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 Econometrica, Vol. 63, No. 3 (May, 1995), 545-565

 PERFECT EQUILIBRIA IN A NEGOTIATION MODEL

 BY LUTZ-ALEXANDER BUSCH AND QUAN WEN1

 Rubinstein's alternating-offers bargaining model is enriched by assuming that players'
 payoffs in disagreement periods are determined by a normal form game. It is shown that
 such a model can have multiple perfect equilibria, including inefficient ones, provided
 that players are sufficiently patient. Delay is possible even though there is perfect
 information and the players are fully rational. The length of delay depends only on the
 payoff structure of the disagreement game and not on the discount factor. Not all feasible
 and individually rational payoffs of the disagreement game can be supported as average
 disagreement payoffs. Indeed, some negotiation games have a unique perfect equilibrium
 with immediate agreement.

 KEYWORDS: Bargaining, negotiation, repeated games, delay.

 1. INTRODUCTION

 STAHL (1972) AND RUBINSTEIN (1982) were among the first to investigate
 formally the dynamic and strategic aspects of bargaining situations. As in the
 earlier cooperative treatment of bargaining by Nash (1950), their models ab-
 stract from any possible relationship the bargaining partners may have apart
 from the bargain over a jointly owned surplus. The focus is solely on the
 bargaining process itself, modeled as a sequence of offers and responses. Payoffs

 are determined only by the agreement which is reached, not by the history of
 play. In contrast, the repeated game literature has focused on a repeated

 strategic relationship with periodic payoffs (e.g., Benoit and Krishna (1985) or
 Fudenberg and Maskin (1986)). In a repeated game, the players' actions in any
 one period directly determine their payoffs in that period, and therefore the
 payoffs from the game depend on the entire history of play.

 The present paper provides a model which combines the structure of a
 repeated game with that of an alternating-offers bargaining game. The model
 describes a situation in which two players bargain over the allocation of a

 constant stream of periodic surpluses of known and fixed value via a (possibly
 infinite) sequence of offers and counter-offers. As in bargaining, an accepted
 offer constitutes a binding agreement on an allocation. In contrast to most
 bargaining models, however, after any rejection of an offer the players play a
 one-shot game to determine their payoffs for the "disagreement period." This
 "disagreement game" summarizes any strategic relationship between the players
 apart from the bargaining process itself. As in repeated games, contracting on
 the moves cannot be done in the disagreement games. Although this model can
 equally well be viewed as a repeated game with a valuable exit option, and thus

 1We wish to thank Ignatius Horstmann and Philip Reny for their comments, patience, and
 encouragement. Valuable comments were also received from Mike Peters, Chantalle LaCasse,
 Arthur Robson, Abhijit Sengupta, Alan Slivinski, and various seminar audiences. Extensive com-
 ments by a co-editor and three anonymous referees greatly improved the paper.
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 546 LUTZ-ALEXANDER BUSCH AND QUAN WEN

 an endogenous time horizon, it will be presented in the bargaining interpreta-

 tion outlined above.

 The economic situation we have in mind is that of two parties involved in a

 repeated relationship which can be transformed by mutual agreement. This

 situation arises, for example, during the horizontal or vertical integration of two
 firms, or during contract renewals. The traditional bargaining and repeated

 game models do not capture this type of situation well, since bargaining models

 ignore the strategic disagreement payoffs, while repeated game models do not

 take the possibility of a binding agreement into account.
 The question of how the disagreement payoff of a bargaining game is

 determined has been modeled before. Nash (1953) analyzed the question of
 endogenous disagreement payoffs within the cooperative framework. He ex-

 tended his original analysis of the bargaining problem (Nash (1950)) by letting
 players' disagreement payoffs be determined by a normal form game, played if

 disagreement occurs. More recently, papers by Fernandez and Glazer (1991)
 and Haller and Holden (1990) examine a noncooperative model of firm-union
 wage bargaining in which the union's decision to reject the firm's wage
 offer-delay-is distinct from the union's decision to forego the old wage for

 one period-strike. They conclude that this game has multiple subgame perfect
 equilibria, some of which feature delay and strike before an agreement is
 reached.

 Our results reinforce those of Fernandez and Glazer and of Haller and

 Holden, and provide further insight into the interplay of the forces active in a
 bargaining process with those deriving from the repeated game aspects of the
 model. Strategic interaction outside the bargaining process per se will, in

 general, generate multiple equilibria. Some of these equilibria are inefficient,
 even though there is perfect information.2 Our model demonstrates that such
 inefficiency may arise even if the disagreement game has uniformly small payoffs
 relative to agreement. On the other hand, our results show that the set of

 disagreement game payoffs which can be supported in a subgame perfect
 equilibrium are markedly restricted vis-a-vis the folk theorem with the disagree-
 ment game as stage game. Indeed, for some nontrivial disagreement games only
 the Nash equilibrium payoff vector of the disagreement game can be supported
 in disagreement periods. This in turn implies that immediate agreement is the
 unique equilibrium outcome in the bargaining process, and thus for the negotia-
 tion game. This result can occur even though some payoffs in the disagreement
 game are on the bargaining frontier. Finally, we show that only the structure of
 the disagreement game, and not the gains from agreement, determines multi-
 plicity and the range of payoffs that can be supported.

 2 Inefficiency in bargaining has previously been explained as a signaling device under imperfect
 information. See, for example, Admati and Perry (1987), Gul and Sonnenschein (1988), Chaterjee
 and Samuelson (1987), Ausubel and Deneckere (1989), or the survey by Wilson (1987).
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 PERFECTr EQUILIBRIA IN A NEGOTIATION MODEL 547

 What is the intuition behind these results? Multiple equilibria in standard
 repeated games are supported by history-dependent strategies. These allow for

 a player to be punished for deviations from proposed equilibrium actions,
 thereby deterring deviations. However, history-dependent strategies do not have

 the same power in Rubinstein bargaining, as is clearly demonstrated by the

 proof of Rubinstein's (1982) result by Shaked and Sutton (1984). The reason is

 that a player will always accept any offer which yields at least as much as
 rejecting it, since acceptance cannot be punished. The player making the offer
 therefore can capture all of the surplus from immediate agreement. Along the
 path which leads to a player's worst payoff, this player's first offer is thus
 accepted and ends the game. Together with the stationary structure of the
 bargaining game, and the fact that a player who deviates from his own punish-
 ment can only be punished by restarting the same punishment, a unique
 equilibrium results. As we show, this argument continues to hold for any given
 sequence of disagreement payoffs in a bargaining game. In a negotiation game,
 when disagreement payoffs are endogenous, this force towards uniqueness is
 counteracted by the presence of the repeated game element provided by the
 disagreement game. The disagreement game allows for a player's payoff in
 disagreement periods to vary in response to past actions. Only if it is possible to
 support multiple disagreement payoffs after rejections, can multiple equilibrium
 agreements in the bargaining process also be supported.

