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Abstract. This paper provides asymptotic results for a class of model-free actor-critic

batch - reinforcement learning algorithms in the multi-agent setting. At each period,

each agent faces an estimation problem (the critic, e.g. a value function), and a policy

updating problem. The estimation step is done by parametric function estimation based

on a batch of past observations. Agents have no knowledge of each others incentives and

policies. I provide sufficient conditions for each agent’s parametric function estimator to be

consistent in the multi-agent environment, which enables agents to learn to best respond

despite the non-stationarity inherent in multi-agent systems. The conditions depend on

the environment, batch size, and policy step size.

These sufficient conditions are useful in the asymptotic analysis of multi-agent learning, e.g.

in the application of long-run characterisations using stochastic approximation techniques.
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1. Introduction

This paper develops asymptotic results for the multi-agent reinforcement learning (MARL)

setting which will help analyse what behaviors can be learned by algorithms that interact

with one another.

Reinforcement Learning (RL) algorithms are updating rules meant for the learning of

optimal policies or value functions for a given problem. Such algorithms are commonly

used to solve Markov decision problems. In general, RL updating rules move policies

towards actions that have performed well in the past (i.e., such actions are reinforced), and

away from actions that perform poorly, based on some objective function. Commonly, a

RL agent estimates a value function, and updates policies based on that value function.

If estimates converge to the correct value function, policies will usually also converge to

optimal policies, and learning is successful. For a thorough introduction to RL see Sutton

and Barto (2018). Multiple recent surveys on MARL and related theoretical results exist,

notably Zhang, Yang, and Başar (2021), and Hernandez-Leal, Kartal, and Taylor (2019).

Recent years have brought significant advancements in the literature on multi-agent

reinforcement learning (MARL). Such algorithms have proven successful in various strategic

settings, such as the games of Go and Poker, and also autonomous driving. Despite these

widespread successes, the performance of multi-agent learning algorithms is commonly

verified only empirically through simulations, while theoretical results are relatively lacking.

The aim of this paper is to provide novel theoretical results that are useful in determining

the asymptotic behavior of multi-agent systems.

This paper considers the setting of actor-critic batch RL, which involves the mixture of

offline (training performance measures on a batch of observations) and online (updating

policies during play) approaches (c.f. Busoniu et al. (2017), Chapter 3).

A main problem in the theoretical analysis of the MARL setting is the inherent non-

stationarity of the environment faced by each agent. This comes from the fact that each

agent’s observations are drawn from distributions dependent on each other agent’s poli-

cies, which themselves are moving over time. At the same time, an agent needs to find

an optimal decision at any given period, were for optimality only the current policies of

their opponents matter. This introduces the problem commonly referred to as ‘tracking a

moving target’: To find a best response, agents need to estimate a value function based

on their opponent’s current policy, but can only use data generated from their opponent’s

past strategies.

The batch-setting studied here allows a useful solution to this issue. The term ‘batch’

refers to the fact that the historical data used for estimating the performance measure is

only a most recent window (the batch) of past observations, not the full available set of
1



observations. Akin to the idea of two-timescale approaches, which are well known in the

literature (c.f. Borkar (2009), Chapter 6), it will be true that the batch each agent uses to

train their performance measure grows at a speed that is slower than the convergence rate of

each agent’s policy-stepsize. This motivates the intuition that the most recent observations

made by each agent are generated from distributions that are quite similar. Once that

is true, I apply techniques developed and used in econometric theory due to Newey and

McFadden (1994) to show that tracking the moving target becomes feasible. The Batch-

RL setting is in contrast to more commonly known online-only RL schemes, which at

every period t incorporate only the new information that has been accrued to adapt their

performance measure estimator (see for example stochastic gradient descent methods for

parametric Q-estimation in Sutton and Barto (2018)). The method of batch-learning is

computationally more costly at each period, since a separate optimization routine is run

at every period. However, we will see that this can put us at an advantage when it comes

to estimation and consistency given nonstationarity.

The setting I study is one of discrete state spaces and interval action spaces. This implies

the requirement of using function approximation in the critic estimation step. Results carry

over to the finite actions and states case, modulo adjusted notation. No assumptions are

imposed on the strategic nature of the interaction each agent faces, i.e. there are no

requirements on the game played to be zero-sum, cooperative or otherwise as is commonly

done in the MARL setting. This paper focuses on results on a more fundamental level:

we are only concerned with giving guarantees for the function approximator of each agent

to be well-behaved in an appropriate sense. Once this can be verified, other techniques

such as stochastic approximation can be applied to paint a full picture of the asymptotic

behavior of the policy-profile process implied by the MARL updating scheme. In Possnig

(2022), I give such an analysis for Markov games of discrete states and interval actions

under the assumption that function approximators are well-behaved in the sense developed

in this paper.

Related Literature

To the best of my knowledge, this is the first study providing asymptotic consistency

analysis for the actor-critic batch RL agents as considered here. Two-timescale approaches

as defined in Borkar (2009), chapter 6 have a connection to this paper along the intuitions

used to to tackle nonstationarity. Perolat, Piot, and Pietquin (2018) construct a stochastic

approximation result for the two-timescale actor-critic scheme in the discrete state-action
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setting, while Perkins and Leslie (2013) consider asynchronous two-timescale schemes al-

lowing for multi-valued updates. For a more thorough discussion on recent advancements

in the MARL literature, consider Zhang, Yang, and Başar (2021).

