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1 Introduction

Factor models (e.g., Lawley and Maxwell (1971)) are popular analytic tools for high dimensional
probability models. They are widely applied to macro and financial economics (e.g., Cham-
berlain and Rothschild (1983), Connor and Korajczk (1986)), Forni and Reichlin (1998), Ross
(1976), Sargent and Sims (1977)), and are also used to generate parsimonious predictive models
from high dimensional time series data (e.g., Stock and Watson, (1989, 2002)). However, factors
are unobserved, they need to be estimated from the observed data. Moreover, future shocks at
time t + h, is unknown, nor are the future outcomes y;y, at time ¢. This raises the question
that from predictive accuracy perspective, whether the factor model is likely to generate more
accurate predictions than simply to use a subset of the observed data directly? To bypass the
complicated issues of how to obtain future common factors from unknown future observed data,
we consider the issues of measuring (or predicting) the treatment effects when there exist both
the pre-treatment and post-treatment data to identify the underlying factor models or linear
projection model. A frequently used measure of the accuracy of a predictor 0 is to consider the
length of its (1 — a) confidence interval, § + ca0p, Where o is the standard error of 0 and cq
denotes the critical value two-sided size « test. However, if 0 is a biased predictor, the length
of 6+ a0y is grossly misleading. Therefore, in this paper, we consider the predictive accuracy
issues using the criteria of the bias and prediction error variance.

The rest of the paper is organized as follows. Section 2 discusses modelling a unit in a panel
data set by a factor model or a linear projection model. Section 3 discusses model estimation
and prediction. Section 4 considers their application in the measurement of treatment effects.
Section 5 discusses the pros and cons of factor based approach (FB) and linear projection ap-
proach (LP) in terms of bias and prediction error variance under different sample configurations,
namely, when both the cross-sectional dimension (/NV) and time series dimension (7") are large
and % —a#0<o0as (N, T) — oo, N fixed and T — oo, T fixed and N large, or both N
and T are finite. Generalization to model with exogenous regressors are discussed in Section 6.
Monte Carlo are reported in Section 7. An empirical application to the impact of the Germany
reunion on GDP per capita is provided in Section 8. Concluding remarks are in Section 9. All

mathematical proofs are presented in the appendix.



2 Modelling Panel Data by a Factor Model or a Linear Projec-
tion Model

Suppose the N cross-sectional units at time ¢ can be modelled by a factor model of the form
yzt:A;ft—’—uZt? 2:177N7t:177T7 (21)

where f; is r dimensional common factors and A; is r dimensional factor loadings for the i-th

unit,! w;; is the random error term with mean zero.

Let A = ()\1, )\2, ce )\N)/ = (}\1,/\)/, F = (fl, e 7fT)/7 u;, = (uil, .. -inT)ly and u; =
(uig, uot, - - . yunt) = (u1e, ). Stacking all N cross-sectional units one after another at time ¢,

Y = (y1t7 Y2ty - -+ yNt)/ == (ylbyzl‘,)/? we have

yt:Aft—i—ut, tzl,,T (22)
Alternatively, we can stack ith individual’s T' time series observations as y; = (yi1,- - -, ¥ir)’,
then

y: = FA; +u,, 1=1,...,N. (23)

For model (2.1), we assume:

Assumption 1: The factor process satisfies E ||f;|* < M < oo and %Zthl fifl — Xy,
where X ¢ is an r x 7 nonsingular constant matrix.

Assumption 2: The loading A; is either fixed constant or it is stochastic with E | \;||* <
M < oco. In either case, % ZZ]\L 1 A\, — 3y, where 3 is an 7 x 7 nonsingular constant matrix.

and either

Assumption 3: The random error terms u; is independently identically distributed over ¢

with nonsingular covariance matrix

N O O-% C,
E(utut)—Q—< . Q)’ (2.4)

where 0 = E (u},), @ = E(Gs0}), and ¢ = E(Gsu1z). Moreover, all N nonzero eigenvalues of
Q are O(1).

Assumptions 1 and 2 are standard assumptions for factor models (e.g., Lawley and Maxwell
(1971), Bai (2003), Bai and Ng (2002), etc.). They allow A; and f; to be either fixed or

random. However, our analysis below is conditional on observed y;;. Instead of expressing \;

Tn the event r is unknown, one can use Bai and Ng’s (2002) information criteria to identify .

We let ||A| = /tr (AA).



as F (Aily:) and f; as F (fi|y;) , for notational ease, we shall simply consider A; and f; as fixed
constants, and consider % EZ]\L 1A as ¥y and %Zthl ff/ as ¥ ;. Assumption 3 allows u; to
be heteroskedastic and weakly cross-correlated but independent over ¢. This assumption can
be generalized to cover u;; both weakly cross-corrlated and weakly time-dependent.?

Model (2.1) can be alternatively written as a linear projection (LP) model where y;; is a
linear function of (yit, ..., Yi—1.t: Yi+1.ts---,Yne) (e.g., Hsiao et. al (2012), Li and Bell (2017)).
Since cross-sectional labelling is arbitrary, there is no loss of generality to consider the first unit

y1¢ as a linear function of the rest of y;,

vie = E(yulye) +mn
= W/S}t + Mys (25)
where §; = (yat, ..., ynt)" and E(y1¢|¥:) denotes the conditional mean of yi4 if the conditional

mean is linear in §; (e.g., y; is Guassian) or the linear projection if the conditional mean is

nonlinear in ¥;. The coefficient w related to the underlying factor model (2.1) is

w = [EGIN] " EGm)
= (AN + Q)7 1 (AZ AL + o), (26)

with A denoting the factor loading matrix for control units ¥;.

The error term, 7;, by construction is orthogonal to y; with mean 0. Assumptions 1-3

2

»» which expressed in the form of factor

implies that 7, is independent over ¢ with variance o

model (2.1) takes the form,
03, = Ely - W/S’t]Q
= BN +uy — N SN + ) AS A + Q)7L (Af, + Ty)]?
~ ~ ~ ~ ~ ~ ~ 2
- E [(xl — (N2 + ) ADA + Q)‘1A> £, +uy — (N, S,A + &) (AS A + Q)—lat)}
= o2+ N A — (WA + ) AS A + Q) THAS A + ). (2.7)

3 Model Estimation and Prediction

Neither A, F, nor w are known, they have to be estimated. In the case of factor model (2.1),

A and F are unidentified under Assumption 1 and 2. However, since we are concerned with

3Bai (2003 Assumption C) actually allows u;; to be both weakly cross-correlated and weakly time dependent.
Although we can derive similar results under Bai (2003) Assumption C, they involve a much more complicated
algebraic manipulation without shedding much insight than the results demonstrated under the more restrictive

assumption 3 and 4 here. See also Remark 5.2.



predicting y1¢, not structural identification of A and F, there is no loss of generality to follow
Anderson and Rubin (1956), Bai (2009), etc., to assume either ¥ = I, and ¥ being a diagonal
matrix or ¥y = L. and X being a diagonal matrix. Under the normalization X; = I,, when
N > T, F can be estimated as /T times the r eigenvectors corresponding to the r largest

eigenvalues of the determinant equation

=0, (3.1)

1 N

/
N Z yiy; — 0lr
N=

where ¢ denotes the eigenvalues of (3.1), and A can be estimated as

N 1.
)\i = TF,yZ’, 1= 1,...,N. (32)

Alternatively, one can use the normalization ¥, = I, and estimate A as v/ N times the r
eigenvectors that corresponding to the r largest eigenvalues of the determinant equation
1 X

T ZYty;s — 0"y
=1

=0, (3.3)

when 7' > N, where ¢* denotes the eigenvalues of (3.3),. Then F can be estimated as

~ 1 A
F = NA/ (Y1,---,¥y7) - (3.4)

Remark 3.1 As long as both T > r and N > r hold, in principal, one can use either (3.1)
or (3.3) to estimate either A or F. However, as shown by Bai et. al (2016), the asymptotic
variance of B and A are smaller using (3.1) and (3.2) than using (3.3) and (3.4) if N > T. On
the other hand, using (3.3) and (3.4) yields smaller asymptotic variance of A and ¥ than using
(3.3) and (3.4) when T > N.