 The question arises why the presence of the disagreement game does not lead
 to a result akin to the folk theorem? In particular, why cannot any feasible and
 individually rational payoff of the disagreement game be supported as equilib-
 rium disagreement payoff? This restriction derives from the bargaining process.

 Since for extreme payoffs the bargaining process will end the game immediately,
 the disagreement game is at most played once, and any punishments and
 rewards for behavior in the disagreement game have to be applied in the
 immediately following offer. The bargaining process thus rules out a distant
 reward phase, as in Benoit and Krishna (1985). On the other hand, it is possible
 to make offers contingent on the outcome of the previous disagreement game,
 so that some payoffs which are not Nash can be supported. Since the bargaining
 frontier is negatively sloped, there is a one-to-one tradeoff between players'
 payoffs, however. Due to the fact that a player's punishment becomes more
 severe the higher his opponent's disagreement payoff from rejecting the pun-
 ished player's offers, the important magnitude is the opponent's highest dis-
 agreement payoff after taking any compensation which may be necessary into
 account. This payoff is determined only by the structure of the disagreement
 game, not the position of the bargaining frontier.

 The outline of the paper is as follows. Section 2 presents the model formally,
 while Section 3 presents two simple examples of negotiation games with unique
 and multiple equilibria. Section 4 contains the formal analysis and results.
 Section 5 concludes. An appendix provides proofs and formal descriptions of
 equilibrium strategies.
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 548 LUTZ-ALEXANDER BUSCH AND QUAN WEN

 2. THE NEGOTIATION MODEL

 Two players, 1 and 2, are bargaining over the allocation of a periodic surplus.
 Each player in turn proposes a partition, and his opponent may accept or reject
 this offer. The negotiation game ends if an agreement is reached with an
 accepted offer. The players then forever share the stream of surpluses according
 to the agreement. After a rejection, and before the rejecting player makes a
 counter-offer in the next period, the players play a one-shot game, called the
 disagreement game, to determine their payoffs in the current period. This
 process then repeats, possibly indefinitely.

 Formally, let the value of the surplus equal one in every period. As in
 Rubinstein (1982), a partition of the surplus is identified by a number in the unit
 interval, b E [0, 1], such that b is player l's share and (1 - b) is player 2's share
 of the surplus. Acceptance and rejection of an offer are denoted by "Y" and
 "N," respectively. The disagreement game is modeled as a two-player game in

 normal form, G = {A,, A2, ul(*), u2(*)}, where Ai is the set of player i's actions
 in the disagreement game, and uif(): A =Al XA2 -* R is player i's payoff
 function. The set A is also interpreted as the set of outcomes of the disagree-
 ment game. In this paper, we assume:

 (A-1) A1 andA2 are nonempty and compact;

 (A-2) ul( *) and U2( *) are continuous, and u(A) is convex;

 (A-3) the disagreement game has at least one Nash equilibrium;

 (A-4) each player's minimax payoff is zero;

 (A-5) ul(a) + u2(a) < 1 for all outcomes a eA of the disagreement game.

 The disagreement game G will satisfy assumptions (A-4), (A-2), and (A-3), for

 example, if we assume that Al and A2 consist of probability mixtures over finite
 pure action sets, that players can choose their actions contingent on the
 outcomes of a public randomizing device, and that the payoff functions are the
 corresponding expected payoff functions. Assumption (A-2) implies that any
 feasible payoff vector of the disagreement game, in terms of expected value, can
 result from a one-shot play. Assumption (A-5) formalizes the notion that
 agreement is in both players' interest, that is, agreement weakly dominates
 disagreement. Finally, we adopt the convention that player 1 makes offers in
 odd periods while player 2 makes offers in even periods. A schematic represen-
 tation of the negotiation game is given in Figure 1.

 An outcome path of the negotiation game consists of all disagreement game
 outcomes before agreement and the partition in the agreement. An outcome
 path is denoted by rr(T) =(a', a2,... , aT-1 bT,{Y}) where at is the disagree-
 ment game outcome in period t for 1 < t < T, and bT is the partition agreed on
 in period T. By convention, T is set to infinity in an outcome path in which the
 pl-ayers never reach an agreement. In the negotiation game, a player receives a
 payoff in every period, with or without agreement. The payoff derives from the
 disagreement game before an agreement is reached, and from the agreement
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 iui odd period 6 even period
 FIGURE 1.-Schematic of the negotiation game.

 itself thereafter. Players' payoffs from the negotiation game are therefore the
 sum of their payoffs in all periods, discounted by a (common) discount factor
 8 E (0,1). Player l's and 2's average (discounted) payoffs from an outcome path
 Ir(T) for T < oo are given by, respectively,

 ((1 -) E t8l1ul(at)) + aT-lbT

 and

 T-1

 ((1 8) E8 tlu2(at) + 8T1 ( - bT).
 t=l

 The players' payoffs from an outcome path without agreement, denoted by

 lr(oo), are given by (1 - S)Et=18'-1ui(at), for i = 1,2.
 In what follows, we will assume that each player can observe all past actions,

 including those in the disagreement game. This assumption is restrictive if the
 actions in the disagreement game involve probability mixtures. In contrast to the
 repeated game model of Fudenberg and Maskin (1986), the observability of
 probability mixtures over actions is necessary to our results as presented,
 however. We will discuss this issue further in Section 5. Under this assumption,
 we have the following specification of histories and strategies. There are three
 types of history in the negotiation game. The first type is the history at the
 beginning of a period, which consists of all rejected offers and disagreement
 game outcomes to date.3 The set of histories of the first type in period t is
 H1(t) = [0, 1]t-1 xAt'- 1, for t > 2, while H1(1) = 0 denotes the null history at
 the beginning of the game. The second type is the history after a new offer has
 been made in a period, H2(t) = H1(t) x [0, 1]. The third type is the history after
 rejection, H3(t) = H2(t) x (N).

 A strategy fi for player i is a function which assigns an appropriate action to
 every possible history. For i = 1, 2,

 00

 fi: U [Hl(t) UH2(t) UH3(t)] -Aiu [0,1] u {Y,N} Uq.
 t=l

 3Since the game ends with an accepted offer, we do not define histories that have acceptances,
 and thus omit the sequence of rejections from the definition of a history.
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 550 LUTZ-ALEXANDER BUSCH AND QUAN WEN

 In particular,

 fl: H1(t) [0,1], fl: H2(t) q, fl: H3(t) --A1, for odd t;

 f1: H1(t) q, fl: H2(t) {Y, N}, fl: H3(t) --A1, for even t;

 f2: H1(t) q, f2: H2(t) -{Y,N}, f2: H3(t) -A2, for odd t;

 f2: H1(t) > [0,1], f2: H2(t) q, f2: H3(t) -*A2, for even t.

