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Abstract. This paper presents an analytical characterization of the long run policies

learned by algorithms that interact repeatedly. These algorithms update policies which

are maps from observed states to actions. I show that the long run policies correspond to

equilibria that are stable points of a tractable differential equation. As a running example,

I consider a repeated Cournot game of quantity competition, for which learning the stage

game Nash equilibrium serves as non-collusive benchmark. I give necessary and sufficient

conditions for this Nash equilibrium not to be learned. These are requirements on the

state variables algorithms use to determine their actions, and on the stage game. When

algorithms determine actions based only on the past period’s price, the Nash equilibrium

can be learned. However, agents may condition their actions on richer types of information

beyond the past period’s price. In that case, I give sufficient conditions such that the poli-

cies converge with positive probability to a collusive equilibrium, while never converging

to the Nash equilibrium.
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1. Introduction

More and more companies are using algorithms to try to optimize sales and increase

profits. Such algorithms take market data to determine current price or quantity levels,

updating in real-time. Software firms such as solutions.ai and Quicklizard state that a

well-performing algorithm needs to “deliver real-time insights based on market signals,

competitive intelligence and changes in customer preferences (...)” and “trigger repricing

of items based on a criteria such as (...) competitor price changes (...) ”. What outcomes

can we expect when algorithms compete against each other?

Algorithms can help firms adapt to rapidly changing market environments, and poten-

tially better serve their markets. However, recent empirical1 and simulation-based2 stud-

ies show that algorithms may learn to collude. This is a concern for consumer welfare.

Moreover, legal systems are not currently adapted to deal with the kind of tacit collu-

sion that might result from algorithmic competition. An antitrust regulator would need

to understand how competing algorithms might lead to inefficient outcomes, depending on

the market conditions, the nature of the competitive environment, and the details of the

algorithms themselves. This paper seeks to better understand these issues.

I first introduce a model of reinforcement learning algorithms playing a market game

such as Cournot quantity competition repeatedly. These algorithms observe a common

state variable without knowing their payoff function or state transition likelihoods, and

adapt by repeatedly experimenting with quantity choices and estimating a value function.

I show to pin down the long-run behavior of this system, it is enough to find the stable rest

points of a differential equation.

Next, I use this characterization to study whether the algorithms can learn to repeat

the static Nash equilibrium, which we can think of as the non-collusive benchmark. It

turns out that the answer depends on what state variables these algorithms keep track

of, and how these states evolve as a function of past prices and quantities. For instance,

in the case where the state variable is the past period’s price alone, learning the static

Nash equilibrium comes down to a condition on the stage game payoff function alone. In

contrast, I construct a richer state variable under which the static Nash equilibrium may

not be learned, even if payoffs satisfy the previous requirement.

Finally, I study the channels through which the algorithms learn to collude. The rich

state variable I constructed supports a symmetric binary-state equilibrium that in one state

1Studying the German gasoline retail market, Assad et al. (2020) observe that after a critical mass of firms
deployed pricing algorithms, profit margins rose by 28%.
2Klein (2021), Calvano, Calzolari, Denicoló, et al. (2021) show that algorithms may learn to play repeated
game strategies akin to typical carrot-and-stick type strategies studied in the economic theory literature.
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plays collusive, low quantities, and high punishment quantities in the other. Through an

approximation exercise I show that such collusive equilibria are closely related to optimal

imperfect monitoring equilibria of the bang-bang kind, as characterised in Abreu, Pearce,

and Stacchetti (1986). I provide sufficient conditions such that this scheme will be learned

with positive probability.

Characterisation of long-run behavior. The focus of this paper is actor-critic rein-

forcement learning. These algorithms keep track of an estimated performance criterion (the

“critic”, essentially a value function) and a policy function (the “actor”) that is updated

towards the maximizer of the performance criterion. The policy is a mapping from observ-

ables (states), such as past prices or other market data, to actions, e.g. prices or quantities.

As a result, the class of algorithms studied here have the ability to learn repeated game

strategies (e.g., take the observable to be a summary of the history of the interaction), in

contrast to the stage-game (myopic) strategies more commonly studied in the literature on

learning in games.

When policies are updated with a decreasing stepsize3 over time, and the performance

criterion estimator is well-behaved, I show that the resulting policy iteration can be an-

alyzed as a noisy discretization of a tractable differential equation. Under a well-studied

special case in my class known as actor-critic Q-learning4 (ACQ), this differential equation

is a repeated game version of best-response dynamics. I obtain these results following the

method of stochastic approximation (V. S. Borkar (2009)), which I extend to characterize

the limiting behavior of competing algorithms.

Suppose that after a large enough number of iterations, the performance criterion es-

timator differs from the true criterion at most by a bounded, smooth bias term5. I then

show that attractors of the underlying differential equation will be learned with positive

probability, while unstable points will not be learned6. In the remainder of the paper, I use

ACQ as the running example. In that case, if the long run behavior of algorithms converges

to a point, that point must be a Markov-perfect equilibrium (MPE) of the repeated stage

3Stepsizes signify the impact innovations have on policies in the algorithmic updating rule. They must
satisfy the Robbins-Monro condition commonly invoked in the computer science literature. See V. S.
Borkar (2009), Chapter 2.
4See Dutta and Upreti (2022), Grondman et al. (2012) for relevant surveys.
5The bias term is a modelling decision inspired by the fact that for many real-world performance criterion
estimators, bias is unavoidable due to function approximation (Fujimoto, Hoof, and Meger (2018)). Also,
often convergence proofs are lacking, in which case the fitness of an algorithm is shown by it doing better
at benchmark tasks than previous algorithms. C.f. the discussion in Chapter 9 of François-Lavet et al.
(2018). My results imply that the analysis of long run behavior is robust to well-behaved, non-vanishing
bias.
6An equilibrium of a differential equation is attracting (“stable”) if trajectories of the differential equation
that reach a neighborhood of that equilibrium converge to it. In contrast, an equilibrium is repelling
(“unstable”) if trajectories close to that equilibrium can be repelled from it and will not converge to it.
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game. The implication of this characterisation is that it becomes necessary to understand

what it means for a given MPE to be stable (i.e. attracting).

Learning Nash. Intuitions about stability for more general MPEs can be gained from

the study of the repeated static Nash equilibrium. I show that in order to learn the stage

game Nash equilibrium, details of the state variables algorithms keep track of are essential.

I provide the first step at a novel categorization of the “coordinative ability” granted to

learning algorithms by their state variables. This is done by studying what kinds of state

variables allow for algorithms to learn the stage game Nash equilibrium. To the best of my

knowledge, this paper is the first to uncover this aspect of cooperative ability.

A definition of state variables comes with the space of their realizations and a transition

function that pins down how the states evolve over time as a function of actions taken by

the algorithms. Call a policy space the space of decision rules mapping from a given state

variable to actions. Different policy spaces may support different MPEs, but stage game

equilibria are MPEs under any policy space, making comparative statics exercises viable.

Stability of an MPE is the characterising factor that enables us to tell whether a given

MPE will be observed. Sufficient conditions for an MPE to be learned can therefore be

constructed based on eigenvalue properties of the MPE. It turns out that the conditions

for stability come down to a comparison between the slope of the (static) stage-game best

response and a growth rate of transition probabilities with respect to action deviations.

When transition probabilities are more sensitive than a cutoff defined through the static

best response slope, the stage game equilibrium will be rendered unstable, and therefore

not learned.

Using the example of repeated Cournot competition, I compare two binary state vari-

ables that in a sense have opposing transition features. Suppose that there is a finite set of

possible price realizations, and conditional on the aggregate quantity produced, a price is

drawn randomly and independently every period. I first consider simple state variables that

feature state-independent transitions. This holds when past period’s price observations are

taken as state variable, since prices are drawn independently every period conditional on

aggregate quantities. Given this state variable, I prove that a condition on market funda-

mentals is necessary and sufficient for a given stage game Nash equilibrium to be learned. In

other words, sensitivity of transition probability does not matter in this case, but only the
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slope of the stage game best response.7 If the above bound on myopic best responses is sat-

isfied for a given stage game Nash equilibrium, I call it statically stable. If for a given state

variable the Nash equilibrium is stable under the resulting state-dependent best-response

dynamics (and therefore learned with positive probability), I call it dynamically stable.

When state transitions are state-independent, information about the state evolution is

irrelevant when determining whether a stage game equilibrium will be learned or not. Thus,

under such state variables, static and dynamic stability is always the same. In contrast, I

then characterise a state variable I call direction-switching so that when policies condition

on those, the stage game Nash equilibrium will not be learned. A Nash equilibrium can

thus be both statically stable and dynamically unstable.

Learning to collude. Next, I apply my characterisation to study collusion in the

workhorse model of Cournot-competition. I provide conditions on payoffs and observables

under which collusive equilibria exist that are attracting, and therefore will be learned

with positive probability. Through an approximation exercise I show that these collusive

equilibria are closely related to optimal imperfect monitoring equilibria of the bang-bang

kind, as characterised in Abreu, Pearce, and Stacchetti (1986).

Exemplifying this approach, I show for a class of payoff functions that there exists a

simple binary state variable (falling into the class of direction switching states) for which

there exists a collusive equilibrium that is attracting. This collusive equilibrium has the

carrot-and-stick property, where in one state, low quantities are played, which are supported

by high punishment quantities in the other state. In addition, for this class of payoff

functions it is true that the unique stage game Nash equilibrium is statically stable and at

the same time dynamically unstable. The result then ties in with my second contribution

discussed above: when Nash is not learned, then what is learned can likely be a collusive

outcome.

Finally, I provide a numerical example featuring the above properties: there is an at-

tracting, collusive equilibrium as well as a unique stage game Nash equilibrium that is

unstable. I verify in a simulation that ACQ learners initialized in a neighborhood of the

collusive equilibrium will indeed converge to it. I also simulate these algorithms initialized

7This condition also determines the stability of that equilibrium under myopic best-response dynamics.
This refers to classical best-response dynamics that consider the learning of stage game strategies. In
common textbook-versions of the Cournot game there is a unique, interior, and symmetric stage game
Nash equilibrium that satisfies this condition (e.g. linear demand and convex cost, under some boundary
conditions preventing the monopoly equilibrium to exist). A long history of research has established that
many learning dynamics converge uniquely to this equilibrium, when learning to play myopic, stage game
strategies. This is also true for fictitious play and myopic best-response dynamics (c.f. Milgrom and
Roberts (1990)).
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close to the stage game Nash equilibrium, and show how they not only do not converge to

that equilibrium, but instead move to a neighborhood of the collusive equilibrium.

The results presented here potentially allow empirical researchers and industry regulators

to understand what conditions of the market and features of algorithms lead to a greater

likelihood of collusive behavior when competing firms use learning algorithms. My charac-

terisation implies that once one knows the state variables of the algorithms, and the payoff

environment of the game, one can determine whether any MPE in the policy space will be

learned with positive probability by checking its stability property, which comes down to

an eigenvalue-condition8. Using data on the firm’s payoff structure, market demand, and

the states kept track of by the algorithms, one can device a test to see whether a given

equilibrium can be learned with positive probability.

Related Literature

Broadly speaking, this project speaks to results in the fast growing literature on algorith-

mic collusion, the theory of learning in games, as well as the study of asymptotic behavior

of algorithms in the computer science literature.

Firstly, the literature on algorithmic collusion has received increasing attention in recent

years. Assad et al. (2020) provide an empirical study supporting the hypothesis that

algorithms may learn to play collusively, while there are many simulation studies suggesting

the same, of which Calvano, Calzolari, Denicolo, et al. (2020), Calvano, Calzolari, Denicoló,

et al. (2021), and Klein (2021) are important examples. A paper close in spirit to this study

is Banchio and Mantegazza (2022). They consider a fluid approximation technique related

to the stochastic approximation approach applied here, and recover interesting phenomena

regarding the learning of cooperation for a class of RL algorithms. Important recent work

in the area of algorithmic collusion includes Lamba and Zhuk (2022), Z. Y. Brown and

MacKay (2021), Johnson, Rhodes, and Wildenbeest (2020), and Salcedo (2015). These

papers feature stylized models of algorithmic competition, abstracting away from issues of

learning and estimation, which are an important aspect of my analysis. Their relation to

this work is discussed more thoroughly in Section 6.

Secondly, this paper connects to a long history of the theory of learning in games. Clas-

sically, this literature has been concerned with the ability of agents to learn a Nash equi-

librium of the stage game when following a given learning rule (e.g. Milgrom and Roberts

8Specifically, one needs to linearize the state-dependent best response dynamics at the equilibrium. If all
eigenvalues’ real part is strictly smaller than 0, the equilibrium is attracting, if some are strictly larger
than 0, it is repelling. If some are equal 0, the equilibrium is called a center in the literature and more
analysis has to be done to determine whether it may be learned or not, but this is a non-generic knife-edge
situation.
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(1991), Fudenberg and Kreps (1993)). More recent results concern learning in stochastic

games (e.g. Leslie, Perkins, and Xu (2020)), where the state variable is taken as an exoge-

nous object. The class of RL I study has the ability to learn repeated game strategies, i.e.

strategies that condition on summaries of the history of the game. The games that can be

studied here therefore contain stochastic games as a special case, but also allow for the case

where the state that agents observe represents a finite history of the repeated interaction.

My class contains algorithms that impose little informational assumptions as a special

case, commonly called “model-free”. The running example of ACQ learning considered

in the main body of this paper is part of this special case. Such algorithms do not carry

a model of opponent behavior and incentives, and also no model of their environment

and own payoffs. Thus, this class can be seen as models of players following adaptive

uncoupled learning rules as defined in Hart and Mas-Colell (2003). Further foundational

papers in this literature include Milgrom and Roberts (1990) , Fudenberg and Levine (2009),

Gaunersdorfer and Hofbauer (1995) and many more.

Thirdly, this paper makes use of an extensive body of research related to stochastic

approximation theory (see for example V. S. Borkar (2009)) and hyperbolic theory (Palis

Jr, Melo, et al. (1982)). There is a growing strand of the computer science literature

devoted to establishing convergence proofs in multi-agent algorithmic environments. The

paper in that area closest to this one is Mazumdar, Ratliff, and Sastry (2020).

Finally, this paper can be interpreted as casting RL competition as an equilibrium se-

lection mechanism. The classical literature was developed as a model to understand how

rational players may learn to play Nash equilibria, whereas here I consider real economic

agents that happen to be algorithmic and show that their behavior can be understood

through the theory of learning in games. Interestingly, among the repeated game equilib-

rium selection criteria known to me there exists none that exclude the stage game Nash

equilibrium even when it is unique, which suggests that the selection ability of competing

RL delivers new insights. I refer to Fudenberg and Levine (2009) for a thorough review of

issues regarding the theory of learning in games, including algorithmic learning and appli-

cations of stochastic approximation.

This paper is structured as follows: In section 2 I give a brief introduction to RL, via the

classical example of single-agent Markov-decision problems (MDPs). In section 3 I define

the general economic environment our algorithms will play on, as well as ACQ learning, an

important element of my RL class that will serve as the running example of the paper. I

provide general limiting results in section 4. In section 5, I apply the results of the previous
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section to a repeated Cournot game, and give a numerical examples with simulations in the

end of the section. Section 6 concludes and discusses related literature more thoroughly.

This papers’ structure is designed to maintain a logical progression across its sections.

Sections 3-4 give general long-run characterisations for a class of algorithms. Building upon

these results, section 5 employs this framework to examine its application in a Cournot

game.

For readers more interested in the economic issue of collusion among algorithms, section

5 can be read independently of the previous sections. Sections 3-4 cater more towards

readers seeking comprehensive statistical treatments of algorithmic updating processes.

Since this paper relies on technical methods that would overwhelm the main body, some

sections are moved to the appendix. Appendix A characterises the full algorithm class

that can be considered by this paper. Appendix B gives technical results regarding the

determination of asymptotic stability of equilibria under ACQ learning, while Appendix

?? gives most of the proofs of the results stated in the paper.

2. Reinforcement Learning

This section gives a short introduction to reinforcement learning (RL) by ways of the

example of an agent solving a multi-armed bandit problem. For a thorough introduction,

consider Sutton and Barto (2018).

Consider an agent choosing actions a ∈ X to repeatedly. There is a state variable s ∈ S
so that in every possible s, the agent may find it best to choose different a. Given s, the

agent’s expected payoff from choosing a is denoted u(a, s). The agent discounts the future

with δ ∈ (0, 1), and aims to find a policy ρ : S 7→ X that maximizes future expected

discounted payoffs

W (s0) = E
∑
t

δtut,

where ut is the payoff realization in period t. When the distribution over states and other

randomness affecting the payoffs is known, the agent can solve the problem of maximizing

W by computing the value function

V (s) = max
a∈X

{
u(a, s) + δE

[
V (s′)| a, s

]}
.

In practice, information about u and transition probabilities may be hard to come by.

This is where RL methods can be useful.

RL algorithms are updating rules meant for the learning of optimal policies or value

functions for a given problem. Such algorithms are commonly used to solve Markov decision
7



problems (MDPs). In general, RL updating rules move policies towards actions that have

performed well in the past (i.e., such actions are reinforced), and away from actions that

perform poorly, based on some performance criterion, e.g. W .

A well-known algorithm the agent could use in this context is Q-learning as introduced

by C. J. C. H. Watkins (1989). The algorithm estimates a function Q : S ×A 7→ R, which

is supposed to find the target implicitly defined as

Q∗(s, a) = u(a, s) + δE
[

max
a′∈X

Q∗(s′, a′)| a, s
]
. (1)

This Q- function is related to the value function by V (s) = maxa∈X Q
∗(s, a). The Q-

function can thus be seen as a function evaluating the expected payoff from selling a in

current state s and playing optimally afterwards. One may therefore use this function to

evaluate one-shot-deviations. Accordingly, Q∗ is a helpful tool for decision makers, since it

allows to read-off the optimal policy ρ∗ simply by maximizing Q∗ in every state.