The technique of using the advantages of ‘forgetfulness’ (i.e. a small batch of recent

observations to be used in estimation) in the face of nonstationarity is not novel here. The

literature on multi-armed bandit learning under nonstationarity using this idea has seen

multiple recent advancements, e.g. Cheung, Simchi-Levi, and Zhu (2020), which consider

finite single agent settings and focus on regret bounds. Zhou et al. (n.d.) provide a regret

bound analysis of an RL with linear function approximation in non-stationary environ-

ments. Khetarpal et al. (2022) give a thorough survey on the literature of reinforcement

learning approaches to nonstationarity.

This paper is organized as follows: Section 2 gives the consistency result in full generality.

Section 3 shows how the result applies to common learning rules such as actor-critic Q

learning and gradient learning, and finishes with a Corollary that shows how the results

developed here apply to an Assumption made in Possnig (2022). All proofs are found in

Appendix.

2. Consistency

First, I give a general consistency result on the estimation-step for batch-RL algorithms.

There are n algorithmic agents, a finite state space S, and a compact interval action space

Ai ⊂ R. Action profiles are written as a ∈ A = ×iAi. Define the state transition probability

to be Pss′ [a] ≥ 0 for all a ∈ A and s, s′ ∈ S, where throughout I will maintain an assumption

of irreducibility stated below.

Each agent i follows a batch-RL algorithm to update their policies ρit : S 7→ Ai over time.

Let the resulting compact policy profile space be called Γ.

Assumption 1. For all ρ ∈ Γ, the Markov chain induced by Pss′ [ρ(s)] is irreducible and

aperiodic.1

This assumption is maintained throughout the paper. It is a commonly made assumption

in the literature on Markov Decision Problems (MDPs). The assumption ensures the

existence of a unique stationary distribution over states conditional on a fixed profile ρ ∈ Γ

as introduced later on, as well as the possibility to learn about every state, which will

become clear below.

The updates to ρit are done using a parametric estimator of an underlying performance

measure; this can be e.g. a Q-value function as discussed in Section 3. For now, the

1For Definitions see e.g. Appendix A in Puterman (2014)
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algorithmic updating rule and critic will be given in general terms, agnostic to the exact

definition of the performance measure. All we need is that the parametric estimator can

be expressed as the minimizer of a loss function.

Call the parametric function estimator F i(ρi, θi), where parameters θ are the object of

estimation. I assume that F i is continuous in both arguments for all i, and that parameters

θ ∈ Θ for a set Θ ⊂ Rm compact.

The consistency result this paper establishes is of the following form: each agent will

use data generated from interactions with each other over time to estimate their parameter

vector θi, while ρit are being updated concurrently. As a result, it is likely that an underlying

‘true’ θi∗t moves with time also, generating a moving-target problem. We will then prove:

Under suitable Assumptions, each agent’s estimated θit behaves in the following way:

‖θit − θi∗t ‖ →P 0,

as t → ∞. This result is desirable as RL agents commonly face an issue of computing

policies optimal with respect to the current distributional environment they face, but have

only access to data generated from past distributional environments. This issue is absent

in the single-agent stationary MDP setting but salient in the multi-agent learning setting

of focus here.

First, let Z ⊂ Rd be a space of observations used in the construction of the loss func-

tion. Each period, a realization Zt ∈ Z is generated after each algorithm chooses their

actions. Since estimation is required by reinforcement learners, a stochastic element in

choosing actions each period is necessary to generate enough data. Commonly, actions

are chosen randomly but in close relation to the policy ρit. A basic example is ε-greedy

action selection: with a small probability ε, actions are sampled uniformly, while with com-

plementary probability, policy ρit is followed. A common example of observations then is

Zi
t = 〈st, ait, uit, st+1〉, a tuple of current state st, current action realization, payoff realiza-

tion, and next state observed at the end of each period by a model-free2 algorithm. Define

a bounded function ` : Z ×Θ 7→ U ⊂ R. `3 is Lipschitz in both arguments, and forms the

basic building block of the loss function.

Each algorithm uses only a batch of the most recent observations to construct their

empirical loss function. Define a sequence 0 < Kt < t with Kt ∈ N such that Kt →∞ with

2Model-free algorithms estimate their performance measure without a model of their environment. See
Sutton and Barto (2018), e.g. Chapter 6.
3In general ` can be specific to individuals i, in which case the assumptions made here would have to hold
for all i.
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t, and let

Wt = {k : t−Kt + 1 ≤ k ≤ t},

be the batch of periods used in the construction of the loss function. Define W t = t−Kt+1

as the first period of the batch. Then

Lt(θ) =
1

Kt

∑
k∈Wt

`(Zk, θ),

is the empirical loss. Then the estimator is defined as

θt ∈ arg min
θ∈Θ

Lt(θ),

the empirical parametric minimizer. This formulation is quite general, allowing for many

parametric function estimators to be described. Examples include polynomial, sinusoidal,

and spline approximations. Let ρt = {ρk}W t≤k≤t denote batch-sequences of policies, with

st defined analogously for states. Our first assumption is on the smoothness of the loss

function and the behavior of its conditional expectation:

Assumption 2. There exists a function φ(ρ, s, θ) ∈ R, Lipschitz in the first and third

arguments with

(1)

E[`(Zt, θ) | ρt, st] = φ(ρt, st, θ).

(2)

lim
t→∞

1

Kt

∑
k∈Wt

EC1(Zk) <∞,

lim
t→∞

1

Kt

∑
k∈Wt

EC2(ρk, sk) <∞,

sup
θ∈Θ

max
s∈S

C3(θ, s) <∞,

Where C1(Z), C2(ρ, s), C3(θ, s) are bounded, non-negative functions that exist by the Lips-

chitz properties of `, φ so that:

|`(Z, θ)− `(Z, θ′)| ≤ C1(Z)‖θ − θ′‖,

|φ(ρ, s, θ)− φ(ρ, s, θ′)| ≤ C2(ρ, s)‖θ − θ′‖,

|φ(ρ, s, θ)− φ(ρ′, s, θ)| ≤ C3(θ, s)‖ρ− ρ′‖.