 Here q denotes that a player cannot take an action, and it will be omitted in

 future specifications of particular strategies. A strategy profile f = (fl, f2) is a
 strategy for each player, and gives players' instructions on how to play the
 negotiation game, conditional on history. For example, in some odd period t,

 f1(h1(t)) is player l's offer, f2(h2(t)) is player 2's response to player l's offer,
 and f(h3(t)) is the disagreement game outcome. Any strategy profile induces a
 unique outcome path, and players' payoffs from a strategy profile are calculated
 directly from the induced outcome path in the negotiation game.

 3. MOTIVATING EXAMPLES

 Before the formal analysis of the negotiation game, we provide two simple
 examples which highlight the issues which have to be faced. For the first
 example, consider a negotiation game with the disagreement game shown in
 Figure 2. This disagreement game is a prisoners' dilemma game, which has a
 unique Nash equilibrium, (B, R), that yields the minimax payoff vector (0, 0).

 1\2 L R

 T (0.4, 0.4) (-0.2, 0.6)

 B |(0.6, -0.2) (0, 0)

 U2

 (0,1)

 (-.2 0.6)

 FIGURE 2

 (0.6, -.2)

 FIGURE 2
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 Consider the following strategy profile of the negotiation game. After any
 rejection the players play the Nash equilibrium (B, R) of the disagreement
 game. The disagreement payoff vector is therefore (0,0) for all disagreement
 periods. The equilibrium proposals will thus be the same as those in the perfect
 equilibrium of Rubinstein's bargaining game with a disagreement payoff of

 (0, 0), in which the proposing player receives a share of 1/(1 + 8). Such an offer
 will be accepted in the first period, since the responding player either receives a

 share of 8/(1 + 8) from the first period on, or a share of 1/(1 + 8) from the
 next period on, which also leads to an average payoff of 8/(1 + 8). Should an
 offer be rejected, no player would deviate from (B, R) in the disagreement
 period, since (B, R) is the Nash equilibrium of the disagreement game and the
 continuation strategies are unaffected by a deviation. There are neither current
 nor future gains available from a deviation in the disagreement game, therefore.
 Immediate agreement on Rubinstein shares thus is a perfect equilibrium of the
 negotiation game.

 The negotiation game also has other perfect equilibria, however. Necessarily,

 in these equilibria the players will not play the Nash equilibrium of the

 disagreement game after all rejections. Consider the following strategies. The

 strategy profile specifies the Nash outcome (B, R) only after rejections by player
 1, and specifies the outcome (T, R) after rejections by player 2.4 Subgame
 perfection requires that player 1 should not have an incentive to deviate from
 his dominated strategy T in the disagreement game. In order to support player
 1 playing T, player 2 would therefore have to compensate player 1 in the next

 proposal. As long as player 2 offers b2 + 0.2 * (1 - 8)/8 if player 1 played T and
 b2 otherwise, player 1 will be indifferent between playing T and B. These
 proposals in turn imply that player 2 will accept player l's proposal b1, if

 (1-b1)=0.6(1-8) +8[1-b2 -0.2 , ]

 =0.4(1-8) +8(1-b2).

 Player 1, in turn, will accept player 2's offer b2 if b2= 8bl, since after a
 rejection player 1 has a disagreement payoff of 0 and receives the share b1 from

 the next period on. Together, these equalities imply that b1 = 0.6/(1 + 8) and
 b2= =b1. Under this strategy profile player 2 obtains higher shares than from
 Rubinstein shares. As long as player 2 is patient enough, this fact can be
 exploited to deter deviations by player 2 from these strategies, if the perfect
 equilibrium with Rubinstein shares is implemented as soon as player 2 deviates.

 The above strategies improve player 2's payoff by increasing his disagreement
 payoff after rejecting player l's offers above his minimax payoff. If no disagree-
 ment game outcomes which do so are available, then it is also impossible to
 increase player 2's share. This will be the case if the difference between player
 2's payoff and his minimax payoff is less than player l's gain from deviation in

 4 The idea of alternating between disagreement payoffs in order to obtain extreme game payoffs
 is also exploited in Fernandez and Glazer (1991) and Haller and Holden (1990).
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 1\2 L R

 T (0.4, 0.4) (-1.1, 0.9)

 B (0.9, -1.1) (0, 0)

 U2

 1..9) (0, 1)

 (.9, -1.1)
 FIGURE 3

 all outcomes of the disagreement game. Such is the case in the second example.
 Consider the disagreement game illustrated in Figure 3. This disagreement
 game is also a prisoners' dilemma, but in this game the difference between
 either player's payoff and his minimax payoff does not exceed his opponent's
 deviation gain. This is true for all actions in the disagreement game, including
 all probability mixtures over actions. Thus, it never pays player 2 to compensate
 player 1 for not deviating in the disagreement game, and vice versa. As a result,
 the only disagreement game outcome which can be supported in a disagreement
 period is the Nash equilibrium outcome of the disagreement game, and the
 negotiation game in turn has a unique perfect equilibrium. This uniqueness is
 robust to small perturbations in the disagreement game payoffs.5

 4. SUBGAME PERFECr EQUILIBRIUM

 In this section, we characterize the set of (subgame) perfect equilibria (Selten
 (1975)) of the negotiation game. In the spirit of the folk theorem for repeated
 games, we employ the idea of "equilibrium switching." A player who does not
 follow a proposed outcome path in the negotiation game will be "punished" by
 playing an equilibrium in which the player has a lower payoff than in the

 sIn particular, if all payoffs are perturbed by some small amount, the game will still be a
 prisoners' dilemma game with the Nash equilibrium giving rise to the mutual minimax payoffs.
 Furthermore, all deviation gains will continue to exceed the other player's payoff by at least the
 amount of the new minimax payoff-and thus the maximal payoff a player can obtain is his minimax
 payoff, just as before the perturbation.
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 PERFECT EQUILIBRIA IN A NEGOTIATION MODEL 553

 proposed outcome path. We adopt the following three steps in order to

 characterize the set of equilibrium payoffs. First, we investigate the impact of a
 given sequence of disagreement payoffs on the perfect equilibrium outcome of
 an alternating-offers bargaining game. This analysis provides intuition on the
 structure of perfect equilibrium strategies in the negotiation game. As a corol-
 lary, we obtain the existence of perfect equilibrium in the negotiation game.
 Then, we derive a player's lowest equilibrium payoff in the negotiation game.
 Finally, we show that any feasible payoff vector of the negotiation game in
 which each player receives more than his lowest equilibrium payoff can be
 supported as the average payoff of a perfect equilibrium of the negotiation
 game, if players are sufficiently patient.

