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1 Introduction

Factor models (e.g., Lawley and Maxwell (1971)) are popular analytic tools for high dimensional

probability models. They are widely applied to macro and financial economics (e.g., Cham-

berlain and Rothschild (1983), Connor and Korajczk (1986)), Forni and Reichlin (1998), Ross

(1976), Sargent and Sims (1977)), and are also used to generate parsimonious predictive models

from high dimensional time series data (e.g., Stock and Watson, (1989, 2002)). However, factors

are unobserved, they need to be estimated from the observed data. Moreover, future shocks at

time t + h, is unknown, nor are the future outcomes yt+h at time t. This raises the question

that from predictive accuracy perspective, whether the factor model is likely to generate more

accurate predictions than simply to use a subset of the observed data directly? To bypass the

complicated issues of how to obtain future common factors from unknown future observed data,

we consider the issues of measuring (or predicting) the treatment effects when there exist both

the pre-treatment and post-treatment data to identify the underlying factor models or linear

projection model. A frequently used measure of the accuracy of a predictor θ̂ is to consider the

length of its (1− α) confidence interval, θ̂ ± cασθ̂, where σθ̂ is the standard error of θ̂ and cα

denotes the critical value two-sided size α test. However, if θ̂ is a biased predictor, the length

of θ̂± cασθ̂ is grossly misleading. Therefore, in this paper, we consider the predictive accuracy

issues using the criteria of the bias and prediction error variance.

The rest of the paper is organized as follows. Section 2 discusses modelling a unit in a panel

data set by a factor model or a linear projection model. Section 3 discusses model estimation

and prediction. Section 4 considers their application in the measurement of treatment effects.

Section 5 discusses the pros and cons of factor based approach (FB) and linear projection ap-

proach (LP) in terms of bias and prediction error variance under different sample configurations,

namely, when both the cross-sectional dimension (N) and time series dimension (T ) are large

and N
T → a 6= 0 < ∞ as (N,T ) → ∞, N fixed and T → ∞, T fixed and N large, or both N

and T are finite. Generalization to model with exogenous regressors are discussed in Section 6.

Monte Carlo are reported in Section 7. An empirical application to the impact of the Germany

reunion on GDP per capita is provided in Section 8. Concluding remarks are in Section 9. All

mathematical proofs are presented in the appendix.
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2 Modelling Panel Data by a Factor Model or a Linear Projec-

tion Model

Suppose the N cross-sectional units at time t can be modelled by a factor model of the form

yit = λ′ift + uit, i = 1, · · · , N ; t = 1, . . . , T, (2.1)

where ft is r dimensional common factors and λi is r dimensional factor loadings for the i-th

unit,1 uit is the random error term with mean zero.

Let Λ = (λ1,λ2, . . . ,λN )′ = (λ1, Λ̃)′, F = (f1, . . . , fT )′, ui = (ui1, . . ., uiT )′, and ut =

(u1t, u2t, . . . , uNt)′ = (u1t, ũ′t)
′. Stacking all N cross-sectional units one after another at time t,

yt = (y1t, y2t, . . ., yNt)′ = (y1t, ỹ′t)
′, we have

yt = Λft + ut, t = 1, . . . , T. (2.2)

Alternatively, we can stack ith individual’s T time series observations as yi = (yi1, . . ., yiT )′,

then

yi = Fλi + ui, i = 1, . . . , N. (2.3)

For model (2.1), we assume:

Assumption 1: The factor process satisfies E ‖ft‖4 ≤ M < ∞ and 1
T

∑T
t=1 ftf ′t → Σf ,

where Σf is an r × r nonsingular constant matrix.2

Assumption 2: The loading λi is either fixed constant or it is stochastic with E ‖λi‖4 ≤
M <∞. In either case, 1

N

∑N
i=1 λiλ

′
i → Σλ, where Σλ is an r× r nonsingular constant matrix.

and either

Assumption 3: The random error terms ut is independently identically distributed over t

with nonsingular covariance matrix

E(utu′t) = Ω̃ =

(
σ2

1 c′

c Ω

)
, (2.4)

where σ2
1 = E

(
u2

1t

)
, Ω = E(ũtũ′t), and c = E(ũtu1t). Moreover, all N nonzero eigenvalues of

Ω̃ are O(1).

Assumptions 1 and 2 are standard assumptions for factor models (e.g., Lawley and Maxwell

(1971), Bai (2003), Bai and Ng (2002), etc.). They allow λi and ft to be either fixed or

random. However, our analysis below is conditional on observed yit. Instead of expressing λi
1In the event r is unknown, one can use Bai and Ng’s (2002) information criteria to identify r.
2We let ‖A‖ =

√
tr (AA′).
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as E (λi|yt) and ft as E (ft|yt) , for notational ease, we shall simply consider λi and ft as fixed

constants, and consider 1
N

∑N
i=1 λiλ

′
i as Σλ and 1

T

∑T
t=1 ftf ′t as Σf . Assumption 3 allows ut to

be heteroskedastic and weakly cross-correlated but independent over t. This assumption can

be generalized to cover uit both weakly cross-corrlated and weakly time-dependent.3

Model (2.1) can be alternatively written as a linear projection (LP) model where yit is a

linear function of (y1t, . . . , yi−1,t, yi+1,t, . . . , yNt) (e.g., Hsiao et. al (2012), Li and Bell (2017)).

Since cross-sectional labelling is arbitrary, there is no loss of generality to consider the first unit

y1t as a linear function of the rest of yit,

y1t = E(y1t|ỹt) + ηt

= w′ỹt + ηt, (2.5)

where ỹt = (y2t, . . ., yNt)′ and E(y1t|ỹt) denotes the conditional mean of y1t if the conditional

mean is linear in ỹt (e.g., yt is Guassian) or the linear projection if the conditional mean is

nonlinear in ỹt. The coefficient w related to the underlying factor model (2.1) is

w =
[
E(ỹtỹ′t)

]−1
E(ỹty1t)

= (Λ̃Σf Λ̃′ + Ω)−1(Λ̃Σfλ1 + c), (2.6)

with Λ̃ denoting the factor loading matrix for control units ỹt.

The error term, ηt, by construction is orthogonal to ỹt with mean 0. Assumptions 1-3

implies that ηt is independent over t with variance σ2
η, which expressed in the form of factor

model (2.1) takes the form,

σ2
η = E[y1t −w′ỹt]2

= E[λ′1ft + u1t − (λ′1Σf Λ̃′ + c′)(Λ̃Σf Λ̃′ + Ω)−1(Λ̃ft + ũt)]2

= E
[(
λ′1 − (λ′1Σf Λ̃′ + c′)(Λ̃Σf Λ̃′ + Ω)−1Λ̃

)
ft + u1t − (λ′1Σf Λ̃′ + c′)(Λ̃Σf Λ̃′ + Ω)−1ũt)

]2
= σ2

1 + λ′1Σfλ1 − (λ′1Σf Λ̃′ + c′)(Λ̃Σf Λ̃′ + Ω)−1(Λ̃Σfλ1 + c). (2.7)

3 Model Estimation and Prediction

Neither Λ, F, nor w are known, they have to be estimated. In the case of factor model (2.1),

Λ and F are unidentified under Assumption 1 and 2. However, since we are concerned with
3Bai (2003 Assumption C) actually allows uit to be both weakly cross-correlated and weakly time dependent.

Although we can derive similar results under Bai (2003) Assumption C, they involve a much more complicated

algebraic manipulation without shedding much insight than the results demonstrated under the more restrictive

assumption 3 and 4 here. See also Remark 5.2.
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predicting y1t, not structural identification of Λ and F, there is no loss of generality to follow

Anderson and Rubin (1956), Bai (2009), etc., to assume either Σf = Ir and Σλ being a diagonal

matrix or Σλ = Ir and Σf being a diagonal matrix. Under the normalization Σf = Ir, when

N > T, F can be estimated as
√
T times the r eigenvectors corresponding to the r largest

eigenvalues of the determinant equation∣∣∣∣∣ 1
N

N∑
i=1

yiy′i − δIT

∣∣∣∣∣ = 0, (3.1)

where δ denotes the eigenvalues of (3.1), and Λ can be estimated as

λ̂i =
1
T

F̂′yi, i = 1, . . . , N. (3.2)

Alternatively, one can use the normalization Σλ = Ir and estimate Λ as
√
N times the r

eigenvectors that corresponding to the r largest eigenvalues of the determinant equation∣∣∣∣∣ 1
T

T∑
t=1

yty′t − δ∗IN

∣∣∣∣∣ = 0, (3.3)

when T > N, where δ∗ denotes the eigenvalues of (3.3),. Then F can be estimated as

F̂′ =
1
N

Λ̂′ (y1, . . . ,yT ) . (3.4)

Remark 3.1 As long as both T > r and N > r hold, in principal, one can use either (3.1)

or (3.3) to estimate either Λ or F. However, as shown by Bai et. al (2016), the asymptotic

variance of F̂ and Λ̂ are smaller using (3.1) and (3.2) than using (3.3) and (3.4) if N > T. On

the other hand, using (3.3) and (3.4) yields smaller asymptotic variance of Λ̂ and F̂ than using

(3.3) and (3.4) when T > N.