In Assumption 2 (1), expectations are taken over Zt. In keeping with the example of

Zt = 〈st, ait, uit, st+1〉, this conditional expectation integrates over random actions due to
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exploration, possible randomness in the payoff realization, and the next state. If Zt is

Markov given current policy profile ρt and state st,
4 and e.g. if the derivatives of ` are

uniformly integrable, Assumption 2 (1) holds. Point (2) can be made to hold e.g. if ` has

bounded derivatives almost everywhere.

The following definition states the algorithmic updating rule studied in this paper in

general terms:

Definition 1. For each agent, ρit is updated in the following way:

ρit+1 = ρit + αt
[
F i(ρit, θ

i
t) +M i

t+1

]
,

where F i(ρit, θ
i
t) is the bounded parametric function to estimate the population objective,

αt ≥ 0 is a decreasing stepsize sequence satisfying the Robbins-Monro condition:

αt → 0 with
∞∑
t=0

αt =∞;
∞∑
t=0

α2
t <∞,

and M i
t+1 is an almost surely bounded martingale-difference noise based on an increasing

sequence of sigma algebras Gt.

Many updating rules can be written in the form above. The iteration can be interpreted

as a variant of a Robbins-Monro scheme (Robbins and Monro (1951), for a discussion see

Borkar (2009)). This specification allows for a large variety of algorithms, F i being what

most distinguishes updating rules from each other. The critic mapping F i can e.g. be a

gradient, or a maximizer of a value function. Specific examples are discussed in Section 3.

The next Assumption encapsulates the two-timescale property of the algorithms analyzed

here, as mentioned in the introduction. This Assumption is the essential driving force in

the results of this paper, ensuring that the data used by the loss functions appropriately

adjusts for the fact that a moving target has to be followed.

Assumption 3. Assume that

Ktαt−Kt → 0,

as t→∞.

Define µρt(s) ∈ (0, 1) for every s as the unique invariant state distribution if policy

profile ρt were played forever, which exists by our irreducibility Assumption 1. Further,

define ρW t:k
= {ρj}W t≤j≤k as a truncated sequence of policy profiles. Then let

λk(s,ρW t:k
, sW t

) = P
(
sk = s | ρW t:k

, sW t

)
,

4As in Section 3
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be the likelihood of reaching state s in period k ∈ Wt, if over periods W t, ..., k, ρt is the

policy profile sequence played, and sW t
is the initial state in the first batch-period. Also let

λk(s, ρ, st) be the counterpart where ρl = ρ in all periods W t, ..., k. The next Assumption

is a further strengthening of Assumption 1.

Assumption 4. hh

(1) Assume for all t, λk(s, ρ, st) and µρ are Lipschitz in ρ with Liptschitz constants

bounded uniformly over S.

(2) There exist cP > 0 and 1 ≤ k <∞ such that for all s′, s ∈ S

inf
ρ∈Γ

P[sk = s′ | s0 = s, ρ] ≥ cP .

Assumption 4 (1) ensures that the underlying state distributions are smooth, so that

straightforward uniform convergence theorems can be applied later on. (2) is slightly

stronger than the initial irreducibility Assumption on the Markov chain over s. It ensures

that in the asymptotic analysis one can safely assume λk > 0 for t large enough.

Next, define

Λt(s,ρt, sW t
) =

1

Kt

∑
k∈Wt

λk(s,ρW t:k
, sW t

),

as the average probability of reaching state s during time window Wt, if sW t
is the initial

state and ρt, is the sequence of policy profiles played. To save notation, let `(Zk, θ)s =

`(Zk, θ)1{sk = s} for all s ∈ S.

The population counterpart to Lt(θ) is then defined as

L∗t (θ,ρt) =
∑
s∈S

Λt(s,ρt, sW t
)

1
Kt

∑
k∈Wt

E
[
`(Zk, θ)s | ρk

]
Λt(s,ρt, sW t

)
,

where as in Assumption 2, expectations in the numerator are taken with respect to the

randomness in Zk. Next, define

L∗t (θ, ρt) =
∑
s∈S

Λt(s, ρt, sW t
)

1
Kt

∑
k∈Wt

E
[
`(Zk, θ)s | ρt

]
Λt(s, ρt, sW t

)
,

as the population loss in the case where in all periods k ∈ Wt, ρt is the policy profile played.

The t-limit of this loss function will play an important role in our results. It follows from

irreducibility and aperiodicity of the Markov Chain over states and smoothness assumptions

(Assumptions 1 and 4).
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Lemma 1. Suppose Assumptions 1, 2, and 4 hold. Then

lim
t→∞

sup
θ∈Θ,ρ∈Γ

∥∥∥L∗t (θ, ρ)−
∑
s∈S

µρ(s)φ(ρ, s, θ)
∥∥∥ = 0.

Proof. All proofs can be found in the Appendix. �

From now on, define this limiting population loss as

L∗∞(θ, ρt) =
∑
s∈S

µρt(s)φ(ρt, s, θ),

and

θ∗(ρt) = arg min
θ∈Θ

L∗∞(θ, ρt),

as the optimal population parameter. Notice that θ∗ is a random variable given that ρt is

a random variable.

The next Assumption ensures that for any trajectory ρt, there is a unique minimizer θ∗.