Given A; and f;, y1; can be predicted by (e.g., Bai and Ng (2021) and Li et. al (2023))

- 7 a
Uit = A, (3.5)
where under the normalization X; = I, Aj is obtained by (3.2) and f; is obtained from (3.1),
while under the normalization ¥y = I, :\1 is the first row of A and f't is obtained by (3.4).
Similarly, we can construct the post-treatment prediction of y? Tih (e.g., the outcomes in

the absence of the treatment at time 7'+ h) as

al A

gLTJrh = AlfTJrh, h = 1, e,y (36)



conditional on A and ¥, = (Yots - -, ynt)'- Let A denotes the rows of A from the second to the
N-th, then*

~ == Ly
fT+h = (A A) A 5’T+h fOI' h = ]., ..M. (37)
Let
~ ~ N
€1,T+h = Y1,T+h — Y1,T+h = UL T+h + <X1fT+h - >\1fT+h> . (3.8)

The asymptotic variance of €; 744 when (N,T) — oo as shown by Bai (2003) takes the form,
Var (¢ I N Y VN Dre s W Ay 1
ar (€1,7+n) = 01 + A E x AL+t Xy e +o(1). (3.9)

In the case of linear projection model (2.5), there are huge literature on how best to estimate
w (e.g., Draper and Van Nostrand (1979), Kwon (2021), Smith and Campell (1980), Stein
(1981), Vinod (1978), etc.,). However, we are not concerned with how best to estimate w, but
how best to obtain the predictor g ; = W'y; with minimum mean square error,

T
Sy = Z (y1,e — Wlf’t)2 : (3.10)

t=1

Taking partial derivative of S, with respect to w yields w as a least squares estimator,

T -1 /7
W= (Z S’tf’f:) (Z S’ty1t> - (3.11)
t=1 t=1
when T' > N > r.° Conditional on Y7 = (y1,...,yr), W is unbiased.
Multiplying w with y7,j yields the unbiased predictor of y; 71, conditional on Y7 and

YT+h as
G.7en =W¥ren, h=1,...,m. (3.12)
Let
e 7+h = Y1,7+h — Y1 T+h
= e + (W = W) I (3.13)

Conditional on Y7 and ¥4, the prediction error variance is equal to

Var (evrsn) = o+ 57V ar (%) 54
T -1
= oy |1+ T (Zg’tf’é) Yr+h| - (3.14)
=1

4A referee has suggested to consider James-Stein estimator or empirical Bayes estimator for f; under the
assumption that f; ~ N (0, 1) and §¢|f; ~ N ([\ft, Q) . The Stein estimator is biased but minimizes the risk. We

hope to investigate the pros and cons of these estimators vs (3.7) in the future.
5We will discuss the LP approach when N > T in subsection 5.3.



4 Treatment Effects Measurement

The treatment effects are typically measured as the difference between the outcomes under the

treatment, yilt, and the outcomes in the absence of the treatment, y?t,
1 0
Ait = Yir — Yir- (4.1)

Panel data, contrary to the cross-sectional data, provides the possibility to estimate the evolu-
tion of the treatment effects over time (e.g., Hsiao et. al (2012), Ke and Hsiao (2022)). However,
the observed data for the ith individual at time ¢ takes the form,

yzt:dztyzlt+(1_dlt)y2§a Z:LaN7t:177T7 (42)

where d;; denotes the treatment status dummy with d;; = 1 if the ith individual at time ¢ is
under the treatment and 0 if not. Then to provide an estimate of the treatment effect, A;;, one
needs to substitute the missing yz-lt or y?t by its predicted value.

Assuming y}; is observed but not yY, then

Ait = yir — ars (4.3)

where 7% denotes the predicted value (or the counterfactuals) of y%. Conditional on observed
yzt p ylt

yilt, the point estimates and confidence interval of the estimated Ay depend on

E (M) = E(yy —0%) = (i — i) + E(y, — 93)
= Au+E () — %), (4.4)
and
Var(Ayw) = E(y), — i5)°. (4.5)

In other words, the bias and variance of Aj; depend on the bias and error variance of 99 (or g if
yilt is observed), but not y},. Econometricians and statisticians have suggested various methods
to control the bias in the observed data due to selection on observables or unobservables under
various assumptions (e.g., Heckman (1997), Heckman and Vytlacil (2001), Imbens and Angrist
(1994), Imbens and Lemieux (2008), Rosenbaum and Rubin (1983, 1985)).

In this paper, we consider the panel data approach suggested by Hsiao et. al (2012). We
consider the measurement of treatment effects on the first unit. We assume y;; = y?t for
1=1,...,Nand t=1,...,T. From periods T + 1 onwards, y;; = y%t fort=T+1,...,T +m,

while all other units remain untreated, and their outcomes are independent of di;, namely

[ (Witldie) = f (it) » (4.6)



such that yiz =y% fori =2,...,Nand t =1,...,T +m (e.g., Hsiao et. al (2012)). For ease of
notation, we use y;; to denote y5).

Even though the issues of bias and variance of treatment effects are the issues of prediction
bias and variance of 3, there is a fundamental difference between the prediction of treatment
effects and the usual post-sample predictions of y?t. The usual post-sample prediction of y?t
assumes there is no post-sample information while the treatment effects measurement using
panel data assume there are post-sample information of y?t = Nif; + uy for i = 2,..., N, which
can be used to improve the accuracy of predicting y(f,T 4 for h=1,...,m. That is, we can use
principal component approach to estimate the realized A; and f; for model (2.1) or regression
method to estimate w for model (2.5), then combine the post-treatment information of y; 71

to generate post-treatment factor predictor (3.6) or post-treatment LP predictor (3.12).

Remark 4.1 Our analysis is based on a single treated unit. When there are multiple treated
units, in principle, one can use either FB or LP approach one by one, or first aggregate all
treated units into ome single unit, then use either FB or LP approach to generate the pre-
dictions for the aggregated unit. As long as one method is likely to generate more accurate
predictions for any treated unit, aggregate more accurately predicted units is likely to gener-
ate more accurate aggregated predictions for whatever linear aggregation method is used (e.g.,
Hsiao (2021)). However, these could be computationally laborious if there are many treated
units. An alternative approach could be to first aggregate multiple treated units into a single
unit, then use either the LP or FB approach to generate the predictions for the aggregated units.
Although aggregation can give rise to complicated issues (e.g., Hsiao et. al (2021b)), as long as
Assumptions 1-8 hold for the factor modelling of the aggregated model, the analytical results in
the following sections still hold.