Given λ̂1 and f̂t, y1t can be predicted by (e.g., Bai and Ng (2021) and Li et. al (2023))

ỹ1,t = λ̂
′
1f̂t, (3.5)

where under the normalization Σf = Ir, λ̂1 is obtained by (3.2) and f̂t is obtained from (3.1),

while under the normalization Σλ = Ir, λ̂1 is the first row of Λ̂ and f̂t is obtained by (3.4).

Similarly, we can construct the post-treatment prediction of y0
1,T+h (e.g., the outcomes in

the absence of the treatment at time T + h) as

ỹ1,T+h = λ̂
′
1f̂T+h, h = 1, . . . ,m, (3.6)
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conditional on Λ̂ and ỹt = (y2t, . . ., yNt)′. Let ̂̃Λ denotes the rows of Λ̂ from the second to the

N -th, then4

f̂T+h =
(̂̃Λ′ ̂̃Λ)−1 ̂̃Λ′ỹT+h for h = 1, . . . ,m. (3.7)

Let

ẽ1,T+h = y1,T+h − ỹ1,T+h = u1,T+h +
(
λ′1fT+h − λ̂

′
1f̂T+h

)
. (3.8)

The asymptotic variance of ẽ1,T+h when (N,T )→∞ as shown by Bai (2003) takes the form,

V ar (ẽ1,T+h) = σ2
1 +

1
N
λ′1Σ−1

λ

(
1
N

Λ′ΩΛ
)

Σ−1
λ λ1 +

σ2
1

T
f ′T+hΣ−1

f fT+h + o (1) . (3.9)

In the case of linear projection model (2.5), there are huge literature on how best to estimate

w (e.g., Draper and Van Nostrand (1979), Kwon (2021), Smith and Campell (1980), Stein

(1981), Vinod (1978), etc.,). However, we are not concerned with how best to estimate w, but

how best to obtain the predictor ŷ1,t = ŵ′ỹt with minimum mean square error,

Sy =
T∑
t=1

(
y1,t −w′ỹt

)2
. (3.10)

Taking partial derivative of Sy with respect to w yields ŵ as a least squares estimator,

ŵ =

(
T∑
t=1

ỹtỹ′t

)−1( T∑
t=1

ỹty1t

)
. (3.11)

when T > N > r.5 Conditional on YT = (y1, . . . ,yT ) , ŵ is unbiased.

Multiplying ŵ with ỹT+h yields the unbiased predictor of y1,T+h conditional on YT and

ỹT+h as

ŷ1,T+h = ŵ′ỹT+h, h = 1, . . . ,m. (3.12)

Let

ê1,T+h = y1,T+h − ŷ1,T+h

= ηT+h +
(
w′ − ŵ′

)
ỹT+h. (3.13)

Conditional on YT and ỹT+h, the prediction error variance is equal to

V ar (ê1,T+h) = σ2
η + ỹ′T+hV ar (ŵ) ỹT+h

= σ2
η

1 + ỹ′T+h

(
T∑
t=1

ỹtỹ′t

)−1

ỹT+h

 . (3.14)

4A referee has suggested to consider James-Stein estimator or empirical Bayes estimator for ft under the

assumption that ft ∼ N (0, I) and ỹt|ft ∼ N
(

Λ̃ft,Ω
)
. The Stein estimator is biased but minimizes the risk. We

hope to investigate the pros and cons of these estimators vs (3.7) in the future.
5We will discuss the LP approach when N > T in subsection 5.3.
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4 Treatment Effects Measurement

The treatment effects are typically measured as the difference between the outcomes under the

treatment, y1
it, and the outcomes in the absence of the treatment, y0

it,

∆it = y1
it − y0

it. (4.1)

Panel data, contrary to the cross-sectional data, provides the possibility to estimate the evolu-

tion of the treatment effects over time (e.g., Hsiao et. al (2012), Ke and Hsiao (2022)). However,

the observed data for the ith individual at time t takes the form,

yit = dity
1
it + (1− dit)y0

it, i = 1, · · · , N, t = 1, · · · , T, (4.2)

where dit denotes the treatment status dummy with dit = 1 if the ith individual at time t is

under the treatment and 0 if not. Then to provide an estimate of the treatment effect, ∆it, one

needs to substitute the missing y1
it or y0

it by its predicted value.

Assuming y1
it is observed but not y0

it, then

∆̂it = y1
it − ŷ0

it, (4.3)

where ŷ0
it denotes the predicted value (or the counterfactuals) of y0

it. Conditional on observed

y1
it, the point estimates and confidence interval of the estimated ∆̂it depend on

E
(

∆̂it

)
= E(y1

it − ŷ0
it) = (y1

it − y0
it) + E(y0

it − ŷ0
it)

= ∆it + E
(
y0
it − ŷ0

it

)
, (4.4)

and

V ar(∆̂it) = E(y0
it − ŷ0

it)
2. (4.5)

In other words, the bias and variance of ∆̂it depend on the bias and error variance of ŷ0
it (or ŷ1

it if

y1
it is observed), but not y1

it. Econometricians and statisticians have suggested various methods

to control the bias in the observed data due to selection on observables or unobservables under

various assumptions (e.g., Heckman (1997), Heckman and Vytlacil (2001), Imbens and Angrist

(1994), Imbens and Lemieux (2008), Rosenbaum and Rubin (1983, 1985)).

In this paper, we consider the panel data approach suggested by Hsiao et. al (2012). We

consider the measurement of treatment effects on the first unit. We assume yit = y0
it for

i = 1, . . . , N and t = 1, . . . , T. From periods T + 1 onwards, y1t = y1
1t for t = T + 1, . . . , T +m,

while all other units remain untreated, and their outcomes are independent of d1t, namely

f (yit|d1t) = f (yit) , (4.6)
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such that yit = y0
it for i = 2, . . . , N and t = 1, . . . , T +m (e.g., Hsiao et. al (2012)). For ease of

notation, we use yit to denote y0
it.

Even though the issues of bias and variance of treatment effects are the issues of prediction

bias and variance of y0
it, there is a fundamental difference between the prediction of treatment

effects and the usual post-sample predictions of y0
it. The usual post-sample prediction of y0

it

assumes there is no post-sample information while the treatment effects measurement using

panel data assume there are post-sample information of y0
it = λ′ift + uit for i = 2, . . . , N, which

can be used to improve the accuracy of predicting y0
1,T+h for h = 1, . . . ,m. That is, we can use

principal component approach to estimate the realized λi and ft for model (2.1) or regression

method to estimate w for model (2.5), then combine the post-treatment information of yi,T+h

to generate post-treatment factor predictor (3.6) or post-treatment LP predictor (3.12).

Remark 4.1 Our analysis is based on a single treated unit. When there are multiple treated

units, in principle, one can use either FB or LP approach one by one, or first aggregate all

treated units into one single unit, then use either FB or LP approach to generate the pre-

dictions for the aggregated unit. As long as one method is likely to generate more accurate

predictions for any treated unit, aggregate more accurately predicted units is likely to gener-

ate more accurate aggregated predictions for whatever linear aggregation method is used (e.g.,

Hsiao (2021)). However, these could be computationally laborious if there are many treated

units. An alternative approach could be to first aggregate multiple treated units into a single

unit, then use either the LP or FB approach to generate the predictions for the aggregated units.

Although aggregation can give rise to complicated issues (e.g., Hsiao et. al (2021b)), as long as

Assumptions 1-3 hold for the factor modelling of the aggregated model, the analytical results in

the following sections still hold.

5 Treatment Effects Prediction Intervals

When λ1, fT+h, w and ỹT+h are known, the post-treatment predictor6

ỹ1,T+h = λ′1fT+h, h = 1, . . . ,m, (5.1)

or

ŷ1,T+h = w′ỹT+h, h = 1, . . . ,m, (5.2)

are unbiased predictors with prediction error variance σ2
1 and σ2

η, respectively.