 4.1. Nonstationary Disagreement Payoffs in Bargaining

 It is well known that Rubinstein's (1982) bargaining game with discounting
 has a unique perfect equilibrium in which equilibrium offers are stationary. A
 similar result carries over to a bargaining game with any given nonstationary
 sequence of disagreement payoffs, as long as agreement dominates disagree-
 ment. In order to build some intuition on this point, we assume for the moment
 that players in the negotiation game are irrevocably committed to playing an
 outcome at E A of the disagreement game in period t. The negotiation game
 thus becomes a bargaining game with a nonstationary sequence of disagreement
 payoffs. The following proposition asserts that such a bargaining game has a
 unique perfect equilibrium payoff and that the equilibrium offers are history
 independent.

 PROPOSITION 1: If players are precommitted to play at EA in the disagreement
 game in period t in the absence of an agreement, when V8 and i = 1,2, the
 negotiation game in which player i proposes first has a perfect equilibrium in which

 player i's offer bi is accepted in the first period, where

 1 0
 (1) b, = 1 + (1 - 8) E 82j[8u1(a 2j+2) U2(a 2j+l)],

 1 + j=0

 (2) b2 = 1 + (1 - 8) E 82j[ul(a2j+1) -u2(a2j+2)].
 1 + a j=O

 Any other perfect equilibria are payoff equivalent.

 The proof of this proposition closely follows Shaked and Sutton (1984) and is
 omitted. The possible multiplicity of equilibrium strategy profiles is introduced
 solely by the possibility that the disagreement payoffs are efficient (i.e., u1(at) +
 u2(at) = 1) in the first period under consideration, and thus both players are
 indifferent between immediate settlement and delay of one period. Proposition
 1 highlights two important points about the bargaining process in the negotia-
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 tion game. The first is that any fixed sequence of future disagreement payoffs
 determines a unique perfect equilibrium offer which is acceptable. The perfect
 equilibrium based on any fixed sequence of disagreement payoffs is therefore
 efficient. Assumption (A-5), that agreement weakly dominates disagreement, is
 crucial for Proposition 1 to hold. The equilibrium offer which just leaves the
 responding player indifferent between accepting and rejecting would not be
 made, if the proposing player would be worse off from having such an offer
 accepted rather than if his offer were to be rejected. Such a situation arises if
 disagreement dominates agreement, however.

 The second point concerns the "bargaining power" which the disagreement
 payoffs bestow on the players. As equations (1) and (2) in Proposition 1 show,
 the equilibrium offers only depend on players' disagreement payoffs in periods
 when they are responding to an offer, not when they are making an offer. This is
 due to the fact that a responding player accepts all offers in which his payoff is
 not less than that from his disagreement payoff in the current period and his
 continuation payoff from the next period onward. Therefore, the higher his
 disagreement payoff, the higher must be his payoff in an acceptable offer. The
 proposing player, on the other hand, collects all of the residual surplus available
 from immediate agreement, which (weakly) exceeds his payoff if his offer is
 rejected by assumption (A-5), and his disagreement payoff is therefore irrele-
 vant. Together, these two points show that any scope for varying the perfect
 equilibrium payoffs of the negotiation game must derive solely from the pres-
 ence of endogenous disagreement payoffs. Only the ability to switch among
 different path's of future disagreement game payoffs can lead to multiple
 equilibrium payoffs in the negotiation game.

 An immediate implication of Proposition 1 is that playing a Nash equilibrium
 of the disagreement game can be supported as part of a perfect equilibrium in
 the negotiation game. The reason is that there exist no profitable deviations
 from a Nash equilibrium, and that continuation payoffs can be history indepen-
 dent. Furthermore, since the same argument implies that any sequence of Nash
 equilibrium payoffs of the disagreement game determines a perfect equilibrium
 of the negotiation game, the negotiation game will have multiple perfect
 equilibria if the disagreement game has multiple Nash equilibrium payoffs. We
 summarize these results in the following corollary.

 COROLLARY 1: Suppose that at is a Nash equilibrium of the disagreement game

 G for all t > 1. Then for all a E (0, 1), the negotiation game in which player i
 proposes first has a perfect equilibrium such that player i's offer bi is accepted in
 the first period for i = 1, 2, where b1 is given by (1) and b2 by (2). In particular, if
 a* is a Nash equilibrium of G, then for all 8 E (0,1), the negotiation game in
 which player i proposes first has a perfect equilibrium such that player i's offer
 bJ u(a*)] is accepted in the first period for i = 1, 2, where

 bi[u(a*)I = 1 + +ul(a*) -u2(a*)
 1 + 8
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 PERFECT EQUILIBRIA IN A NEGOTIATION MODEL 555

 and

 b2[u(a*)] = 8 + ul(a*) - U2(a*)

 4.2. Punishment Equilibria

 Define an (optimal) punishment equilibrium for a player to be a perfect

 equilibrium in which this player receives his lowest perfect equilibrium payoff.

 Since the arguments are analogous for both players, only player l's punishment
 equilibrium is derived explicitly in what follows. We first find a lower bound of
 player l's perfect equilibrium payoffs as a function of the discount factor, and

 then construct a perfect equilibrium in which player l's payoff equals this lower
 bound if the discount factor is large enough. The constructed perfect equilib-

 rium is therefore player l's punishment equilibrium.

 As in the simple penal codes of Abreu (1988), a punishment equilibrium of
 the negotiation game must be self-enforcing. That is, a player who deviates in
 his own punishment can only be punished by restarting the same punishment

 equilibrium in the rest of the negotiation game. The (two-period) stationary
 structure of the negotiation game and Proposition 1 then imply a stationary
 structure for player l's punishment equilibrium strategy. The strategy will
 specify one disagreement game outcome for all odd periods and another
 outcome for all even periods. Proposition 1 shows that player l's equilibrium

 payoff depends positively on player l's disagreement payoffs in even periods and
 negatively on player 2's disagreement payoffs in odd periods. Player 1 will
 therefore have his lowest equilibrium payoff in the negotiation game if the
 strategy profile specifies player l's lowest supportable disagreement payoff for
 all even periods and player 2's highest supportable disagreement payoff for all
 odd periods.