5 Treatment Effects Prediction Intervals

When A1, fri,, w and §74, are known, the post-treatment predictor®

@1,T+h = AllfT+h, h = 1, cee, M, (51)

or
G04n = W¥ren, h=1,...,m, (5.2)

are unbiased predictors with prediction error variance a% and 072], respectively.

5The LP or FB prediction formula for y; 744 is the same for any h under Assumption 3. In particular, one

can just consider h = 1.



Under Assumption 1 and 2, A and F can be either random or fixed. Since our comparison
of the length of confidence interval is conditional on observed Y1 and yr.p, there is no loss
of generality to treat A and F as fixed constants instead of expressing it as realized A; and f;
conditional on y;. Substituting unknown A;, f; or w by Aq, f; or W into (5.1) or (5.2) in lieu
of A1, f; or w may or may not yield unbiased predictors. The LP predictor (3.12) is unbiased
conditional on Y7 and y745, because the estimator (3.11) is unbiased and converges to w as
T — oo. The prediction error variance conditional on Y7 and y7., is given by (3.14). On the
other hand, the FB predictor (3.6) is the product of A1 and f’TJrh. To get a good estimator of
5\1, we need T' — oo. To get a good estimator of f'TJrh, we need N — oo. Thus, whether (3.6) is
asymptotically unbiased or its prediction error variance depend on the configuration of N and
T.

5.1 Case 1: (N,T) — o©

Proposition 5.1 Under Assumptions 1-3, when (N,T) — oo and % — a # 0 < oo, both (3.6)

and (3.12) are unbiased predictors of y1+ with the same asymptotic variance.

The equivalence between (3.6) and (3.12) can be seen as follows. When (N, T) — oo, A, ¥
and W are consistent. The prediction error variance for FB approach (3.6) under the normal-
ization ¥y =1, is (e.g., Bai (2003))

Var (1r4n) = 024X, (]\’]\)_1 (]\’Q]\) ([\’A)_l AH—%J%f’T frntO < (5.3)

Under the assumption that w;; is independent over i and ¢, ¢ = E(a4ui;) = 0, the LP
prediction error expressed in the factor form is”

eireh = Nifrpn +uirin — (A)q)/ (A[\/ + Q>_1 (Z\fTHz + ﬁT+h) + 0, (\/1?>

_ X <IT ¥ (R4 0) ! A) B+ w1 Tan — (ml)’ (AN + Q)_l firin + Oy <¢1T) :
(5.4)

"The derivation of prediction error variance remains the same under the normalization X = I,. All it is
needed is to replace A in the formula with A* = ]\E}/Q.



with error variance of prediction
e 1. e 1.
Var (é1rn) = [xl (L ~ N (AA' + Q) Aﬂ E (71 p) KI Y (AA' n Q) A> Al]

rof + XA (AN +0) 0 (A +0) (AN +0 (;)

- _ -1 1
. 2 / ro—1 -
= o2+ N (AQ A+IT> >\1+0<T>. (5.5)
However, under Assumptions 1-3, the eigenvalues of both A’Q A + I, and A’A are O (N),
I N SN | -1
hence as (N, T) — oo, X, (A’A) (A’QA) (A'A) A1 — 0 and (A'A> — 0. Thus,

Var (é1;) — 0% and Var (1) — o3, (5.6)

That is, when (NV,T) — oo, A; and fry;, or w can be estimated precisely. There is no difference
whether one predicts the outcomes by factor approach or linear projection method.

When ¢ # 0, we can similarly obtain that LP is as efficient as the FB. See Appendix for
details.

5.2 Case 2: N fixed, T —

Proposition 5.2 Under Assumptions 1-3, when N is fized and T — oo, the LP approach yields

smaller mean square prediction error than the FB approach.

When N is fixed and 7' — oo, W —, w for the LP projector (3.12), while the FB predictor
(3.6) is based on the product of 5\/1fT+h- Although A; can be consistently estimated by (3.3)

(Bai (2003)), f744 is estimated with finite number of cross-sectional observations yr.p, i.e.,

- A

frin = (AA > Ayrin, (5.7)
which although unbiased, will have variance of order % Thus, the asymptotic variance of
€1,T+h = U1,T+h + Al (fT+h — fT+h) takes the form®

Var (é1740) = o3 + A; (KA) o (Arad) (¥A) Y (5.8)

On the other hand, the LP prediction error variance for (3.12) under the assumption that
uys is uncorrelated with u; for ¢ > 2 (i.e., ¢ = 0 for (2.3)) takes the form (e.g., (2.7) with ¢ = 0)

~ ~ —1
02 =03+ X, (A’Q—lA + 2;1) AL (5.9)

8There is a one to one correspondence between the estimated A and F under (3.1) or (3.3). Let A* and
F* denote the estimates under the normalization %ﬁ" F= I, and A and F denote the estimates under the
normalization %A'A =1I,, then F* = IA?‘Z}/Q and A* = AZ;I/Q.

10



We note that (') (¥04) (XA) " > (K04) " > (VQA+1.) beeause (RA) (¥04) (XA)
and (A’ Q]\) ~ are the covariance matrix of the least squares and the generalized least squares
estimator of f; of

¥ = Afy + 1y,

and Xy is positive definite.

Similar results hold when c # 0. For details, see Appendix for a discussion.

Remark 5.1 Our analysis for the case when N is fired and T — oo is based on the MLE
estimates of fy and w. A referee has suggested to replace the estimates for fT+h (5.7) by the
James-Stein estimator (1961) estimator, f‘T+h’JS. The James-Stein estimator brings concen-
trated attention on the total square error loss function. It is particularly relevant when there
are multiple treated units. However, the James-Stein estimator is a biased estimator, which
leads to a biased predictor of yi r4n. Moreover, our simulation results have shown that the risk
s not independent of the dimension of regressors. We hope to investigate in using the Stein or

empirical Bayes estimators in lieu of the MLE in the future.

5.3 Case 3: T fixed, N — o0

When T is fixed and N is large, we use the normalization ¥ = I, and obtain the estimated F,
F*, as /T times the eigenvectors corresponding to the r largest eigenvalues of (3.1). Conditional

on F*, we can estimate Al by
X ==F'y; i=1,...,N. (5.10)

The FB predictor now takes the form

A~ %/ A

G1,7+h = A f7 g (5.11)

It is not feasible to directly implement the LP approach when N > T because % Z;f:l Vv,
is a singular matrix. We suggest the following two approaches to implement the LP approach.
The first approach is to use a subset of (N — 1) observed y; to generate predicted value
of yit, U1+. Hsiao et al (2012) suggest to use a model selection criterion, Li and Bell (2017)
suggest to use Lasso (e.g., Tibshirani (1996)), and Chen (2023) suggest to use online convex

11



optimization to select a subset of (N — 1) y;; as control units, say ¥;, where the dimension of

y; is less than 7. When T is greater than the dimension of y}, the LP predictor,

U100 = WY (5.12)

is feasible. The predictor is asymptotically unbiased with prediction error variance (3.14).