C. J. C. H. Watkins (1989) then proposed a RL algorithm that estimates Q∗. In the

language introduced earlier, the algorithm takes estimates of Q∗ as the relevant performance

criterion. This algorithm is celebrated due to its simplicity as well as minimal information

requirement. One can use the algorithm without any knowledge of a payoff function and

transition function, thus falling into the class of ‘model-free’ algorithms.

For simplicity let S,A be finite, so Q∗ is a matrix. In the end of each period, the payoff

realization ut, current state st, current action taken at, and the next state st+1 are observed.

The algorithm takes some initial value Q0, and then updates the following way:

Qt+1(s, a) =

Qt(s, a) + βt

[
ut + δmaxa′∈X Qt(st+1, a

′)−Qt(s, a)
]

if st = s, at = a

Qt(s, a) otherwise
,

(2)

where βt ≥ 0 is a (possibly stochastic) sequence of numbers converging to zero. Im-

portantly, notice that Q-learning does not specify a policy, just a performance criterion.

Convergence results on Qt give requirements on how often actions are selected over time,

but generally the updating rule is agnostic about how actions at are sampled in every pe-

riod. As an agent who cares about behaving optimally, a clear exploration-exploitation

tradeoff arises in this problem: should one follow the currently-believed optimal action, or

try to find actions that may perform better? A common, basic sampling method is known

as ε-greedy:

Fix a small ε ∈ (0, 1). In every period, the decision maker takes the currently believed

optimal action arg maxa′ Qt(st, a
′) with probability 1− ε. With probability ε, she samples

uniformly from A.

8



For a suitable sequence βt, one can show that Qt converges in probability to Q∗ if states

form a Markov chain controlled by at and actions are sampled ε-greedily (c.f. C. J. Watkins

and Dayan (1992))9. Stationarity of the state-transitions conditional on a fixed policy ρ is

an important ingredient of the standard convergence proof for Q- learning. If stationarity

fails, one can imagine that learning of the correct Q∗ may fail also.

3. The Multi-Agent Setting

Now imagine the player described above in fact faces multiple competitors in a market,

which transforms our MDP into a game. Without any knowledge about their payoff func-

tion, state transitions, and opponents, the player may resort to Q-learning again. What if

all players in the game apply this method to learn their optimal policies?

The purpose of this section is to characterize a class of algorithms for which it is possible

to analytically describe the limiting policies resulting from agents in that class competing

against each other. As will be seen in the following sections, this requirement will be an

important part of the characterisation of the class of RL considered here. The class does

not contain the above described simple Q-learning rule, but a common evolution of it,

that explicitly adapts a policy function ρt at the same time as estimating the Q-function,

making it an actor-critic Q-learning (ACQ) rule as described in the Introduction. In this

section and the main body of the paperter, I focus on ACQ for clarity. The general class

of algorithms is broader and fully defined in Appendix A.

In general I allow the algorithms to be model-free. This translates to a restriction on how

performance criterion estimates are generated. Model-free algorithms maintain estimates

of their performance criterion without explicitly modeling their own or their opponent

behavior and payoffs. This serves as a minimal-information benchmark, which will be

shown to be sufficient to lead to the emergence of collusion.10 There are multiple reasons

why this is a difficult situation for such agents when it comes to learning a good policy, as

discussed in the introduction, and also in Hernandez-Leal et al. (2017). I will be abstract

about the estimation of the performance criterion, and introduce a class of algorithms

that perform reasonably well in the function approximation step, up to a well-behaved

asymptotic bias term. I believe that allowing for an asymptotic bias significantly increases

the number of learning algorithms that fall into our class of RL agents, due to the inherent

problems these agents face while learning.

9This convergence result for single-agent problems has been studied extensively, and it holds generally as
long as all actions and states are visited sufficiently often.
10Furthermore, model-free algorithms can be thought of as a tool for a firm that recently entered a new,
dynamic market. Information on payoffs and market conditions may be hard to come by, so such a firm
may resort to an algorithm that has minimal information requirements.
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The results in this section are concerned with algorithms that learn to play continuous

action policies11. In that case unbiasedly estimating a value function becomes a difficult

task even when stationarity of the environment is satisfied. Commonly in such situations

algorithms use some form of parametric function approximation to generate an estimate,

which can introduce bias. Often this involves deep neural networks due to their flexibility

and scaleability. I refer to François-Lavet et al. (2018) for a thorough introduction to state

of the art RL techniques and a deeper dive into issues of biased estimation of value functions

and their gradients. I will show that the bias I allow in this class does not affect the main

results developed in the next section.

There are n algorithms indexed by i, each having as action space a compact interval Xi,

with profile space X = ×iXi. A finite state space S with |S| = L12 comes with a transition

probability function T : S2 ×X 7→ (0, 1) where I will maintain throughout the paper that

each state space considered is irreducible, as specified below. Furthermore, after defining

its transition probability function, I will refer to a state space S keeping implicitly in mind

that it comes with its own transition probability. Each algorithm has a payoff function

ui : X × S 7→ R, C213 in X, and common discount factor δ ∈ (0, 1).

Algorithms update a policy function ρit : S 7→ Xi, the long-run behavior of which is

the object of our interest. Since states are discrete, policy profile ρt ∈ X̄ = XnL can be

represented as a vector in RnL.

Assumption 1. For all ρ ∈ X̄, the Markov chain induced by Tss′ [ρ(s)] is irreducible and

aperiodic.14

In fact, one can view such a policy as a stationary Markov strategy given state space S.

Further define X̄i = XL
i , and X̄9i = ×j 6=iX̄j.

11This is not as restrictive as might seem. When playing discrete action games, RL algorithms commonly
play on the mixed policy space, for example learning to play ’softmax’ strategies of the form P[q| s] =

exp(Q(s,q))∑
q′ exp(Q(s,q′)) . This again falls into our continuous control scenario.

12While it may be possible to carry out an analogous characterisation of long-run policies under compact
interval domains, the interpretability of the results would likely suffer. RL algorithms commonly used in
the case of interval-state spaces take the policy to be a parametric function of the state, and optimize the
parameters rather than the policy itself (c.f. Sutton and Barto (2018), Chapter 13), which introduces an
issue of interpretability. At the same time, since this section is not concerned with speed of convergence
or computational constraints, one can always take a fine enough discretization of an interval domain and
the analysis in this section applies.
13Let Ci[X,Y ] be the set of functions that are i times continuously differentiable, with domain X and range
Y . When domain and range are clear, I write Ci.
14For Definitions see e.g. Appendix A in Puterman (2014)
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Expected future discounted payoffs W i(ρi, ρ9i, s0) can be defined given stationary policy

profiles [ρi, ρ9i] ∈ X̄:

W i(ρi, ρ9i, s0) = E
∞∑
t=0

δtui(ρ(st), st), (3)

where the expectation is taken over the randomness in the stage game payoffs and state

transitions.

Then define Bi
S(ρ9i) as the optimal policy given a profile ρ9i ∈ X̄9i, chosen from the

constraint set of stationary, S-state policies:

Bi
S(ρ9i) = arg max

ρ∈X̄i
W i(ρ, ρ9i, s0), (4)

where due to our assumption on irreducibility of the state space the optimal policy does

not depend on the initial state s0. The optimal policy is indeed optimal over all possible

dynamic policies since given a Markov stationary opponent profile ρ9i there must be a

Markov stationary best response.

Definition 1. Define

(i) ES ⊂ X̄ to be the set of Nash equilibria in policy profiles based on payoff functions

W i. In other words, ES is the set of profiles ρ∗ s.t. ρ∗i ∈ Bi
S(ρ∗9i) for all i.

(ii) ρ∗ ∈ ES as ’differential Nash equilibrium’ if ρ∗ is interior, first order conditions hold

for each agent at ρ∗, and the Hessian of each agent’s optimization problem at ρ∗ is

negative definite.

By definition, if ρ∗ ∈ ES is a differential Nash equilibrium then there is an open neigh-

borhood Uρ∗ of ρ∗ such that best responses must be single valued for all ρ ∈ Uρ∗ . Let

US =
⋃
ES
Uρ∗ . Given these definitions on the underlying payoff environment, the following

assumption is introduced:

Assumption 2 (Equilibrium existence and differentiability). hhh

(i) Given state space S, stationary equilibrium profiles ρ∗ ∈ X̄ exist. Call the set of such

equilibria ES.

(ii) There exist ρ∗ ∈ ES that are differential Nash equilibria.

A sufficient condition for both points in Assumption 2 to hold is the existence of an

interior static Nash equilibrium given u(a, s) for all s ∈ S. As our analysis of limiting

strategies will depend on a smoothness condition of an underlying differential equation at

the given rest point, the second point will prove crucial.

Throughout, it is important to keep in mind that I define an environment competed

on not by rational agents, but by algorithms constrained to play policies based on a fixed
11



state space domain. When an algorithm is defined in our class, it comes with a finite state

variable S as a primitive. I will take S as an exogenous object chosen by whoever initialized

the algorithm. Importantly, I will assume throughout that the state variable and current

state s is a common observable to all algorithms competing. The state variable can be

interpreted as a model of what kind of information the RL is allowed to condition their

policy on.

Now to state the running example of RL studied here. Assume that each algorithm uses

the following adaptive rule to update their policy, which is known as actor-critic Q learning

(ACQ):1516

Definition 2. Each algorithm i updates policies ρit according to

ρit+1(s) ∈ ρit(s) + αt

[
arg max
a′∈X

Qi
t(s, a

′)− ρit(s) +M i
t+1

]
, (5)

where αt > 0 is a sequence of stepsizes converging to zero and M i
t+1 is an i.i.d, zero-

mean, bounded variance noise generated as a means of exploring the policy space, commonly

referred to as ‘parameter noise exploration’1718.

Qi
t(s, a) is an estimator of

Qi∗(s, a, ρ9it ) = u(a, s) + δE
[

max
a′∈X

Qi∗(s′, a′, ρ9it )| a, s
]
,

the correct Q∗-function conditional on i’s opponents playing profile ρ9it forever into the

future. This Q∗ is related to W through the equation

max
a′∈Xi

Qi∗(s, a′, ρ9i) = max
ρ∈X̄i

W i(ρ, ρ9i, s).

15I focus on the algorithm in Definition 2 because it forms the basis of many well-behaved real world
algorithms, see for example Fujimoto, Hoof, and Meger (2018) who introduce an algorithm based on ACQ
used in real-world applications. Other algorithms of interest that can be accommodated include gradient-
type algorithms. A full exposition can be found in Appendix A.
16Notice that Definition 2 does not exclude the case in which the function to be approximated is fully
known, or there is no bias term. The results thus include the case where agents know their value functions
and follow a simple heuristic in updating their payoffs, taking as an input the current strategies of their
opponent.
17Since our main interest is in algorithms used under incomplete knowledge of the environment, the non-
vanishing variance of Mt+1 can be motivated constructively by a need to explore the policy space due
to estimation requirements on the one hand, and residual randomness due to the fact that performance
criterion Q∗ is being estimated. For continuous action problems, various methods of exploration have
been suggested, the version of parameter noise introduced here being one that is adopted frequently in
the literature and allows for especially clean analytical results (see Plappert et al. (2017), and Yang et al.
(2021) for a comprehensive survey).
18Notice that I use ’∈’ instead of ’=’ above, since I allow for the possibility of the argmax having multiple
values. If that is indeed the case, I allow the algorithm to pick arbitrarily, which will not affect the limiting
characterisation in ways that matter, as will be seen in section 4.
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Qi
t is motivated from stationary MDPs as introduced in subsection 2. It is important

to note the use of this estimator in the Multi-agent case faced here imposes an implicit

behavioral assumption on each algorithm. Suppose that Qi
t(s, a) = Qi∗(s, a, ρ9it ), i.e. the

estimator is perfectly correct. Then what the agent computes in their updating step (5) is a

best response in stationary strategies supposing that the opponents hold their current profile

ρ9it fixed forever into the future. Having read that every algorithm uses (5) to update their

policies, this supposition is clearly incorrect. However, firstly as stepsizes for ρit decrease,

computing Q∗ can be seen as an approximation to the true future expected value that would

take into account evolving ρ9it . Secondly, as stated before, this section is not concerned

with a normative theory of how an optimal algorithm should behave. Rather, the interest

is in developing a model that is realistic enough while staying analysable, and forms an

informational lower benchmark on algorithms in the sense that they can be allowed to be

model-free. As will be shown in section 5, the assumptions made here will be sufficient to

allow for collusive and other interesting behavior to emerge.

The following assumption ensures that Qi
t tracks the correct function Qi∗ well when t

is large enough. The classical Q- estimator (2) defined to motivate Q-learning will not be

enough for this to be true, as it requires discretization of the continuous action space and

may run into issues due to the underlying non-stationarity of the problem. However, more

involved estimation schemes exist for which Qi
t can be shown to track Qi∗, as shown e.g.

in Possnig (2022).

Assumption 3. For each i there exists a bounded function gi(s, a, ρ9i), C2 in a, ρ9i such

that

(i) There is an increasing sequence of σ-algebras {F it}t≥0 such that

χit − E[χit]

is a martingale difference sequence given F it ,
(ii)

sup
t

E
[
(χit)

2
]
<∞,

(iii) There exists a sequence ζt ≥ αt with ζt → 0 such that

lim
t→∞

∥∥∥ ∞∑
k=t

ζkE[χik]
∥∥∥ = 0,

where

χit ≡ sup
(s,a)∈S×X,

∥∥Qi
t(s, a)−Qi∗(s, a, ρ9it )− gi(s, a, ρ9it )

∥∥.
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In words, estimators Qi
t converge uniformly, in mean, to a biased version of Qi∗. Point (i)

ensures the resulting per-period errors are conditionally uncorrelated over time. One can

think of the sequence of σ-algebras Ft as the information available to the algorithm over

time, e.g. generated by a sequence of datasets used in the estimation of Qt, and histories

of ρt. For a concise definition see Appendix A. Point (ii) strengthens this assumption to

ensure that large errors have negligible mass, which is important in the approximation

results established in the next section. For similar reasons, point (iii) ensures that the

mean error terms converge at appropriate speed. In the case of Q-functions as performance

criterion as above, point (ii) is satisfied immediately if payoffs are bounded, in which

case convergence of χt in probability would also imply convergence in mean. Then, for

appropriate function approximation schemes, the convergence speed can also be shown to

satisfy point (iii).

Assumption 3 puts discipline on the limiting difference between Qt and Q∗. Importantly,

it is assumed that there exists a well-behaved function g, independent of t, that represents

this limiting difference in expectation in the long run. Furthermore, this limiting difference,

or asymptotic bias, is a function of t only through its dependence on current period’s profile

ρt. Thus, Assumption 3 allows for an asymptotic bias term in the Qt estimation. Results

in the long run characterisations of subsection 4 impose this bias to be small enough so

that limits of ρt can be inferred via a model in which g = 0. This robustification means

it is sufficient for researchers to verify smoothness and bound a possible asymptotic bias,

without needing to know the specific functional form of g. As stated in the beginning of

this section, g is introduced for the sake of realism and in order to significantly increase

the number of RL algorithms that can be analysed in this paper.

Assumption 3 is not trivial, since it sweeps away the issue of non-stationarity when

it comes to estimating Qt discussed before. However, firms expecting to compete in a

non-stationary environment can be readily assumed to prefer algorithms that can satisfy

this Assumption over basic Qt algorithms as in (2). There exist however more involved

algorithms that can adapt to both of these issues, as shown in Possnig (2022).

For the stepsizes αt I maintain the following:

Assumption 4. Robbins-Monro Condition on stepsizes:

αt → 0 with
∞∑
t=0

αt =∞;
∞∑
t=0

α2
t <∞.

This assumption takes its name from the celebrated Robbins-Monro algorithm represe-

nation (Robbins and Monro (1951)). The assumption constrains the speed of convergence
14



of αt, needing to balance the averaging out of errors (i.e. be fast enough), versus moving

slowly enough to ensure sufficient exploration of the policy space.

Throughout the rest of the paper, I impose the following assumption on the iteration ρt:

Assumption 5. Iterates stay bounded almost surely:

supt‖ρt‖ <∞, a.s..

Even though commonly made, Assumption 5 is often difficult to verify. It is common

for authors to give all their results conditioning on the event that 5 holds, see for example

Michel Benäım and Faure (2012). For a more general discussion of sufficient conditions for

bounded iterates, see V. S. Borkar (2009), Chapter 2.

With Assumptions 3 and 4 in place, I will show that one can apply results from stochastic

approximation theory (see e.g. V. S. Borkar (2009)) to connect the long-run behavior of ρt

to limiting sets of solutions to an underlying differential equation. Given Assumption 3, one

can convince oneself that this differential equation will have to do with the computation of

a best response. This is indeed the case, as will become clear shortly.

4. Long Run Behavior

Throughout, maintain Assumptions 2 - 5.

Definition 3. Take the algorithm from Definition 2. The limit set is defined as

LS,g =
⋂
t≥0

{ρs |s ≥ t},

the set of limits of convergent subsequences ρtk .

I write S, g as subscript to underline the dependence of the limiting set on the state space

S and bias function g, both of which are implied by the specification of the algorithms in use.

As the characterisations introduced here will require properties of a differential equation, I

present next some useful definitions:

Definition 4. Given some ODE ρ̇ = f(ρ), let ρ∗ be a rest point of f(ρ). Let Λ =

eigv[Df(ρ∗)] the set of eigenvalues of the linearization of f at ρ∗. For a complex num-

ber z, let Re[z] ∈ R be the real part. ρ∗ is

• Hyperbolic if Re[λ] 6= 0 holds for all λ ∈ Λ.

• Asymptotically stable if Re[λ] < 0 holds for all λ ∈ Λ.

