...,5 imply that y; ¢ IT;.
Hence, x; € OI1;. O

A.10 Proof of Theorem 2.7

First notice that, similar to the proof in the 1-1-2-3 case, d; is a valid metric. Then, we prove by
induction that, for all n € Z, and S = A+ 1+ n, let mg be any point in L(¢;) and € > 0, we want to
prove that there is my, € ¢;\ my, such that di(mg,, my,) <e, where y; € I\ {z,}.

Base case: Since mg € L(c;), @; € L(IL;). Let 3 = af for s = 1,2,..., A, y{*! = /"1 =6, and

Y2 = xf” + 0. By choosing ¢ satisfying the following conditions:

di(mg,,my, ) <€ and 6 < min {:1:;4“, 1- JrfJ'z},

¥ We use zi(n = k) to denote the i*" element in x; for n = k.
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so that we have Y442 y? =1 and yf >0 for s =1,2,..., A+ 2 imply that y; € IT;\{z;}. Therefore, we

can find my, € B(mg,,€) such that my, € ¢;, and thus, mg, € L(cy).

Induction step: Let k € Z, be given and suppose our statement is true for n = k. Then, for every
xi(n = k+1) such that /"2 = > 0and zi(n=k+1) =zi(n=k)-\nfori=1,2,..., A+k+1, where
YA N = 1and A; > 0. By setting y/***2 = pand yi(n = k+1) = yi(n = k)-X\in>04i=1,2,..., A+k+1,
we have di(My, (n-t+1)s My, (n=k+1)) = d1(Mg, (n=k), My, (n=k)) < € I z{*k+2 = 0, by choosing 1 and
Ai20i=1,2,..., A+k+1such that y***2 = >0, yi(n = k+1) =yi(n=k)-\n >0, and LA\ =1,
and satisfies the condition that di(mg,(n-k+1), My, (n=k+1)) < € s0 that we have YA+2 05 — 1 and
y; >0 for s=1,2,..., A+ k+2 imply that y; € IT;\{=;}. Therefore, we can find my, € B(mg,,€) such
that my, € ¢, and thus, mg, € L(ct).

Since d¢; ¢ L(ct), every my, € dc; is an element in L(c¢;). Therefore, for € > 0, there is at least
one point in B(my,, €) that is also an element of ¢;. Now, consider my, € B(ing,,€) in that y; = 2} +9
y? =22 -6, and yi = a5 for s =3,4,..., A+2, where § < min{l - :L‘%,SC%} and satisfies di (mg,my) <e.
Then, y; >0 for s =1,2,...,A+1,and y; =0 for s= A+2,A+3,...,S5, implying that y; ¢ II;, and

thus, my, ¢ ¢;. Hence, mg, € Oc;.

A.11 Proof of Lemma 2.4.1

Proof. Suppose that (m{,,m7,,....miwt) — (m{,m?, ..., m{**") e Oc; with YA T, = 1 and

1/, >0 for s=1,2,..., A+ 1. If it were 1/m} =0, then 7}, - oo, but m},, < YAl T, = 1, so that’s

A+1

impossible. Similarly, we cannot have 1 /ﬂfn =0 forany s =2,3,..., A+ 1. Then, lim;,c Y5t

Wts,n =
YAl s = 1 s0 that (m%n, min, . ,mf;{ 1Y € O¢y, and Oc; is closed. Since de; is a non-empty subspace
of ¢, taking mg, € ¢, there exists a closed ball B = B(mg,, €) such that BN de¢; is a non-empty com-
pact set. So the function my, = di(mg,, my,) defined on BN de; must achieve a minimum. That is,
there is some my, =my € BN dct, which minimizes di (mg,, my, ). Further, for my, € de;\ B, we have

di (Mg, , My, ) > € 2 di(mg,, my, ), so it minimizes the distance on the whole of de;. Moreover, since

my, ¢ ¢, di(mg,, my, ) > 0. O

A.12 Proof of Theorem 2.8

Proof. Let pe[0,1] and mg,, my, € ¢;. The affine combination of my,, my, is

pmg, +(1 - p) My, = {my: pEg, [rymy] + (1-p) Ey, [rimy] = pla+(1-p)lasa}

={my: pEg,[rim] + (1 - p) Ey,[remy] = 1441} € 1.