The second approach is a prediction averaging approach. We suggest to randomly break up
the (N — 1) control units into G subgroups, each consists of N, cross-sectional units subject to
Ny less than T, then use LP to generate predicted value of y; 715 by g)iT h = VAV;S’g,T_’_h for
each subgroup g =1,...,G, where

T
Wy = (Z S’gti’ét) Zygtylt- (5.13)
t=1 t=1

where y,; is a N, x 1 vector consists of N, cross-sectional units that belongs to the g-th subgroup,

ie, yg = (1(i€g)yit) ,9=1,...,G. Then generate the predicted value of y; 74 by

G
~ 1 .
Y1,174h = G Z yiTJrh- (5.14)
g=1

Proposition 5.3 Under Assumptions 1-3, when T is fized and N — oo, predictors (5.11),
(5.12) and (5.14) are all asymptotically unbiased. However

(i) The predictor (5.11) is likely to have smaller prediction error variance than the predictor
(5.12).

(i) The predictor (5.14) is likely to have the smallest prediction error variance than the
predictor (5.11) and (5.12) if A; is independently distributed over i and u; is independent over
i with E(uu}) = €.

We note that since f; —, f; as N — oo and :\16 in (5.10) is unbiased, so is (5.11). The

covariance matrix of S\T under the normalization condition X ¢« = I, is
N 2 [ T/ tax -1 1 2
VMQ”ZQ(FF) = oL, (5.15)

Then the variance of the prediction error for FB approach € 74, = uLTJrh—i—f;'_s_ h (X{ — S\T) takes

the form .
The prediction error of (5.12) takes the form

e =Morn+ (W =W 35, (5.17)

12



with
Var (€ r1p) = 0’ L+ yr o Var (W) yra) (5.18)
where * denotes the sample selected by Lasso.

Under the assumption that A; are independently distributed over i with E (\;) = 0, the

prediction error of E/_\I,T—i-h in (5.14) takes the form

€
=~ 1 n
€1, 7+h = Y1 T+h — a Z ?/f,:mrh
L &
= wirin + Nfrpn — G Z WFg T +h + Z ) Fgr4h

g=1 g=1

G
1 & ~ - -1 .
= w5 ) {Xl [Ir — (Zhy+ <) (Rgmphy +9y) Ang} frin
g=1
-1

G
- 1 V-
u97T+h} + a E (wy — W) ¥4,74£5.19)
g=1

— (NZpRy + o) (AgrAy + )

under the normalization X = I, where, for g =1,...,G, /~\ denotes the N, x r submatrix of
the (N — 1) x 7 matrix A that associated with 1(1€g)yzt, ¢y = E(Qg uyy) and Qy = E (9,1 ;)
with U, consists of the N, elements of 1(;cq)u.

Since y;¢, A; and f; are stationary under Assumption 1, 2 and 4, when N — oo, so is G with
fixed N, < T, it can be shown that

T -1
~ 1 - 1 - - -
Var (eir4n) — o+ 5E "§,T+h + ff%gyé,ﬂh (T Zygtylgt> Yg,T+h

— o2, (5.20)

~ ~ ~ -1 /.
where B (1214 ) = 025 = 03+ MZph — (MIpAG + ¢y ) (ASrAy + ) (S +¢y).
In other words, when N — oo and 7' is fixed, the average method of LP approach can yield

smaller asymptotic variance than the FB approach.

5.4 Case 4: Both N and T are Finite

Proposition 5.4 Conditional on Y1 and yrip, the factor predictor is biased. The bias de-
pends on the realized value of A1 and fry), and is of order O (%) + O (3) (e.g., Bai (2003)).

Howewver, the LP predictor remains unbiased. Although prediction error distributions of LP and

OIf E(X\;) = A # 0, mode (2.1) can be written as (yit — 7¢) = (i — ) £ + (i — @¢) , where §r = & S it

_ N — . .
and %y = & > ;. Uit. The term @; will converge to zero as N — oo under Assumption 3.

13



FB predictors with finite N and T depend on the realized Yy and fryp, from the expected
mean square prediction error perspective, the LP approach is likely to yield smaller prediction

error variance.

When both N and T are finite, the LP predictor §; 74, = W'¥7.4), remains unbiased because
E (W) = w. Its prediction error variance is equal to (3.14). On the other hand, the FB predictor
5\/1f‘T+h is a biased predictor when N and T are finite (Bai (2003)). The bias is of order
O (%) +0 (%) . The FB prediction error

~ ~f A
é1r+n = urrin + Nifren — ANfray
. - Y .
= wppen + A (fT+h - fT+h) + £ <)\1 - )\1) - ()\1 — >\1) (fT+h - fT+h§5w21)
where A is the first row of A obtained as v/N times the r eigenvectors corresponding to the r

largest eigenvalues of % Zthl y+y;, arranged in decreasing order, and
~ o>l 1 =/
frin = <A A) Ayrin, (5.22)

where //i denotes the rows of A from the second to the N-th.

It is shown in the Appendix that the variance of FB prediction error is
1
Var (61 T+h) = 0'1 + )\1Va7" (fT+h> A+ 1 fTJth fT+h + O (NT) (5.23)
Subsection 5.2 shows that o 2+ N Var <fT+h> A1. Whether o f{p+h2_1fT+h is greater or

smaller than a%yép I (ZtT_l ytyg> yr+n depends on §ry4 or fryp. However, if §74 437, is

close to £ (yﬂhy'ﬂh) ( Z 1 ytyt> = ([\Zf]\’ + Q) , then'?

T -1
~ - ~ ~ N N L —1 N
U%y/ﬂ_h (Z yty£> Vron =~ 0727 <T> =03 (T> + Al (A/QA + IT) Al <T> . (5.24)
t=1
under the assumption that 7" > N.
Similarly, if fr, 7., , ~ ¥y, then Z 7 fT+hE Y, ~ oy (%) Then

Var (él,T-i-h) Var (61 T+h

)
o (1+ 1) + X (RR) 7 (Rad) (& )_lxl—[a%)\’l(A’QAHT)_lAl] (1+¥>
= o (T ) x| (R) 7 (Arek) (32) - (i)

N . -1
~ =N (A’QA+L) A, (5.25)

0The linear projection coefficient are invariant to the normalization we set up for ¥y or Xy. Here, for

notational ease, we use Xy = I,.
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where the first term is negative under the assumption that N > r, the sign of the second term
is positive as shown in subsection 5.2 and the sign of the last term is negative. Thus, the sign
of (5.25) cannot be determined a prior given that A are unknown. Either way, the difference is
likely to be order O (%) . Since the bias is of order O (%) +0 (%) . It is likely that with finite
N and T, the LP method could perform equally well or better than the FB method.

Remark 5.2 Although the analytic results discussed in this section are derived under Assump-
tions 1-3. Similar results hold when w; are both weakly cross-correlated and weakly time depen-
dent as defined in Bai (2009, Assumption C) or Jiang et. al (2021, Assumption 2) because if
u;e are weakly cross-correlated and weakly time-dependent, it implies that only a finite number
of cross-sectional units, u;; are significantly correlated with u; over i and only a finite number
of time series observations u; 1+ are significantly correlated with u;; overt. They do not change

the probability limit over ¢ and t when divided by N'T.