• Linearly unstable if Re[λ] > 0 holds for at least one λ ∈ Λ.
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As mentioned in the discussion following Assumption 3, I will now show that as long as

the asymptotic bias term g is sufficiently bounded, one can analyse limits LS,g equivalently

by analysing the special case LS,0, i.e. a situation where g = 0 everywhere. For γ > 0, let

Bkγ be the set of Ck functions with bounded derivatives :

Bkγ =
{
g : X̄ 7→ RnL | sup

x∈X̄
‖g(x)‖+

k∑
j=1

sup
x∈X̄
‖Djg(x)‖ ≤ γ

}
, (6)

where Djg represents the j’th derivative.

To save notation, define for ρ ∈ X̄

F S
B(ρ) = B̄S(ρ)− ρ, (7)

as the state dependent best response dynamics, where I take B̄S(ρ) to be the stacked version

of Bi
S(ρ9i) over i.

Proposition 1. Let ρ∗ ∈ US be asymptotically stable for F S
B . Then for all γ small enough

and all g ∈ B1
γ there is a profile ρg such that

(1) supg∈B1γ |ρ
g − ρ∗| → 0 as γ → 0.

(2) P[LS,g = {ρg}] > 0.

Proof Sketch of Proposition 1

The full proof for this and the following Propositions can be found in Appendix ??.

Firstly, I make a general connection between the recursion in (5) and the differential

inclusion F S
B . This follows from celebrated results in stochastic approximation theory. One

can relate a time-interpolated version of the recursion ρt to solutions of the differential

inclusion

ρ̇ ∈ Fg(ρ(t)) ≡ conv[F S
B(ρ(t))] + g(ρ(t)),

where for any set B, conv[B] represents the convex closure.

Since the best-response may be multi-valued, solutions to this inclusion are not guaran-

teed. However, assumptions on the regularity of F S
B (which comes down to a linear growth

condition) allow us to show that there is a global solution in the sense of Filipov (1988).

When considering that the updating rate αt converges to zero, one may convince oneself

that the recursion in (5) looks similar to a discrete time approximation to a time-derivative.

The idea then is to show that the time-interpolated version of ρt indeed must stay close, with

probability one, to solutions of an underlying differential inclusion. The limiting behavior

of ρt can then be deduced from a subset of the limiting behaviors of the differential inclusion

above.
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The proof of the Proposition then establishes a firm connection between ρ∗ and ρg. I

use a more general version of the inverse function theorem to show that since g(ρ) is a

well behaved, differentiable bias term, for every ρ∗ there is a unique rest point ρg. Further,

stability of ρ∗ must carry over to stability of ρg. Once it is established that ρt tracks

solutions to the above inclusion over time, it makes sense that attracting points of the

differential system will also attract ρt over time.

Since I allow for the estimation of performance criterion Q∗ used by each algorithm to

be biased, when considering the long run of ρt one may only see ε-equilibria of the game,

defined below:

Definition 5. A profile ρ is an ε-equilibrium if for all players i all individual profiles ρ′ ∈ X̄
and states s ∈ S

W i(ρ, s) ≥ W i(ρ′, ρ9i, s)− ε.

Corollary 1. Let ρ∗ ∈ E be asymptotically stable for F S
B . Then for all γ small enough and

all g ∈ B1
γ there is a ε̄ > 0 and a profile ρg such that

(1) ρg is an ε-equilibrium for all ε ≥ ε̄.

(2) supg∈B1γ |ρ
g − ρ∗| → 0 as γ → 0.

(3) P[LS,g = {ρg}] > 0.

Notice that the stability property of an equilibrium depends on the performance criterion

F S
B used by the underlying algorithm, and is not affected by the bias term g as long as it

is well-behaved, i.e. g ∈ B1
γ. The stability of ρ∗ itself depends further on the state space

observed by the algorithms. I therefore emphasize this dependence by writing F S
B as the

best response dynamics defined on state space S.

Proposition 2. Let ρ∗ ∈ US be linearly unstable for F S
B . Then for all γ small enough and

all g ∈ B1
γ there is an open neighborhood Uγ with ρ∗ ∈ Uγ such that

P[LS,g ∈ Uγ] = 0.

Proof Sketch of Proposition 2

Firstly, as in the proof of Proposition 1, I establish a one to one relationship between the

stability properties of ρ∗ and the rest points ρg. ρg being unstable hyperbolic implies that

there exists an unstable manifold that ρg lies on, which acts as a repeller to the differential

inclusion Fg. I go on to show that due to the instability of ρg and nonvanishing variance of

Mt+1, no matter how close the algorithm updates come to ρg, and no matter how large t

is, there is always a high probability that ρt lands on the unstable manifold and therefore

must move away from ρg. Finally I show the existence of a neighborhood Uγ. I show that
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due to the hyperbolicity of ρ∗, ρg, there is a neighborhood U around ρg with ρ∗ ∈ U such

that ρg is the only internally chain transitive set within U . Recall that ρ∗ is not internally

chain transitive for the perturbed system Fg, and the result follows.

Corollary 1 and Proposition 2 show the full potential of our characterisation. Asymp-

totically stable equilibria are equilibria that can be limiting points of the RL learning

procedure, while unstable equilibria are not. The intuition is related to how RL learn to

play: since such agents make errors due to estimation and also to explore their action space,

opponent’s strategy profiles are constantly perturbed. In other words, out of the view of

a fixed agent i, the other agents are frequently deviating to policies nearby in the policy

space. Now suppose the current profile ρt is close to an equilibrium ρ∗. Since i’s updating

rule tracks F S
B , their policy will only stay close to ρ∗ if the dynamics of F S

B are somehow

robust to deviations. This robustness is implied by asymptotic stability, and broken by

unstable equilibria.

There is a caveat here however: Corollary 1 does not state that all limiting points in

LS,g will be equilibria of the game. Depending on details of the environment, one may or

may not be able to rule out the case where algorithm updates get trapped in a cycle, or

other more complex behavior not involving rest points (see Papadimitriou and Piliouras

(2018)). I do not include cycles in the above definition, however it is straightforward to

extend Proposition 1 to the case of attracting cycles as in Faure and Roth (2010), and

there exist results considering linearly unstable cycles (Michel Benäım and Faure (2012))

that suggest one may extend Proposition 2 to such linearly unstable cycles also.19

5. Learning to Collude

In this section, I study a repeated Cournot game played by RL algorithms falling into

the family of ACQ learners, as introduced in the previous section. The characterization

provided in section 4 allows to analyze the long run behavior of ACQ learners playing this

game. As a non-collusive benchmark, and to introduce intuitions, I ask when the static Nash

equilibirum (Cournot equilibrium) can be learned. It turns out that the answer depends

on what state variables these algorithms keep track of, and how these states evolve as a

function of past prices and quantities. For instance, in the case where the state variable is

the past period’s price only, learning the static Nash equilibrium comes down to a condition

on the stage game payoff function alone. In contrast, I construct a richer state variable

under which the static Nash equilibrium may not be learned, even if payoffs satisfy the

previous requirement.

19The inclusion of an analysis of limit cycles is an interesting avenue of further research, but would be
beyond the scope of this investigation.
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Recall that in section 4, I established a link between state dependent best-response dy-

namics F S
B as defined in (7), and long-run behavior of ACQ learners. In section 4 (Corollary

1 and Proposition 2), I show the following:

“A given markov perfect equilibrium profile will be learned by ACQ learners with positive

probability if it is attracting under F S
B , and with zero probability if it is unstable under

F S
B .”

Therefore, this section will consider the existence and stability of equilibria under F S
B in

a repeated Cournot game more closely. This game can be shown to satisfy Assumptions

1 and 2 as a consequence of the model setup and Lemma 1. It follows that whenever an

ACQ algorithm satisfies Assumptions 3 and 4, the long run characterisations of section 4

apply.

The game is set up as follows:

• 2 agents i ∈ {1, 2}.
• Stochastic binary price outcome Y ∈ Y = {PL, PH}.
• Quantity choice q ∈ X = [0,M ] for some large M > 0, with aggregate quantity Q.

• Probability of PL given Q:

P[Y = PL|Q] = h(Q),

with h′(Q) ≥ 0.

• Expected price conditional on Q:

Y (Q) = PLh(Q) + PH(1− h(Q)).

• Twice differentiable cost function c(q).

• Stage game payoff for i ∈ {1, 2}

ui(q1, q2) = Y (Q)qi − c(qi),

with Q = q1 + q2.

Throughout, let S0 = {1} be the trivial state space. F S0
B then simplifies to the classical

stage game strategy based best response dynamics, which I sometimes refer to as ‘myopic’

best response dynamics, given the repeated nature of the interaction at hand. Under F S0
B ,

it is well known that under general conditions on Y (Q), there is a unique Nash equilibrium

that is globally attracting (Milgrom and Roberts (1990)).

Firstly, I will derive the objects relevant for stability analysis given a general commonly

observed binary state variable S = {A,B}. Define for any s ∈ S, and qi ∈ X:

PsB(q1, q2) = P
[
s′ = B| s; q1, q2

]
,
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the transition probability to move to state B given current state s and quantity choices qi

in state s. Throughout, I maintain Assumption 1 as done in previous section. Also assume

that

PsB(q1, q2) = P
[
s′ = B| s; q1 + q2

]
,

for all s, qi, i.e. transition probabilities only depend on aggregate quantities. I will therefore

sometimes write Pss′(q1, q2) = Pss′(Q) with Q = q1 + q2.

Throughout, let ρi : S 7→ X be each player’s policy, and recalling the definition of W i in

(3), note that in the binary case one can derive

W i(ρ,A) = ω−1
[
(1− δPBB(ρ))ui

(
ρi(A), ρ9i(A)

)
+ δPAB(ρ)ui

(
ρi(B), ρ9i(B)

)]
,

W i(ρ,B) = ω−1
[
δ(1− PBB(ρ))ui

(
ρi(A), ρ9i(A)

)
+ (1− δ(1− PAB))ui

(
ρi(B), ρ9i(B)

)]
,

(8)

where

ω =
[
1 + δ(PAB(ρ)− PBB(ρ))

]
.

Thus, W i is a convex combination of stage game payoffs ui over the two states, with

weights being a function of transition probabilities. Notably, as δ → 1, these weights will

converge to the unique stationary distribution over states given the policy profile ρ.20

In what follows I will eventually focus on symmetric equilibria, and therefore drop the

i- superscript for all objects, fixing our attention on player 1’s payoffs. Suppose ρ∗1 is an

interior best response to ρ2 (i.e. ρ∗1 ∈ BR1
S(ρ2), as defined in (4)) for which local optimality

conditions hold with a negative definite Hessian. One can then use the implicit function

theorem to find the derivative of 1’s best response with respect to ρ2, which will be an

essential building block in finding stability conditions of an equilibrium. Since policies are

vectors in X2, from now on I will use the conventions ρi(s) = ρis ∈ X for all i, s.

J(ρ∗1, ρ2) =


∂ρ∗1A
∂ρ2A

∂ρ∗1A
∂ρ2B

∂ρ∗1B
∂ρ2A

∂ρ∗1B
∂ρ2B

 . (9)

In the following, to further ease notation I will adopt the following conventions:

• us = u(ρs, ρs), for s ∈ S.

• usi = ∂us

∂qi
and usij =

∂usi
∂qj

, for i, j = 1, 2, s ∈ S.

20Uniqueness is implied by our irreducibility Assumption 1.
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• P ′sB = ∂PsB
∂q1

= ∂PsB
∂q2

for all s and analogously for P ′′sB where the equality comes from

the fact that PsB only depends on aggregate quantities.

More explicitly, one can then write

∂ρ∗1A
∂ρ2

A

= −1 +
ω−1δP ′AB(uA2 − uA1 ) + uA11 − uA12

ω−1δP ′′AB(uB − uA) + uA11

,

∂ρ∗1A
∂ρ2

B

=
ω−1δP ′AB(uB1 − uB2 )

ω−1δP ′′AB(uB − uA) + uA11

,

∂ρ∗1B
∂ρ2

A

=
ω−1δP ′BB(uA2 − uA1 )

ω−1δP ′′BB(uB − uA) + uB11

,

∂ρ∗1B
∂ρ2

B

= −1 +
ω−1δP ′BB(uB1 − uB2 ) + uB11 − uB12

ω−1δP ′′BB(uB − uA) + uB11

.

(10)

Now I introduce more structure on the Cournot payoff function that is natural and will

be maintained throughout the section.

Definition 6. Say that the payoff function u(q1, q2) is regular if

(i) u1(0, 0) > 0.

(ii) c(0) = 0, c′(0) > 0, c′′(q) ≥ 0 for all q ∈ X.

(iii) Y ′(2q) < 0 for all q < M .

(iv) There exists K ∈ (0,M) with u1(0, 2K) < 0 and such that

max
q≤2K,q′≤2K−q

Y ′(q + q′) + qY ′′(q + q′) ≤ 0.

Definition 6 is slightly weaker than standard assumptions made for the Cournot game.

Points (i-iii) are standard assumptions to be expected from a Cournot game. Point (i) makes

the problem interesting, point (ii) is a natural assumption on the cost function, point (iii) a

natural assumption on the inverse demand. Point (iv) represents a small deviation from the

norm only in that I allow for the quantity representing the second derivative of marginal

revenue to be positive for large quantities in X, which will give us flexibility to later on

support a simple, symmetric binary-state collusive equilibrium. At the same time it is

enough to have u be quasi-concave as will be shown below. The assumption is weaker than

the commonly made assumption “Y ′(Q) + qY ′′(Q) ≤ 0” for all q,Q (e.g. Hahn (1962)).

Lemma 1. Suppose u is regular. Then under a boundary restriction there exists a unique

Nash equilibrium qN , which is symmetric and statically stable.

As stated before, when u is regular, the unique Nash equilibrium is globally attracting

under myopic best-response dynamics, and therefore if RL played on the trivial state space

S0, they would converge to qN with probability 1. I show next that even though that is
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true, binary state variables exist so that when RL condition their policies on them, they

will not learn the statically stable Nash equilibrium:

First, consider the matrix of best-response derivatives under a binary state variable when

the static Nash equilibrium is played: ρis = qN for both i, s. I call this policy ρN .

JN =

BR′N +
δP ′AB(ρN )

ωN

uN2
uN11

− δP ′AB(ρN )

ωN

uN2
uN11

− δP ′BA(ρN )

ωN

uN2
uN11

BR′N +
δP ′BA(ρN )

ωN

uN2
uN11

 ,
where ωN signifies evaluation of ω at ρN and I use that BR′N = −uN12

uN11
. Thus, one can

read off the tradeoffs faced by an agent who, starting at the static Nash equilibrium ρN ,

adjusts best responses to a deviation by the opponent. The agent has tradeoff between

following incentives about payoffs today (static incentives), represented by BR′N , and dy-

namic incentives considering effects on continuation payoffs, represented byJN − BR′NI2.

The dynamic incentives allow for additional interpretation:

Note that

δP ′AB(ρN)

ωN
=
∂ ln

(
1− δ + δ(PAB(ρN) + PBA(ρN))

)
∂ρA

;

δP ′BA(ρN)

ωN
=
∂ ln

(
1− δ + δ(PAB(ρN) + PBA(ρN))

)
∂ρB

,

thus the factor multiplying
uN2
uN11

can be interpreted as the sensitivity of the sum of transition

probabilities PAB(ρN) + PBA(ρN) with respect to policy ρ. In what follows, I write these

dynamic incentives more compactly as

DA = DP
AD

u
A =

δP ′AB(ρN)

ωN

uN2
uN11

; DB = DP
BD

u
B =

δP ′BA(ρN)

ωN

uN2
uN11

,

so that the dynamic incentives can be split into a factor originating from the above described

sensitivity of transition probabilities DP
s , multiplying the weighted effect of a perturbation

to future payoffs Du
A = Du

B = Du.

As noted before, as δ → 1, ω−1
N (1− δPBB) → µA(ρN) = PBA(ρN )

PAB(ρN )+PBA(ρN )
, the stationary

probability of visiting A ∈ S when ρN is played forever. On the other side, DP
A = DP

B = 0

when δ = 0. Stability of the static Nash equilibrium is impacted by this quantity in a

straightforward manner:

Proposition 3. Let u be regular and consider arbitrary transition probabilities Pss′ for a

binary state variable. Then ρN is dynamically unstable (i.e. unstable w.r.t. F S
B) if and only

22



if ∣∣∣BR′N +DA +DB

∣∣∣ > 1.

Proof. As discussed in Appendix B, one needs to linearize best responses at ρN to determine

the stability of that profile. We need to characterise the eigenvalues λ1,2 of JN . We have

that

λ1,2 =
tr(JN)

2
±
√
tr(JN)2

4
− det(JN),

where tr(·), det(·) represent trace and determinant. Thus, λ1 = BR′N , and λ2 = BR′N +

DA + DB. Regularity gives that |λ1| < 1, so that |λ2| > 1 appears as the condition in the

Proposition. �

Proposition 3 uncovers the channels through which the static Nash equilibrium can be

destabilized, and eventually through which algorithms in my class will learn to avoid this

Nash equilibrium. On the one side, market conditions matter through the size of the slope

of the static best response BR′N today and the weighted effect that an opponent’s deviation

has on stage game payoffs u in the future. On the other side, fixing the market conditions,

state variables matter: DP
A + DP

B is the total sensitivity of transition probabilities with

respect to policy ρ. In words, this quantity represents the aggregate effect of a marginal

change in policy ρ on transition probabilities, which in turn control the correlation structure

over states. For algorithms to avoid the static Nash equilibrium, only the magnitude of this

sensitivity matters: For any payoff function u of bounded derivatives, there is a threshold

so that once |DP
A + DP

B| surpasses that threshold, static Nash will not be learned. The

set of state variables that can render a static Nash equilibrium unstable is therefore quite

large. This intuition then allows to separate two factors that determine whether the RL

will learn to play static Nash: properties of stage game payoffs u, and properties of the

state variable’s distribution, governed by Pss′ .