6The LP or FB prediction formula for y1,T+h is the same for any h under Assumption 3. In particular, one

can just consider h = 1.
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Under Assumption 1 and 2, Λ and F can be either random or fixed. Since our comparison

of the length of confidence interval is conditional on observed YT and ỹT+h, there is no loss

of generality to treat Λ and F as fixed constants instead of expressing it as realized λi and ft
conditional on yit. Substituting unknown λ1, ft or w by λ̂1, f̂t or ŵ into (5.1) or (5.2) in lieu

of λ1, ft or w may or may not yield unbiased predictors. The LP predictor (3.12) is unbiased

conditional on YT and ỹT+h, because the estimator (3.11) is unbiased and converges to w as

T →∞. The prediction error variance conditional on YT and ỹT+h is given by (3.14). On the

other hand, the FB predictor (3.6) is the product of λ̂1 and f̂T+h. To get a good estimator of

λ̂1, we need T →∞. To get a good estimator of f̂T+h, we need N →∞. Thus, whether (3.6) is

asymptotically unbiased or its prediction error variance depend on the configuration of N and

T.

5.1 Case 1: (N, T )→∞

Proposition 5.1 Under Assumptions 1-3, when (N,T )→∞ and N
T → a 6= 0 <∞, both (3.6)

and (3.12) are unbiased predictors of y1t with the same asymptotic variance.

The equivalence between (3.6) and (3.12) can be seen as follows. When (N,T )→∞, Λ̂, F̂

and ŵ are consistent. The prediction error variance for FB approach (3.6) under the normal-

ization Σf = Ir is (e.g., Bai (2003))

V ar (ẽ1,T+h) = σ2
1+λ′1

(
Λ̃′Λ̃

)−1 (
Λ̃′ΩΛ̃

)(
Λ̃′Λ̃

)−1
λ1+

1
T
σ2

1f
′
T+hfT+h+O

(
1

min (T,N)

)
. (5.3)

Under the assumption that uit is independent over i and t, c = E(ũtu1t) = 0, the LP

prediction error expressed in the factor form is7

ê1,T+h = λ′1fT+h + u1,T+h −
(

Λ̃λ1

)′ (
Λ̃Λ̃′ + Ω

)−1 (
Λ̃fT+h + ũT+h

)
+Op

(
1√
T

)
= λ′1

(
Ir − Λ̃′

(
Λ̃Λ̃′ + Ω

)−1
Λ̃
)

fT+h + u1,T+h −
(

Λ̃λ1

)′ (
Λ̃Λ̃′ + Ω

)−1
ũT+h +Op

(
1√
T

)
,

(5.4)
7The derivation of prediction error variance remains the same under the normalization Σλ = Ir. All it is

needed is to replace Λ̃ in the formula with Λ∗ = Λ̃Σ
1/2
f .
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with error variance of prediction

V ar (ê1,T+h) =
[
λ′1

(
Ir − Λ̃′

(
Λ̃Λ̃′ + Ω

)−1
Λ̃
)]

E
(
fT+hf ′T+h

) [(
Ir − Λ̃′

(
Λ̃Λ̃′ + Ω

)−1
Λ̃
)
λ1

]
+σ2

1 + λ′1Λ̃′
(

Λ̃Λ̃′ + Ω
)−1

Ω
(

Λ̃Λ̃′ + Ω
)−1 (

Λ̃λ1

)
+O

(
1
T

)
= σ2

1 + λ′1
(

Λ̃′Ω−1Λ̃ + Ir
)−1

λ1 +O

(
1
T

)
. (5.5)

However, under Assumptions 1-3, the eigenvalues of both Λ̃′Ω−1Λ̃ + Ir and Λ̃′Λ̃ are O (N) ,

hence as (N,T )→∞, λ′1
(

Λ̃′Λ̃
)−1 (

Λ̃′ΩΛ̃
)(

Λ̃′Λ̃
)−1

λ1 → 0 and
(

Λ̃′Λ̃
)−1
→ 0. Thus,

V ar (ê1t)→ σ2
1 and V ar (ẽ1t)→ σ2

1. (5.6)

That is, when (N,T )→∞, λi and fT+h or w can be estimated precisely. There is no difference

whether one predicts the outcomes by factor approach or linear projection method.

When c 6= 0, we can similarly obtain that LP is as efficient as the FB. See Appendix for

details.

5.2 Case 2: N fixed, T →∞

Proposition 5.2 Under Assumptions 1-3, when N is fixed and T →∞, the LP approach yields

smaller mean square prediction error than the FB approach.

When N is fixed and T →∞, ŵ→p w for the LP projector (3.12), while the FB predictor

(3.6) is based on the product of λ̂
′
1f̂T+h. Although λ̂1 can be consistently estimated by (3.3)

(Bai (2003)), f̂T+h is estimated with finite number of cross-sectional observations yT+h, i.e.,

f̂T+h =
(̂̃Λ̂̃Λ′)−1 ̂̃Λ′yT+h, (5.7)

which although unbiased, will have variance of order 1
N . Thus, the asymptotic variance of

ẽ1,T+h = u1,T+h + λ′1
(
fT+h − f̂T+h

)
takes the form8

V ar (ẽ1,T+h) = σ2
1 + λ′1

(
Λ̃′Λ̃

)−1 (
Λ̃′ΩΛ̃

)(
Λ̃′Λ̃

)−1
λ1. (5.8)

On the other hand, the LP prediction error variance for (3.12) under the assumption that

u1t is uncorrelated with uit for i ≥ 2 (i.e., c = 0 for (2.3)) takes the form (e.g., (2.7) with c = 0)

σ2
η = σ2

1 + λ′1
(

Λ̃′Ω−1Λ̃ + Σ−1
f

)−1
λ1. (5.9)

8There is a one to one correspondence between the estimated Λ̂ and F̂ under (3.1) or (3.3). Let Λ̂∗ and

F̂∗ denote the estimates under the normalization 1
T
F̂′F̂ = Ir, and Λ̂ and F̂ denote the estimates under the

normalization 1
N

Λ̂′Λ̂ = Ir, then F̂∗ = F̂Σ
1/2
f and Λ̂∗ = Λ̂Σ

−1/2
f .
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We note that
(

Λ̃′Λ̃
)−1 (

Λ̃′ΩΛ̃
)(

Λ̃′Λ̃
)−1
≥
(

Λ̃′ΩΛ̃
)−1
≥
(

Λ̃′ΩΛ̃ + Ir
)−1

because
(

Λ̃′Λ̃
)−1 (

Λ̃′ΩΛ̃
)(

Λ̃′Λ̃
)−1

and
(

Λ̃′ΩΛ̃
)−1

are the covariance matrix of the least squares and the generalized least squares

estimator of ft of

ỹt = Λ̃ft + ũt,

and Σf is positive definite.

Similar results hold when c 6= 0. For details, see Appendix for a discussion.

Remark 5.1 Our analysis for the case when N is fixed and T → ∞ is based on the MLE

estimates of ft and w. A referee has suggested to replace the estimates for f̂T+h (5.7) by the

James-Stein estimator (1961) estimator, f̂T+h,JS . The James-Stein estimator brings concen-

trated attention on the total square error loss function. It is particularly relevant when there

are multiple treated units. However, the James-Stein estimator is a biased estimator, which

leads to a biased predictor of y1,T+h. Moreover, our simulation results have shown that the risk

is not independent of the dimension of regressors. We hope to investigate in using the Stein or

empirical Bayes estimators in lieu of the MLE in the future.

5.3 Case 3: T fixed, N →∞

When T is fixed and N is large, we use the normalization Σf = Ir and obtain the estimated F,

F̂∗, as
√
T times the eigenvectors corresponding to the r largest eigenvalues of (3.1). Conditional

on F̂∗, we can estimate λ∗i by

λ̂
∗
i =

1
T

F̂∗′yi, i = 1, . . . , N. (5.10)

The FB predictor now takes the form

ỹ1,T+h = λ̂
∗′
1 f̂∗T+h. (5.11)

It is not feasible to directly implement the LP approach when N > T because 1
T

∑T
t=1 ỹtỹ′t

is a singular matrix. We suggest the following two approaches to implement the LP approach.

The first approach is to use a subset of (N − 1) observed ỹt to generate predicted value

of y1t, ŷ1,t. Hsiao et al (2012) suggest to use a model selection criterion, Li and Bell (2017)

suggest to use Lasso (e.g., Tibshirani (1996)), and Chen (2023) suggest to use online convex
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optimization to select a subset of (N − 1) yit as control units, say ỹ∗t , where the dimension of

ỹ∗t is less than T. When T is greater than the dimension of ỹ∗t , the LP predictor,

ŷ1,T+h = ŵ∗′ỹ∗T+h, (5.12)

is feasible. The predictor is asymptotically unbiased with prediction error variance (3.14).