45



Hence, c¢; is convez.
Then let my, € ¢; with a; € IT;. There is 7 > 0 such that

7= min {dl(malt?myt)} ’
]I’IlytECt

where y; € OI1;. Then, since ¢; = ¢;\Ocy, by choosing € < 7, we have B(mng,,€) c ¢;. Hence, ¢; is open
in (étu dl)
Next, we prove that ¢; is bounded in (&, d;) . First, let k,, and K., denote the coefficient vectors

of vs(x;) and u(x;), respectively, for x; € IT;. Given that w; € W (xs,y;), we have

S, S
D= ~ S Smtd Sxy Sy
- Z Z wsytsmt-ivt z(mt 7mt )
Spy =18y, =1
Sz S
_ . S xy t [.5Tt Syt Yi t |5t vt 1,5yt
= Z Z Wsy, sz, Tt (|H/'Ut [25 = K, /yt |+|K'th /53 _"‘fut [y:**])
Sz =18y, =1
Sz, Sy
_ < < Sxy Syt Sot |, Sy Sy Yt Swt Sy
- Z Z (|w3yt5mtli”i T Wsy, sy Foy Ty /yt |+|wsyt5mt’%ut _wsytswt’{ut /y |)
Sxy =18y, =1
S = =1,2,...,8 =1,2,...,8 ot e [0,y
1ncez _1wsyt3mta;t y, ", for every sz, =1,2,...,8,,8y, = 1,2,...,Sy,, W, 5., 7" €[0,y,"].

Thus, ws,, s,, Kol 2yt [y € [0, ket ] and Wiy, sq, Rt 27 [yr ¥ € [0, kel ]. Therefore, D is bounded,
implying that there is 0 < R < oo such that di (mg,, my,) < R for all mg,,my, € ¢;. Hence, ¢ is
bounded.

Last, to show that ¢; is not compact, we just need one example of an open cover that has no

finite open subcovers. Let {G},,} = {mg,, 7 € II; ,,n € N}, where

S-1
1 1
{th} {I:ﬂ't,ﬂ'?,...,ﬂ'f_l,].— Zﬂ-t e(IR)++' Zﬂ-t (_an_)7nEN}-
s=1 n

Notice that, if this gives us an invalid segment such as (1,0), we treat it as an empty element. Here,
for any b = Z = m; €(0,1), the Archimedean Property provides an n € N such that n > max { T T b

Then,

nb>1land n-nb>1

=1l<nb<n-1
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Thus, every element of II; is in {IL;,} for some n € N, and therefore, every element of ¢; is in
{G:,} for some n € N, suggesting that ¢; c U521 {G+,}. Moreover, since for any n € N, Gy, has a
neighbourhood centred at Gy, with radius € > 0 lying in the set, {G;,} is an open cover of ¢;. Let

k,l € N such that k > > 2, we have

1 1 1 1
£<7°¢ 1- 1< 1- = Iy} e {IL g} = {Gri} c {Gy )

Therefore, for any finite m € N, Ul ({G¢n} = {Gim} = {my,, 7 € IL; 1, m € N} . However, for any
m € N, there exists II; 1 ¢ {Il;,,}, while IL; 41 € IL. Thus, there exists {my,, 7 € It i1} ¢
{G¢m}, while {my,, 7 € II; 111} € ¢;. Therefore, {Gy,} is an open cover of ¢; that does not have a

finite subcover. Hence, ¢; is not compact. O

A.13 Proof of Proposition 3.1

Proof. Let ¢y = (uf,atB,utJ,a’g],vt(dx)) be any point in L(®;). Let € > 0, we want to prove that
i ol v/ (dx)) € ®\{di} such that d(¢y, @) < € Let pf = pf,of =

7

there is ¢; = (utjg’",o’g3
ol u! = pl 6/ =0/, and v'(dz) = v,(dx) + 6, whence Equation 3.2 and 3.3 hold. Then, we have
v'(dx) > 04, implying that ¢} € ®:\{:} and d(¢¢, P}) < €. Hence, ¢ € L(P;).