Corollary 2. Let u be regular. There exists a pair z∗1 < 0 < z∗2 so that ρN is dynamically

stable if and only if

DP
A +DP

B ∈ (z∗1 , z
∗
2),

where

z∗1 = −1 +BR′N
Du

; z∗2 =
1−BR′N

Du
,

and

DP
A +DP

B = δ
P ′BA + P ′AB

1− δ + δ
(
PAB(ρN) + PBA(ρN)

) .
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Recall that regularity of u implies that BR′N ∈ (−1, 0). Therefore, the following forces

are at work in stabilizing the equilibrium: Firstly, the more negative BR′N , the smaller

is |z∗1 |, and the easier is it for negative DP
A + DP

B to be be below z∗1 so that Nash is

unstable. This follows since BR′N is negative from the start, and so if dynamic incentives

work in tandem with the static incentive, perturbations can accumulate easily. This force

must be seen as relative to Du; even if transition probabilities are very sensitive (|DP
A +

DP
B| is large), they only matter for best responses if they lead to a sizeable payoff effect

relative to static incentives. Analogously, z∗2 is smaller the closer BR′N is to zero, since

positively sensitive transition probabilities must surpass the static incentive which works

in the opposite direction.

Note that Proposition 3 and the above Corollary can be generalized to Nash equilibria of

payoff functions u unrelated to the Cournot game studied here, given twice differentiability

of u at the equilibrium.

5.1. Two Special State Variables

So far, state variable S has been allowed to exist without any connection to the underlying

stage game u other than through its correlation to aggregate quantities Q. In what follows,

I introduce two state variables that correlate to Q through the channel of price outcome Y ,

and lead to two extreme results. In the first case, static Nash will be dynamically stable

for any state variable falling in that general family; in the second case, static Nash can

be dynamically unstable, and the existence of collusive equilibria that are attracting is

possible.

First, consider the state variable where st = Yt−1, the past period’s price realization.

Definition 7. A public 1R-policy can be defined as policy ρ : {PL, PH} 7→ X, so that

states are price realizations representing last periods observed price. This can equivalently

be defined as having a state realizations Y with transition function T (s, P ) ∈ Y such that

T (s, P ) = P for all s ∈ Y, and all price observations P ∈ Y.

For this family of policies, one can show the following:

Corollary 3. Let ρN be the 1R-policy that plays stage game Nash quantity qN in every

state. Then ρN is dynamically stable if and only if qN is statically stable.

This result follows from Corollary 2, since under 1R-policies at ρN , we must have that

DP
A +DP

B = 0.21 Note that under 1R-policies, PAB = 1− PBA = P[PH ]. Thus, P ′AB(ρN) +

21The result holds more generally in the case of finitely many prices (more than 2), an analysis of which
can be found in an online appendix available upon request.
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P ′BA(ρN)=0. In fact, for any policy that plays the same quantity in all states, when the

state is past period’s price it must be that DP
A + DP

B = 0. In general this comes from the

fact that, for every given current state, conditional distributions over future states are the

same. I call this quality of a state variable ‘state-independent transitions’ (SIT).

Transitions of a state variable can readily be depicted in a transition diagram. Figure

5.1 depicts the underlying transition diagram when st = Yt−1, with state A corresponding

to Yt−1 = PL, and state B corresponding to Yt−1 = PH .

Figure 1. Transition Diagram: SIT

In contrast, the following is a state variable under a more involved transition profile,

which I denote direction-switching (DS):

Figure 2. Transition Diagram: DS
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A realized price PL represents a switch-signal, while realizing PH represents a remain-

signal. Thus, states evolve from s to s′ according to transition probability function

PAB(Q) = P[PL | Q] = PBA(Q).

More generally one can define policies following state variables with transition probabil-

ities having the above property:

Definition 8. Say a binary state policy is a DS-policy (’DS’ for direction-switching) if the

underlying state transitions are irreducible and PAB(Q) = PBA(Q) holds for all Q. Denote

the DS- state space as S∗.

In words, the probability of reaching any state s conditional on being in A is comple-

mentary to the probability of reaching s conditional on being in B. Notice that this affects

dynamic incentives in an interesting manner: for a given quantity Q, marginal deviations

affect expected continuations in the opposite direction, depending on the current state.

This fact introduces an essential difference in how states A,B are interpreted, even when

ρA = ρB is played. Notice that in this case, DP
A = DP

B , so that

DA +DB = 2δ
P ′AB(ρA)

ωN
Du,

with P ′AB(ρA) = h′(2ρA). Let ζN be the DS-policy playing qN in all states (call it ζN , to

differentiate from ρN under 1R policies). It follows from Corollary 2 that there should exist

conditional price distributions h(Q) so that ζN will be dynamically unstable and therefore

not learned by our RL. However, the issue is not immediate since h(Q) plays a role both in

construction of u and transition probabilities Pss′(Q). In the following, I show that there

is a set of regular payoff functions such that ζN is indeed statically stable, but dynamically

unstable. Moreover, this family of regular payoff functions will also allow for the existence

of collusive equilibria.22

For the sake of analytical tractability, I introduce a global shape restriction on h so that

the resulting payoffs are regular, but together with S∗, will allow for a collusive equilibrium

to exist. To this end, impose for h (and therefore Y (Q)) to take an S-shaped form:

Definition 9. Fix M > 0. Let Go be the space of monotone increasing, twice differentiable

functions h : [0,M ] 7→ [0, 1], s.t. h
′′

= minQ∈[0,M ] h
′′(Q) ∈ (−∞, 0). Define a space of

22This result holds under more general state-and price spaces which are non-binary, as established in
Appendix ?? .
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S-shaped functions with lower bounded second derivative as

G =
{
h ∈ Go s.t. ∃τ ∈ (0,

M

2
) : h′′(0) > −h′′, h′′(2τ) = 0

h′′(Q) > 0∀Q ∈ [0, 2τ), h′′(Q) < 0 ∀Q ∈ (2τ,M ],

−h′′ < h′(2τ)

τ

}
.

Proposition 4. There exists h ∈ G, PH > PL ≥ 0 and a convex c(q) such that resulting

u is regular, ζN is dynamically unstable and there exists a symmetric equilibrium σ with

0 < σA < qN < σB.

The intuition for how S∗ can support a simple collusive scheme as σ can be found by

thinking through incentives to deviate at the equilibrium: in state A, quantities lower

than qN are to be played. Statically, by the strategic-substitutes nature of the Cournot

game, one wants to deviate upwards. However, increasing quantities in state A increases

the likelihood of realizing PL, which in turn would lead the system to move to state B,

which is undesirable. In state B, punishingly high quantities are to be played. Here, a

player statically would want to deviate to lower quantities. However, that would increase

the likelihood of realizing PH , which would lead to a repetition of state B in the following

period; again an undesirable outcome. Thus, collusion is reinforced.

Notice that by construction, S∗ is symmetric in the sense that for both states A,B,

observing PH leads to staying in the given state, whereas observing PL implies leaving

the state. It is then no surprise that given that payoffs are also symmetric, Proposition

4 also implies that there exists a another symmetric collusive equilibrium σ′, satisfying

σ′A = σB, σ
′
B = σA.

We see from the above and the following subsection that SIT-state variables and DS-

state variables lead to starkly different outcomes. In the former, static Nash will always be

learned with positive probability while in the latter, static Nash may never be learned, while

collusion can be learned with positive probability. Furthermore, payoff functions resulting

in collusive equilibria under DS-state can be such that the static Nash equilibrium is the

unique symmetric equilibrium under 1R-state variables:

Corollary 4. Suppose h ∈ G, PH > PL ≥ 0 and c(q) are such that the conditions of

Proposition 4 hold. Then ρN is the unique symmetric equilibrium under 1R-policies.

5.2. Stable Collusion

The stability of the collusive equilibrium is determined by local conditions at the equi-

librium. The dynamic instability of the Nash equilibrium is sufficient for the existence of
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collusion, but neither necessary for the existence, nor is it sufficient for stability of the

collusive equilibrium. However, stability depends on quantities related to growth rates of

transition probabilities and the stage game in manners analogous to the stability analysis

of the static Nash equilibrium.

To see this, let Π(q1, q2) = Y (Q)− c′(q1) be the marginal profit as computed by a price-

taker. Notice that by construction of the Cournot-payoff function, u1(q1, q2)− u2(q1, q2) =

Π(q1, q2), which is true for all q and therefore also true for Π′(q1, q2) ≡ ∂Π(q1,q2)
∂q1

. This defini-

tion allows one to write, for any interior equilibrium profile σ as constructed in Proposition

4,

∂ρ∗1A
∂ρ2

A

= −1 + φ−1
A

[
Π′A − ω−1δP ′ABΠA

]
,

∂ρ∗1A
∂ρ2

B

= φ−1
A ω−1δP ′ABΠB,

∂ρ∗1B
∂ρ2

A

= φ−1
B ω−1δP ′BAΠA,

∂ρ∗1B
∂ρ2

B

= −1 + φ−1
B

[
Π′B − ω−1δP ′BAΠB

]
,

(11)

where as before, s-subscripts denote evaluation at qs, and

φA = ω−1δP ′′AB(uB − uA) + uA11;

φB = ω−1δP ′′BB(uB − uA) + uB11,

Some tedious algebra then allows to re-write determinant and trace of J(σ, σ) using (11)

under the assumption that Π′(q1, q2) < 0 for all qi ∈ X. First, define for s, s′ ∈ S:

Rs =
δP ′ss′

ω

Πs

Π′s
,

which can be interpreted as a ratio of elasticities of ω versus Πs with respect to qs. To save

notation, write J∗ = J(σ, σ). Then:

tr
(
J∗
)

= −2 +
Π′A
φA

[
1−RA

]
+

Π′B
φB

[
1−RB

]
;

det
(
J∗
)

=

[
1− Π′A

φA

Π′B
φB

]
− Π′A
φA

[
1−RA

][
1− Π′B

φB

]
− Π′B
φB

[
1−RB

][
1− Π′A

φA

]
.

(12)

Notice that for the stage game as constructed in Proposition 4, φs < us11 holds, and

therefore Π′s
φs
∈ (0, 1) can be guaranteed as long as us12 ≤ 0, since Π′s = us11 − us12. Sign

28



and magnitude of Rs depend on local conditions of both transition probabilities and the

stage-game quantity Π(q1, q2). It is clear from (12) that both trace and determinant depend

crucially on the quantities Rs. Indeed, if RA, RB are not too negative, stability of σ follows:

Lemma 2. Consider an interior, symmetric equilibrium under a binary state variable,

σ = (qA, qB) with qA < qB as constructed in Proposition 4. Suppose Π′s
φs
∈ (0, 1) for both s.

Then if

0 ≤ min{RA, RB}, and RA +RB ≤ 1,

σ is asymptotically stable.

Proof. Firstly, as shown in Appendix B, stability of σ is equivalent to∣∣tr(J∗)∣∣− det(J∗) < 1. (13)

Then, note from (12) that by the condition of the Proposition,

tr
(
J∗
)
< −RA −RB

and so for RA, RB not too negative, we must have that tr
(
J∗
)
≤ 0. Next note that we can

write

det
(
J∗
)

= −tr
(
J∗
)
− 1 +

Π′A
φA

Π′B
φB

[
1−RA −RB

]
.

Thus, for RA, RB bigger than 0, the trace drops out in the condition in (13). The last

equation then determines stability through the term
[
1−RA −RB

]
. �

Relationship to the Best Equilibrium

One might wonder about the relationship between a binary-state collusive equilibrium

as constructed in Proposition 4 and the best possible payoff a player can achieve in a

repeated game of imperfect public monitoring. Using the insights of Abreu, Pearce, and

Stacchetti (1990) (henceforth APS), a useful link can be made between best equilibria and

binary-state policies as defined in the previous discussions.

First, let Γ = 〈u1, u2〉 be the stage game as defined in the beginning of the section. Then

one can define Γ∞(δ) as the infinite repetition of Γ where players discount expected long

term payoffs by δ ∈ (0, 1). For any 0 < t, define bt = {Ys}0<s<t to be a public history of the

game, with Bt = Yt the set of possible public histories up to time t. Then let bit = {qsi }0<s<t

be the private memory of a player’s own actions, and define Bi
t = X t as the set of those at

period t. Now, a strategy of player i at period t can be written as map σit : Bt ×Bi
t 7→ X.

A strategy is then a sequence σi = {σit}t>0, with the set of such sequences denoted Σ. In
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keeping with APS, we can define strongly symmetric sequential equilibria (SSE) of Γ∞ as

profiles σ = {σ1
t , σ

2
t )}t>0 with σ1

t (bt, b
1
t ) = σ2

t (bt, b
2
t ) whenever b1

t = b2
t , that are individually

unimprovable for each player, with respect to their expected future discounted payoffs:

U i(σ) = (1− δ)E
∑
t>0

δtui(σt) ≥ U i(σ′, σ9i) = (1− δ)E
∑
t>0

δtui(σ′t, σ
9i
t ),

for any σ′ ∈ Σ. APS provide a result stating that the best SE can be supported by a bang-

bang solution, under their setting. Their setting differs from the one of this section on two

counts: APS requires uncountable signals under an absolutely continuous distribution, and

finite (but arbitrarily many) actions.

By allowing for public randomization in the definition of the strategies in Σ, the un-

countable signal requirement can be satisfied. An approximation argument can then be

made to approximate the best SSE of Γ∞ by a sequence of best SSEs of repeated games

with a finite, increasing number of actions.

Define the restricted action set XK = {x1, ..., xK} ⊂ X such that max0<k,k′≤K{|xk −
xk′|} ≤ 1

K
, and such that qN ∈ XK for all K > 0. Let the restricted game Γ∞K be the

repeated game where players are constrained to choose actions from Xk. Let E,EK be

the sets of SSEs of Γ∞,Γ∞K respectively. The restriction that qN ∈ XK ensures that EK is

nonempty for all K > 0.

Define V = {U(σ) : σ ∈ E}. Let VK = {U(σK) : σK ∈ EK}. For Γ∞K , allowing for

public randomization means that APS’ results can be applied, which specifically gives us

that VK is compact and can be implemented by a bang-bang strategy that only ever plays

two actions in XK .

Let σ̄K ∈ EK be such that U(σ̄K) = V K = maxVK . By APS, σ̄K can always be chosen

to be a bang-bang profile. Note that any such σ̄K ∈ EK is a ε-equilibrium of Γ∞:

Proposition 5. For any ε > 0 there exists Kε > 0 such that for all K ≥ Kε,

(i) σ̄K ∈ EK is an ε-equilibrium of Γ∞,

(ii) σ̄K ∈ EK satisfies U(σ̄K) = V K,

(iii) There exists a binary state Variable SK = {A,B} with transition probability functions

PK
ss′(q1, q2) so that policies ρiK : SK 7→ XK constitute an ε-equilibrium of W i(ρ, s) as

defined in (8).

Proposition 5 tells us that at the very least there exist binary state variables such that,

when algorithms condition their policies on those (as set up in the beginning of this section),

and are constraint to choose quantities in finite set XK , the best equilibrium of the repeated

game is a candidate for possible long run behaviors of the algorithms. Whether it can be
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learned with positive probability or not would then depend on its stability properties.

Of course, the caveat here is that a continuum of actions X is necessary for the stability

approach applied in this paper to go through (differentiability in actions being the necessary

requirement). It remains an open question whether the best SSE payoff supV of Γ∞ can be

approximated by a sequence of V K , which would go beyond the scope of this paper. If such

an approximation result were to hold, one can argue that indeed also for the unrestricted

choice case (actions in X), there exist binary state variables that support the best payoff

and therefore may be learned by the RL agents defined here.

To provide a visualization of the results discussed so far, the following section shows

simulation results which can be interpreted using the the theory developed in this and the

previous section.

5.3. Numerical Example and Simulations

I construct a piecewise-linear version of h(Q), prices PL, PH and a convex cost function

c(q) for which there exists a unique stage game Nash equilibrium qN that is statically stable,

but dynamically unstable, and there exists a stable symmetric collusive equilibrium. The

following is an overview of a numerical example for which these properties are satisfied.

Fix a discount factor δ = 0.98. All numbers given in the example are rounded to two

decimal points. Given domain X = [0,M ], derivative parameters 0 < h′A, h
′
B < h′N , and

cutoffs x = [x1, x2, x3, x4] > 0, I define the set of piecewise linear functions Ĝ so that h ∈ Ĝ
if and only if one can write

h(Q) =



h(Q) Q ∈ [0, x1)

h(x1) + h′A(Q− x1) Q ∈ [x1, x2)

h(x2) + h′N(Q− x2) Q ∈ [x2, x3)

h(x3) + h′B(Q− x3) Q ∈ [x3, x4)

h(Q) Q ∈ [x4,M ]

,

where h ∈ [0, 1) is strictly increasing, with h′(0) = 0, h′(x1) = h′A, h′(x4) = h′B and

h′′(Q) > 0 for all Q ∈ [0, x1], and h ∈ [0, 1) is strictly increasing, with h
′
(M) = 0,

h
′′
(x4) = 0 and h

′′
(Q) < 0 for all Q ∈ (x4,M). Elements of Ĝ are therefore piecewise-

linear versions of elements of G. The idea is that this construction facilitates a numerical

example, while still allowing for existence of a collusive equilibrium using similar intuition

as in Proposition 4.
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Figure 3. Location of cutoffs xi for piecewise linear h(Q).

Given h(Q), prices and a cost function for which the properties stated in the beginning

of this subsection are satisfied, one can plot the stage game best response and its inverse

to verify the uniqueness of the static Nash equilibrium:
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Figure 4. Best Response Intersection

This plot shows the unique intersection of static best-response functions in the numerical

example, where qN = 1.58. Best responses jump upwards at a value larger than qN . This

is due to the non-concavity introduced by the requirement h′B < h′N , which enforces the

S-shape of the piecewise-linear h(Q) function. Best responses jump to zero at a large

quantity, where the interior local maximum has a negative value.