The second approach is a prediction averaging approach. We suggest to randomly break up

the (N − 1) control units into G subgroups, each consists of Ng cross-sectional units subject to

Ng less than T, then use LP to generate predicted value of y1,T+h by ŷg1,T+h = ŵ′gỹg,T+h for

each subgroup g = 1, . . . , G, where

ŵg =

(
T∑
t=1

ỹgtỹ′gt

)−1 T∑
t=1

ỹgty1t. (5.13)

where ỹgt is aNg×1 vector consists ofNg cross-sectional units that belongs to the g-th subgroup,

i.e., ỹgt =
(
1(i∈g)yit

)
, g = 1, . . . , G. Then generate the predicted value of y1,T+h by

̂̄y1,T+h =
1
G

G∑
g=1

ŷg1,T+h. (5.14)

Proposition 5.3 Under Assumptions 1-3, when T is fixed and N → ∞, predictors (5.11),

(5.12) and (5.14) are all asymptotically unbiased. However

(i) The predictor (5.11) is likely to have smaller prediction error variance than the predictor

(5.12).

(ii) The predictor (5.14) is likely to have the smallest prediction error variance than the

predictor (5.11) and (5.12) if λi is independently distributed over i and ui is independent over

i with E(uiu′i) = Ω̆.

We note that since f̂∗t →p f∗t as N → ∞ and λ̂
∗
1 in (5.10) is unbiased, so is (5.11). The

covariance matrix of λ̂
∗
1 under the normalization condition Σf∗ = Ir is

V ar(λ̂
∗
i ) = σ2

i

(
F̂∗′F̂∗

)−1
=

1
T
σ2
i Ir. (5.15)

Then the variance of the prediction error for FB approach ẽ1,T+h = u1,T+h+f∗′T+h

(
λ∗1 − λ̂

∗
1

)
takes

the form

V ar (ẽ1,T+h) = σ2
1

(
1 +

1
T

f∗′T+hf
∗
T+h

)
. (5.16)

The prediction error of (5.12) takes the form

ê∗1,T+h = η∗1,T+h + (w∗ − ŵ∗)′ ỹ∗T+h, (5.17)
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with

V ar
(
ê∗1,T+h

)
= σ2

η∗
(
1 + ỹ∗′T+hV ar (ŵ∗) ỹ∗T+h

)
, (5.18)

where ∗ denotes the sample selected by Lasso.

Under the assumption that λi are independently distributed over i with E (λi) = 0,9 the

prediction error of ̂̄y1,T+h in (5.14) takes the form

̂̄e1,T+h = y1,T+h −
1
G

G∑
g=1

ŷg1,T+h

= u1,T+h + λ′1fT+h −
1
G

G∑
g=1

w′gỹg,T+h +
1
G

G∑
g=1

(wg − ŵg)
′ ỹg,T+h

= u1,T+h +
1
G

G∑
g=1

{
λ′1

[
Ir −

(
Σf Λ̃′g + c′g

)(
Λ̃gΣf Λ̃′g + Ωg

)−1
Λ̃gΣf

]
fT+h

−
(
λ′1Σf Λ̃′g + c′g

)(
Λ̃gΣf Λ̃′g + Ωg

)−1
ũg,T+h

}
+

1
G

G∑
g=1

(wg − ŵg)
′ ỹg,T+h.(5.19)

under the normalization Σf = Ir, where, for g = 1, . . . , G, Λ̃g denotes the Ng × r submatrix of

the (N − 1)× r matrix Λ̃ that associated with 1(i∈g)yit, cg = E(ũg,tu1t) and Ωg = E
(
ũg,tũ′g,t

)
with ũg,t consists of the Ng elements of 1(i∈g)uit.

Since yit, λi and ft are stationary under Assumption 1, 2 and 4, when N →∞, so is G with

fixed Ng < T, it can be shown that

V ar
(̂̄e1,T+h

)
→ σ2

1 +
1
G
E

η2
g,T+h + σ2

ηgỹ
′
g,T+h

(
1
T

T∑
t=1

ỹgtỹ′gt

)−1

ỹg,T+h


→ σ2

1, (5.20)

where E
(
η2
g,T+h

)
= σ2

ηg = σ2
1 +λ′1Σfλ1−

(
λ′1Σf Λ̃′g + c′g

)(
Λ̃gΣf Λ̃′g + Ωg

)−1 (
Λ̃gΣfλ1 + cg

)
.

In other words, when N →∞ and T is fixed, the average method of LP approach can yield

smaller asymptotic variance than the FB approach.

5.4 Case 4: Both N and T are Finite

Proposition 5.4 Conditional on YT and ỹT+h, the factor predictor is biased. The bias de-

pends on the realized value of λ1 and fT+h and is of order O
(

1
N

)
+ O

(
1
T

)
(e.g., Bai (2003)).

However, the LP predictor remains unbiased. Although prediction error distributions of LP and
9If E (λi) = λ 6= 0, mode (2.1) can be written as (yit − ȳt) = (λi − λ)′ ft + (uit − ūt) , where ȳt = 1

N

∑N
i=1 yit

and ūt = 1
N

∑N
i=1 uit. The term ūt will converge to zero as N →∞ under Assumption 3.
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FB predictors with finite N and T depend on the realized ỹT+h and fT+h, from the expected

mean square prediction error perspective, the LP approach is likely to yield smaller prediction

error variance.

When both N and T are finite, the LP predictor ŷ1,T+h = ŵ′ỹT+h remains unbiased because

E (ŵ) = w. Its prediction error variance is equal to (3.14). On the other hand, the FB predictor

λ̂
′
1f̂T+h is a biased predictor when N and T are finite (Bai (2003)). The bias is of order

O
(

1
T

)
+O

(
1
N

)
. The FB prediction error

ẽ1,T+h = u1,T+h + λ′1fT+h − λ̂
′
1f̂T+h

= u1,T+h + λ′1
(
fT+h − f̂T+h

)
+ f ′T+h

(
λ1 − λ̂1

)
−
(
λ1 − λ̂1

)′ (
fT+h − f̂T+h

)
,(5.21)

where λ1 is the first row of Λ̂ obtained as
√
N times the r eigenvectors corresponding to the r

largest eigenvalues of 1
T

∑T
t=1 yty′t, arranged in decreasing order, and

f̂T+h =
(̂̃Λ′ ̂̃Λ)−1 ̂̃Λ′ỹT+h, (5.22)

where ̂̃Λ denotes the rows of Λ̂ from the second to the N -th.

It is shown in the Appendix that the variance of FB prediction error is

V ar (ẽ1,T+h) = σ2
1 + λ′1V ar

(
f̂T+h

)
λ1 +

σ2
1

T
f ′T+hΣ−1

f fT+h +O

(
1
NT

)
. (5.23)

Subsection 5.2 shows that σ2
η ≤ σ2

1 + λ′1V ar
(
f̂T+h

)
λ1. Whether σ2

1
T f ′T+hΣ−1

f fT+h is greater or

smaller than σ2
ηỹ
′
T+h

(∑T
t=1 ỹtỹ′t

)−1
ỹT+h depends on ỹT+h or fT+h. However, if ỹT+hỹ′T+h is

close to E
(
ỹT+hỹ′T+h

)
= E

(
1
T

∑T
t=1 ỹtỹ′t

)
=
(

Λ̃Σf Λ̃′ + Ω
)
, then10

σ2
ηỹ
′
T+h

(
T∑
t=1

ỹtỹ′t

)−1

ỹT+h ' σ2
η

(
N

T

)
= σ2

1

(
N

T

)
+ λ′1

(
Λ̃′ΩΛ̃ + Ir

)−1
λ1

(
N

T

)
, (5.24)

under the assumption that T > N.

Similarly, if fT+hf ′T+h ' Σf , then σ2
1
T f ′T+hΣ−1

f fT+h ' σ2
1

(
r
T

)
. Then

V ar (ẽ1,T+h)− V ar (ê1,T+h)

= σ2
1

(
1 +

r

T

)
+ λ′1

(
Λ̃′Λ̃

)−1 (
Λ̃′ΩΛ̃

)(
Λ̃′Λ̃

)−1
λ1 −

[
σ2

1 + λ′1
(

Λ̃′ΩΛ̃ + Ir
)−1

λ1

](
1 +

N

T

)
= σ2

1

(
r −N
T

)
+ λ′1

[(
Λ̃′Λ̃

)−1 (
Λ̃′ΩΛ̃

)(
Λ̃′Λ̃

)−1
− λ′1

(
Λ̃′ΩΛ̃ + Ir

)−1
]
λ1

−N
T
λ′1

(
Λ̃′ΩΛ̃ + Ir

)−1
λ1, (5.25)

10The linear projection coefficient are invariant to the normalization we set up for Σλ or Σf . Here, for

notational ease, we use Σf = Ir.
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where the first term is negative under the assumption that N > r, the sign of the second term

is positive as shown in subsection 5.2 and the sign of the last term is negative. Thus, the sign

of (5.25) cannot be determined a prior given that Λ are unknown. Either way, the difference is

likely to be order O
(

1
T

)
. Since the bias is of order O

(
1
T

)
+O

(
1
N

)
. It is likely that with finite

N and T, the LP method could perform equally well or better than the FB method.