 Finding player l's lowest disagreement payoff is straightforward. By defini-
 tion, it is player l's minimax payoff in the disagreement game. Player 1 has no
 incentive to deviate from his minimax outcome in the disagreement game. It can

 therefore be supported as part of a perfect equilibrium as long as player 2 can
 be forced to play the minimax outcome against player 1 (by switching to an
 equilibrium with a lower payoff for player 2 if he fails to do so).

 Now consider the highest supportable disagreement payoff for player 2 in an

 odd period. Player 1 will not deviate from a proposed outcome in the disagree-
 ment game as long as player 2's next offer compensates player 1 for any
 foregone deviation gains. In such a scheme, player 2 receives the difference
 between his actual disagreement payoff and the compensation to player 1 as his
 effective disagreement payoff, while player 1 effectively receives the payoff from
 deviation without actually deviating. Player 2's highest supportable disagree-

 ment payoff in an odd period therefore is the maximum difference between
 player 2's disagreement payoffs and player l's deviation gains, taken over all

 outcomes in the disagreement game. Let player 2's highest supportable dis-
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 556 LUTZ-ALEXANDER BUSCH AND QUAN WEN

 agreement payoff be denoted by w2, defined as

 (3) w2 MaX (U2(a) m axeA1 ul(al, a2) - u,(a)j}
 Assumptions (A-1) and (A-2) imply that such a w2 is well defined. Assumptions
 (A-3) and (A-4) imply that w2 > O, while (A-5) implies that w2 < 1.

 PROPOSITION 2: For all 8 E (, 1), player l's average perfect equilibrium payoffs
 in the negotiation game are not less than (1 - w2)/(1 + 8), starting in an odd
 period, and not less than [8(1 - W2)]/(1 + 8), starting in an even period.

 PROOF: We prove the proposition by calculating the infimum of player l's
 perfect equilibrium payoffs in the negotiation game. VA E (0,1), Corollary 1 and
 assumptions (A-1) and (A-3) imply that the set of perfect equilibrium payoffs of
 the negotiation game is nonempty and bounded. Let L1(8) be the infimum of
 player l's perfect equilibrium payoffs in an odd period. Then player l's perfect
 equilibrium payoffs in an even period are not less than 8L1(8) by (A-4), since
 player 1 can guarantee himself his minimax payoff in the disagreement game
 after his rejection, and L1(8) from the next (odd) period on.

 Consider the players' perfect equilibrium payoffs in an odd period. Suppose
 that after player 2's rejection in the odd period, the players play a disagreement
 game outcome, say a e A, and a perfect equilibrium with average payoff vector
 v(a) from the next period on. Note that v1(a) + v2(a) < 1 by (A-5). Playing
 a E A in G in the odd period and the perfect equilibrium with payoff vector
 v(a) in the next period has to be subgame perfect after player 2's rejection. This
 requires that player 1 have no incentive to deviate from the disagreement game
 outcome a E A. Therefore, it must be true that

 (1 -8b) max u1(a, a2) + 82L1(8) < (1 - 8)u1(a) + 8v1(a)
 al eA1

 < (1 - )ul(a) + 5 [1 -V2(a)],
 which yields that

 (4) 5u2(a) < 5[1 - SLI(5)] - (1 - 5) [ max ul(a', a) - ul(a)]

 Inequality (4) implies that player 2's continuation payoff from rejecting player
 l's offer is not more than

 (5) max {(1 - 8)u2(a) + v2(a)}
 a EA

 < max {(1- )u2(a) + 8[1 - 8L1(8)]

 - 1 ) [ maAx u,(a', a) - u,(a)]

 =( 1-8) max (u1(a) + U2(a)- max u1(al, a
 aeA ateA J

 + 8[1 - 8L1(8)]

 (1-)w2 ++8[1-8L1(8)].
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 PERFECT EQUILIBRIA IN A NEGOTIATION MODEL 557

 Hence, in the odd period player 2 will certainly accept player l's offer as long as
 his share is not less than (5). The infimum of player l's perfect equilibrium
 payoff L1(8) thus satisfies the following inequality,

 L1(8) > 1 - [(1 - )W2 + 8(1-8L1(8))].
 After simplification, the last inequality reduces to L1(8) > (1 - w2)/(1 + 8).

 Q.E.D.

 The outstanding question at this point is if the lower bound in Proposition 2
 can actually be attained in a perfect equilibrium of the negotiation game. The
 following proposition demonstrates that there does exist a perfect equilibrium in
 which player l's payoff attains this lower bound, provided that the players are
 patient enough. The proposed equilibrium strategy profile specifies a disagree-
 ment outcome which solves (3) for all odd periods, and player l's minimax
 outcome m' E A for all even periods. Based on this sequence of disagreement
 game outcomes, the equilibrium offers are computed in accordance with Propo-
 sition 1, except that player 2's offer compensates player 1, if player 1 did not
 deviate in the last disagreement game.

 PROPOSITION 3: There exists a 8 E (0, 1) such that, VS e (8,1), the offer (1 -
 W2)/(1 + 8) is accepted in a perfect equilibrium of a negotiation game in an odd
 period, and the offer 8(1 - w2)/(1 + 8) is accepted in a perfect equilibrium in an
 even period. The resulting average payoff vectors are, respectively,

 (1-W2 8+W2' a 8(1-W2) 1+8w22
 1 +8' 1+8 1+ '

 Note that the equilibrium offers in Proposition 3 are the same as those in the
 perfect equilibrium of a Rubinstein bargaining game with a fixed disagreement
 payoff of (0, w2) in every period. The necessity for the restriction on the
 discount factor in Proposition 3 arises from the need to enforce player 2's
 adherence to the proposed equilibrium strategy. If the discount factor is large
 enough, a perfect equilibrium in accordance with Corollary 1 is sufficient to get
 player 2 to follow his strategy. Note that the perfect equilibrium according to
 Corollary 1 may not be player 2's punishment equilibrium. The value of a
 therefore depends on the choice of the particular equilibrium used to punish
 player 2. The formal equilibrium strategy profile and the proof are given in the
 Appendix.

 Proposition 2 implies that the equilibria constructed in Proposition 3 are
 player l's punishment equilibria in the negotiation game. By analogous argu-
 ments, we can find player 2's punishment equilibria. Let

 Wl max(ul(a) [ max u2(al,a2)u2(a)I}
 a eA a2 eA 2

 be player l's highest supportable disagreement payoff in an even period of

 player 2's punishment equilibrium. As before, 0 < w, < 1. Player 2's minimax
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 558 LUTZ-ALEXANDER BUSCH AND QUAN WEN

 payoff in the disagreement game is his lowest supportable disagreement payoff
 in an odd period of his punishment equilibrium. As the following proposition

 asserts, the offers in player 2's punishment equilibria are the same as the

 equilibrium offers of a bargaining game with a fixed disagreement payoff of

 (w1, 0) in all periods.