6 Generalization to Factor Augmented Linear Regression Mod-

els
Consider

yie = xuB+ Nifi 4 v, (6.1)
vie = MNfi+uy, i=1,....,T;i=1,...,N; (6.2)

where u;; satisfies Assumption 1, 2, and 3 or 4, and x;; are independent of u; (e.g., Bai (2009),
Hsiao and Zhou (2019), Pesaran (2006), Xu (2017)).! We consider a predictive model of the
form

Jit = X}, B + Vit (6.3)

The error of predicting y;+ then takes the form
eit = Vit — Uit = Xy (5 - B) + (vit — it) (6.4)

i.e., the error consists of two parts, the part due to the error of estimating 3 and the part due to
(vit — D) . If the same estimation method is applied to estimate 3, the part due to x/, (6 — B)
is identical in (6.4) no matter which method is utilized to construct v;. Thus, the analysis
of the relative merits between FB and LP methods continue to hold for models of (6.2) and
(6.3).

1 One may view model (6.1) and (6.2) as a predictive model of ;; observing everything else where measurement

of treatment effcts is just a special case.
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To see this, let Xy = (x14,. .., xXn5y) s Xi = (X1,-..,%;7), X = (Xy,...,X7p), and X* =
(Xl,...,XN). Let
My = Iy — X(X'X)"X/, (6.5)

and
M* = Iy — X*(X* X*)~ X", (6.6)

where A~ denotes the generalized inversion of a square matrix A. By construction, we have
MxX; =0, fort=1,...,T, (6.7)

and

M*X; =0, fori=1,...,N. (6.8)
Consequently, multiplying M x to y; equations
yt:Xt,B—l—Aft—l—ut, tzl,...,T, (69)
yields
y; = AN'f +uj, t=1,...,T, (6.10)
where y¢, X; and u; are defined as before, and y; = Mxy:, A* = MxA, uf = Mxu;.
Similarly, multiplying M* to y; equations
yi = X;8+ F\; + u;, 1=1,...,N, (611)
yields
yi=FA +u,

where y; = M*y;, F* = M*F and u} = M*u,;.2
Both y; or y; are now in the factor model form. Hence the analysis of predictor error

interval for!?

i, = W, (6.12)
01'14
i = A, (6.13)

12There exists possibility that M* could be a null matrix (e.g., Hsiao et al (2021)). In this situation, one could
either use Bai’s (2009) least squares method to simultaneously estimate 3, A, and F to construct a FB predictor

or use Hsiao and Zhou’s (2019) method to construct the LP prediction.
13Predictor (6.12) is in the form of the semiparametric estimator of Hsiao and Zhou (2019).
0One could also consider the factor based approach of predicting 71; using the estimation of 3, A; and f; as

in Bai and Ng (2021), Xu (2017), etc.,.

16



for the cases of (N,T) — oo, N fixed, T' — oo, T fixed and N — oo or both N and T are
identical to Case (1)-(4).
Bai (2009), Pesaran (2006), Hsiao, et al (2022), etc., have suggested different methods to

estimate 8. Whatever method is adopted, the prediction error variance of
g = X}, B+ % (S’t - Xt/é) ) (6.14)

or
g = x4, B+ A\ T, (6.15)

is equal to the prediction error variance of (6.12) or (6.13) plus x},Var <B) x1¢. Hence similar

results to those of Case (1)-(4) can be drawn.

7 Monte Carlo Simulations

We use Monte Carlo to investigate if our analytic results with regard to FB vs LP discussed in
Sections 5 and 6 continue to hold with finite N and T. We set the number of factors to r = [N1/3]
and the individual specific effects, «;, are iid Uniform(0,2). We consider the following DGPs
that includes

DGP1: Pure factor model

,
Yit = o + Z Njifje + it (7.1)
j=1
where the factor loadings Ay, ..., A\r; are iid N (0, 1).

DGP2. Model with exogenous variables and unobserved factors

'
Yit = 0 + T134 31 + T2, 8o + Z Ajifie + Wit (7.2)
j=1
The covariates zj ;4 (k = 1,2) are (positively) correlated with the factors and extra factors as
follows .
Trit = 1+ pritii—1 + O ¢ifje + M, k=12,
j=1
where p,; ~ iid U (0.1,0.9) , ¢; ~ iid U (1,2) and the error term 1, ;; is iid (x*(1) — 1). We let
B1=1and By = 2.
For these two DGPs, we consider five different generations of the errors:

Case 1: Factors fit,..., frt are X2<1) and u;; are non-normally distributed errors with
u ~ did (x* (1) —1). (7.3)
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Case 2: Factors fi4,..., frt are x2(1) and uy are serially-correlated
Uit = Py Wit—1 + Vit (7.4)

where the idiosyncratic errors v;; are IIDN (0,0%’7;) with Ug’i being random draws from
(14 0.5x*(2)) and p, ; are i.i.d draws from U (0.2,0.8) for i = 1,..., N.

Case 3: Factors fi¢,..., fr+ are X2(1) and u;; are weakly cross-correlated
Uit = €3 + 0-3€i+1,t + 0.361‘_17,5, (7.5)
where €;; is iid N(0,0?) with 02 ~ (iid x? (1) +1)/2 fori=1,...,N + 1.
Case 4: Factors fiy,..., frt are X2(1) and u;; are both weakly cross-correlated and serially
correlated
Uit = €3 + 0-3€i+1,t + 0.361‘_17,5, (7.6)

where €;; is serially correlated as
€it = Pei€it—1 T Vit, (7.7)

where the idiosyncratic errors v;; are IIDN (0,0%0 with U%’i being random draws from
(14 0.5x?(2)) and p,; are i.i.d draws from U (0.2,0.8) for i =1,...,N.fori=1,...,N + 1.

Case 5: Serially-correlated factor: For DGP (7.1) and (7.2), we assume the factors are

generated by
it =ppilit—1+e, j=1,...,m (7.8)
where py; ~ iid U (0.2,0.8) and € is 4id N(0,1). The errors are generated by (7.3).

The treatment and control groups consist of 1 and N — 1 units, respectively. The treatment
starts to affect the treated units at time T+ 1. For these designs, we assume that the control
units to be N —1 = 10, 30, 50, 100 and the pretreatment time T' = 10, 30, 60, and post-treatment
periods m = 5. The number of replication is set at R = 1000.

To compare the accuracy of LP vs FB in estimating the treatment effects,!®> we consider
the LP (3.12) (labelled as LP'0 and the associated prediction averaging (5.14), labelled as
LP_ave!”), and the FB (3.6) (labelled as FB) as well as the Box-Jenkins approach to generate

univariate model (labelled as B-J)!8.

5For model with x;:, we only consider the semiparametric approach as in Hsiao and Zhou (2019), where
we first use the Bai (2009) least squares method to obtain B and use the residuals to estimate the part that

contribute to the counterfactuals.
161 the implementation of the LP approach when N is large and T is finite, we use the LASSO to select the

subset of control units y;, where the upper limit of control units selected is set to be %

"We consider prediction averaging (5.14) to generate predicted 31 745 only when N > T, and let G = 20 if
T =10 and G =5 if T'= 30 and 60.

8Time series modeling of 1+ using Box-Jenkins procedure assuming 31 follows an AR(1) model y1; = ¢y1:—1+

~h ~
vr and y1, 744 is predicted as g1,7+n = ¢ yi1, where ¢ denotes the OLS estimator of ¢.
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We consider two criteria for comparison: MAB and MSE. The MAB is the mean of absolute
bias for the true outcome and the counterfactuals at each post-treatment date point.!” The
MSE is the mean of sum of squared bias for the true observation and the counterfactuals at
each post-treatment date point.?°

The simulation results for estimating treatment effects are summarized in Tables 1-10 for
DGP1-2 with errors following (7.3)-(7.6) or serial correlated factors in (7.8) and for different
combinations of N and T The results confirm our analytic results that with finite V and T, the
LP method yields more accurate predictions than the factor approach in terms of estimation
bias and MSE, and both approaches are more accurate than using a univariate time series model
to construct the counterfactuals, because they make use of the cross-sectional information to

get more accurate predictions for post-treatment prediction of counterfactuals.