Remark 5.2 Although the analytic results discussed in this section are derived under Assump-

tions 1-3. Similar results hold when uit are both weakly cross-correlated and weakly time depen-

dent as defined in Bai (2009, Assumption C) or Jiang et. al (2021, Assumption 2) because if

uit are weakly cross-correlated and weakly time-dependent, it implies that only a finite number

of cross-sectional units, ujt are significantly correlated with uit over i and only a finite number

of time series observations ui,t±s are significantly correlated with uit over t. They do not change

the probability limit over i and t when divided by NT.

6 Generalization to Factor Augmented Linear Regression Mod-

els

Consider

yit = x′itβ + λ′ift + vit, (6.1)

vit = λ′ift + uit, i = 1, . . . , T ; i = 1, . . . , N ; (6.2)

where uit satisfies Assumption 1, 2, and 3 or 4, and xit are independent of uit (e.g., Bai (2009),

Hsiao and Zhou (2019), Pesaran (2006), Xu (2017)).11 We consider a predictive model of the

form

ŷit = x′itβ̂ + v̂it. (6.3)

The error of predicting yit then takes the form

eit = yit − ŷit = x′it
(
β − β̂

)
+ (vit − v̂it) , (6.4)

i.e., the error consists of two parts, the part due to the error of estimating β and the part due to

(vit − v̂it) . If the same estimation method is applied to estimate β, the part due to x′it
(
β − β̂

)
is identical in (6.4) no matter which method is utilized to construct v̂it. Thus, the analysis

of the relative merits between FB and LP methods continue to hold for models of (6.2) and

(6.3).
11One may view model (6.1) and (6.2) as a predictive model of yit observing everything else where measurement

of treatment effcts is just a special case.
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To see this, let Xt = (x1t, . . . ,xNt)′, Xi = (xi1, . . . ,xiT )′, X̃ = (X1, . . . ,XT ), and X∗ =

(X1, . . . ,XN ). Let

MX = IT − X̃(X̃′X̃)−X̃′, (6.5)

and

M∗ = IN −X∗(X∗
′
X∗)−X∗′, (6.6)

where A− denotes the generalized inversion of a square matrix A. By construction, we have

MXXt = 0, for t = 1, . . . , T, (6.7)

and

M∗Xi = 0, for i = 1, . . . , N. (6.8)

Consequently, multiplying MX to yt equations

yt = Xtβ + Λft + ut, t = 1, . . . , T, (6.9)

yields

y∗t = Λ∗ft + u∗t , t = 1, . . . , T, (6.10)

where yt, Xt and ut are defined as before, and y∗t = MXyt, Λ∗ = MXΛ, u∗t = MXut.

Similarly, multiplying M∗ to yi equations

yi = Xiβ + Fλi + ui, i = 1, . . . , N, (6.11)

yields

y∗i = F∗λi + u∗i ,

where y∗i = M∗yi, F∗ = M∗F and u∗i = M∗ui.12

Both y∗t or y∗i are now in the factor model form. Hence the analysis of predictor error

interval for13

ŷ∗1t = ŵ∗′ỹ∗t , (6.12)

or14

ỹ∗1t = λ̂
∗
1f̂t, (6.13)

12There exists possibility that M∗ could be a null matrix (e.g., Hsiao et al (2021)). In this situation, one could

either use Bai’s (2009) least squares method to simultaneously estimate β, Λ, and F to construct a FB predictor

or use Hsiao and Zhou’s (2019) method to construct the LP prediction.
13Predictor (6.12) is in the form of the semiparametric estimator of Hsiao and Zhou (2019).
14One could also consider the factor based approach of predicting y1t using the estimation of β,λ1 and ft as

in Bai and Ng (2021), Xu (2017), etc.,.

16



for the cases of (N,T ) → ∞, N fixed, T → ∞, T fixed and N → ∞ or both N and T are

identical to Case (1)-(4).

Bai (2009), Pesaran (2006), Hsiao, et al (2022), etc., have suggested different methods to

estimate β. Whatever method is adopted, the prediction error variance of

ŷ1t = x′1tβ̂ + ŵ∗′
(
ỹt − X̃tβ̂

)
, (6.14)

or

ỹ1t = x′1tβ̂ + λ̂
∗
1f̂t, (6.15)

is equal to the prediction error variance of (6.12) or (6.13) plus x′1tV ar
(
β̂
)
x1t. Hence similar

results to those of Case (1)-(4) can be drawn.

7 Monte Carlo Simulations

We use Monte Carlo to investigate if our analytic results with regard to FB vs LP discussed in

Sections 5 and 6 continue to hold with finite N and T. We set the number of factors to r = [N1/3]

and the individual specific effects, αi, are iid Uniform(0, 2). We consider the following DGPs

that includes

DGP1: Pure factor model

yit = αi +
r∑
j=1

λj,ifjt + uit, (7.1)

where the factor loadings λ1,i, . . . , λr,i are iid N(0, 1).

DGP2. Model with exogenous variables and unobserved factors

yit = αi + x1,itβ1 + x2,itβ2 +
r∑
j=1

λj,ifjt + uit. (7.2)

The covariates xk,it (k = 1, 2) are (positively) correlated with the factors and extra factors as

follows

xk,it = 1 + ρkixk,it−1 +
r∑
j=1

cjfjt + ηk,it, k = 1, 2,

where ρk,i ∼ iid U (0.1, 0.9) , cj ∼ iid U (1, 2) and the error term ηk,it is iid
(
χ2(1)− 1

)
. We let

β1 = 1 and β2 = 2.

For these two DGPs, we consider five different generations of the errors:

Case 1: Factors f1t, . . . , frt are χ2(1) and uit are non-normally distributed errors with

uit ∼ iid
(
χ2 (1)− 1

)
. (7.3)
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Case 2: Factors f1t, . . . , frt are χ2(1) and uit are serially-correlated

uit = ρu,iuit−1 + vit, (7.4)

where the idiosyncratic errors vit are IIDN
(

0, σ2
v,i

)
with σ2

v,i being random draws from(
1 + 0.5χ2 (2)

)
and ρu,i are i.i.d draws from U (0.2, 0.8) for i = 1, . . . , N.

Case 3: Factors f1t, . . . , frt are χ2(1) and uit are weakly cross-correlated

uit = εit + 0.3εi+1,t + 0.3εi−1,t, (7.5)

where εit is iid N(0, σ2
i ) with σ2

i ∼ (iid χ2 (1) + 1)/2 for i = 1, . . . , N + 1.

Case 4: Factors f1t, . . . , frt are χ2(1) and uit are both weakly cross-correlated and serially

correlated

uit = εit + 0.3εi+1,t + 0.3εi−1,t, (7.6)

where εit is serially correlated as

εit = ρε,iεit−1 + vit, (7.7)

where the idiosyncratic errors vit are IIDN
(

0, σ2
v,i

)
with σ2

v,i being random draws from(
1 + 0.5χ2 (2)

)
and ρε,i are i.i.d draws from U (0.2, 0.8) for i = 1, . . . , N. for i = 1, . . . , N + 1.

Case 5: Serially-correlated factor: For DGP (7.1) and (7.2), we assume the factors are

generated by

fjt = ρf,jfj,t−1 + εt, j = 1, . . . , r, (7.8)

where ρf,j ∼ iid U (0.2, 0.8) and εt is iid N(0, 1). The errors are generated by (7.3).

The treatment and control groups consist of 1 and N −1 units, respectively. The treatment

starts to affect the treated units at time T + 1. For these designs, we assume that the control

units to be N−1 = 10, 30, 50, 100 and the pretreatment time T = 10, 30, 60, and post-treatment

periods m = 5. The number of replication is set at R = 1000.

To compare the accuracy of LP vs FB in estimating the treatment effects,15 we consider

the LP (3.12) (labelled as LP16 and the associated prediction averaging (5.14), labelled as

LP ave17), and the FB (3.6) (labelled as FB) as well as the Box-Jenkins approach to generate

univariate model (labelled as B-J)18.
15For model with xit, we only consider the semiparametric approach as in Hsiao and Zhou (2019), where

we first use the Bai (2009) least squares method to obtain β̂ and use the residuals to estimate the part that

contribute to the counterfactuals.
16In the implementation of the LP approach when N is large and T is finite, we use the LASSO to select the

subset of control units ỹt, where the upper limit of control units selected is set to be T
2
.