 PROPOSITION 4: There exists a 8E E (0,1) such that, V8 E (8,1), the offer (1 +
 8w1)/(1 + 8) is accepted in a perfect equilibrium of a negotiation game in an odd

 period, and the offer 8(8 + w1)/(1 + 8) is accepted in a perfect equilibrium in an
 even period. The resulting average payoff vectors are, respectively,

 _ +_awl _(_-_w) a 38+Wi 1-Wi
 (1+8 8(1-wi) ) and ( 1+8 ' 1+8

 Together, Propositions 3 and 4 imply that the negotiation game has a unique
 perfect equilibrium if and only if (w1, 0) = (0, w2), i.e., w1 = 0 and w2 = 0. This
 implies that any Nash equilibrium payoff vector has to be (0,0), which is the
 minimax point. If w1 and w2 equal the players' minimax payoffs, only the
 minimax payoff vector can be supported in disagreement periods in a perfect
 equilibrium of the negotiation game.6 The equilibrium offers will have to be
 stationary in this case, and coincide with those of a Rubinstein bargaining game.
 On the other hand, the negotiation game has multiple equilibria if at least one
 of w1 or w2 exceeds the respective player's minimax payoff. In that case, a
 player's disagreement payoff after a rejection can depend on the history of play,

 and this in turn leads to equilibrium offers which depend on the history of play.
 If the negotiation game has multiple efficient perfect equilibria, then it will

 also have some inefficient perfect equilibria which feature delay in reaching

 agreement. In fact, any feasible payoff vector of the negotiation game is a
 perfect equilibrium payoff vector in the negotiation game if and only if every
 player receives a higher payoff than in his punishment equilibrium. This is

 formally shown in the following subsection.

 4.3. Perfect Equilibria of the Negotiation Game

 In the spirit of the folk theorem, we characterize the set of perfect equilib-
 rium payoffs of the negotiation game as the discount factor approaches unity.
 As 8 tends to one, player l's and 2's payoffs in their respective punishment
 equilibria converge to

 1 - W2 1lw1

 VI 2 and V22 2
 The following theorem asserts that any feasible payoff vector of the negotiation

 game which strictly dominates (V, V2) is a perfect equilibrium payoff in the
 negotiation game with a sufficiently large discount factor.

 6 Notice that, in general, it is not required that the minimax payoffs of players equal each other,
 only that each player's highest supportable payoff also be his lowest supportable payoff (i.e.
 Wi = ui(mi)). The fact that everything is equal here is an artifact of the normalization in (A-4).
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 THEOREM: For any feasible payoff vector (v1, V2) of the negotiation game such
 that vi> vi, for i = 1, 2, there exists 8 E (0, 1) such that VA E (8,1), (v1, v2) is a
 perfect equilibrium payoff vector in the negotiation game with discount factor 8.

 The proof of the Theorem is given in the Appendix. The equilibrium strategy

 profile used in the proof is very intuitive. First, we find an outcome path which

 leads to the average payoff (v1, v2). Such an outcome path is in general not
 unique. For example, if (v1, v2) is a feasible payoff vector of the disagreement
 game, then the outcome path of the negotiation game could involve infinitely
 repeated play of the disagreement game without agreement, or a sequence of

 disagreement outcomes followed by an agreement. The only restriction on the

 outcome path is that both players' continuation payoffs are higher than their
 respective punishment equilibrium payoffs in every subgame. The following

 strategy profile then implements the chosen outcome path. In every period

 before the agreement, the proposing player demands the whole surplus, and any

 other offer will be considered a deviation. The responding player, of course,

 rejects these offers. In the disagreement game, the players play the appropriate

 outcome as specified in the outcome path. Deviations by any player in either the

 offers or the disagreement games will be punished by implementation of the
 deviating player's punishment equilibrium for the rest of the negotiation game.

 In the last period (if there is one), the offer specified in the outcome path will
 be proposed and accepted; otherwise the player who deviates first will be
 punished.

 This strategy profile is not unique. In particular, one could construct a

 strategy profile which has offers that converge to the final agreement. Observa-
 tionally, this would be more plausible, since such strategies would lead to a
 converging sequence of offers and counter-offers culminating in agreement,
 compared to the "stubborn" behavior followed by "sudden" agreement which is
 implied by the strategies used in the proof.

 5. DISCUSSION

 We have presented a model of dynamic idiosyncratic allocation which com-
 bines aspects of Rubinstein bargaining and repeated games. In this negotiation
 model two players alternate in proposing a binding allocation of a recurring
 surplus, while they repeatedly play a disagreement game which determines their
 payoffs before agreement. The results we have obtained for this model lead to
 two main insights. The first is the fact that negotiation processes which involve
 payoffs from a strategic relationship outside the bargaining process itself will in
 general lead to multiple perfect equilibria. Some of these equilibria feature
 delay and are inefficient. This result obtains even though there is perfect
 information in the negotiation model, and is due to disagreement payoffs which
 can vary in response to players' past actions. The power of history dependent
 strategies, which in bargaining is lost to the dynamics of the alternating-offers
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 process, is therefore reinstated by the endogenous disagreement payoffs of the
 negotiation model.

 The second insight that the negotiation model generates is that the set of
 average payoffs which can be supported in perfect equilibria of a negotiation
 game is not the set of all feasible and individually rational payoffs of the
 disagreement game. The concurrency of the bargaining process with the re-
 peated play of the disagreement game restricts the disagreement payoffs, in
 particular with respect to the maximal payoff achievable by a player. This result
 is due to the fact that extreme payoffs which are not one-shot Nash equilibria of
 the disagreement game cannot be supported by drawn out future reward phases.
 Instead, they have to be supported by the immediately following bargaining
 offer, since the bargaining process will end the game in the next period. Since
 the bargaining frontier is negatively sloped, an immediate tradeoff between the
 two players' payoffs is implied. This restriction becomes especially important in
 the strategies supporting a player's punishment, and the severity of the punish-
 ment will only be determined by the structure of the disagreement game, and is
 independent of the bargaining surplus available.

 These results depend principally on two assumptions. One is that agreement
 dominates disagreement at least weakly. If, to the contrary, there exist disagree-
 ment payoffs which dominate agreement strictly, then all such payoffs can be
 supported by standard repeated game arguments, and multiplicity of equilib-
 rium is guaranteed. The second critical assumption is that all actions are
 observable, including probability mixtures in the disagreement game. This
 makes all deviations detectable. While similar assumptions do not affect the
 equilibrium set in the repeated game literature, in the negotiation game this
 assumption enlarges the set of equilibrium payoffs. Nevertheless, qualitatively
 the results remain unchanged if observability is relaxed.7 The reason for this is
 as follows. The actions which are used in the disagreement game to minimize a
 player's payoff or maximize his opponent's payoff will have to satisfy an
 additional constraint if they are unobservable. These constraints will, in general,
 reduce the maximal disagreement payoff which can be supported as part of a
 perfect equilibrium, and increase the minimal payoff. Actions that satisfy the
 constraints will exist, however.