One can verify numerically that under this example,

−u
N
12

uN11

= −0.5; DA +DB = 2.28,

which implies from Proposition 3 that the Nash equilibirum is statically stable but indeed

dynamically unstable. At the same time, this numerical example supports a pair of sym-

metric, collusive equilibria σ, σ′ with σA = 1.52 < σB = 1.94 (rounded to two decimal

points) and the quantities flipped for σ′. (see the discussion after Proposition 4. As laid

out in detail in Appendix B, the stability of this equilibrium is verified by checking the
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eigenvalues of the linearized system F S∗
B at the equilibrium. In this case, the largest eigen-

value is −0.5, implying that all eigenvalues are strictly negative, implying the stability of

the collusive equilibrium.

I finish by providing a simulation study to visualize these results. This simulation study

should be seen as a device to get intuitions about the system dynamics after many iterations

of the algorithm have passed. The characterisation of long-run behavior given in subsection

4 is used here: instead of simulating the estimation part of Qt of the algorithm given in

Definition 2, I take Assumption 3 seriously, set bias term gi = 0 for all i, and simulate

iteration (5) in the following way:

For i ∈ {1, 2} and all s,

ρit+1(s) ∈ ρit(s) + αt

[
arg max
q′∈X

Qi∗(s, q′, ρ9it )− ρit(s) +M i
t+1

]
, (14)

where αt = t−0.6 satisfies the Robbins-Monro Assumption 4, and M i
t+1 ∼ N(0, .25) is an

i.i.d mean-zero Normal noise variable with variance 0.25. Notice that (14) replaces Qt given

in (5) by its estimation target Q∗. Thus, this iteration represents a noisy discretization of

F S∗
B rather than a simulation of a feasible model-free algorithm. As the results in subsection

4 tell us, for algorithms in the class studied in this section this simulation will give us an

equivalent representation of long-run trajectories of ρt to a full simulation of (5) when t is

large. Running a more in-depth simulation experiment including the estimation part of Qt

will be an insightful object of further investigation.

Note that the long-run characterisations given in subsection 4 are local in nature: if the

iteration ρt at some point t enters a basin of attraction for a given stable equilibrium ρ∗,

then the iteration will converge to that equilibrium with large probability.23 One can not

hope here to compute the exact basins of attraction for each equilibrium as such an exercise

would go beyond the scope of this paper. However, any basin of attraction for a stable

equilibrium must at the very least contain a small neighborhood of that equilibrium. I will

use such a small neighborhood to initialize our simulations in this experiment.

In each simulation exercise, I run 96 separate simulations, and each for 25, 000 periods.

Thus, simulations are potentially stopped before they’ve noticeably converged to a point.

The idea is to take the following figures as relative to each other: each exercise was done for

the same number of iterations, but the results differ starkly across exercises. As will be seen,

depending on the state variables of the algorithms involved, iterations move closer to the

23In fact, approximations of this probability can be made given the neighborhood of ρ∗ the iteration
finds itself in, see for example Thoppe and V. Borkar (2019). This leads to an interesting avenue of
future research, which will allow a study of the distribution of outcomes possible given a set of competing
algorithms in the class described in this paper. Once a distribution over outcomes can be characterised,
modeling a strategic interaction involving choosing algorithms will become feasible.
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equilibrium the neighborhood of which they started at, or move away from it, confirming

the theory developed in this paper.

First, I consider the result given in Corollary 3. Since in this example, the Nash equilib-

rium is statically stable, its repetition under 1R-policies ρN is also stable. Thus, one would

expect that once algorithms using 1R-state variables come close to the Nash equilibrium,

they should stay close to it forever, and in the long run converge to it. This is what is

evidenced by Figure 5.3. Since the state space is binary, the two algorithms’ policies can

be represented as points in the X2-plane. I now plot simulation outcomes in this plane, so

that each simulation run is represented by two points in the plane spanned by ρ(A), ρ(B).

Figure 5. 1R-policies

The final policy profiles of 96 simulation runs of 25, 000 iterations each are shown in

Figure 5.3. Simulations are started in a circular neighborhood of ρN , with a radius of

.025‖ρN‖. One red and one orange dot represent a policy profile at the end of a simulation

run. σ, σ′ signify the collusive equilibria, which in this case have not been approached. All

simulations remained in the neighborhood, as should be expected given the stability of ρN .
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Now contrast this result with an analogous study given DS-policies for a state variable

evolving as shown in Figure 5.3. Even though the neighborhood of starting values used in

this scenario is the same as under 1R-policies, the picture is starkly different:

Recall that I denote the repetition of qN under S∗ as ζN . Since qN is dynamically unstable

under S∗-policies, no matter how close the starting values of the iteration are, the iteration

must be pushed away from ζN as shown in the proof of Proposition 2. However, in the

case of this example, it is not only true that the iteration is pushed away, but also that it

is pulled towards the collusive equilibrium σ. This indicates that the basin of attraction

for the collusive equilibrium in this example is not confined to a small neighborhood of the

equilibrium but in fact quite large. This scenario also underlines the weight of consideration

that should be given to the analysis of policy spaces given two competing algorithms. Even

if one forced algorithms to initialize very close to a Cournot equilibrium, they can, given the

right state variable, approach a collusive equilibrium instead. As this example supports a

pair of collusive equilibria, the resulting figure shows how roughly half the simulation runs

end up in the North-West of the plane, while the other half approached the South-East.

Figure 6. S∗-policies
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The final policy profiles of 96 simulation runs of 25, 000 iterations each are shown in

Figure 5.3. Simulations are started in a circular neighborhood of ζN , with a radius of

.025‖ζN‖. One red and one orange dot represent a policy profile at the end of a simulation

run. All simulations left the neighborhood of starting values, with most conglomerating at

one of the two collusive equilibria σ, σ′. To see that outcomes indeed approached σ, σ′, two

dots connected by a line represent a single simulation outcome. The black circles represent

neighborhoods of σ, σ′ with radius .25‖σ‖.
With a similar exercise it can be seen that the collusive equilibria indeed attract the

algorithm iterations if starting values are analogously defined as for the two above discussed

simulations:

Figure 5.3 shows how after starting in a neighborhood of the collusive equilibrium σ,

iterations stayed there for the course of the simulation. An analogous picture can be

generated when initializing in a neighborhood of σ′.

Figure 7. S∗-policies, initialized locally

The final policy profiles of 96 simulation runs of 25, 000 iterations each are shown in

Figure 5.3. One red and one orange dot represent a policy profile at the end of a simulation
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run. Simulations are started in a circular neighborhood of σ, with a radius of .025‖σ‖. All

simulations remained in the neighborhood, as should be expected given the stability of σ.

Finally, one might wonder about the global properties of the dynamical system gener-

ated from this numerical example. It happens to be the case that, when simulations are

initialized at a radius of .95qN , i.e. from values approaching the boundary of the action set

X, the above results are unaffected: under 1R-policies, all simulation runs converge to the

static Nash equilibrium ρN , while under S∗-policies, none of the simulation runs converge

to ρN ; all of them conglomerating at either σ or σ′.

Figure 8. 1R-policies, initialized globally

The final policy profiles of 96 simulation runs of 25, 000 iterations each are shown in

Figure 5.3. Simulations are started in a circular neighborhood of ρN , with a radius of

.95‖ρN‖. One red and one orange dot represent a policy profile at the end of a simulation

run. σ, σ′ signify the collusive equilibria, which in this case have not been approached. All

simulation runs conglomerated at ρN .
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Figure 9. S∗-policies, initialized globally

The final policy profiles of 96 simulation runs of 25, 000 iterations each are shown in

Figure 5.3. Simulations are started in a circular neighborhood of ζN , with a radius of

.95‖ζN‖. One red and one orange dot represent a policy profile at the end of a simulation

run. All simulations conglomerated at one of the two collusive equilibria σ, σ′. The black

circles represent neighborhoods of σ, σ′ with radius .25‖σ‖.

6. Conclusion

This paper considers the long-run behavior of a class of RL algorithms and shows that

one can interpret said long-run behavior by considering the stability of repeated game

equilibria according to an underlying differential equation. By ways of the application of

collusion in repeated games, I observe the usefulness of this framework: it allows one to

consider comparative statics exercises on the long-run learning behavior of RL with respect

to details of the game and algorithms.
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The characterisation of long-run behaviors serves as a methodology that can allow re-

searches to pick a given interaction of interest, e.g. an auction, a stock market, or multi-

lateral platform, then pick a class of algorithms within the family allowed, and evaluate

long-run outcomes in the chosen setting.

The characterisation allows to distinguish whether a given equilibrium will be learned

with positive, or with zero probability. This is the current state of the art of the stochastic

approximation approach applied here; in the future it will be interesting to look into an

approach that allows to evaluate the relative likelihood of observing one equilibrium versus

another. Such an improved characterisation will allow for the study of a meta-game. In

such a meta-game, firms will choose algorithms (say, the state variable used by the algo-

rithm, the stepsize sequence, or other details of the updating rule). Using this improved

characterisation, firms can evaluate their expected profits from a given algorithm profile.

That way, it will be possible to employ a Nash equilibrium analysis of a meta-game of

choosing algorithms.

Since the algorithms in the class considered require to be given a fixed policy space on

which to learn, an interesting comparative statics exercise that comes out of this project

is a first step in categorizing dynamic policies by how amenable they are in allowing the

learning of cooperative behavior. I introduce the categories 1-recall-policies and direction-

switching (DS) policies as a first step in this endeavour. I also introduce the terms static

and dynamic stability, in order to analyse the ability of RL to learn repeated stage game

Nash equilibria in the context of the policy space that these RL learn on. When considering

a statically stable Nash equilibrium, one can ask:

“How does the ability of the algorithms to learn a stage game equilibrium change when

the state space their policies are allowed to condition on is changed?”

The resulting categorization of state-dependent policies is an important area of future

research. For now, it gives us an idea of what restrictions an antitrust authority might

want to impose on the information RL are allowed to condition their policies on.

Furthermore, my analysis generates testable conditions on the payoff functions RL face

so that collusion or the stage game Nash will be learnable. Since the conditions only depend

on market fundamentals, this can be affected by market interventions and therefore pose

another viable channel for antitrust regulations.

A more precise understanding of the range of payoffs supportable in the long-run by

competing RL is another area of interesting future research. Once a better understanding

is achieved of the distribution over possible outcomes given a set of competing algorithms,

one can construct a hyper-game of choosing algorithms (or their parameters), which will

go a long way in the study of algorithmic collusion.
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6.1. Discussion of related Literature

Firstly, Banchio and Mantegazza (2022) also consider a characterisation of competing

RL algorithms and apply it to games of economic interest. The class of algorithms they

study intersects with the class studied in this paper, but there are important differences. It

is unclear that their approach can accommodate actor-critic approaches that are featured

here, as such approaches require a separate estimation technique that can introduce depen-

dence of policy parameters on histories of past observations. This is important, since the

actor-critic feature allows us to consider closely the learning of repeated game strategies,

which is not featured in the focus of Banchio and Mantegazza (2022).

There is a recent theoretical literature on stylized models of algorithmic competition.

Lamba and Zhuk (2022) study how algorithms may learn to collude. They look at a

stylized model of algorithmic competition, in which an algorithm is represented by a policy

mapping from opponent actions to actions, which can be revised less frequently than actions

are taken. They show that no equilibrium of that game is fully competitive. Salcedo (2015)

goes along a similar direction, with an algorithm being an automaton strategy that can

only be revised less frequently than actions can be taken.

Another paper of stylized algorithmic competition is Z. Y. Brown and MacKay (2021).

They focus on the frequency with which algorithms can update prices, and let algorithms

of different adjustment speeds compete against each other. When frequency abilities are

asymmetric among algorithms, equilibrium outcomes can be collusive. Interestingly, when

firms can choose algorithms (i.e. their adjustment frequency), the equilibrium features

asymmetric frequencies.

The works mentioned above focus on different aspects of frequency of adjustment as a

stylized feature of algorithmic updates. This paper shows a channel that has not been ex-

plored much in this literature: the role of state variables in the ability of algorithms to learn

collusion. This could be an interesting new starting point for a study of stylized algorithms.

Moreover, the works above abstract away from issues of learning and estimation, which is

in contrast to this paper. An interesting aspect of learning present here is the importance of

stability of equilibria in determining what can be learned. Stability of equilibria is tightly

connected to dynamic reactions to imprecisions and mistakes (perturbations), which are

present when learning and estimation are part of algorithmic updates.

Johnson, Rhodes, and Wildenbeest (2020) look into platform design under algorithmic

sellers. They investigate differing policies implemented by a platform designer wishing to

promote competition or raise own profits. They include a simulation study of Q-learning

algorithms under different policy designs; clearly, results in this paper can be applied to
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study related RL algorithms under any given platform policy. Once a more tight charac-

terisation of the distribution over outcomes supported by a profile of algorithms is in place,

one can go a step further and attempt to find the optimal platform policy for any given

algorithm profile in my class.

In connection to the theory of learning in games, this paper speaks to the learning of

repeated game strategies by making an important connection: I shed light on the ability

of behavioral players to learn to play equilibria of a repeated game other than the static

equilibrium of the underlying stage game. Since the players I consider learn policies on a

fixed policy space, one may recast their payoffs as expected discounted payoffs based on

stationary policy profiles that have to live in that policy space. See the definition of best

response under a given state variable (4). Taking that view, one can say that algorithms

in my class learn to play Nash equilibria of a repeated stage game with multi-dimensional

continuous actions (which are precisely the policies in the policy space). In this sense my

analysis ties neatly into classical analysis of the theory of learning in games with minimal

information requirements.

There is now a growing area of research lying on the intersection of the theory of learning

in games from the economics point of view, and the asymptotic theory of algorithmic

learning from the computer science side. Leslie, Perkins, and Xu (2020)’s paper is an

example of a paper intended more for economists, while applying language also common

to the computer science literature. They consider zero-sum Markov games and construct

an updating scheme related to best response dynamics that converges to equilibria of the

game. As they also keep track of separate policy and value function updates, their scheme

falls into the class of actor-critic learning rules generally, while not falling into the class

considered in this paper due to important assumptions on the updating speed differential

between policy and performance criterion used there.

Leslie and Collins (2006) introduce what they call “generalized weakened fictitious play”

(GWFP), an adaptive learning process the limits of which can be related to classical contin-

uous time fictitious play (G. W. Brown (1951)), or stochastic ficitious play (c.f. Hofbauer

and Sandholm (2002)), depending on details of the process. Their framework allows to

conclude asymptotic behavior of learning processes once one has shown that the process is

a GWFP process. They show that GWFP converges in games that have the fictitious play

property. Notably that class includes zero-sum games, submodular games, and potential

games.

One can interpret results in this paper as showing that a subclass (ACQ) of the RL I

consider can be seen as a GWFP process. Therefore, one can apply Leslie and Collins (2006)

to conclude the limiting behavior of that process in games with the fictitious play property.
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However, there are many repeated games of interest that do not have this property; notably

standard repeated oligopoly (Cournot) games where agents learn repeated game strategies.

I analyse the learnability of collusion in oligopoly games more seriously, and therefore give

a more detailed analysis of limiting behavior in a class of games not known to have the

fictitious play property. I do this by taking seriously the fact that GWFP can in general

be defined to learn repeated game strategies, which to the best of my knowledge has so far

only been considered under the restriction of Markov strategies for stochastic games.

This paper connects also to a growing strand of the computer science literature estab-

lishing convergence proofs in multi-agent algorithmic environments. The paper in that area

closest to this one is Mazumdar, Ratliff, and Sastry (2020). They establish a connection

between gradient-based learning algorithms for continuous action games and asymptotic

stability of equilibria of the underlying game. While nested in our RL class, the updating

rules that Mazumdar, Ratliff, and Sastry (2020) consider implicitly assume that algorithms

observe each other’s per period policies, or at least observe an unbiased estimator of their

per-period value function gradient. I argue that this assumption is difficult to satisfy, es-

pecially in the case of continuous action games. In a companion paper (Possnig (2022)), I

give low-level sufficient conditions on independent algorithms so that a weakened version

of this assumption goes through. My results suggest that Mazumdar, Ratliff, and Sastry

(2020)’s results are robust to the type of bias in the gradient estimation that my RL class

allows. Furthermore, this paper focuses on the possibility of RL to learn history-dependent

repeated game strategies, which is not the explicit goal of Mazumdar, Ratliff, and Sastry

(2020).

Other papers related to asymptotic analysis of multi-agent systems commonly focus on

developing a specific algorithm that behaves well in some metric, allow communication

across algorithms, require information on the primitives of the game, or do not ask about

the nature of the limiting points. Notably, Ramaswamy and Hullermeier (2021) give a thor-

ough analysis of deep learning techniques for Q-functions using gradient updates, without

considering stability properties of rest points. Others focus on specific classes of games, for

example zero sum games (Sayin et al. (2021)) and show convergence of multi-agent learning

there.
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Appendix A. The Algorithm Class

In this section I provide the general reinforcement learning family the analysis of sections

3-4 applies to. Assume there are N algorithmic agents. Agents observe states on some fixed,

finite state space S with |S| = L, and make per period choices (actions) in compact interval

Xi. Let X̄i = XL
i , with policy profile space X̄ = ×i∈IX̄i. Agents then follow a fixed rule

(algorithm) to update their strategy profiles over time.

Definition 10. Each agent updates their policy according to the following adaptive proce-

dure:

ρit+1 ∈ ρit + αt
[
F i(ρt) +Bi

t

]
,

where αt > 0 is a decreasing stepsize sequence, F (ρt) is a (possibly multi-valued) mapping,

and Bi
t represents a (possibly multi-valued) error term.