8 Empirical Application: German Reunification Revisited

In this section, we apply the LP and FB approaches to re-estimate the impact of the 1990 Ger-
man reunification, one of the most significant political events in postwar Europe. The German
Democratic Republic and the Federal Republic of Germany officially reunified on October 3,
1990. This event has been extensively investigated in the literature, to name a few, for instance,
Abadie et. al (2015) and Ferman et al (2020) evaluate the impact of the German Reunification
in 1991 on GDP per capita using the synthetic control approach.?! Here we re-estimate the
impact using the LP and FB approaches.

We use the Abadie et. al’s (2015) data (which is an annual country-level panel data con-
sisting 17 countries over the period 1960—2003) to compare the difference between LP and FB
methods to predict the counterfactuals after German reunification in 1990. We transform the
real GDP per capita into logarithmic figures. The German reunification occurred in 1990 (i.e.,

the intervention period), so the pre- and post-treatment periods are 1960 through 1990 and

Y MAB is measured as
R T+m

MAB——Z Z ly1e () — g1 (1)),

r=1t=T+41
with y1¢ (r) and g1: (r) being the actual and counterfactual of yi; in r-th replication. It represents the average
distance between true treatment effect and estimated treatment effect by my method. Thus, the smaller the

MARB is, the better performance the method is.

20 MSE is calculated by
R T+m

MSE—R DD @i () = e (r)?

r=1t=T+1
which is similar to MAB. The smaller it is, the better performance the method is.
21For a discussion of LP vs synthetic control method, see Wan et al (2018).
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1991 through 2003, respectively. We follow the same strategy in the simulation section for im-
plementation of the LP and FB approaches??:?3. The estimation results are provided in Figure
1 and Figure 2 below. Figure 1 plots both the pre-treatment within sample and post treatment
counterfactual paths of FB and LP approaches, and Figure 2 plots the estimated treatment
effects based on the difference between the actual and FB or LP constructed counterfactuals
together with the confidence intervals for the treatment effects estimated by both the LP and
FB approaches.?*

From these two graphs, we observe that: (1) The LP within sample fit dominates that of

22For the factor based approach, we use Bai and Ng’s (2002) information criteria to select the number of factors

and set the maximum number of unobserved factors as 5.
23 Another specification is to consider a panel model with both covariates and interactive effects as in Abadie

et al (2015), however, in the original dataset of Abadie et al (2015), there are lots of missing observations for
these included variables (namely, trade openness, inflation rate, industry share, schooling levels, and investment

rate). For illustration purpose, we just consider a pure factor specification for GDP per capita here.
24The confidence intervals of the treatment effects estimated by LP and FB are constructed as follows:

(1). 95% CI for LP approach:

[AM —1.96 X SE¢.p, A1y + 1.96 x SEt,Lp] ,

fort=1,...,m, where

—

SE} p =65+ §iVar (W)¥,

with

<

s)

- >

Il

Q>
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/ﬁ Il

<§1
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|

(2). 95% CI for FB approach:

fort=1,...,m, where

where

»aw
||M~1
VoS
N
2
|
>
>
)
N——

)\1 and A are the PCA estimators for A1 and A, respectively, and ) can be estimated by

% \

dA,
T ~ A~/
Zﬁ 3, with @ = § — AR,
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FB approach; (2) The FB estimates are very unstable due the instability of sample estimates
of f; with finite N; (3) The treatment effects estimated by LP approach are smooth and gently
trending downward over time. The estimates are negative and statistically different from no
treatment effects (=0) except for the first few years after reunification.2> On the other hand,
the estimated treatment effects using FB approach fluctuate widely over time. The absolute
value of treatment effects estimated by FB approach are much larger than those obtained from
LP approach. However, the estimated standard errors based on the FB approach is much larger
than those based on LP approach, as a consequence, the confidence intervals for FB approach
covers zero over time, while the intervals for LP approach do not cover zero, implying a small

negative effects.

#The results based on synthetic control method are similar (Abadie et. al (2015, Fig. 2 and 3)). For a
discussion of LP vs synthetic control method, see Wan et. al (2018).
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Figure 1: Actual and predicted GDP per capita in both pre- and post-treatment periods

Actual and Fitted GDP per capita for Germany from 1960-2003
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9 Concluding Remarks

Under the assumption that the observed data is generated by a factor model with known
factor dimension, we consider the factor approach and linear projection approach to construct
counterfactuals when either both N and T are large, or N finite, T' large or both N and T are
finite. We show that when post-treatment information on control units are available, they have
the same asymptotic efficiency when both N and T are large. When either N is finite and T is
large or both IV and T are finite, the linear projection approach dominates the factor approach
in terms of the bias and prediction error variance. When T is fixed and N is large, we propose
a generalized LP predictor through prediction averaging and show that the generalized LP is
more accurate than the FB predictor. Our simulations and an empirical analysis show that in
the case of using panel data to construct counterfactuals, the LP approach indeed dominates
the factor approach even the dimension of a factor model is known a priori. As a matter of

fact, the LP approach can be applied to a variety of data generating processes. The equation?’
Yit = E (it Xt) + 13, (9.1)

in a sense is a tautology, where X; can include y;, lagged y; or any covariates that satisfy
f(Xildie) = f(X¢) (e.g., eq(4.6)). Chen (2023) has shown that the LP is an attractive choice
against a wide class of matching or difference-in-difference estimators.

However, if post sample information on the control units are not available, it is not clear
which method will be more preferable. For post-sample prediction, the analogous FB or LP
predictions of 1 71 for post sample prediction of 1 74 depends on the predicted f'T+h,

Giren = MNfryn, h=12,...m, (9.2)
or predicted 91 744

Drah =W¥ren, h=1,2...m, (9.3)
respectively, where A; or W are estimated as the first row of A (which is estimated by (3.3)) or
(3.11) using within sample observations y;, t = 1,...,T. However, when no yrj are available,
there is no consensus about what is the BLUE predictor of f‘T+h or ¥r4p. For instance, f'T+h or
§T +n could be generated from time series modelling of f; or y; from estimated ft or observed
yi fort =1,...,T (e.g., Box and Jenkins (1976)) or some other methods (e.g., Goncalves and
Perron (2014), Goncalves et al (2017)). Under the assumption that

5\,1001) (fT+h) A1 = W Cov (§T+h> w, (9.4)

26Tf wy; is serially correlated, one may wish to expand the conditional set y; to include lagged y; to ensure

that n,, is serially uncorrelated.
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the analysis of LP vs FB when post-sample information of yr., are available remains applicable
for post-sample prediction. However, (9.4) is a strong assumption. Since the prediction error
variance of (9.2) or (9.3) depends on Var (f‘T+h> or Var (§T+h) as well as A, ¢ and Q. Without
such knowledge, it could be difficult to gauge which predictor is likely to yield more accurate

prediction.
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Table 1: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 1