 In closing, we would like to point out two aspects of the model. One is that
 the negotiation model applies to the case where the Pareto frontier of the
 disagreement game coincides with the bargaining frontier. The model thus
 encompasses the case of repeated games for which binding agreements can be
 written, as long as the players alternate in proposing the final allocation. The
 second point concerns the economic benefit which agreement yields over
 repeated play. While the position of the bargaining frontier itself does not affect
 the range of allocations which can be supported in equilibrium, it will affect the
 maximal time of delay which can be supported. As the economic importance of
 agreement increases, agreement will have to occur more quickly, and in the

 7See Busch and Wen (1993), available upon request from the authors.
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 limit, as the disagreement game becomes irrelevant to players' payoffs, the
 equilibrium set converges to that of a pure bargaining game. On the other hand,
 if all agreements are dominated by some disagreement payoff, agreement is

 economically unimportant, and the folk theorem for infinitely repeated games
 with discounting applies. The bargaining model and the infinitely repeated game
 model can thus be viewed as limiting cases of the negotiation model.

 Dept. of Economics, University of Waterloo, Waterloo, Ontario N2L 3G1,
 Canada,

 and

 Dept. of Economics, University of Windsor, Windsor, Ontario N9B 3P4,
 Canada.

 Manuscript received July, 1991; final revision received July, 1994.

 APPENDIX

 PROOF OF PROPOSITION 3: Note the fact that the payoff vector in the proposition corresponds to
 the perfect equilibrium in the bargaining game with disagreement payoff (0, w2). If (0, w2) is a Nash
 equilibrium payoff of the disagreement game, then Proposition 3 follows directly from Corollary 1. If
 (0, w2) is not a Nash equilibrium payoff of the disagreement game, the proof is constructive. We will
 first derive a necessary 8, then provide a strategy profile which implements the payoff vector, and
 verify the subgame perfection of the proposed strategy profile in the negotiation game with
 8 E (a, 1).

 Let a* be a Nash equilibrium of the disagreement game G where u(a*) 0 (0, w2), and let
 b1[u(a*)] and b2[u(a*)] be the equilibrium offers in the bargaining game with disagreement payoff
 u(a*) from Corollary 1. Also, let a1 eA be a solution to (3), let m1 EA be a minimax strategy
 combination against player 1, and let r1(al) be defined as follows:

 (A.1) w2=u1(al) +u2(a') - max ul(a',a'),

 (A.2) rl(a')= 1 jmaxul(a',a) -ul(a').

 r1(al) > 0 is the present value of player l's gain by deviating from a1. Define

 1- w2 8(1-w2)
 b(O, W2) = W2 1 and b2(0,W2) = 1+,

 See Figure 4 for an illustration.
 Let B and W be the maximum and the minimum payoffs to a player in G, respectively. Both B

 and W are finite by assumptions (A-1) and (A-2). Since w2 > u2(a*) - u1(a*)- due to w2 > u2(a*),
 ul(a*) > 0, and (0, w2) # u(a*)-there exists a E (0, 1) such that the following inequalities hold for
 all 8 E (G,1):

 (A.3) 0 < b2(0, w2) + rl( a' ) < b2[u(a*)],

 (A.4) (1 - 8)B + 8[1 - b2[u(a*)]]

 < (1 - 8)W+ 8 min (1 - b1(O,w2), 1 - b2(0,w2) - rl(a')).

 Consider the following strategy profile: In an odd period player 1 offers b1(O, w2), and player 2
 will reject player l's offer only if player 1 demands more than b1(O, w2), after which the players will
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 AU2

 (0,1)

 (b2(0, W2), 1- b2(0, W2))
 (b,(0,W2), 1- bi (0,W2))

 u(aX)\

 W2

 (0, 0) maxal u(al) a,)a (1, 0)

 FIGURE 4.-b1(O, W2) = (1 - w2)/(1 + 8) and b2(0, w2) = Sbl(O, w2).

 play a1 in G. In an even period, player 2 will offer b2(0, w2) if player 1 deviated from a1 in the last
 period, and b2(0, w2) + r1(al) otherwise. In either case, player 1 will reject only if player 2 offers
 less. If player 1 rejects an offer by player 2 which should have been accepted, the players play ml in
 the following disagreement game. If player 2 deviates, however, the players will follow the
 equilibrium strategies in Corollary 1, which are the perfect equilibrium of the negotiation game
 with a disagreement payoff vector u(a*). The formal strategy functions are as follows. In an odd
 period t,

 fl(hl(t)) =( bl[u(a*)] if player 2 has deviated,
 f1(h(t))=~bl(0, W2) otherwise,

 N otherwise,

 f(h3(t)) = ( a if player 2 has deviated,
 al otherwise,

 and in an even period t,

 (b2[u(a*)] if player 2 has deviated,

 f2(hl(t)) = b2(0,w2) if player 1 deviated in a' in the last period,
 b2(0, w2) + rl( a') otherwise,

 fl(h2(t)) = Y if bt >f2(hl(t)),
 N otherwise,

 f(h3(t)) = (a* if player 2 has deviated,
 (tml otherwise.

 The rest of the proof shows the subgame perfection of this strategy profile for a e (8, 1). In the
 case that player 2 has deviated, the players play the perfect equilibrium from Corollary 1 with
 the Nash equilibrium payoff u(a*) as the disagreement payoff. Therefore, we only have to consider
 the other cases.

 First, consider players' strategies in the disagreement game following a rejection. Player 1 will not
 deviate from ml since ml is a minimax strategy against him. Player 1 will not deviate from a1 either.
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 According to the strategy profile, if player 1 deviates from al, player 2 will propose b2(0, w2) instead
 of b2(0, w2) + r1(a1) in the next period. (A.2) implies that player 1 cannot increase his payoff by
 deviating from a', i.e., player 1 receives the same payoff from deviating or not,

 (1 -8b) max ul( a1, a' ) + 8b2(0, w2) = (1 - )ui(al) a) [b2(O,w2)+r(al)]. a' A IAr

 On the other hand, if player 2 deviates from either ml or al the players will play the perfect
 equilibrium in Corollary 1 from the next period onward. Therefore player 2's payoff is, at most,

 (1 - S)B + 8[1 - b2[u(a*)]],
 which is less than his equilibrium payoff in either case,

 (1 -8)W+ a min {1 -b1(O,w2), 1 -b2(0,w2) -rl(al)},

 due to (A.4). Therefore both players will not deviate from the proposed strategies in the disagree-
 ment game.