I stack the above iteration over i to get to the representation of study:

ρt+1 ∈ ρt + αt [F (ρt) +Bt] . (15)

I write ’∈’ instead of ‘=’ above to allow for multi-valued mappings as can be the case when

F i represents an argmax, which corresponds to Q-iterations as in definition 2. The class of

RL algorithms studied here is determined by restrictions on F (ρ) and Bi
t. Whenever there is

multi-valuedness, I allow the algorithm to pick arbitrarily. In our limiting characterisation

this will show up as possibility of multiple solutions, which will not affect the limiting

statements as shown in section 4. Throughout, impose Assumptions 4 and 5. The following

are two important examples of what behavior Bt can be allowed to take:

(1) Bt = 0 and F (ρ) is a Lipschitz-continuous function, we are in the familiar territory

of Robbins-Monro algorithms for which the asymptotic behavior is well known (see

chapter 2 in V. S. Borkar (2009)).

(2) Bt is a martingale-difference noise with respect to some filtration Ft, with bounded

second moment. This error term could be the result from an estimation method to

estimating F (ρ) consistently. This scenario can again be readily analysed using the

methods developed in V. S. Borkar (2009), chapter 2.

Considering the iteration (15), we can see that F (ρt) features importantly as a mapping

that provides the reinforcement of the iteration profile ρt. In many scenarios, F (ρ) repre-

sents a performance criterion based on market and opponent conditions that are not known

to the algorithm designer and must be estimated. F (ρ) thus becomes an estimation target,

and Bt can then be seen as the resulting error term. If F (ρ) were fully known, as is allowed

by definition, one can set Bt = 0 for all t.
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First, I introduce the class of performance criteria F (ρ), and what kinds of approximation

methods can be considered here:

Definition 11 (Candidate performance criteria). Define the set M1 of (possibly multival-

ued) maps G with domain X ⊆ Rk and range P [R] for R ⊆ Rk s.t.

• G(x) ⊂ R is convex, compact valued.

• There exists c > 0 such that sup{‖y‖ : y ∈ G(x)} ≤ c(1 + ‖x‖) for all x ∈ X, i.e.

linear growth.

• There is a union of connected sets Ck ⊆ X of positive measure, US =
⋃
k Ck, such

that G(x) is single-valued and C1 for x ∈ US.

Remark 1. I allow for multi-valuedness to be able to handle to common learning scheme

of actor-critic Q-learning, which maintains estimates of the argmax of a value function as

introduced in section 3. Note however that, with some abuse of notation, C1 ⊂M1.

Now, define the distance between points x and sets A as

d(x,A) = inf
x′∈A
‖x− x′‖.

Now we are ready to consider the definition of function approximators to which this analysis

applies.

Definition 12 (C1 Approximation). hhh

Let Y be some space of observations (datasets) Dt to be used to approximate a mapping.

Given γ > 0, say that a function approximation operator Ag : M1 × Y 7→ M1 is a C1

Approximation of a performance criterion F ∈ M1 if there is a bias function g ∈ B1
γ and

an integer N > 0 such that one can write for all t ≥ N :

(i) For all ρ ∈ X,

Ag[F,Dt](ρ) = Fg(ρ) + δt,

where Fg(ρ) ∈M1 such that

sup
z∈Fg(ρ)

d
(
z, F (ρ)

)
< γ,

(ii) For all ρ ∈ US,

Ag[F,Dt](ρ) = F (ρ) + g(ρ) + δt,

with g ∈ B1
γ,

(iii) There is an increasing sequence of σ-algebras Ft such that

δt − E[δt]

is a martingale difference sequence given Ft,
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(iv)

sup
t

E
[
‖δt‖2

]
<∞.

(v) There exists a sequence ζt ≥ 0 satisfying Robbins-Monro’s condition (Assumption 4)

such that

lim
t→∞

∥∥∥ ∞∑
k=t

ζkE[δk]
∥∥∥ = 0.

One can interpret g(ρ) as representing the bias part of the function approximation, and

δt as a random variable such that E[‖δt‖2 | Ft] represents the variance part given some

increasing sequence of σ-fields Ft generated by datasets Dt ∈ Y and histories of ρt. Points

(iv) and (v) bound the variance and speed of convergence of the error term δt to ensure

that our characterisation technique goes through.

In the case of classical model-free Q learning as in subsection 2, Dt only needs to consist

of (sk, ak, rk, sk+1)tk=1, i.e. past observations of states, actions, payoffs, state transitions,

and the initial Q0.

Generally one can think of Ag[F,Dt](·) as a parametric or non-parametric function ap-

proximation to the performance criterion of interest F , with bounded errors that can be

approximated by a small C1 function after enough data (large n) has been accumulated. Fix

small γ > 0 and observation spaces Y i. We can now state the following assumption that,

together with definitions 11 and 12 characterizes the algorithm class that can be studied

here.

Assumption 6. hh

(i) Let the bias functions gi ∈ B1
γ.

(ii) Let Di
t ∈ Y i be a sequence of datasets.

(iii)

Bi
t = Aigi [F i, Di

t](ρt)− F i(ρt) +M i
t+1,

where Ag[F,Dt] is a C1 Approximation of performance criterion F (ρ) ∈ M1. Notice

that accordingly, Bi
t can be a point or a compact convex set.

(iv) Stacked version of Bi
t:

Bt = Ag[F,Dt](ρt)− F (ρt) +Mt+1.

(v) Ft is the σ-field generated by {ρt, Dt,Mt, ρt−1, Dt−1,Mt−1..., ρ0, D0,M0}, i.e. all the

information available to the updating rule at a given period t.
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(vi) Mt+1 is a Martingale-difference noise. There is 0 < M̄ <∞, q ≥ 2 such that for all t

E[Mt+1 |Ft] = 0; E[‖Mt+1‖q |Ft] < M̄ a.s.

(vii) Whenever ρt ∈ US,

Ωt ≡ E[Mt+1M
′
t+1 |Ft],

where Ωt is symmetric positive definite for all t.

(viii) Write δt = Ag[F,Dt](ρt) − F (ρt). Then Mt+1, δt are conditionally uncorrelated and

Mt+1 + δt − E[δt] is a martingale difference conditional on Ft.

Gradient-type Algorithms

Here I give a brief overview of the kind of gradient-type algorithms that are included in

our class. First, few definitions are in order to properly understand this class:

For any i ∈ I, let X̄9i = ×j 6=iX̄j. Recall that expected future discounted payoffs

W i(ρi, ρ9i, s0) given stationary strategy profiles [ρi, ρ9i] ∈ X̄ are defined as:

W i(ρi, ρ9i, s0) = E
∞∑
t=0

δtui(ρ(st), st), (16)

where the expectation is made over the state transitions.

Then define

5W i(ρi, ρ9i, s0) ∈ Rk,

as the gradient with regards to policies of agent i’s long term payoff evaluated at [ρi, ρ9i].

By abuse of notation, write 5W (ρ) as the stacked gradients of all agents, where without

much loss one can suppress the dependence on initial states due to our assumption on

irreducibility 1. It is without much loss since stability properties of any differential Nash

equilibrium will be independent of the initial state under irreducibility, and those properties

are the focus of the rest of the paper.

Now define for ρ ∈ X̄

F S
D(ρ) = 5W (ρ), (17)

as the state dependent gradient dynamics. Take an iteration ρt and its respective function

estimation target F as denoted in (15). If F = F S
D, we will call the RL iteration ’Gradient

Equivalent’.

For Gradient Equivalent iterations, if there is no asymptotic bias in the estimation of

the gradient (g = 0), our results match to the results in Mazumdar, Ratliff, and Sastry

(2020), but note that we study the possibility of repeated game strategies, which is not
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explicitly done there. Further, as noted in the introduction, our results extend Mazumdar,

Ratliff, and Sastry (2020) to the more commonly observed situation of non-vanishing biased

function estimators.

Remark 2 (A note on the case Bi
t = 0). hhh

As stated in the discussion below Definition 10, we do allow for deterministic updates

representing the case where everything is known to the algorithm, i.e. Bi
t = 0. By definition

this implies that the nonvanishing variance condition of Mt+1 mentioned above cannot hold.

However, it is then possible to proof a similar result as Proposition 2 by measuring the set

of initial values ρi0 that would allow for the process ρt to converge to an unstable restpoint

ρ∗. By definition of instability, the paths that could attract ρt to ρ∗, if they exist, must be

a lower-dimensional subspace of profile space X̄. The statement one can then make is that

the probability that a randomly chosen starting profile ρ0 will converge to unstable ρ∗ must

equal 0, since any lower dimensional subspace of X̄ has measure zero.

Appendix B. Best Response Dynamics: Stability

I give here detailed results that allow the stability analysis for binary state profiles given

two players, as outlined in section 5. I assume notation and nomenclature developed in

that section.

Let S = {A,B} be any binary state space. For a given policy-profile α, β ∈ X2, write

best replies as b1(β) = (bA1 , b
B
1 )> ∈ BR1

S(β), and b2(α) = (bA2 , b
B
2 )> ∈ BR2

S(α). I consider

the stability of rest points for the state-dependent best response dynamics under S, F S
B

(see (7)), given the stacked policies σ ∈ X4:

σ̇t = F S
B(σt) =

[
b1(σt,3, σt,4)

b2(σt,1, σt,2)

]
− σt. (18)

Suppose σ∗ is an interior rest point ∈ US. Then asymptotic stability of σ∗ can be determined

by linearizing the system and showing that all its eigenvalues have negative real parts. Let

X(σ∗) be the linearized system:

X(σ∗) =

[
−I2x2 J1(σ∗)

J2(σ∗) −I2x2,

]
(19)

where I2 is the 2-dimensional identity matrix and

Ji(σ
∗) =


∂bXi
∂βA

∂bXi
∂βB

∂bBi
∂βA

∂bBi
∂βB

 ,
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for i ∈ {1, 2}.
This linearization has a special structure one canexploit:

Remark 3. Suppose A,B,C,D are square matrices of same dimension, s.t. CD = DC.

Let

T =

[
A B

C D

]
.

Then one can show

det(T ) = det(AD −BC).

We can use this the following way: consider the characteristic equation of X(σ∗):

ch(λ) = det(X(σ∗)− λI4x4).

Then all eigenvalues are characterised as the zeros of ch(λ). Remark 3 tells us that

ch(λ) = det(J1J2 − (1 + λ)2I2x2).

That is, if µ is an eigenvalue of J1J2, then ±√µ− 1 is an eigenvalue of X(σ∗).

Note: J1J2 is the matrix of derivatives one gets when considering the derivatives of an

iterated application of best responses:

b1(b2(σ1, σ2))− (σ1, σ2)> (20)

with respect to σ. We can then interpret stability graphically as a scenario in which (20)

doesn’t grow above the 45-degree line. This can be translated to eigenvalues being less

than 1, which from the above is equivalent to considering asymptotic stability of X(σ∗).

When considering symmetric equilibria, one cango even further:

Remark 4. Suppose A,B are square matrices of the same dimension. Let

T =

[
A B

B A

]
.

Then one can show

det(T ) = det(A−B)det(A+B).

Now, in a symmetric equilibrium σ∗, we have b1(σ∗) = b2(σ∗). Further, since we have

symmetric payoff functions, we have J1 = J2 = J as the matrix of derivatives of the best

reply function. We can then apply Remark 4 to our system and arrive at the conclusion.

Firstly, given square matrix A, define Λ as the set of eigenvalues of the A. Then define

κ = max{|λ| : λ ∈ Λ},
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as the spectral radius of A.

Lemma 3. Suppose α∗ = β∗ = σ∗ is an interior, symmetric equilibrium. Let κ̄ be the real

part of the spectral radius of M . Then σ∗ is asymptotically stable if κ̄ < 1, and unstable if

κ̄ > 1.

Proof. Using Remark 4, we get that

ch(λ) = det(M − (1 + λ)I2)det(M + (1 + λ)I2).

Thus, if µ is an eigenvalue of M , then ±µ−1 is an eigenvalue of X(σ∗), and the conclusion

follows, since asymptotic stability requires that all eigenvalues of X(σ∗) have negative real

parts. �

Appendix C. Proofs

Proof of Proposition 1

The proofs are given in terms of the general algorithm class treated in this paper, in-

troduced in Appendix A. Throughout we pick a sequence αt s.t. Assumption 4 holds and

αt ≤ ζt holds for all t ≥ 0. Under Assumption 3, it is quick to check that the ACQ iteration

in Definition 2 falls into our class. First we prove the following result that employs known

techniques from stochastic approximation theory.

First, a few definitions are in order. Take a correspondence G(x) ∈M1, where we recall

the domain being X ⊆ Rk for some k ≥ 1. The following Definition can be found in Michel

Benäım, Hofbauer, and Sorin (2005):

Definition 13. hh

(1) Given a set A ∈ X and x, y ∈ A, we write x ↪→A y if for every ε > 0 and T > 0,

there exists an integer n ∈ N, solutions x1, ..., xn to ẋ ∈ G(x)24, and real numbers

t1, ..., tn greater than T such that:

a) xi(s) ∈ A for all 0 ≤ x ≤ ti, and for all i = 1, ..., n,

b) ‖xi(ti)− xi+1(0)‖ ≤ ε for all i = 1, ..., n− 1,

c) ‖x1(0)− x‖ ≤ ε and ‖xn(tn)− y‖ ≤ ε.

(2) A set A ∈ X is said to be internally chain transitive (ICT) if A is compact and

x ↪→A y holds for all x, y ∈ A.

24Recall that G(x) is an inclusion, so uniqueness of solutions cannot be guaranteed.
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Importantly, these sets include rest points and limit cycles (if they exist). Consider

Papadimitriou and Piliouras (2018) for an intuitive discussion. The following result shows

why these sets are of importance in our analysis:

Proposition 6. With probabilitiy one, LS,g is an ICT set of the differential inclusion

ρ̇ ∈ Fg(ρ(t)),

where Fg(ρ(t)) ∈M1 s.t. supz∈Fg(ρ) d(z, F (ρ)) < γ holds for all ρ, and particularly

Fg(ρ(t)) = F (ρ(t)) + g(ρ(t))

whenever ρ(t) ∈ US.

Proof. The algorithm (15) can be written as

ρn+1 = ρn + αn [Fg(ρn) + δn +Mn+1] , (21)

where δn = Ag[F,Dn](ρn)− Fg(ρn).

We can now show first that iteration 21 is a perturbed solution to ρ̇ ∈ Fg(ρ(t)) as defined

in Definition II in Hofbauer and Sandholm (2002). Following the proof of their Proposition

1.3, we only need to take care of the additional term δn present in iteration 21. By our

definition 12, one can write

δn = µn +Rn,

where µn = E[δn] and Rn is a martingale difference. We can then define M̄n+1 = Rn+Mn+1

as the new martingale error term in iteration 21, where the standard approach in the proof

of Proposition 1.3 of Hofbauer and Sandholm (2002) goes through. We are left to focus on

µn. Following their notation, introduce:

τ0 = 0; τn =
n∑
i=1

αi; m(t) = sup{k ≥ 0 : t ≥ τk}.

Then for Proposition 1.3 in Hofbauer and Sandholm (2002) to hold, it suffices to show that,

for all T > 0

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

αi+1µi+1

∥∥∥∥∥ : k ∈ {n+ 1, ...,m(τn + T )}

}
= 0, (22)

which follows by point (v) in definition 12. Thus, ρn is a perturbed solution to ρ̇ ∈ Fg(ρ(t))

as defined in Definition II in Hofbauer and Sandholm (2002). The result then follows from

Theorem 3.6 in Hofbauer and Sandholm (2002).

�
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Since payoffs are differentiable around ρ∗, point 1 follows as long as ρg and ρ∗ are close.

For point 2, we will prove something more general: as long as ρ∗ is hyperbolic (c.f. Definition

4), point 2 holds.

This follows because when ρ∗ is hyperbolic, there is a neighborhood U around 0 such

that F has a differentiable inverse on U . Next, note that ρg solves

F (ρg) + g(ρg) = 0.

Since ‖g‖1 ≤ γ, for γ small enough, F (ρg) ∈ U must hold. Then there is some LF−1 > 0

such that

‖ρg − ρ∗‖ = ‖F−1(F (ρg))− F−1(0)‖

≤ LF−1‖F (ρg)‖ ≤ LF−1γ,

where the first inequality follows because F−1 is differentiable and F (ρ∗) = 0, and the

second by the definition of F (ρg). Since the right hand side is independent of g, the bound

is uniform.

For point 3, we first need to verify that all ρg close enough to ρ∗ must also be asymptot-

ically stable. The next Lemma gives a more general result:

Lemma 4. Suppose ρ∗ is hyperbolic. Then the eigenvalues of DFg(ρ
g) converge to the

eigenvalues of DF (ρ∗) uniformly over g ∈ B1
γ as γ → 0. Thus, for small enough γ, ρg has

the same stability properties as ρ∗.

Proof. I will show that eigenvalues of a hyperbolic matrix DF (ρ∗) vary continuously in C1

perturbations g to F .

Proposition 2.18 in Palis Jr, Melo, et al. (1982) shows that eigenvalues vary continuously

for any matrix A. Thus, if ‖DF (ρ∗)−DFg(ρg)‖ is small enough, the eigenvalues of the two

matrices must be close to each other. Now write

‖DF (ρ∗)−DFg(ρg)‖ = ‖DF (ρ∗)−DF (ρg)‖+ ‖Dg(ρg)‖

≤ ‖DF (ρ∗)−DF (ρg)‖+ γ,

where the equality follows from the definition of Fg. Since DF is continuous, and ρg → ρ∗

uniformly for g ∈ B1
γ as γ → 0 (see above proof of point 2), we get that

sup
g∈B1γ
‖DF (ρ∗)−DFg(ρg)‖ → 0

as γ → 0. Then applying Proposition 2.18 in Palis Jr, Melo, et al. (1982) finishes the

result. �
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Since we know that all ρg must be asymptotically stable for γ small enough, one can

apply Faure and Roth (2010) (Thm 2.8). It suffices to verify that our process satisfies their

attainability condition:

Definition 14. A point p is attainable if, for any n > 0 and any neighborhood U of p

P[∃s ≥ n : ρs ∈ U ] > 0.