This is a standard assumption common also to the analysis of extremum estimators, see

e.g. Hansen (2010) Chapter 22. Define B(x, ε) as the ε-ball centered at x.

Assumption 5 (Identification). For any ρ, any ε > 0 and θ /∈ B(θ∗(ρ), ε), there exists

δ > 0 such that:

L∗∞(θ, ρ) ≥ L∗∞(θ∗(ρ), ρ) + δ.

We can now state the main result of this paper:

Theorem 1. Impose Assumptions 1 - 5. Then for any sequence ρt satisfying Definition 1,

and for any ε > 0,

P
(
‖θt − θ∗(ρt)‖ > ε

)
→ 0,

as t→∞.

This result is useful in the following sense: in general the function approximation param-

eter vector θt will depend on the whole policy profile trajectory ρt. Given that opponent’s

policies are moving over time, this can result in a quite hard to interpret estimator and

can lead to bad performance of the iteration ρit. However, the Assumptions taken in the

Theorem ensure that in fact, θt will, for large enough t, depend on the trajectory of policy

profiles only through the most current period t. Thus, the resulting loss function behaves

as if each agent knew their opponent’s current policy, and sampled observations from that

policy to estimate their loss function.

Furthermore, the limiting population loss L∗∞ can represent desirable population loss

functions commonly used in the literature, as will be shown in the next section. This will
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allow to make more accurate predictions about future behavior of opponents, and therefore

better performance of the algorithm as will be seen in Section 3.

3. Applications

This section provides an example of a performance measure, and examples of critic

mappings F i that would fit in the framework developed above.

Given the setup defined in the previous section, a valid performance measure would be

based on the commonly employed action-value function Q∗i : S × Ai 7→ R. Given a payoff

function ui : Ai × S 7→ R, and a discount factor δ ∈ (0, 1), it is defined implicitly as

Q∗i (s, a) = ui(a, s) + δE
[

max
a′∈A

Q∗i (s
′, a′) | a, s

]
. (1)

One of the reasons for the popularity of this function in Reinforcement Learning is the

fact that it is a sufficient statistic to finding an optimal policy, simply by maximizing

Q∗i . Consider the value function of the problem of maximizing expected future discounted

payoffs, defined via the Bellman equation:

V i(s) = max
a∈Ai

{
ui(a, s) + δE

[
V i(s′)| a, s

]}
.

Q∗i is connected to V i via the identity V i(s) = maxa∈Ai Q
∗
i (s, a), and thus can be used to

find optimal policies. For a more thorough discussion of reinforcement learners involving

Q∗i consider for example Sutton and Barto (2018). In what follows, to ease notation the

i-identifier will be dropped whenever possible.

An extensive literature of reinforcement learning theory has focused on estimating this

function. In the single agent setting, where states evolve according to a controlled markov

chain, many convergence results exist for estimators of Q∗, starting with the seminal results

in Watkins (1989). Q∗ is a useful function to approximate in Markov Decision Problems

since, under appropriate stationarity conditions, an optimal policy can be found straight-

forwardly by maximizing Q∗. See Sutton and Barto (2018) for a thorough exposition of

learning algorithms related to Q∗.

Q-learning algorithms are used to estimate Q∗, and compute an optimal policy based on

it. A class of algorithms fitting our Batch-RL framework would be versions of Fitted Q-

Iteration (FQI), (Ernst, Geurts, and Wehenkel (2005), and Busoniu et al. (2017) Chapter

3 for a general discussion) as will be introduced below. A parametric function estimator

for Q∗ can be defined as a function Q : S×A×Θ 7→ R. As in Section 2, θ is the parameter
9



to be estimated within the compact set Θ. An example of a common loss function is then

called the squared Bellman-loss:

`(Zt, θ) =
[
ut + δmax

a′
Q(st+1, a

′, θ)−Q(st, at, θ)
]2

, (2)

where we let Zt = 〈st, at, ut, st+1〉. It is important to note that this loss does not feature a

distance to Q∗, since realizations of this target cannot be observed in practice. The hope is

that the true population minimizer of this loss function is close to Q∗, even if that target

itself is not an element of the family of functions Q parametrized by θ.

Due to the necessity of generating data for estimation as mentioned in the previous

section, suppose that each agent samples actions using a randomized policy ρ̄it based on

their iteration policy ρit. Assume for simplicity here that Eρ̄it = ρit, with full support on Ai

for all states. In that case, we have

E
[
`(Zt, θ) | ρt, st

]
= E

[
`(Zt, θ) | ρt, st

]
,

by the Markov property, and thus Assumption 2 (1) is satisfied. Following the definition

in Assumption 2, we have that

φ(ρt, st, θ) = E

[[
ut + δmax

a′
Q(st+1, a

′, θ)−Q(st, at, θ)
]2 ∣∣∣ ρt, st].

Then imposing Assumptions 1- 5, we can apply Theorem 1. As defined in Section 2, we

get that θt approaches, in probability,

θ∗(ρt) ∈ arg min
θ∈Θ

L∗∞(θ, ρt),

where L∗∞(θ, ρt) evaluates to the mean-squared Bellman loss:∑
s∈S

µρt(s)E
[(
ut + δmax

a′
Q(st+1, a

′, θ)−Q(st, at, θ)
)2 | ρt, st = s

]
. (3)

The mean-squared Bellman loss represents a desirable population loss commonly studied

in the literature (see for example Sutton and Barto (2018), e.g. Chapters 9, 11).