17We consider prediction averaging (5.14) to generate predicted y1,T+h only when N > T , and let G = 20 if

T = 10 and G = 5 if T = 30 and 60.
18Time series modeling of y1t using Box-Jenkins procedure assuming y1t follows an AR(1) model y1t = φy1t−1+

vt and y1,T+h is predicted as ŷ1,T+h = φ̂
h
y1T , where φ̂ denotes the OLS estimator of φ.
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We consider two criteria for comparison: MAB and MSE. The MAB is the mean of absolute

bias for the true outcome and the counterfactuals at each post-treatment date point.19 The

MSE is the mean of sum of squared bias for the true observation and the counterfactuals at

each post-treatment date point.20

The simulation results for estimating treatment effects are summarized in Tables 1-10 for

DGP1-2 with errors following (7.3)-(7.6) or serial correlated factors in (7.8) and for different

combinations of N and T. The results confirm our analytic results that with finite N and T, the

LP method yields more accurate predictions than the factor approach in terms of estimation

bias and MSE, and both approaches are more accurate than using a univariate time series model

to construct the counterfactuals, because they make use of the cross-sectional information to

get more accurate predictions for post-treatment prediction of counterfactuals.

8 Empirical Application: German Reunification Revisited

In this section, we apply the LP and FB approaches to re-estimate the impact of the 1990 Ger-

man reunification, one of the most significant political events in postwar Europe. The German

Democratic Republic and the Federal Republic of Germany officially reunified on October 3,

1990. This event has been extensively investigated in the literature, to name a few, for instance,

Abadie et. al (2015) and Ferman et al (2020) evaluate the impact of the German Reunification

in 1991 on GDP per capita using the synthetic control approach.21 Here we re-estimate the

impact using the LP and FB approaches.

We use the Abadie et. al’s (2015) data (which is an annual country-level panel data con-

sisting 17 countries over the period 1960–2003) to compare the difference between LP and FB

methods to predict the counterfactuals after German reunification in 1990. We transform the

real GDP per capita into logarithmic figures. The German reunification occurred in 1990 (i.e.,

the intervention period), so the pre- and post-treatment periods are 1960 through 1990 and
19MAB is measured as

MAB =
1

Rm

R∑
r=1

T+m∑
t=T+1

|y1t (r)− ŷ1t (r)| ,

with y1t (r) and ŷ1t (r) being the actual and counterfactual of y1t in r-th replication. It represents the average

distance between true treatment effect and estimated treatment effect by my method. Thus, the smaller the

MAB is, the better performance the method is.
20MSE is calculated by

MSE =
1

Rm

R∑
r=1

T+m∑
t=T+1

(y1t (r)− ŷ1t (r))2

which is similar to MAB. The smaller it is, the better performance the method is.
21For a discussion of LP vs synthetic control method, see Wan et al (2018).
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1991 through 2003, respectively. We follow the same strategy in the simulation section for im-

plementation of the LP and FB approaches22,23. The estimation results are provided in Figure

1 and Figure 2 below. Figure 1 plots both the pre-treatment within sample and post treatment

counterfactual paths of FB and LP approaches, and Figure 2 plots the estimated treatment

effects based on the difference between the actual and FB or LP constructed counterfactuals

together with the confidence intervals for the treatment effects estimated by both the LP and

FB approaches.24

From these two graphs, we observe that: (1) The LP within sample fit dominates that of
22For the factor based approach, we use Bai and Ng’s (2002) information criteria to select the number of factors

and set the maximum number of unobserved factors as 5.
23Another specification is to consider a panel model with both covariates and interactive effects as in Abadie

et al (2015), however, in the original dataset of Abadie et al (2015), there are lots of missing observations for

these included variables (namely, trade openness, inflation rate, industry share, schooling levels, and investment

rate). For illustration purpose, we just consider a pure factor specification for GDP per capita here.
24The confidence intervals of the treatment effects estimated by LP and FB are constructed as follows:

(1). 95% CI for LP approach:

[
∆̂1t − 1.96× SEt,LP , ∆̂1t + 1.96× SEt,LP

]
,

for t = 1, . . . ,m, where

SE2
t,LP = σ̂2

η + ỹ′t ̂V ar (ŵ)ỹt,

with

σ̂2
η =

1

T

T∑
t=1

(
y1t − ŵ′ỹt

)2
,

̂V ar (ŵ) = σ̂2
η

(
T∑
t=1

ỹtỹ
′
t

)−1

.

(2). 95% CI for FB approach: [
∆̂1t − 1.96× SEt,FB , ∆̂1t + 1.96× SEt,FB

]
,

for t = 1, . . . ,m, where

SE2
t,FB = σ̂2

1 + λ̂
′
1

(̂̃Λ′ ̂̃Λ)−1(̂̃Λ′Ω̂̂̃Λ)(̂̃Λ′ ̂̃Λ)−1

λ̂1 +
1

T
σ̂2

1 f̂
′
t f̂t,

where

σ̂2
1 =

1

T

T∑
t=1

(
y1t − λ̂

′
1ft
)2

,

λ̂
′
1 and ̂̃Λ are the PCA estimators for λ1 and Λ̃, respectively, and Ω̂ can be estimated by

Ω̂ =
1

T

T∑
t=1

̂̃ut ̂̃u′t with ̂̃ut = ỹt − ̂̃Λf̂t.
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FB approach; (2) The FB estimates are very unstable due the instability of sample estimates

of ft with finite N ; (3) The treatment effects estimated by LP approach are smooth and gently

trending downward over time. The estimates are negative and statistically different from no

treatment effects (=0) except for the first few years after reunification.25 On the other hand,

the estimated treatment effects using FB approach fluctuate widely over time. The absolute

value of treatment effects estimated by FB approach are much larger than those obtained from

LP approach. However, the estimated standard errors based on the FB approach is much larger

than those based on LP approach, as a consequence, the confidence intervals for FB approach

covers zero over time, while the intervals for LP approach do not cover zero, implying a small

negative effects.

25The results based on synthetic control method are similar (Abadie et. al (2015, Fig. 2 and 3)). For a

discussion of LP vs synthetic control method, see Wan et. al (2018).

21



Figure 1: Actual and predicted GDP per capita in both pre- and post-treatment periods
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Figure 2: Difference in CIs between the actual and counterfactual GDP per capita in post-treatment periods
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9 Concluding Remarks

Under the assumption that the observed data is generated by a factor model with known

factor dimension, we consider the factor approach and linear projection approach to construct

counterfactuals when either both N and T are large, or N finite, T large or both N and T are

finite. We show that when post-treatment information on control units are available, they have

the same asymptotic efficiency when both N and T are large. When either N is finite and T is

large or both N and T are finite, the linear projection approach dominates the factor approach

in terms of the bias and prediction error variance. When T is fixed and N is large, we propose

a generalized LP predictor through prediction averaging and show that the generalized LP is

more accurate than the FB predictor. Our simulations and an empirical analysis show that in

the case of using panel data to construct counterfactuals, the LP approach indeed dominates

the factor approach even the dimension of a factor model is known a priori. As a matter of

fact, the LP approach can be applied to a variety of data generating processes. The equation26

yit = E (yit|Xt) + ηit, (9.1)

in a sense is a tautology, where Xt can include ỹt, lagged ỹt or any covariates that satisfy

f (Xt|dit) = f (Xt) (e.g., eq(4.6)). Chen (2023) has shown that the LP is an attractive choice

against a wide class of matching or difference-in-difference estimators.