Since 0®; ¢ L(®;), every ¢y € ¢y is an element in L(®P;). Therefore, for € > 0, there is at
least one point in B(®y,€) that is also an element of ¢;. Now, consider ¢ = (uZ', of  u!’ o/,
v'(dx)) € B(®y,€) in that d(uP, ul) <€, of = oB.u! = pl,0) = o/, v'(dz) = v,(dz), and

Equation 3.3 holds. Then, v;(dx) = 0, implying that ¢, ¢ ®;. Hence, ¢y € 0P;. O]

A.14 Proof of Theorem 3.1

Proof. Let ¢(¢;) be any point in L(C}), and thus, ¢; = (utBjo'tB,u;],a;],vt(daz)) € L(®;). Let € >0,

we want to prove that there is m(¢}) € ¢;\m(¢:) such that ds(m(¢:), m(¢;)) < €, where ¢

(uf' ol ul' of vi(dr)) e ®\{¢p:}. Let pf = pf of = of p! = pi 0/ = of, and vj(dx)
vi(dx) + 8. By choosing d satisfying ds(m(¢;), m(¢;)) < €, and Equation 3.2 and 3.3 hold, we
have v;(dz) > 04 implying that ¢} € ®;\{¢;}. Therefore, m(¢}) € B(m(¢;),€) such that m(¢y;) €
ct\m(¢;), and thus, m(¢;) € L(cy).

Since de; ¢ L(¢t), every m(¢y) € Oc; is an element in L(¢;). Therefore, for € > 0, there is at
least one point in B(m(¢;),e€) that is also an element of ¢;. Now, consider m(¢;) € B(m(¢;),€)

in that |uP - pP'| <8, oF =P, pl = n!,0/ = o/, vi(dx) = v,(dz), and & is chosen to satisfy
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ds(m(¢y), m(@})) < € and Equation 3.3 holds. Then, v'(dz) = 0, implying that ¢; ¢ ®;, and thus,
my(p;) ¢ ¢;. Hence, m(¢pt) € dey. O

A.15 Proof of Lemma 3.1.1

Since Je; is a non-empty closed subspace of ¢, taking m(¢;) € ¢, there exists a closed ball B =
B(m(¢;), €) such that BN de; is a non-empty compact set. So the function m(¢;) — ds(m(¢p:), m(ep}))
defined on BN dc; must achieve a minimum. That is, there is some m(¢;) = m(¢;) € BN ey,
which minimizes ds(m(¢;), m(¢;)). Further, for m(¢;) € e\ B, we have ds(m(¢p;), m(¢;)) > € >

d3(m(¢:), m(¢;)), so it minimizes the distance on the whole of dc;. Moreover, since m(¢;) ¢

ct, dz(m(¢r), m(¢7)) > 0.

A.16 Proof of Theorem 3.2

Proof. Let p € [0,1] and m(¢), m(¢;) € c:. Recall that the set m(¢;) contains all the SDF that prices
the payoff over a small time interval dt, and satisfies the asset pricing formula E[Rym(¢:)] = 14,
where R; is the gross return vector from ¢ — dt to t. Then, the affine combination of m(¢;), m(¢;)

can be expressed in the form

pm () + (1-p)m(e;) = {m(ef) : pE[Rym ()] + (1 - p) E[Rim(¢p;)] = pla+(1-p)Lla}
= {m(¢)): pE[Rim(¢)] + (1 - p) E[Rim(¢))] = 14} € e

Hence, ¢; is convex.