 Next, consider players' offers and responses. In an odd period, player 2's payoff from rejecting
 b1(O, w2) is 1 - b1[u(a*)], which is less than 1 - b1(O, w2) by Proposition 2. If player 1 deviates to
 demand more than b1(0, w2), player 2's payoff from rejecting is

 (1-8)u2(al) + 8[1-b2(0,w2)-rl(al)] = 1-bl(O,w2).

 Therefore player 2 will follow his response strategies, and reject player l's offer only if player 1
 demands more than b1(O, w2). As a result, if player 1 demands more in his offer, player 2 will reject,

 the players will play a1 in the current period, and player 2's offer b2(0, w2) + r1(al) will be accepted
 in the next period. The following equalities state that player 1 cannot receive more than b1(0, w2) by
 demanding more in his offer:

 (1 -8)ul(a') + 8[b2(0,w2) + rl(al)]

 = (1 - )[ul(al) + u2(al)] + 1 +

 62 - W
 (1-a ) + + =bl(O, W2),

 where we have made use of (A.1) and (A.2). Therefore the players will follow their offer and
 response strategies in an odd period.

 In an even period, player l's payoff from rejecting an offer which should be accepted is b2(0, w2),
 resulting from the disagreement game outcome ml in the current period and agreement b1(O, w2)
 the next period. Note that player l's payoff from accepting an offer which should be accepted is not
 less than b1(O, w2). On the other hand, player l's payoff from rejecting an offer which should be
 rejected is b2[u(a*)], resulting from player 2's punishment. b2[u(a*)] is player l's highest payoff in
 an even period. Therefore, player 1 will follow his response strategies to reject only if player 2
 demands more than he should. As a result, if player 2 demands more, he will be punished and his
 payoff will be 1 - b2[u(a*)], which is not more than his payoffs in any offer in the strategy profile.
 Hence, player 2 will not deviate in his proposal strategies.

 The proposed strategy profile therefore constitutes a subgame perfect equilibrium in the
 negotiation game with discount factor a E (8, 1). The equilibrium outcome is that player l's offer
 b1(O, w2) is accepted in the first period when player 1 makes the first offer. Player l's punishment
 equilibrium in the negotiation game when player 2 offers first is induced by our proposed perfect
 equilibrium after player 1 demanded more or deviated in the disagreement game in the first period.

 Q.E.D.

 PROOF OF THE THEOREM: We prove the theorem when player 1 makes the first offer. A similar
 proof can be constructed to prove the theorem when player 2 makes the first offer. We first find an
 outcome path 7T(T) with average payoff vector v and a necessary 8, then provide a strategy profile
 with outcome path 7r(T), and show the subgame perfection of the strategy profile for 8 E (8,1).

 Let B be the maximum payoff to a player in G. B is finite by (A-1) and (A-2). The fact that
 vi< vi and the definition of vi for i = 1,2 imply that 38 such that for 8 e (6,1) the optimal
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 punishment equilibria in Propositions 3 and 4 exist, and the following inequalities hold:

 1 -W2 1 -W1
 (A.5) (1-S)B + + <v1 and (1- S)B + 1 V2.

 + ~~~~~~+4

 Since v is feasible, VS E (6, 1) there is an outcome a' eA, and offer b1, and an integer T, such that

 (A.6) va = (1blT)u(a) + 3Tb1, and v2 = (1 -T)u(d) + 3Tb2

 (A.7) u1(a) <v1 <b1, and u2(a) <v2 <b2,

 where b2 = 1 - bl. Let rr(T) be the outcome path where players play a for (T - 1) periods and
 agree on the offer b1 in period T. Equation (A.6) states that the average payoff to player i from the
 outcome path rr(T) is vi. The following proof is also applicable if the players never reach an
 agreement, if ui(a') = vi and T is infinite.

 Consider the following strategy profile: Before period T, the proposing player i demands the
 whole value of 1, the responding player j will accept any proposal if his share is not less than
 (S +wj)/(1 + 3) for j # i, and the players play a' after rejection. In period T, the offer b1 is
 accepted. If at any point a player i, i = 1, 2, deviates, the players will immediately start to play player
 i's optimal punishment from Proposition 3 or 4, beginning in the appropriate subgame. For example,
 if player 1 does not demand the whole value of 1, the players will play according to the strategies
 after player 1 deviated from his offer in his optimal punishment. The outcome path of this strategy
 profile is rr(T) with average payoff vector v. The rest of this proof verifies the subgame perfection of
 the strategy profile for a E (6, 1).

 For a E (6, 1), after a player deviates from the proposed outcome path rr(T), the continuation
 equilibrium is one of the optimal punishment equilibria from Propositions 3 and 4, depending on
 the deviator. Therefore we only have to verify the subgame perfection of the strategy profile along
 the outcome path rr(T). In the rest of the proof, let player i be the proposing player and j be the
 responding player.

 In period t < T, after rejection, if player i deviates from a' in G, for i = 1, 2, he will be punished
 from the next period on. (A.5) and (A.7) imply that player i's payoff from deviating is less than that
 from the strategy profile, since for j * i,

 1-w. 1-W*
 (1 - )B + S 1 a < (1 - )B + 1a < v i S (1b-)ia^ +b bi.

 If player i demands less than 1, he will be punished and player j's payoff from rejecting will be
 equal to 1 - (1 - wj)/(1 + 4) = (4 + w1)/(1 + 4). Hence, player j will accept an offer only if his
 share is not less than (4 + w1)/(1 + 4). As a result, if player i demands less, his payoff will be, at
 most, (1 - wj)/(1 + 4). (A.5) and (A.7) yield that

 1-w.

 + a5 < Vi < - u )+a tbi.

 The last inequality indicates that player i will not demand less than 1. Therefore, both players will
 follow their strategies before period T. ^ ^

 In period T, the players should agree on bi. If player j rejects bi, he will be punished and his
 payoff will be 3(1 - wi)/(1 + 4), which is less than b1 from (A.5) and (A.7). However, player j's
 payoff from rejecting a nonequilibrium offer is (4 - w1)/(1 + 4), which is not less than bj. Therefore,
 player j will reject only if player i demands more. As a result, if player i demands more, player j
 will reject and player i will be punished with payoff (1 - wj)/(1 + 4) < bi. Player i therefore will
 propose b1. Therefore, both players will not deviate in period T. Q.E.D.
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