However, if post sample information on the control units are not available, it is not clear

which method will be more preferable. For post-sample prediction, the analogous FB or LP

predictions of y1,T+h for post sample prediction of ỹ1,T+h depends on the predicted f̂T+h,

ỹ1,T+h = λ̂
′
1f̂T+h, h = 1, 2, . . .m, (9.2)

or predicted ŷ1,T+h

ŷ1,T+h = ŵ′̂̃yT+h, h = 1, 2, . . .m, (9.3)

respectively, where λ̂1 or ŵ are estimated as the first row of Λ̂ (which is estimated by (3.3)) or

(3.11) using within sample observations yt, t = 1, . . . , T. However, when no yT+h are available,

there is no consensus about what is the BLUE predictor of f̂T+h or ŷT+h. For instance, f̂T+h or̂̃yT+h could be generated from time series modelling of ft or ỹt from estimated f̂t or observed

ỹt for t = 1, . . . , T (e.g., Box and Jenkins (1976)) or some other methods (e.g., Goncalves and

Perron (2014), Goncalves et al (2017)). Under the assumption that

λ̂
′
1Cov

(
f̂T+h

)
λ̂1 = ŵ′Cov

(̂̃yT+h

)
ŵ, (9.4)

26If uit is serially correlated, one may wish to expand the conditional set yt to include lagged yt to ensure

that ηit is serially uncorrelated.
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the analysis of LP vs FB when post-sample information of ỹT+h are available remains applicable

for post-sample prediction. However, (9.4) is a strong assumption. Since the prediction error

variance of (9.2) or (9.3) depends on V ar
(
f̂T+h

)
or V ar

(̂̃yT+h

)
as well as Λ, c and Ω. Without

such knowledge, it could be difficult to gauge which predictor is likely to yield more accurate

prediction.
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Table 1: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 1

LP LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.756 6.979 - - 2.032 10.165 2.054 67.239

30 1.375 4.005 - - 1.598 6.269 1.673 6.061

60 1.246 3.213 - - 1.479 4.697 1.705 6.624

T N = 30

10 1.785 7.005 1.577 5.223 1.9149 8.754 2.238 27.625

30 1.436 4.154 - - 1.4291 5.317 2.074 9.065

60 1.230 2.997 - - 1.291 4.036 1.975 8.128

T N = 50

10 1.924 7.825 1.682 5.643 2.252 11.714 2.411 12.296

30 1.515 4.600 1.270 3.266 1.7801 8.232 2.329 11.629

60 1.316 3.363 - - 1.464 5.752 2.231 10.042

T N = 100

10 1.986 8.562 1.789 6.654 2.578 15.065 3.16 74.89

30 1.476 4.228 1.551 4.662 1.889 9.151 2.4176 11.574

60 1.317 3.399 1.119 2.445 1.682 7.977 2.444 12.613
Notes: 1. Refer to simulation section for definitions of ”LP”-”BJ” approaches to construct

counterfactuals. 2: Refer to simulation section for the calculation of MAB and MSE. 3: ”-” implies the

prediction averaging is not necessary for this N and T.
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Table 2: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 2

LP LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.590 4.752 - - 1.910 7.508 2.313 305.1

30 1.283 2.827 - - 1.514 4.223 1.699 5.733

60 1.150 2.196 - - 1.397 4.022 1.641 5.613

T N = 30

10 1.579 4.489 1.694 5.551 2.003 8.740 2.130 8.813

30 1.358 3.190 - - 1.458 4.612 1.991 8.086

60 1.221 2.497 - - 1.333 4.336 1.949 8.069

T N = 50

10 1.663 5.099 1.713 5.665 2.450 14.461 2.422 11.374

30 1.373 3.218 1.129 2.143 1.629 6.207 2.238 9.859

60 1.271 2.695 - - 1.393 4.280 2.165 9.546

T N = 100

10 1.790 6.262 1.592 4.919 2.666 16.166 2.732 16.773

30 1.327 2.932 1.312 2.898 1.921 9.037 2.435 11.460

60 1.243 2.645 1.038 1.829 1.582 6.184 2.472 12.072
See notes of Table 1.
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Table 3: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 3

LP LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.401 4.156 - - 1.718 6.632 2.051 167.37

30 1.009 1.699 - - 1.273 3.518 1.502 4.806

60 0.909 1.382 - - 1.152 2.875 1.531 5.131

T N = 30

10 1.475 4.156 1.246 3.168 1.763 7.620 2.199 26.922

30 1.092 1.991 - - 1.284 4.082 1.850 7.039

60 0.960 1.509 - - 1.137 3.281 1.808 6.888

T N = 50

10 1.611 5.138 1.391 3.955 2.184 11.312 2.395 12.299

30 1.100 2.070 0.963 1.547 1.441 5.703 2.106 8.988

60 0.998 1.654 - - 1.266 4.423 2.053 8.724

T N = 100

10 1.711 6.134 1.428 4.015 2.536 15.773 2.847 74.714

30 1.164 2.307 1.062 1.918 1.713 8.086 2.341 10.915

60 1.002 1.671 0.866 1.248 1.457 6.077 2.361 11.330
See notes of Table 1.
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Table 4: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 4

LP1 LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.476 4.277 - - 1.768 6.764 1.979 252.84

30 1.082 1.987 - - 1.336 3.824 1.524 5.025

60 0.958 1.545 - - 1.188 3.075 1.561 5.272

T N = 30

10 1.576 4.607 1.540 4.627 1.896 7.666 2.044 9.179

30 1.153 2.215 - - 1.288 3.653 1.809 7.032

60 0.982 1.596 - - 1.102 2.551 1.836 7.305

T N = 50

10 1.663 5.480 1.605 5.586 2.279 12.486 2.488 51.758

30 1.202 2.505 1.009 1.699 1.526 6.595 2.130 9.580

60 1.032 1.739 - - 1.288 4.440 2.131 9.319

T N = 100

10 1.724 6.027 1.464 4.206 2.531 14.640 2.578 13.806

30 1.198 2.481 1.187 2.326 1.816 8.887 2.405 11.948

60 1.066 1.867 0.902 1.329 1.462 5.922 2.334 11.097
See notes of Table 1.
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Table 5: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 5

LP1 LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.786 6.875 - - 1.993 8.366 1.985 15.542

30 1.347 3.653 - - 1.584 5.247 1.664 5.207

60 1.241 3.056 - - 1.422 4.072 1.618 4.926

T N = 30

10 1.760 6.152 1.501 4.299 1.844 6.752 2.153 14.002

30 1.413 3.773 - - 1.363 3.605 1.887 6.357

60 1.281 3.276 - - 1.270 3.530 1.908 6.772

T N = 50

10 1.980 7.488 1.689 5.349 2.231 9.652 2.483 14.138

30 1.479 4.193 1.325 3.406 1.643 5.756 2.165 8.057

60 1.311 3.470 - - 1.352 3.880 2.160 8.255

T N = 100

10 1.981 7.653 1.695 5.063 2.578 12.573 2.609 11.873

30 1.489 4.291 1.503 4.139 1.890 7.177 2.404 10.059

60 1.339 3.403 1.158 2.749 1.516 4.964 2.336 9.497
See notes of Table 1.
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Table 6: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 1

LP LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.807 7.464 - - 2.092 10.103 5.453 76.04

30 1.359 3.830 - - 1.606 5.530 5.062 60.087

60 1.230 3.072 - - 1.481 5.040 4.966 61.192

T N = 30

10 1.810 7.407 1.556 5.323 1.9613 9.599 6.559 104.01

30 1.456 4.204 - - 1.4863 5.255 6.093 85.636

60 1.284 3.168 - - 1.320 4.181 6.153 89.765

T N = 50

10 1.892 7.561 1.706 5.302 2.209 10.521 7.468 136.39

30 1.478 4.400 1.275 3.106 1.717 7.436 7.265 127.1

60 1.329 3.539 - - 1.447 5.274 7.105 115.4

T N = 100

10 2.109 9.629 3.604 67.617 2.746 17.616 8.806 186.54

30 1.494 4.424 1.557 4.664 1.947 9.424 8.169 150.92

60 1.338 3.475 1.155 2.731 1.690 7.433 7.951 135.01
See notes of Table 1.
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Table 7: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 2

LP LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.672 5.238 - - 1.988 7.985 5.272 82.415

30 1.293 2.905 - - 1.503 4.334 5.147 66.691

60 1.150 2.217 - - 1.383 3.747 4.977 63.807

T N = 30

10 1.654 5.151 1.750 6.144 2.163 10.793 6.317 92.148

30 1.354 3.114 - - 1.423 4.495 6.119 87.472

60 1.203 2.440 - - 1.268 3.403 6.038 86.754

T N = 50

10 1.671 5.265 1.782 6.619 2.341 12.638 7.284 127.47

30 1.328 2.997 1.157 2.261 1.676 6.957 7.405 125.50

60 1.263 2.653 - - 1.424 4.887 6.934 108.17

T N = 100

10 1.831 6.745 1.589 4.878 2.754 17.152 8.793 169.43

30 1.330 3.013 1.319 2.911 1.866 8.489 7.831 132.02

60 1.257 2.634 1.090 1.987 1.628 6.603 8.050 136.90
See notes of Table 1.
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Table 8: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 3

LP LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.434 4.099 - - 1.763 6.799 5.277 71.171

30 1.041 1.828 - - 1.293 3.506 4.793 56.884

60 0.933 1.443 - - 1.176 2.876 4.873 60.302

T N = 30

10 1.453 4.140 1.285 3.441 1.797 8.080 6.514 100.56

30 1.071 1.940 - - 1.259 3.871 6.262 96.885

60 0.937 1.446 - - 1.071 2.515 6.200 94.571

T N = 50

10 1.564 4.950 1.400 3.904 2.139 10.779 7.748 137.77

30 1.121 2.120 0.973 1.608 1.540 6.433 6.933 109.35

60 0.980 1.591 - - 1.306 4.686 6.997 115.08

T N = 100

10 1.685 5.851 1.446 4.312 2.563 16.14 8.422 160.36

30 1.140 2.187 1.108 2.191 1.729 7.711 8.038 136.93

60 0.996 1.651 0.883 1.286 1.495 6.342 8.130 149.42
See notes of Table 1.
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Table 9: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 4