Let Att(X) be the set of attainable points for algorithm (15). Then we need that the

basin of attraction of an attractor has nonempty intersection with Att(X). This can be

verified:

Lemma 5. Let B be a basin of attraction of an attractor A for Fg. Suppose ρt ∈ X̄ \ B.

Then there exists s > n such that ρs ∈ B with positive probability.

Proof. Since t is finite, to show existence we construct s = n + 1: For any z ∈ B, one can

pin down the necessary shock Mz to reach it:

Mz ∈
z − ρt
αt

− Fg(ρt),

since Fg might be multi-valued.

Since z ∈ int(E) by definition, Mz is in the support of Mt+1 for every t. For any ball Bz

around z, define

Mz = {Mx′ : x′ ∈ Bz}.

Mz must have positive measure for all finite t, since it is in the support of Mt+1. (if we allow

s > n+ 1, we may be able to increase the measure but we only need it to be positive.) �

All other conditions that are sufficient for the algorithm 15 to converge to the attractor

hold by Assumption 6.

�

Proof of Proposition 2

Notice first that the following analysis is local to the rest points in ES, which by assump-

tion on US is also where F, Fg are single valued. Solution curves are unique whenever they

intersect US.

The proof will use the Hartman-Grobman Theorem (c.f.Chicone (2006), Theorem 4.8),

which connects the flow of a nonlinear ODE in the neighborhood of a hyperbolic rest point

to the flow of a linearized ODE. Since it works fully locally, our analysis only requires that

F (ρ) be single valued and C1 in Uρ∗ , and we can allow F (ρ) to be multivalued otherwise.

First, define invariant sets for given differential equations:
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Definition 15. Let z(t, z0) be the solution so some given differential equation ż = f(z)

with initial value z0. Then a set S

• is invariant for f , if z(t, z0) ∈ S holds for all t ∈ R and all z0 ∈ S.

• isolated invariant for f if there is an open set N such that S ⊂ N and

S = {z′ : z(t, z′) ∈ N ∀t ∈ R}.

Given a g ∈ B1
γ, we know from Proposition 6 that only ICT sets (recall Definition 13)

subset of a neighborhood of ρg are candidates to being limiting points of the algorithm

(15). The singleton {ρg} is an ICT set, and we show first that this cannot be a limiting set

of the algorithm. Then we go on to show that for small engough γ, no other ICT sets can

exists in a neighborhood around ρ∗, which finishes the proof.

1) {ρg} cannot be a limiting set.

Note that by Lemma 4, there are γ > 0 small enough such that all ρg are linearly unstable

just as ρ∗. We can thus apply Michel Benäım and Faure (2012), Theorem 3.12 to prove

P[LS,g = ρg] = 0 first:

We can show that the sufficient conditions for this hold by definition of our algorithm

under Assumption 6. First we need that Hypothesis 2.2 and 3.6 of Michel Benäım and

Faure (2012) hold. It is quick to check that these hypotheses would hold true if it were

the case that µn ≡ E[δn] = 0 for all n.25 In our case, point (v) of Definition 12 is required

additionally. To see this, following the arguments in Michel Benäım and Faure (2012) one

needs to bound

P
(

sup
h∈[0,T ]

‖X(τn + h)− φh(X(τn))‖ ≥ ε | Ft
)

(23)

where X(τn) is the linear interpolation of ρn and φh(x) is the flow of ρ̇ ∈ Fg(ρ) starting at x,

carried forward by h periods. τn is as defined in the proof of Proposition 6. By following an

argument analogous to the proof of Proposition 4.1 in Benäım (1999), bounding the random

variable inside the above measure leads to all terms present there, with one additional term

owing to the presence of µn. This additional term is bounded by

Kn = sup

{∥∥∥∥∥
k−1∑
i=n

αi+1µi+1

∥∥∥∥∥ : k = n+ 1, ...,m(τn + T )

}
,

25For example by applying Proposition 2.16 of Faure and Roth (2010)
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with m(·) as defined in the proof of Proposition 6. However, this term is deterministic -

and by point (v) of Definition 12 must vanish with large n. Thus, one can write

P
(

sup
h∈[0,T ]

‖X(τn + h)− φh(X(τn)) ≥ ε | Ft
)

≤ P
(

sup
h∈[0,T ]

‖X(τn + h)− φh(X(τn)) ≥ ε−Kn | Ft
)
,

where Kn vanishes, so the bounding function as required in Hypothesis 2.2 and 3.6 of

Michel Benäım and Faure (2012) can be found e.g. by applying Proposition 2.16 of Faure

and Roth (2010). Finally, note that the conditions and analysis sufficient for the proof of

Michel Benäım and Faure (2012)’s Theorem 3.12 are local with respect to ρg. Thus, the

fact that Fg is globally potentially multivalued is of no importance, since in a small enough

neighborhood around ρg it must be single-valued and C1.

2) No other ICT sets exist in a neighborhood of ρ∗ and ρg.

We will prove that there are no other invariant sets in such a neighborhood. Since ICT

sets are subsets of invariant sets, this will complete the proof.

We can use Hartman-Grobman to show that there are open neighborhoods Ng, N0 with

ρ∗ ∈ N0, ρ
g ∈ Ng such that ρ∗, ρg are isolated invariant sets in their respective neighbor-

hoods. These neighborhoods are nontrivial for all γ small enough, which follows from both

ρ∗, ρg being hyperbolic:

By Hartman-Grobman and hyperbolicity there exists a homeomorphism H on a neigh-

borhood N ⊆ Uρ∗ of ρ∗ with H(ρ∗) = ρ∗ such that

H(φ(t, ρ)) = ψ(t,H(ρ)),

where φ(t, ·) is a solution (flow) to the differential inclusion ρ̇ ∈ conv[F (ρ)], and ψ(t, ·) is

the solution to the ODE ẏ = DF (ρ∗)(y − ρ∗). Given a neighborhood U ⊆ N of ρ∗, define

inv(U) = {ρ ∈ U : φ(t, ρ) ∈ U ∀t ∈ R}.

We will show that ρ∗ = inv(U), and therefore it is isolated invariant.

Notice that inv(U) can be rewritten as

inv(U) = {y ∈ H(U) : H−1(ψ(t, y)) ∈ U ∀t ∈ R} = {y ∈ H(U) : ψ(t, y) ∈ H(U)∀t ∈ R},

since H is bijective. We know that ρ∗ is an isolated invariant set for the linear ODE solution

ψ(t, y) = CetDF (ρ∗)y + ρ∗. Thus, we must also have that

inv(U) = ρ∗,

and ρ∗ is isolated invariant set for φ(t, ρ).
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Since ρg are hyperbolic for γ small enough, an analogous argument gives us that ρg

are isolated invariant also. Let Ng be the neighborhood on which the homeomorphism is

defined that connects flows of Fg to flows of the linearized system DFg(ρ
g). By definition,

ρg ∈ Ng, and we know that ρg is isolated invariant in Ng. We are left to show that for γ

small enough, for all g ∈ B1
γ, ρ

∗ ∈ Ng:

To prove this, we will argue that eachNg contains a ballBg
z (ρ

g), for which the radius z > 0

can be lower bounded by a number that depends only on the eigenvalues of DF (ρ∗) and γ.

First we need an auxiliary Lemma to show how eigenvalues of DFg(ρ
g) vary continuously

in γ. First some more notation:

For small enough γ, all ρg are hyperbolic when g ∈ B1
γ. Fix such a g. Define ρl > 0 to be

the smallest positive eigenvalue of DFg(ρ
g), and ρu < 0 be the largest negative eigenvalue

of DFg(ρ
g). Now let ag ∈ (0, 1) be any number such that

max {eρu , e−ρl} < ag < 1.

For the original system DF (ρ∗), let a0 ∈ (0, 1) be any such number.

Lemma 6. For any δ > 0 with a0 < 1 − δ there exists γ > 0 such that for all γ ∈ (0, γ],

there is a set of {ag}g∈B1γ as defined above with

sup
g∈B1γ

|ag − a0| < δ.

Proof. Apply Lemma 4. Since there is a one-to-one mapping between eigenvalues and

{eρu , e−ρl}, one can find numbers ag. The result follows. �

Given this continuity in eigenvalues, we can prove the following Lemma to finish our

result:

Lemma 7. Suppose ρ∗ is hyperbolic for F . Fix a small z > 0. Then there is γ̄ such that

for all γ ≤ γ̄, and all g ∈ B1
γ, there is Bg

z (ρ
g) ⊆ Ng with z ≥ z.

Proof. For small enough γ, all ρg are hyperbolic when g ∈ B1
γ. Fix such a g. Given some

ε > 0, let rε be defined as

sup{r > 0 : ‖ρ− ρg‖ < r; ‖DFg(ρ)−DFg(ρg)‖ < ε}.

Since DFg is continuous, rε > 0 must hold. Pick ag ∈ (0, 1) as defined previously.

Then define

εg =
1− ag
ag

> 0.

By Lemmas 4.3 and 4.4 of Palis Jr, Melo, et al. (1982), Brε(ρ
g) ⊆ Ng, if ε < εg.
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We are left to show that rε can be made to depend only on the eigenvalues of DF (ρ∗)

and γ. Notice that small enough z > 0 pins down the δ > 0 referred to in Lemma 6: Let

ẑ(γ) = inf
γ∈(0,γ]

inf
g∈B1γ

εg.

For δ > 0 small enough, choose γ > 0 such that Lemma 6 holds. It follows from the Lemma

that ẑ(γ) > 0. Then any z < ẑ(γ) satisfies our conditions and the conclusion follows. �

Now recall that by the proof of Proposition 1 point 2, ρg → ρ∗ uniformly over g ∈ B1
γ as

γ → 0. Thus there is γ small enough for which supg∈B1γ |ρ
g − ρ∗| < z and therefore ρ∗ ∈ Ng

for all g ∈ B1
γ. Let Uγ = ∩g∈B1γNg. Since ρg for g ∈ B1

γ are isolated invariant in Uγ by

construction, the result follows.

�

Proof of Lemma 1

First, let Q = q1 + q2 and write

u1(q, q2) = Y (Q) + Y ′(Q)q − c′(q);

u12(q, q2) = Y ′(Q) + Y ′′(Q)q;

u11(q, q2) = 2Y ′(Q) + Y ′′(Q)q − c′′(q) = u12(q, q2) + Y ′(Q)− c′′(q).

From the above we see that since P ′ < 0, c′′ > 0, we always have u11(q, q2) < u12(q, q2).

Definition 6 implies that u1(0, q2) strictly decreases over q2 ∈ X so that there exists

unique M∗ < 2K with u1(0,M∗) = 0. For q2 ≤ 2K, (iv) implies that u12(q, q2) < 0 for

all q ∈ [0, 2K − q2]. It follows that u1(0, q2) > 0 for all q2 < M∗ and for all such q2 there

must be a unique q∗(q2) < 2K − q2 s.t. u1(q∗(q2), q2) = 0. In addition, u1(q, q2) > 0 for

q ∈ [0, q∗(q2)) and u1(q, q2) < 0 for q ∈ (q∗(q2), 2K − q2]. Also note that u1(q, q2) < 0 for

all q ∈ [max{0, 2K − q2},M ] since u1(0, 2K) < 0.

We can conclude from this that for all q2 ∈ X there is a unique best response q∗(q2) that

is pinned down by first order conditions whenever q2 ≤M∗, and equals zero otherwise.

Whenever q2 ≤ M∗, it must be that u11(q∗(q2), q2) < 0 since q∗(q2) + q2 < 2K and by

convexity of c. It follows that we can find the derivative of the best response in q2 for all

q2 < M∗ by the implicit function theorem, which allows us to show

∂q∗(q2)

∂q2

= −u12(q∗(q2), q2)

u11(q∗(q2), q2)
∈ (−1, 0),

since 0 > u12(q∗(q2), q2) > u11(q∗(q2), q2) must hold. Finally, for there to be a unique

interior Nash equilibrium we only need the following boundary condition to be satisfied:

q∗(0) < M∗. In that case, 0 is not a best response to the monopoly quantity q∗(0). This
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together with the fact that ∂q∗(q2)
∂q2

∈ (0,−1) for all q2 < M∗ implies that there must be

a unique interior Nash equilibrium (one can see this by imagining the best response and

inverse best response plotted in 2D). It must be symmetric since the payoff functions (and

therefore best response functions) are symmetric.

Static stability of this equilibrium (i.e. w.r.t. F S0
B ) follows from the eigenvalues of the

linearization of F S0
B (qN). A detailed exposition can be found in Appendix B. The relevant

condition for stability comes down to ∂q∗(q2)
∂q2

∈ (−1, 0), which we have shown above. The

intuition in the static case is can be exemplified in the following way: suppose 2’s strategy is

perturbed from qN by a small amount, and players apply best responses to adjust thereafter.

Then the best-response derivative tells us that 1 would react by moving in the opposite

direction, but always by an amount smaller than the initial perturbation of 2. Continuing,

2 must react to 1’s reaction again by moving in the opposite direction, and by a smaller

amount than 1. The result is the well known cobweb-like path back to the Nash equilibrium.

�

Proof of Proposition 4

First, we prove that given G, u can be regular:

Lemma 8. Suppose h ∈ G. Then there exist parameters PH > PL ≥ 0 and a convex cost

function c(q) such that the resulting stage game payoffs u(q1, q2) are regular.

Proof. By definition of G, ∃!D ∈ (τ, M
2

) such that −h′′ = h′(2D)
D

. Since h is strictly increas-

ing, there exist PH > 0 >
(
PL − PH

)
such that

h(0) <
PH

−
(
PL − PH

) < h(2D). (24)

Recall that, for any cost function c(q),

u1(q, q) = PH +
(
PL − PH

)
h(2q) +

(
PL − PH

)
h′(2q)q − c′(q),

and therefore the above implies that there exists a c(q) such that u1(0, D) < 0 < u1(0, 0)

(pinned down only by c′(0)). Then since u1(0, q̂) strictly decreases in q̂ ∈ [0,M ], there

exists a unique M∗ ∈ (0, 2D) such that u1(0,M∗) = 0. Finally to check whether Definition

6 (iv) holds, note that

P ′(q + q̂) + qP ′′(q + q̂) =
(
PL − PH

)(
h′(q + q̂) + h′′(q + q̂)q

)
,
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P ′(q + q̂) + qP ′′(q + q̂) ≤ 0 holds for all q + q̂ ≤ 2τ , since h′′(q + q̂) ≥ 0 then. By definition

of G, we get

0 =
(
h′(2D) + h′′D

)
≤
(
h′(Q) + h′′(Q)q

)
,

holds for all q ∈ [τ,D] and Q ∈ [2τ, 2D], since h′(Q) is decreasing on that interval. The

result follows. �

Now we need the following observations based on the definition of W in (3):

W1 = ω−1(1− δPBB)
[
ω−1δP ′AB(uB − uA) + uA1

]
,

W2 = ω−1(δPAB)
[
ω−1δP ′BB(uB − uA) + uB1

]
,

W11 = −2ω−1δP ′ABW1 + ω−1(1− δPBB)
[
ω−1δP ′′AB(uB − uA) + uA11

]
,

W22 = 2ω−1δP ′BBW2 + ω−1(δPAB)
[
ω−1δP ′′BB(uB − uA) + uB11

]
,

W12 = ω−1δ
[
P ′AB

1− δPBB
δPAB

W2 − P ′BB
δPAB

1− δPBB
W1

]
,

W13 = W11 + ω−1(1− δPBB)
[
ω−1δP ′AB(uA1 − uA2 ) + uA12 − uA11

]
,

W24 = W22 + ω−1(δPAB)
[
ω−1δP ′BB(uB2 − uB1 ) + uB12 − uB11

]
,

W14 = −ω−1δP ′BB
δPAB

1− δPBB
W1 + ω−1(1− δPBB)ω−1δP ′AB

[
ω−1δP ′BB(uB − uA) + uB2

]
= W12 + ω−1(1− δPBB)ω−1δP ′AB(uB2 − uB1 ),

W23 = ω−1δP ′AB
1− δPBB
δPAB

W2 − ω−1(δPAB)ω−1δP ′BB

[
ω−1δP ′AB(uB − uA) + uA2

]
= W12 + ω−1(δPAB)ω−1δP ′BB(uA1 − uA2 ).

(25)

Then, an optimal, non-degenerate, interior strategy α∗ must satisfy

W1(α∗, β) = 0 ⇐⇒ ω−1δP ′AB(uB − uA) + uA1 = 0,

W2(α∗, β) = 0 ⇐⇒ ω−1δP ′BB(uB − uA) + uB1 = 0,

W11(α∗, β) < 0 ⇐⇒ ω−1δP ′′AB(uB − uA) + uA11 < 0,

W22(α∗, β) < 0 ⇐⇒ ω−1δP ′′BB(uB − uA) + uB11 < 0.

Notice that for all such α∗, we also have W12(α∗, β) = 0. This follows under irreducibility,

since then initial states do not affect the optimal policy choice. If a policy is optimal, it
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must be optimal given any starting state s, and therefore one can characterize it through

FOCs equivalently for any starting s.

We now prove some helpful Lemmas. First to save notation, let ∆ = PL − PH .

Lemma 9. Suppose h ∈ G and

h(2τ) + h′(2τ)τ < h(2D).

Then for all neighborhoods N of τ there exist PH > 0 > ∆ and a convex c(q) such that

qN ∈ N . In particular, there exist PH > 0 > ∆ and a convex c(q) such that qN = τ .