Two important examples of algorithms as defined in Definition 1 based on such a loss

function are Actor-Critic Q- learning, for which

F i(ρit, θ
i
t) =

{
arg max
a∈Ai

Qi(s, a, θit)
}
s∈S, (4)

and Actor-Critic gradient learning, where gradient here refers to a gradient in policies:

F i(ρit, θ
i
t) =

{∂Qi(s, a, θit)

∂a

}
s∈S

, (5)
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where {}s∈S is to be understood as stacking a vector over s ∈ S. A more general version

of Actor-Critic Q-learning features as the running example in Possnig (2022).

The following discussion serves to show sufficient conditions so that a key assumption

in Possnig (2022) (Assumption 3) is satisfied. The assumption concerns the asymptotic

behavior of loss function estimators used in the running example of that paper.

Sufficient Conditions for Assumption 3 in Possnig (2022)

For a fixed opponent profile ρ9it , define

Q∗i (s, a, ρ
9i
t ) = ui(a, ρ9it (s), s) + δE

[
max
a′∈A

Q∗i (s
′, a′, ρ9it ) | a, s, ρ9it (s)

]
,

the action-value function in a repeated game where opponents play ρ9it forever.

Proposition 1. Suppose Assumptions 1 - 5 are satisfied, and algorithms update according

to Definition 1. Write

gi(s, a, ρt) = Q∗i (s, a, ρ
9i
t )−Qi(s, a, θ∗(ρt)).

Assume that, for all ρt and i

(i) ui(a, s) is bounded below and above.

(ii) Qi(s, a, θ) is twice differentiable in θ for all s, a.

(iii) Li∗∞(θ, ρt) is twice differentiable in θ on a small neighborhood N of θi∗(ρt),

(iv) ∂
∂θ
Lit(θ

i∗(ρt)) = OP (n9
1
2 ),

(v)

sup
θ∈Θ

∥∥∥∥∥ ∂2

∂θ∂θ′
Lit(θ)−Bi(θ)

∥∥∥∥∥ = oP (1),

for some non-stochastic matrix Bi(θ) such that Bi() is continuous and positive definite

at θi∗(ρt).

Then for each i,

(i) There is an increasing sequence of σ-algebras {F it}t≥0 such that

χit − E[χit]

is a martingale difference sequence given F it ,
(ii)

sup
t

E
[
(χit)

2
]
<∞,
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(iii) There exists a sequence ζt ≥ αt with ζt → 0 such that

lim
t→∞

∥∥∥ ∞∑
k=t

ζkE[χik]
∥∥∥ = 0,

where

χit ≡ sup
(s,a)∈S×X,

∥∥Qi
t(s, a)−Qi∗(s, a, ρ9it )− gi(s, a, ρ9it )

∥∥.
In other words, Assumption 3 in Possnig (2022) holds.

4. Conclusion

This paper gives sufficient conditions on the payoff structures, state evolution, and hyper-

parameters of batch-RL algorithms so that their batch-estimation procedure has a tractable

analytical interpretation. The setting studied here is one of discrete states and interval

action spaces. However, it is likely that an extension can be constructed for more general

state spaces, which is subject of further study here.

The assumption throughout this paper is that each agent uses parametric function esti-

mation in the classical sense, where the number of parameters is finite and smaller than

the number of observations. This precludes the analysis of Deep RL methods, which by

definition overparametrize. However, recent advancements in the convergence analysis of

Deep RL for function approximation (Ramaswamy and Hullermeier (2021)) allow for opti-

mism that an extension to this paper can be made that appropriately applies to Deep RL

methods.

The insights of this paper have important implications for the design and analysis of

reinforcement learners in multi-agent settings generally. Moreover, the results can be re-

cast in the setting of single-agent learning under non-stationarity. In this interpretation,

I show how an algorithm can be designed that learns an optimal policy when sufficient

information about the evolution of the non-stationarity of the environment is known.

An interesting avenue of further research will extend this paper’s asymptotic results to

a finite-time concentration inequality. This will allow to evaluate, at any given number of

interactions, how closely an agent’s best response estimator will be concentrated around

the correct best response.
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Appendix A. Appendix

All proofs are given here.

A.1. Proof of Lemma 1

We can write

‖L∗t (θ, ρt)−
∑
s∈S

µρt(s)φ(ρt, s, θ)‖

≤
∑
s∈S

∥∥∥Λt(s, ρt, sW t
)− µρt(s)

∥∥∥∥∥∥∥∥ 1
Kt

∑
k∈Wt

E
[
`(Zk, θ)s | ρt

]
Λt(s, ρt, sW t

)

∥∥∥∥∥
+
∑
s∈S

µρt(s)

∥∥∥∥∥ 1
Kt

∑
k∈Wt

E
[
`(Zk, θ)s | ρt

]
Λt(s, ρt, sW t

)
− φ(ρt, s, θ)

∥∥∥∥∥
≤
∑
s∈S

R1,s,ρt,t

∥∥∥∥∥ 1
Kt

∑
k∈Wt

E
[
`(Zk, θ)s | ρt

]
Λt(s, ρt, sW t

)

∥∥∥∥∥+ max
s∈S

R2,s,ρt,t ,

where

R1,s,ρt,t =
∥∥∥Λt(s, ρt, sW t

)− µρt(s)
∥∥∥,

R2,s,ρt,t =

∥∥∥∥∥ 1
Kt

∑
k∈Wt

E
[
`(Zk, θ)s | ρt

]
Λt(s, ρt, sW t

)
− φ(ρt, s, θ)

∥∥∥∥∥.
First note that for all fixed ρ ∈ Γ,

|Λt(s, ρ, sW t
)− µρ(s)| → 0

as t→∞, and independently from initial state sW t
, which follows from irreducibility (c.f.