LP1 LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.538 4.926 - - 1.907 7.567 5.093 63.818

30 1.088 2.035 - - 1.323 3.641 4.824 58.395

60 0.966 1.564 - - 1.182 2.885 4.857 63.187

T N = 30

10 1.556 4.975 1.596 5.087 1.951 8.730 6.293 92.523

30 1.162 2.317 - - 1.318 4.680 6.126 89.728

60 0.995 1.603 - - 1.195 3.870 6.115 85.686

T N = 50

10 1.663 5.430 1.601 5.041 2.209 10.775 7.196 122.57

30 1.174 2.314 1.018 1.774 1.466 5.308 7.119 114.34

60 1.029 1.782 - - 1.284 5.409 7.001 112.98

T N = 100

10 1.767 6.375 1.398 4.105 2.524 14.575 8.392 160.55

30 1.198 2.479 1.173 2.320 1.842 9.219 8.342 149.73

60 1.064 1.855 0.900 1.366 1.457 6.282 7.947 137.41
See notes of Table 1.
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Table 10: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 5

LP LP ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE

T N = 10

10 1.820 7.041 - - 2.072 8.693 4.848 45.832

30 1.357 3.704 - - 1.585 5.121 4.357 34.929

60 1.198 2.891 - - 1.456 4.454 4.329 36.21

T N = 30

10 1.798 6.309 1.530 4.354 1.904 7.292 5.468 53.377

30 1.426 3.951 - - 1.385 3.910 5.348 50.234

60 1.204 2.892 - - 1.198 3.161 5.235 48.394

T N = 50

10 1.915 7.232 1.611 4.741 2.233 9.516 6.447 80.298

30 1.469 4.383 1.303 3.152 1.587 5.207 5.730 59.734

60 1.300 3.361 - - 1.350 4.014 5.739 57.782

T N = 100

10 2.058 7.894 1.794 6.024 2.573 12.544 6.976 89.892

30 1.479 4.188 1.516 4.162 1.836 6.899 6.604 75.857

60 1.306 3.235 1.129 2.542 1.508 4.522 6.581 75.945
See notes of Table 1.
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Appendix: Mathematical Proofs

This appendix provides the proofs that are omitted in the paper.

A.1 Equivalence of LP and FB when c 6= 0 and (N, T )→∞

When c 6= 0 (i.e., uit is weakly cross-correlated), instead of directly comparing the prediction

error variance of (3.12) and (3.6), we consider the transformed model

y∗1t = y1t − c′Ω−1ỹt

= λ′1ft + u1t − c′Ω−1(Λ̃ft + ũt)

= λ∗′1 ft + u∗1t. (A.1)

where λ∗1 = λ1 − Λ̃′Ω−1c and u∗1t = u1t − c′Ω−1ũt. Then

E

[(
u∗1t

ũt

)
(u∗1t, ũ

′
t)

]
=

(
σ∗21 0

0 Ω

)
, (A.2)

where σ∗21 = σ2
1 − c′Ω−1c.

The FB predictor of y∗1t is

ỹ∗1t = λ̂
∗′
1 f̂t, (A.3)

and the LP predictor of y∗1t is

ŷ∗1t = ŵ∗′ỹt, (A.4)

where λ̂
∗
1 is the PCA estimates of Λ∗ = (λ∗1,λ2, · · · ,λN )′, and ŵ∗ is

ŵ∗ =

(
T∑
t=1

ỹtỹ′t

)−1 T∑
t=1

ỹty∗1t. (A.5)

When (N,T )→∞, λ̂∗1 →p λ
∗
1, f̂t →p ft and ŵ∗ →p w∗. Both (A.3) and (A.4) are unbiased

predictors of y∗1t = y1t − c′Ω−1ỹt with same asymptotic variance. Since ŷ1t and ỹ1t are just

ŷ∗1t+c′Ω−1ỹt and ỹ∗1t+c′Ω−1ỹt, the FB and LP predictors have the same asymptotic efficiency

as (N,T )→∞ following the derivation when c = 0.

A.2 Dominance of LP and FB when c 6= 0 for T →∞ and N is finite

When c 6= 0, the LP is equivalent to predicting y1,T+h by ŷ1,T+h = ŵ∗′ỹT+h (where ŵ∗ is given

by (A.5)) with prediction error y1,T+h−ŷ1,T+h = u1,T+h−c′Ω−1ũT+h, and V ar
(
u1,T+h − c′Ω−1ũT+h

)
=

V ar (u1,T+h|ũT+h) ≤ V ar (u1,T+h) . Similar manipulation of (A.2) can be performed when N

is finite and T → ∞. Then just as shown in subsection 5.2, LP predictions have smaller error

variance than FB predictions.
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A.3 Derivation of FB Prediction Error Variance When both N and T are

finite

It is shown by Anderson (1963), Bai (2003) that
(

Λ̂− Λ
)

or
(
F̂− F

)
is asymptotically normally

distributed when T → ∞ and
√
N
T → 0, or N → ∞ and

√
T
N → 0. However, with finite N and

T, the estimators of λ̂i and f̂T+h are biased. Following Bai and Ng (2002) and Bai (2003), we

have the identity (
1
T

T∑
t=1

yty′t

)
Λ̂ = Λ̂ (NVT ) , (A.6)

where VT is an r×r diagonal matrix consisting of the first r eigenvalues of 1
T

∑T
t=1 yty′t arranged

in decreasing order. Then

Λ̂′ = (NVT )−1 Λ̂′
(

1
T

T∑
t=1

(Λft + ut) (Λft + ut)
′

)

= V−1
T


(

1
N Λ̂′Λ

)(
1
T

T∑
t=1

ftf ′t

)
Λ′ +

(
1
N Λ̂′Λ

)
1
T

T∑
t=1

ftu′t + 1
N Λ̂′

(
1
T

T∑
t=1

utf ′t

)
Λ′

+ 1
N Λ̂′ 1T

T∑
t=1

utu′t

 .(A.7)

Similarly, we can write

Λ′ = (NV)−1 Λ′
(

ΛΣfΛ′ + Ω̃
)
, (A.8)

where V is the r × r diagonal matrix consisting of the first r eigenvalues of E (yty′t) arranged

in decreasing order and Ω̃ = E (utu′t) .

Using the facts that VT −V = Op

(
1√
T

)
, 1
T

∑T
t=1 utu′t− Ω̃ = Op

(
1√
T

)
, 1
T

∑T
t=1 ftf ′t−Σf =

Op

(
1√
T

)
, and 1

N

(
Λ̂− Λ

)
Λ′ = Op

(
1√
T

)
, then

Λ̂′ − Λ′ = Op

(
1

T 3/2

)
+ V−1

T

[(
1
N

Λ̂′Λ
)

1
T

T∑
t=1

ftu′t +
1
N

Λ̂′
(

1
T

T∑
t=1

utf ′t

)
Λ′
]
. (A.9)

Let Λ̂ = Λ̂ + Λ− Λ, then E

(
1
NΛ′

(
1
T

T∑
t=1

utf ′t

)
Λ′
)

= 0 and

1
N

(
Λ̂− Λ

)′( 1
T

T∑
t=1

utf ′t

)
Λ′ =

1
N

(
F′F

)−1 F′ (u1, . . . ,uN )

(
1
T

T∑
t=1

utf ′t

)
Λ′

=
1
N

Σ−1
f

(
1
T

T∑
t=1

ftu′t

)(
1
T

T∑
t=1

utf ′t

)
Λ′, (A.10)

when Λ̂ is estimated by Λ̂′ = (F′F)−1
T∑
t=1

fty′t.
27

27We ignore the higher order bias term due to the estimated f̂t.
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Under Assumption 1-3, from (A.9), we have

E
(
λ̂i − λi

)
=

1
N

Σ−1
f

(
1
T 2

T∑
t=1

ftE
(
u′tut

)
f ′t

)
λi

=
C

T

∑N
i=1 σ

2
i

N
= O

(
1
T

)
.

Similarly, one can show that the bias of f̂T+h is O
(

1
N

)
. Ignoring the cross-product term in

(5.21), which is O
(

1
NT

)
, the bias of predicting y1,T+h by ỹ1,T+h = λ̂

′
1f̂T+h is biased of order

O
(

1
T

)
+O

(
1
N

)
. When N and T are finite, 1

N or 1
T is likely to be a nonzero constant.
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