LP LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.756 6.979 - - 2.032 10.165 2.054 67.239
30 1.375 4.005 - - 1.598  6.269 1.673  6.061
60 1.246 3.213 - - 1.479  4.697 1.705  6.624
T N =30
10 1.785 7.005 1.577 5.223 1.9149 8.754  2.238  27.625
30 1.436 4.154 - - 1.4291  5.317  2.074  9.065
60 1.230 2.997 - - 1.291 4.036 1975  8.128
T N =50
10 1.924 7.825 1.682 5.643 2.252 11.714 2411 12.296
30 1515 4.600 1.2v0 3.266 1.7801 8.232 2329 11.629
60 1.316 3.363 - - 1464  5.752 2231 10.042
T N =100
10 1.986 8.562 1.789 6.654 2.578 15.065  3.16 74.89
30 1476 4.228 1.551 4.662 1.889  9.151 24176 11.574
60 1.317 3.399 1.119 2445 1.682 7977 2444 12.613

Notes: 1. Refer to simulation section for definitions of ”LP”-"BJ” approaches to construct

counterfactuals. 2: Refer to simulation section for the calculation of MAB and MSE. 3: ”-” implies the

prediction averaging is not necessary for this NV and 7.
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Table 2: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 2

LP LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.590 4.752 - - 1.910 7.508 2313 305.1
30 1.283 2.827 - - 1.514 4.223 1.699 5.733
60 1.150 2.196 - - 1.397 4.022 1.641 5.613
T N =30
10 1.579 4489 1.694 5551 2.003 8740 2130 8.813
30 1.358  3.190 - - 1.458 4.612 1991 8.086
60 1.221 2.497 - - 1.333 4.336 1949 8.069
T N =50

10 1.663 5.099 1.713 5.665 2.450 14.461 2422 11.374
30 1373 3.218 1.129 2143 1.629 6.207 2.238 9.859
60 1.271 2.695 - - 1.393 4.280 2.165  9.546
T N =100

10 1.790 6.262 1.592 4.919 2.666 16.166 2.732 16.773
30 1.327 2932 1.312 2898 1921 9.037 2.435 11.460

60 1.243 2.645 1.038 1.829 1.582 6.184 2.472 12.072
See notes of Table 1.
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Table 3: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 3

LP LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1401 4.156 - - 1.718 6.632 2.051 167.37
30  1.009 1.699 - - 1.273  3.518 1.502  4.806
60 0.909 1.382 - - 1.152  2.875 1531 5.131
T N =30
10 1.475 4.156 1.246 3.168 1.763 7.620 2.199 26.922
30 1.092 1.991 - - 1.284 4.082 1.850 7.039
60 0.960 1.509 - - 1.137 3.281 1.808 6.888
T N =50

10 1.611 5.138 1.391 3.955 2.184 11.312 2.395 12.299
30 1.100 2.070 0.963 1.547 1.441 5.703 2.106  8.988
60 0.998 1.654 - - 1.266  4.423 2.053 8.724
T N =100

10 1.711 6.134 1.428 4.015 2536 15.773 2.847 74.714
30 1.164 2307 1.062 1.918 1.713 8.086 2.341 10.915

60 1.002 1.671 0.866 1.248 1.457 6.077 2.361 11.330
See notes of Table 1.

31



Table 4: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 4

LP1 LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.476 4.277 - - 1.768 6.764 1979 252.84
30 1.082 1.987 - - 1.336 3.824 1.524 5.025
60 0.958 1.545 - - 1.188  3.075 1.561  5.272
T N =30
10 1.576 4.607 1.540 4.627 1.896 7.666 2.044 9.179
30 1.153 2.215 - - 1.288 3.653 1.809 7.032
60 0.982 1.596 - - 1.102 2551 1.836  7.305
T N =50
10 1.663 5480 1.605 5.586 2.279 12.486 2.488 51.758
30 1.202 2.505 1.009 1.699 1.526 6.595 2.130 9.580
60 1.032 1.739 - - 1.288  4.440 2.131  9.319
T N =100
10 1.724 6.027 1.464 4.206 2.531 14.640 2.578 13.806
30 1.198 2.481 1.187 2326 1.816 8.887 2.405 11.948
60 1.066 1.867 0.902 1.329 1.462 5.922 2334 11.097

See notes of Table 1.
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Table 5: Simulation results of treatment effects using LP and Factor approaches for DGP1 with Case 5

LP1 LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.786 6.875 - - 1.993 8.366 1.985 15.542
30 1.347  3.653 - - 1.584 5.247 1.664 5.207
60 1.241 3.056 - - 1.422 4.072 1.618 4.926
T N =30
10 1.760 6.152 1.501 4.299 1844 6.752 2.153 14.002
30 1413 3.773 - - 1.363  3.605 1.887  6.357
60 1.281 3.276 - - 1.270  3.530 1.908 6.772
T N =50

10 1.980 7.488 1.689 5.349 2231 9.652 2483 14.138
30 1479 4.193 1325 3.406 1.643 5.756 2.165 8.057
60 1.311 3.470 - - 1.352 3.880 2.160 8.255
T N =100

10 1.981 7.653 1.695 5.063 2.578 12.573 2.609 11.873
30 1489 4.291 1.503 4.139 1.890 7.177 2404 10.059

60 1.339 3.403 1.158 2.749 1.516 4.964 2.336 9.497
See notes of Table 1.
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Table 6: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 1

LP LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.807 7.464 - - 2.092 10.103 5.453 76.04
30 1.359 3.830 - - 1.606  5.530 5.062 60.087
60 1.230 3.072 - - 1.481  5.040 4.966 61.192
T N =30
10 1.810 7.407 1.556 5.323 19613 9.599 6.559 104.01
30 1456 4.204 - - 1.4863  5.255 6.093 85.636
60 1.284 3.168 - - 1.320 4.181 6.153 89.765
T N =50

10 1.892 7.561 1.706 5.302  2.209 10.521 7.468 136.39
30 1478 4.400 1.2v5 3.106 1.717 7436 7.265 127.1
60 1.329 3.539 - - 1447 5274 7.105 1154
T N =100

10 2.109 9.629 3.604 67.617 2.746 17.616 8.806 186.54
30 1.494 4424 1.557 4.664 1947 9424 8169 150.92

60 1.338 3.475 1.155 2.731 1.690 7.433 7.951 135.01
See notes of Table 1.
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Table 7: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 2

LP LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.672 5.238 - - 1.988 7985 5272 82.415
30 1.293 2905 - - 1.503 4.334 5.147 66.691
60 1.150 2.217 - - 1.383  3.747  4.977 63.807
T N =30
10 1.654 5.151 1.750 6.144 2163 10.793 6.317 92.148
30 1.354 3.114 - - 1.423  4.495 6.119 87.472
60 1.203 2.440 - - 1.268 3.403 6.038 86.754
T N =50

10 1.671 5.265 1.782 6.619 2.341 12.638 7.284 127.47
30 1.328 2997 1.157 2.261 1.676 6.957 7.405 125.50
60 1.263 2.653 - - 1.424 4.887 6.934 108.17
T N =100

10 1.831 6.745 1.589 4.878 2.754 17.152 8.793 169.43
30 1.330 3.013 1319 2911 1.866 8.489 7.831 132.02

60 1.257 2.634 1.090 1.987 1.628 6.603 8.050 136.90
See notes of Table 1.
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Table 8: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 3