Freedman (2017), Theorem 4.9). Now to prove uniform convergence in ρ. Firstly, ρt ∈ Γ

compact. So for any fixed δ > 0, we can find an open cover of Γ of cardinality Jδ, using

δ-balls centered at θj with 1 ≤ j ≤ Jδ. Now write for all s ∈ S

Ht(ρ, s) =
1

Kt

∑
k∈Wt

λk(s, ρ, sW t
)− µρ(s).

14



Then

sup
ρ∈Γ
|Ht(ρ, s)| ≤ max

1≤j≤Jδ
sup

ρ∈B(ρj ,δ)

{
|Ht(ρ, s)−Ht(ρj, s)|+ |Ht(ρj, s)|

}
≤ sup

ρ∈Γ
sup

ρ1∈B(ρ,δ)

|Ht(ρ, s)−Ht(ρ1, s)|+ max
1≤j≤Jδ

|Ht(ρj, s)|

= At +Bt,

where

At = sup
ρ∈Γ

sup
ρ1∈B(ρ,δ)

|Ht(ρ, s)−Ht(ρ1, s)|,

Bt = max
1≤j≤Jδ

|Ht(ρj, s)|.

Pointwise convergence of Ht(ρ, s) implies that Bt → 0 as t→∞. Then,

At ≤ sup
ρ∈Γ

sup
ρ1∈B(ρ,δ)

1

Kt

∑
k∈Wt

|λk(s, ρ, sW t
)− λk(s, ρ1, sW t

)|+ sup
ρ∈Γ

sup
ρ1∈B(ρ,δ)

|µρ(s)− µρ1(s)|

≤ sup
ρ∈Γ

sup
ρ1∈B(ρ,δ)

D1
1

Kt

∑
k∈Wt

‖ρ− ρ1‖+ sup
ρ∈Γ

sup
ρ1∈B(ρ,δ)

D2‖ρ− ρ1‖

≤ δ(D1 +D2),

where 0 < D1, D2 <∞ are the Lipschitz constants existing by Assumption 4. Thus for all

t ≥ 1, At → 0 as δ → 0 (and recall that δ is picked arbitrarily), and the result follows:

sup
ρ∈Γ
|R1,s,ρ,t| → 0,

as t→∞.

Next, note that

φ(ρt, s, θ) =
E[`(Zk, θ)s|ρt]
P (sk = s, ρt)

,

with P (sk = s, ρt) =
∑

s′∈S µρt(s
′)λk(s, ρt, s

′) is the stationary expected value of λk over

initial states s′. By Assumption 1, for all fixed ρ, limk→∞ λk(s, ρ, s
′) = limk→∞ P (sk =

s, ρ) = µρ(s). Then we get

R2,s,ρt,t ≤
∥∥E[`(Zt, θ)s | ρt]∥∥∥∥∥ 1

Λt(s, ρt, sW t
)
− 1

P (sk = s, ρt)

∥∥∥ (6)

≤ D3D4‖Λt(s, ρt, sW t
)− P (sk = s, ρt)‖, (7)
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where 0 < D3 < ∞ is an upper bound on ‖φ(ρt, s, θ)‖ following from the boundedness of

the loss function, and 0 < D4 <∞ is an upper bound on 1
Λt(s,ρt,sWt

)
1

P (sk=s,ρt)
which follows

from irreducibility and Assumption 4, which implies that both fractions cannot diverge.

Finally, the last term in (6) converges to zero uniformly over ρ by an argument analogous

to the convergence of Ht(ρ, s).

Finally, since ∥∥∥∥∥ 1
Kt

∑
k∈Wt

E
[
`(Zk, θ)s | ρt

]
Λt(s, ρt, sW t

)

∥∥∥∥∥ ≤ D3D4,

where the last bound is independent of θ, convergence of ‖L∗t (θ, ρt)−
∑

s∈S µρt(s)φ(ρt, s, θ)‖
is uniform over θ ∈ Θ and ρ ∈ Γ.

�

A.2. Proof of Theorem 1

The following Lemma will help prove the result. From now on, we drop the i-superscript

whenever possible.

Lemma 2. Impose Assumptions 1, 2, and 4.

For all ε > 0,

P
(

sup
θ∈Θ
‖Lt(θ)− L∗t (θ,ρt))‖ > ε

)
→ 0,

as t→∞.

Proof. We first show pointwise convergence of ‖Lt(θ)− L∗t (θ,ρt)‖.
We can write

Lt(θ) =
∑
s∈S

nt(s)

Kt

∑
k∈Wt

`(Zk, θ)1{sk = s}
nt(s)

,

where

nt(s) =
∑
k∈Wt

1{sk = s}.

First we show, for all s ∈ S ∣∣∣nt(s)
Kt

− Λt(s,ρt, sW t
)
∣∣∣→P 0,

as t→∞. For this, define

V1,t = E
[(nt(s)

Kt

− Λt(s,ρt, sW t
)
)2]

,
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and let dt = 1{sk = s} − λk(s,ρW t:k
, sW t

).

V1,t =
1

K2
t

∑
k∈Wt

E
[
d2
k

]
+

1

K2
t

∑
k,k′∈Wt|k 6=k′

E
[
dkdk′

]
,

where the second term

1

K2
t

∑
k,k′∈Wt|k 6=k′

E
[
dkdk′

]
=

1

K2
t

E
∑

k,k′∈Wt|k 6=k′
E
[
dkdk′ | Zk∨k′ ,ρW t:(k∧k′), sk∧k′

]
= 0,

since by by definition of dt and Assumption 1, states form a controlled markov chain and

thus

E
[
E
[
dkdk′ | Zk∨k′ ,ρW t:(k∧k′), sk∧k′

]]
= E

[
dk∨k′E

[
dk∧k′ | Zk∨k′ ,ρW t:(k∧k′), sk∧k′

]]
= E

[
dk∨k′E

[
dk∧k′ | ρk∧k′ , sk∧k′

]]
= 0.