Let m(¢p¢) € ¢; with ¢ = (uf,a?,uf,aﬂ,vt(daj)) € ®;. There is 1 > 0 such that

7= min {d3 (m(ﬁbt),m(‘ﬁ:&))}’

m(¢p,)edes

where ¢} € ¢py. Then, since ¢; = ¢\d¢y, by choosing e < 7, we have B(m(¢¢),€) c ¢;. Hence, ¢; is
open in (€, ds).

Next, we prove that ¢ is bounded in (¢,ds). Suppose there is a positive upper bound R < oo
and let (m(¢;),m(¢,"),w;) = arg MaXpm (¢, ),my (¢))ec; 43 (m(¢pt), m(¢;)) . Then, any divergence of
(@1, @) from ¢, *, (¢;”) can be offset by the corresponding change in the optimal transport plan w;,
as wy € W(P(¢), P(¢})) is a function of (¢, ¢;) with

WP, P(@) = {ur: [ widP(@)) = P(¢0). [ widP(@0) = P(4))].
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Hence, ¢; is bounded.

Lastly, to show that ¢; is not compact, we just need one example of an open cover that has no

finite open subcovers. Let {Gt .} = {m(¢¢), Pt € By, n € N}}, where

1
{‘I’t,n} = {(“’t >Ut aNt y O 7Ut(d$)) vy (da) > E’n € N}-

Thus, every element of ¢; is in {®;,} for some n € N, and therefore, every element of ¢; is in
{G:,} for some n € N, suggesting that G; c N, {G¢,}. Moreover, since for any n € N, Gy, has a
neighbourhood centred at Gy, with radius € > 0 lying in the set, {G},} is an open cover of ¢;. Let

k,l € N such that k£ >1 > 2, we have

—_

< 7 = {‘I)t,l} c {<I>t7k} = {th} c {Gt,k}'

| =

Hence, for any finite m € N, Ul 1{Gtn} = {Gtm} = {m(t), dr € Py, m € N}. However, for any
m € N, there exists @4 1 ¢ {®rm}, while {m(¢), Pt € Bt a1} € ¢ Therefore, {Gy,} is an open

cover of ¢; that does not have a finite subcover. Hence, ¢; is not compact. O

A.17 Proof of Theorem 3.3

Proof. Let ty € [0,1], € >0, we show that for any ¢ € [0, 1] such that |t — to| < J, we have

‘MI({qbi}ie[O,t]) - MI({¢i}ie[0,to])’
= [Jmn ds (m(¢;), m(g; ))] - Ey, [cbmé% ds (m(¢), m(¢§))”

!
; )

:Anm@mmmamnj i ds (m(@0), m(@)) di

¢Le0P @Le0P;

1 0
|7 [ min s (o) m(@) i [ amin d (m(0). m(@)) (A1)
+ f (;ngg ds Im(qbz) m( dl——/ Jn[l){{l) ds m(d)z) m( e} ))dZ
fto ¢§I€1£ ds (m(ei), m(¢;)) di| + ooy (m(¢i), m())) di
<€

Thus, by choosing ¢ = d(tg, €) > 0 satisfying Equation A.1, we have

|MT ({¢i}ie[0,t]) - MI ({d’z‘}ie[o,to]) | <€,
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and therefore, M1 ({¢2}ZE 0.t ) is continuous on the time interval [0, 1].
Next, we prove that MT ({¢i}ie[0,t]) is not monotonic. Let

F(t) = MI({Q-"z}ze 0.t )
=E, |:¢1,nln ds (m(¢z) m(¢z)):|

= [ min s (1), m(90)) di.

} 0D,

Then,
F(t)==t" | ¢r,mn ds (m(:), m(@))di + 17" min ds (m(¢r), m(9}))

=ttt ( mi%t ds (Hn((j)t)?m((bg)) - F(t)) .

oe}

Therefore, whether the sign of F’(¢) depends on the difference between the sub-period market in-
completeness at t and the average of sub-periods market incompleteness up to ¢, which is not strictly

increasing nor decreasing. Hence, M T ({¢Z}z€ Ot]) is not monotonic.
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