LP LP _ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.434 4.099 - - 1.763 6.799 5277 71.171
30 1.041 1.828 - - 1.293  3.506 4.793 56.884
60 0.933 1.443 - - 1.176  2.876 4.873 60.302
T N =30
10 1.453 4.140 1.285 3.441 1.797 8.080 6.514 100.56
30 1.071 1.940 - - 1.259 3.871 6.262 96.885
60 0.937 1.446 - - 1.071 2515 6.200 94.571
T N =50

10 1.564 4.950 1.400 3.904 2139 10.779 7.748 137.77
30 1121 2.120 0973 1.608 1.540 6.433 6.933 109.35
60 0.980 1.591 - - 1.306 4.686 6.997 115.08
T N =100

10 1.685 5.851 1.446 4.312 2563 16.14 8.422 160.36
30 1.140 2.187 1.108 2.191 1.729 7.711 8.038 136.93

60 0.996 1.651 0.883 1.286 1.495 6.342 8.130 149.42
See notes of Table 1.
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Table 9: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 4

LP1 LP _ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.538 4.926 - - 1.907 7.567 5.093 63.818
30 1.088 2.035 - - 1.323  3.641 4.824 58.395
60 0.966 1.564 - - 1.182  2.885  4.857 63.187
T N =30
10 1.556 4.975 1.596 5.087 1.951 8.730 6.293 92.523
30 1162 2.317 - - 1.318 4.680 6.126 89.728
60 0.995 1.603 - - 1.195 3.870 6.115 85.686
T N =50

10 1.663 5.430 1.601 5.041 2.209 10.775 7.196 122.57
30 1.1v4 2314 1.018 1.774 1.466 5.308 7.119 114.34
60 1.029 1.782 - - 1.284 5409 7.001 112.98
T N =100

10 1.767 6.375 1.398 4.105 2.524 14.575 8.392 160.55
30 1.198 2479 1.173 2320 1.842 9.219 8.342 149.73

60 1.064 1.855 0.900 1.366 1.457 6.282 7.947 137.41
See notes of Table 1.
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Table 10: Simulation results of treatment effects using LP and Factor approaches for DGP2 with Case 5

LP LP_ave FB B-J

MAB MSE MAB MSE MAB MSE MAB MSE
T N =10
10 1.820 7.041 - - 2.072  8.693 4.848 45.832
30 1.357 3.704 - - 1.585  5.121  4.357 34.929
60 1.198 2.891 - - 1.456 4.454 4.329 36.21
T N =30
10 1.798 6.309 1.530 4.354 1904 7.292 5468 53.377
30 1426 3.951 - - 1.385  3.910 5.348 50.234
60 1.204 2.892 - - 1.198  3.161 5.235 48.394
T N =50

10 1915 7.232 1.611 4.741 2233 9.516 6.447 80.298
30 1469 4.383 1.303 3.152 1.587 5.207 5.730 59.734
60 1.300 3.361 - - 1.350 4.014 5.739 57.782
T N =100

10 2.058 7.894 1.794 6.024 2573 12.544 6.976 89.892
30 1479 4.188 1.516 4.162 1.836 6.899 6.604 75.857

60 1.306 3.235 1.129 2.542 1.508 4.522 6.581 75.945
See notes of Table 1.
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Appendix: Mathematical Proofs
This appendix provides the proofs that are omitted in the paper.

A.1 Equivalence of LP and FB when c # 0 and (N,T) — oo

When ¢ # 0 (i.e., uj; is weakly cross-correlated), instead of directly comparing the prediction

error variance of (3.12) and (3.6), we consider the transformed model

vie = yi—cQ7'y
= )\llft + Ut — C/Q_l(Aft + ﬁt)
= AE + ol (A1)

where A] = A\ — ANQ~lc and ul, = uy — ¢/Q ;. Then

wr 0_*2
<ﬁltt> (uTtvﬁ;)] - < (; g > ’ (AQ)

E

where 032 = 0?2 — ¢/Q " lc.

The FB predictor of yj, is

~ /A

U = A &, (A.3)
and the LP predictor of yj; is
9= w"'F, (A.4)
where A] is the PCA estimates of A* = (A%, Ay, -+, Ay)’, and W* is
1

T
W= (Z .m;) > Fuwi (A.5)
t=1 t=1

When (N,T) — oo, A —, AL, fi =, f; and w* —, w*. Both (A.3) and (A.4) are unbiased
predictors of v}, = y1; — ¢/Q~'y; with same asymptotic variance. Since 71; and §;; are just
95, +c/'Q71y; and §f, + Q7 1y, the FB and LP predictors have the same asymptotic efficiency

as (N,T) — oo following the derivation when ¢ = 0.

A.2 Dominance of LP and FB when c # 0 for 7' — oo and N is finite

When ¢ # 0, the LP is equivalent to predicting y1 744 by 91,741 = W¥$rn (where W* is given

by (A.5)) with prediction error y1 ryn—01,74n = u17T+h—c’Q_1ﬁT+h, and Var (uLTJrh — C’Q_lﬁT+h) =

Var (uyryn|Grsn) < Var (ugr4) . Similar manipulation of (A.2) can be performed when N
is finite and 7" — oco. Then just as shown in subsection 5.2, LP predictions have smaller error

variance than FB predictions.
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A.3 Derivation of FB Prediction Error Variance When both N and 7T are
finite

It is shown by Anderson (1963), Bai (2003) that (A - A) or (f‘ - F) is asymptotically normally

distributed when T" — oo and g — 0, or N — oo and g — 0. However, with finite N and
T, the estimators of A; and fr,, are biased. Following Bai and Ng (2002) and Bai (2003), we
have the identity

(T Zym) A=AWNVr), (A.6)

where V7 is an r x 7 diagonal matrix consisting of the first r eigenvalues of & Zt 1 Yy arranged

in decreasing order. Then

T
AN = (NVT)_l A/ <; Z (Aft + ut) (Aft + ut)'>
t=1

“ T R T
1 (HAn) (; > ftfg> N (FAA) 32 fp + A ( > utft>

-V, =1 AT t=1 (A.7)
—I—%A/% > wu
t=1
Similarly, we can write
A= (NV) LA (AE AN+ Q) , (A.8)

where V is the r x r diagonal matrix consisting of the first r eigenvalues of F (y;y;) arranged
in decreasing order and Q = E (u;u}) .
Using the facts that Vo -V = 0O, <ﬁ) . Zthl wu,—Q =0, (T) T Z,‘f (Bf =3 =

0, (ﬁ) ,and ([\ _ A) N =0, (%) _ then
T
N-N=0, (T;/2>+V‘ < ) thut+ i <;Zutf{> A
t=1

Let A=A+ A — A, then E (&,A’ <% > utft’> A/> =0 and
=1

T
1 (1 1 4 1
~ (A1) (T ;1: utft’) N o= < (FF)F (u uy) (T ) :utﬂ) N

(A.9)

A A T
when A is estimated by A’ = (F/ ) Z y;.2

2"We ignore the higher order bias term due to the estimated f,.
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Under Assumption 1-3, from (A.9), we have

T
. 1., (1
_ 025\;10% _ 1
= TN_O<T>'

Similarly, one can show that the bias of f'T+h is O (%) . Ignoring the cross-product term in
(5.21), which is O (ﬁ) , the bias of predicting y1 74, by 91,740 = 5\/1f'T+h is biased of order
0] (%) +0 (%) . When N and T are finite, % or % is likely to be a nonzero constant.
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