It follows that V1,t → 0 as Kt → ∞. We can then apply Chebyshev’s inequality and the

first result follows: ∣∣∣nt(s)
Kt

− Λt(s,ρt, sW t
)
∣∣∣ = oP (1).

Similarly, let ht(θ, s) = `(Zt, θ)1{st = s} − E[`(Zt, θ)s|ρt]. Define

V2,t,s = E
[( 1

Kt

∑
k∈Wt

hk(θ, s)
)2
]
,

then by an argument analogous to above, using Assumption 2 and boundedness of l we

can conclude that V2,t,s → 0 as t → ∞ for all s. By Assumption 4 we have that nt(s)
Kt

> 0

with probability approaching 1 with t. Thus we can apply the continuous mapping theorem

to arrive at the result: for all θ ∈ Θ,

‖Lt(θ)− L∗t (θ,ρt)‖ = oP (1).

The rest of the proof is based on Newey and McFadden (1994)’s proof of their Theorem

2.1, but we have to adapt to the fact that we face a random population objective L∗ due

to the randomness of ρt.

The proof follows a similar logic as the proof of Lemma 1. First define

Ht(θ,ρt) =
1

Kt

∑
k∈Wt

hk(θ),

where we drop the dependence on state s since the statement holds for any s and there are

finitely many.
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Take any ε > 0 and any δ > 0. Let B(x, δ) denote the δ ball centered at x. Then by

compactness of Θ, we can construct a finite open cover of Θ with cardinality Jδ <∞ using

open balls B(θj, δ). Now note that

P
(

sup
θ∈Θ
‖Ht(θ,ρt)‖ > 2ε

)
≤ P

(
max

1≤j≤Jδ
sup

θ∈B(θj ,δ)

{
‖Ht(θ,ρt)−Ht(θj,ρt)‖+ ‖Ht(θj,ρt)‖

}
> 2ε

)
≤ P

(
sup
θ∈Θ

sup
θ1∈B(θ,δ)

‖Ht(θ,ρt)−Ht(θ1,ρt)‖+ max
1≤j≤Jδ

‖Ht(θj,ρt)‖ > 2ε
)

≤ At +Bt,

where

At = P
(

sup
θ∈Θ

sup
θ1∈B(θ,δ)

‖Ht(θ,ρt)−Ht(θ1,ρt)‖ > ε
)
,

Bt = P
(

max
1≤j≤Jδ

‖Ht(θj,ρt)‖ > ε
)
.

The second term must converge to zero by pointwise convergence as proved before, since

Bt ≤
∑

1≤j≤Jδ

P
(
‖Ht(θj,ρt)‖ > ε

)
→ 0

as t→∞. Now define

Yδ = sup
θ∈Θ

sup
θ1∈B(θ,δ)

1

Kt

∑
k∈Wt

‖`(Zk, θ)− `(Zk, θ1)‖,

and

Ỹδ = sup
θ∈Θ

sup
θ1∈B(θ,δ)

1

Kt

∑
k∈Wt

‖E
[(
`(Zk, θ)− `(Zk, θ1)

)
| ρk

]
‖.

Then note that

At ≤ P
(
Yδ + Ỹδ > ε

)
≤ 1

ε
E
[
Yδ + Ỹδ

]
, (8)

by Markov’s inequality. Finally, note that

EYδ ≤
1

Kt

∑
k∈Wt

E sup
θ∈Θ

sup
θ1∈B(θ,δ)

‖`(Zk, θ)− `(Zk, θ1)‖

≤ 1

Kt

∑
k∈Wt

E sup
θ∈Θ

sup
θ1∈B(θ,δ)

C1(Zk)‖θ − θ1‖ ≤
1

Kt

∑
k∈Wt

EC1(Zk)δ,
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where the second to last inequality follows from Assumption 2 and the Lipschitz property

of `(Z, θ). Thus, we get

lim
t→∞

EYδ ≤ lim
t→∞

1

Kt

∑
k∈Wt

EC1(Zk)δ,

where the right hand side vanishes as δ → 0 by Assumption 2. We can make an analogous

argument to show that limt→∞ EỸδ → 0 as δ → 0. It follows that At → 0 as t → ∞
and δ → 0 by the bound given in (8). The result follows, since Ht(θ) is the only factor in

Lt(θ)− L∗t (θ,ρt) that depends on θ:

We can write

‖Lt(θ)− L∗t (θ,ρt)‖

≤
∑
s∈S

∥∥∥nt(s)
Kt

− Λt(s,ρt, sW t
)
∥∥∥∥∥∥ Kt

nt(s)

1

Kt

∑
k∈Wt

`(Zk, θ)s

∥∥∥
+ max

s∈S

∥∥∥ Kt

nt(s)
− 1

Λt(s,ρt, sW t
)

∥∥∥∥∥∥ 1

Kt

∑
k∈Wt

`(Zk, θ)s

∥∥∥
+ max

s∈S

∥∥∥ 1

Λt(s,ρt, sW t
)

1

Kt

∑
k∈Wt

hk(θ, s)
∥∥∥.

There first two terms converge uniformly in θ to zero by our first arguments in this proof,

due to the boundedness assumption on l and Assumption 4. Only the last term depends

on ht(θ, s), the uniform convergence of which has been shown above.

�

Lemma 3. Impose Assumptions 1 - 4. Then for all ε > 0

P
(

sup
θ∈Θ

∥∥L∗t (θ,ρt)− L∗t (θ, ρt)∥∥ > ε
)
→ 0,

as t→∞.

Proof. For any θ ∈ Θ we can write

Yt(θ,ρt) ≡ ‖L∗t (θ,ρt)− L∗t (θ, ρt)‖ ≤
1

Kt

∑
k∈Wt

‖E
[
`(Zk, θ) | ρk

]
− E

[
`(Zk, θ) | ρt

]
]‖

≤ C4
1

Kt

∑
k∈Wt

‖ρk − ρt‖ ≤ C4C5
1

Kt

∑
k∈Wt

t∑
l=k

αl,

with 0 < C4 < ∞ being the bound on C3 given by Assumption 2 and 0 < C5 < ∞ being

the bound resulting from F (ρt, θt) + Mt+1 being almost surely bounded given Gt for all t.

Since αt is decreasing, we have
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1

Kt

∑
k∈Dt

t∑
l=k

αl ≤ Ktαt−Kt ,

and the last term vanishes by Assumption 3. Since the last term is independent of θ, we

can use Markov’s inequality with

E
[

sup
θ∈Θ

Yt(θ,ρt)
]
≤ C4C5Ktαt−Kt ,

and the conclusion follows. �

Using Lemmas 1, 2, and 3, we conclude that, for all ε > 0,

P
(

sup
θ∈Θ

∥∥Lt(θ)− L∗∞(θ, ρt))
∥∥ > ε

)
→ 0,

as t→∞.

As a last step we can prove the convergence of θt. By Assumption 5,

P
(
θt /∈ B(θ∗(ρt), ε)

)
≤ P

(
L∗∞(θt,ρt)− L∗∞(θ∗(ρt), ρt) ≥ δ

)
= P

(
L∗∞(θt, ρt)− Lt(θt) + Lt(θt)− L∗∞(θ∗(ρt), ρt) ≥ δ

)
≤ P

(
L∗∞(θt, ρt)− Lt(θt) + Lt(θ

∗(ρt))− L∗∞(θ∗(ρt), ρt) ≥ δ
)

≤ P
(

2 sup
θ∈Θ
‖Lt(θ)− L∗∞(θ, ρt)‖ ≥ δ

)
,

where the second-to-last inequality follows from Assumption 5. The result follows. It

follows that we can write F (ρt, θt) = F (ρt, θ
∗(ρt)) + oP (1) as a function approximator

that depends on policy profiles only through the current period’s profile ρt, and not some

weighted average of past profiles. �

A.3. Proof of Proposition 1

Firstly, one can prove χt →P 0 as t → ∞ given that θt →P θ∗(ρt), using arguments

analogous to the proof of Lemma 1, given point (ii). This can be done with the following

argument: From point (i), we get that one can bound χt by a function linear in ‖θt−θ∗(ρt)‖.
Convergence in probability of χt follows, with also the rate of convergence of χt being

bounded by the convergence rate of θt.

Assumptions (iii)-(v) are classical assumptions used in the asymptotic analysis of ex-

tremum estimators, usually to determine asymptotic normality. In this case, these assump-

tions give us that θt = OP (n9
1
2 ), via the standard taylor approximation argument applied

to Lt(θt).
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Now, square-integrability of χt follows from boundedness of Q,Q∗, which in turn follows

from boundedness of u. Square-integrability gives us that convergence in probability of

χt implies convergence in the mean also. Finally, the rate of convergence of E[χt] can be

approximated by the rate of convergence of θt: As mentioned before,

χt ≤ C‖θt − θ∗(ρt)‖,

so that, using θt−θ∗(ρt) = OP (n9
1
2 ), we have that for all ε > 0 there exists an 0 < Mε <∞

such that

P
(
χt ≥Mεn

9 1
2

)
≤ ε.

We can thus write, ∣∣E[χt]∣∣ ≤Mεn
9 1
2 + εC2,

where C2 = E
[
χ2
t

]
since we used the Cauchy-Schwartz inequality on the second term. This

bound is sufficient for our purposes, as ε can be chosen to be a decreasing function of t,

at a arbitrarily slow rate. This can be seen by looking more closely at the exact use of

Assumption 3 (iii) in Possnig (2022): This point is only required in the bounding exercise

applied in Proposition 1 of that paper. Importantly, this bounding exercise is used to make

Proposition 1.6 in Hofbauer and Sandholm (2002) applicable (see the last line of the proof).

First introduce notation used inPossnig (2022):

τ0 = 0; τn =
n∑
k=1

αk; m(t) = sup{k ≥ 0 : t ≥ τk}.

Then one can write, letting µk = Eχk, for any ε > 0,

∣∣∣∣∣
m(τn+T )∑
k=n

αk+1µk+1

∣∣∣∣∣ ≤Mε

m(τn+T )∑
k=n

αk+1k
9 1
2 + ε

m(τn+T )∑
k=n

αk+1

= Mε

m(τn+T )∑
k=n

αk+1k
9 1
2 + εT,

where the equality is due to the definition of τn. To conclude Proposition 1.6 in Hofbauer

and Sandholm (2002), it is necessary to take n → ∞. As mentioned above, if one now

takes εn as a function that decreases in n to zero, one can find a rate slow enough so that

Mεn will diverge slowly enough for the whole term to vanish. Such a rate can always be

found since εn’s rate is arbitrary.
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