Proof. As argued in Lemma 8, there exist PH > 0 > ∆ and a convex c(q) such that

h(0) < h(2τ) + h′(2τ)τ <
PH − c′(0)

−∆
< h(2D).

Thus the same arguments as in Lemma 8 can be applied to see that there is still a unique

qN Nash equilibrium. We haven’t made any assumptions on c(q) except for convexity and

the possible range of c′(0). If we pick c′(τ) > c′(0) such that

h(2τ) + h′(2τ)τ =
PH − c′(τ)

−∆
,

it follows that u1(τ, τ) = 0, i.e. qN = τ . The result follows. �

We can use Lemma 9 to make our analysis cleaner. As long as h satisfies the condition

of the Lemma, qN can be treated as a primitive of the model, replacing τ .

Lemma 10. Suppose h ∈ G and PH > 0 > ∆ and a convex cost function c(q) such that

Lemma 8 holds. Then for all q̂ ∈ [0,M∗] there exists a unique q∗(q̂) ∈ [0,M∗] such that

u1(q∗(q̂), q̂) = 0.

If in addition h′(0) = h′(M) = 0 and

h(2τ) + h′(2τ)τ < h(2D),

and for all q ∈ [D,M ],

3∆h′(2q) + 2∆h′′(2q)q ≤ c′′(q),

then there exist PH > 0 > ∆ and a convex c(q) that satisfy Lemma 8 such that

• For all q ∈ (0, qN ] there exists a unique q̂ ∈ [qN ,M) such that

u1(q, q)

h′(2q)
+
u1(q̂, q̂)

h′(2q̂)
= 0.
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• For all q, q̂ ∈ (0,M)

u1(q, q̂)

h′(q + q̂)
− u1(q̂, q̂)

h′(2q̂)

has a unique zero at q = q̂ .

Proof. For the first claim, recall from the proof of Lemma 8 that q̂ ≤ M∗ < 2D implies

that u11(q, q̂) < 0 for all q ∈ [0, 2D − q̂] by definition of G. Then by construction of M∗,

u1(0, q̂) > 0 holds for all q̂ ∈ [0,M∗). Additionally, u1(q, q̂) < 0 holds for all q ∈ [2D−q̂,M ],

and there must be a unique zero q∗(q̂) ∈ (0, D − q̂).
For the second claim, recall from Lemma 8 that u1(q, q) is strictly decreasing for all

q ∈ [0, D]. From Lemma 9 we get that we can take qN arbitrarily close to τ . First let us fix

PH ,∆, c
′(τ) so that qN = τ . We also have that h′(2q) is strictly increasing for q ∈ [0, qN),

and strictly decreasing for q ∈ (qN ,M ]. Finally, we have that u1(qN , qN) = 0, so that the

fraction must be strictly decreasing for q ∈ [0, D]. Note that we have so far only imposed

two point conditions on convex c(q), for c′(0), c′(τ). By assumption of the Lemma, for all

q ∈ [D,M ],

3∆h′(2q) + 2∆h′′(2q)q ≤ c′′(q)

then we have that u11(q, q) + u12(q, q) ≤ 0 for all q ∈ [0,M ] and the fraction u1(q,q)
h′(2q)

is

monotone in q. Then, recall h′(0) = h′(M) = 0. So for any q > 0, no matter how close

to 0, we can find q̂ ∈ (qN ,M) so that the claim holds: increasing q̂ to M would send the

fraction to −∞ after all.

For the third claim, consider three cases:

Case 1: q̂ ≤ qN .

Notice that q̂ < qN implies u1(q̂, q̂) > 0, and as shown for the first claim, u1(q, q̂) is

monotone decreasing on the candidate solutions q ∈ [0, q∗(q̂)). But by construction,

u1(2qN − q̂, q̂) = PH + ∆h(2qN) + ∆h′(2qN)(2qN − q̂)− c′(2qN − q̂)

= ∆h′(2qN)(qN − q̂) + c′(qN)− c′(2qN − q̂) < 0,

and thus it must be that q∗(q̂)+q̂ < 2qN . Thus, u1(q,q̂)
h′(q+q̂)

is strictly decreasing on q ∈ (0, q∗(q̂)).

By monotonicity there can only be one solution, q = q̂.

Case 2: q̂ ∈ (qN , D].

Firstly, consider q ∈ [q∗(q̂), q̂]. No smaller q is a candidate, since u1 would change sign.

Firstly in case q̂ ≤ QN , u1(q,q̂)
h′(q+q̂)

is strictly decreasing on q ∈ (q∗(q̂), QN − q̂]. That is because

for all such q, q̂, h′′(q + q̂) ≥ 0 holds. Then take q ∈ (max{0, QN − q̂}, D]. By definition

of D, u11(q, q̂) < 0 for all such q and we get that u1(q,q̂)
h′(q+q̂)

is further strictly decreasing on

q ∈ (max{0, QN − q̂}, D].
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Now suppose that M∗ > D, and consider q ∈ (D,M∗ − q̂]. Then as shown in the proof

of Lemma 8, u11(q, q̂) < 0 for all such q, q̂ and the fraction is monotone still.

Finally, notice that we can write

u1(q, q̂)

h′(q + q̂)
=
PH + ∆h(q + q̂)− c′(q)

h′(q + q̂)
+ ∆q. (26)

Recall by definition of M∗ < 2D, we have PH + ∆h(q + q̂)− c′(q) < 0 for all q ∈ [0,M ] if

q + q̂ ≥M∗. So we can write

∂ u1(q,q̂)
h′(q+q̂)

∂q
=

[
∆h′(q + q̂)− c′′(q)

]
h′(q + q̂)− h′′(q + q̂)

(
PH + ∆h(q + q̂)− c′(q)

)
h′(q + q̂)2

+ ∆,

which is negative whenever q + q̂ ≥ M∗. So both in the case where D > M∗, and when

considering q ∈ (M∗− q̂,M ], we still have that u1(q,q̂)
h′(q+q̂)

is strictly decreasing. All together it

follows that, for any q̂ ∈ (qN , D], u1(q,q̂)
h′(q+q̂)

is strictly decreasing for q ∈ [q∗(q̂),M ], as required.

Case 3: q̂ ∈ (M∗,M ].

Taking equation (26) and the above argument together implies that again, u1(q,q̂)
h′(q+q̂)

is strictly

decreasing, for any q ∈ [0,M ], since M∗ > QN holds (i.e. h′′(q+ q̂) ≤ 0). The claim follows.

Note that by assumption, uij, h
′′ are continuous for all i, j,∈ {1, 2} in all their arguments.

We can therefore find a neighborhood N ′ of τ such that for all PH > 0 > ∆ and a convex

c(q) that give qN ∈ N ′, the Lemma still goes through. �

Now for the proof of the Proposition:

Assume, as in Lemma 10, that h′(0) = h′(M) = 0 and

h(2τ) + h′(2τ)τ < h(2D).

Firstly, note that finding interior σ such that W1(σ) = W2(σ) = 0 is equivalent to finding

σ such that

W1(σ) = 0;
uA1

h′(QA)
+

uB1
h′(QB)

= 0.

From now on, to save notation, I write hs to denote evaluation of h() at qs, s ∈ {A,B,N}.
By Lemma 10 we have that for any qA ∈ (0, qN ] there exists a unique qB ∈ [qN ,M) such

that

uA1
h′(QA)

+
uB1

h′(QB)
= 0.
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We will call such qB = z(qA). By strict monotonicity we can apply the implicit function

theorem to get

z′(qA) = −h
′
B

h′A

uA11 + uA12 − 2h′′A
uA1
h′A

uB11 + uB12 + 2h′′B
uB1
h′B

. (27)

It is then not surprising that at qN , z′(qN) = −1. Now define Ψ(qA) = W1(qA, z(qA), qA, z(qA))

as the first order condition of W with respect to qA, substituting in z(qA) so that at every

qA,

W2(qA, z(qA), qA, z(qA)) = W1(qA, z(qA), qA, z(qA)) must hold. Thus, any zero of Ψ(qA)

must set both first order conditions to zero.

Since σN is always a solution, we have that Ψ(qN) = 0, i.e. one zero always exists.

We will now show that for small q, Ψ(q) > 0 holds, while for large q, Ψ(q) < 0. The

sufficient condition stated in this Proposition is then the condition ensuring Ψ′(qN) > 0,

which ensures that there must be another zero with qA < qN .

Firstly, recall that as in Lemma 9 we have that for q > 0 small enough, u1(q, q) > 0 must

hold. Now consider Ψ(qA):

Ψ(qA) > 0 ⇔ ω−1δh′(2qA)(uB − uA) + uA1 > 0.

Then since h′(0) = 0 we get that the first term must be dominated by the second term for

qA > 0 small enough, which is positive.

Next, and analogously, take qA ∈ (qN ,M) to be large. In that case we let y(qA) =

z−1(qA) < qN be the inverse solution that equalizes first order conditions. Then if qA < M

large enough, we get that the first term must be dominated by the second term since

h′(M) = 0, and the second term is negative by definition of D < M . Finally, note that

Ψ′(qN) = WN
11 +WN

13 +WN
14z
′(qN) = WN

11 +WN
13 −WN

14

= ω−1(1− δ(1− hN))
[
uN11 + uN12 − ω−1δh′Nu

N
2 + ω−1δh′Nu

N
2 z
′(qN)

]
= ω−1(1− δ(1− hN))

[
uN11 + uN12 − 2ω−1δh′Nu

N
2

]
= ω−1(1− δ(1− hN))uN11

[
1 +

uN12 − 2ω−1δh′Nu
N
2

uN11

]
.
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Since uN11 < 0, we have Ψ′(qN) > 0 if

1 +
uN12 − 2ω−1δh′Nu

N
2

uN11

< 0

⇔ 2ω−1δh′Nu
N
2 − uN12 < uN11

⇔ 2δh′Nu
N
2 − ωuN12 < ωuN11

⇔ 2δh′Nu
N
2 − 2δhNu

N
12 < 2δhNu

N
11 + (1− δ)(uN12 + uN11).

Thus we can write

1 +
uN12 − 2ω−1δh′Nu

N
2

uN11

< 0

⇔ h′N∆h′NqN − hN∆h′N < hN
[
2∆h′N − c′′N

]
+R1 +R2

⇔ ∆h′N
[
h′NqN − 3hN

]
< −hNc′′N +R1 +R2,

where R1 = 2∆hNqNh
′′
N vanishes for qN close enough to τ , and R2 = 1−δ

2δ
(uN12 +uN11) vanishes

as δ → 1. Then for δ < 1 close enough to 1 and qN close enough to τ , the condition stated

in the Proposition is sufficient for Ψ′(qN) > 0.

This together with Ψ(q) > 0 for q small, Ψ(q) < 0 for q large, allows us to use the

intermediate value theorem. It gives us that there exists qA < qN < qB such that W1(σ) =

W2(σ) = 0 for σ = (qA, qB, qA, qB).

We are left to show that this zero is a global maximizer. Firstly we note that the Hessian

at σ must be negative definite: we see from (25) that W12 = 0, so the Hessian must be

diagonal at σ. A sufficient condition for negative definitess then is h′′A > 0 > h′′B and

uA > uB. The first one follows since qA < qN < qB, the second one follows from the first

order conditions:

W1 = 0 ⇒ uA − uB = ω
uA1

δh′(QA)
> 0.

Now we have that σ is a local max, and we can consider one-shot deviations to show that

it is global. In state A, we need to show that

(1− δ)u(qA, qA)+δ
[
WA + hA

(
WB −WA

)]
≥ (1− δ)u(q, qA) + δ

[
WA + h(q + qA)

(
WB −WA

)]
,

holds for all q ∈ SA. Equivalently, we can show that q = qA is the unique solution to the

first order condition of this problem with respect to q, and that boundary conditions are

satisfied so that the maximizer can only be interior. Taking derivatives, we get

HA(q, qA) = (1− δ)u1(q, qA) + δh′(q + qA)
(
WB −WA

)
.
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By construction, HA(qA, qA) = 0.

Since the Hessian is negative definite at qA, qA, HA
1 (qA, qA) = ∂HA(q,qA)

∂q

∣∣∣
q=qA

< 0. Recall

that in the proof of Lemma 10 we we showed that qA is the only solution to HA(q, qA) = 0,

but also that u1(q,qA)
h′(q+qA)

is strictly decreasing over q ∈ [0, q∗(qA)]. Thus, HA(0, qA) > 0 and

HA(M/2, qA) < 0 must hold and qA is globally optimal.

Now, in state D we do the analogous argument, take derivatives to get

HB(q, qB) = (1− δ)u1(q, qB)− δh′(q + qB)
(
WB −WA

)
.

Where again by the negative definite Hessian, we have HB
1 (q, qB) < 0. Then in the proof

of Lemma 10 we show that u1(q,qA)
h′(q+qA)

is strictly decreasing over q ∈ [q∗(qB),M/2]. The result

follows as above: qB is globally optimal.

We have shown that playing σ = (qA, qB) is the unique best reply to an opponent playing

σ, and thus σ is a symmetric equilibrium as required.

�

Proof of Corollary 4

First, since we are restricting to symmetric equilibria, it is sufficient to consider two

cases: uA ≶ uB.

i) uA > uB.

Recall that state A corresponds to PL. As laid out in the proof of Proposition 4, we can

write an agent’s FOC for the problem of best responding in the following way:

W1 = 0⇔ δh′(QA)

ω

(
uA − uB

)
+ uA1 = 0;

W2 = 0⇔ δh′(QB)

ω

(
uA − uB

)
+ uB1 = 0,

where we plug in the fact that PAB(Q) = 1− h(Q). For both equations, the leading term

is strictly positive since h′(Q) > 0 for all interior Q. It follows that us1 < 0 must hold for

both s.

In the proof of Lemma 10 I show that for qN ∼ τ , (which we assume throughout, as in

Proposition 4), we have that u1(q,q)
h′(2q)

is strictly decreasing for all q ∈ [0,M ]. At the same

time, u(q, q) is strictly decreasing when q ≥ qN , which is necessary for u1(q, q) < 0. Thus,

for case (i) it must be that qA > qB, but since u1(q,q)
h′(2q)

is strictly decreasing, there exists no

such pair qA, qB to set W1 = W2. It follows that no such pair can be an equilibrium.

The case uA < uB follows from an analogous argument.

�
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Proof of Proposition 5

For point (i):

Using Lipschitz properties implied by the differentiability of price distribution and stage-

game payoffs, I will show that profile σK can at most violate incentive constraints of Γ∞

by an amount bounded by 1
K

.

Recall that in this analysis, players are allowed to use a public randomization device so

as to make APS result’s applicable. Specifically, the public signal ζ used by players must

satisfy (A2 in APS): ζ ∈ Ω ⊆ Ra, for some a ≥ 1, being absolutely continuously distributed

with p.d.f g(·, q), for all q ∈ X2.

I will construct a public randomization device (PRD) that allows for players to both con-

dition actions on the realization of the price signal Y ∈ P = {PL, PH}, and the realization

of the public randomization.

Let Ω = [0, 1]. Call the PRD ζ, so that ζ is unconditionally uniform on [0, 1], but

conditional on price realization, ζ will realize above or below a cutoff:

Y = PL ⇒ g(z,Q) =
1

Pr[PL | Q]
1{z ∈ [0, P r[PL | Q]]}; (28)

Y = PH ⇒ g(z,Q) =
1

Pr[PH | Q]
1{z ∈ [Pr[PL | Q], 1]}. (29)

Thus, given Q, a realization of ζ below or above Pr[PL | Q] allows players to condition

continuation values on price realization, as well as conditional public randomizations. ζ

satisfies APS’s assumptions A2, A3 by construction.

Since σ̄K is a bang-bang profile, it is pinned down by two quantities qK , qK , and two

binary partitions of Ω. Pin those partitions down by specifying Ω ⊂ Ω,Ω ⊂ Ω in the

following way:

Whenever σK specifies to play qK in period t, realizing ζ ∈ Ω implies q
K

will be played

in t + 1, and whenever σK specifies to play q
K

in period t, realizing ζ ∈ Ω implies q
K

will

be played in t + 1. In keeping with APS’ construction and notation, let V K , V K maximal

an minimal values of SSEs in EK . Then we can write them as

V K = (1− δ)u(qK , qK) + δ

[
V K +

ˆ
Ω

(
V K − V K

)
dz

]
,

V K = (1− δ)u(q
K
, q
K

) + δ

[
V K +

ˆ
Ω

(
V K − V K

)
dz

]
.

(30)

We can use this to define incentive constraints through one-shot deviations, using (28):
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V K ≥ (1− δ)u(q′, qK)

+ δ
(
V K − V K

)[
h(q′ + qK)

ˆ
Ω∩[0,h(q′+qK)]

1

h(q′ + qK)
dz

]

+ δ
(
V K − V K

)[(
1− h(q′ + qK)

) ˆ
Ω∩[h(q′+qK),1]

1

1− h(q′ + qK)
dz

]
holds for all q′ ∈ XK since σK ∈ EK . To see that σK is an ε-equilibrium of Γ∞, it suffices

to show that the right hand side above cannot grow too much by allowing for deviation in

all of X. One can bound the following:

max
q′∈X

max
q′K∈XK

∣∣∣∣∣(1− δ)(u(q′, qK)− u(q′K , qK))
+ δ
(
V K − V K

)[ˆ
Ω∩[0,h(q′+qK)]

dz −
ˆ

Ω∩[0,h(q′K+qK)]

dz

]

+ δ
(
V K − V K

)[ˆ
Ω∩[h(q′+qK),1]

dz −
ˆ

Ω∩[h(q′K+qK),1]

dz

]∣∣∣∣∣
which is bounded above by

max
q′∈X

max
q′K∈XK

{
(1− δ)Lu|q′ − q′K |+ 2δ

(
V K − V K

) ˆ
[m1,m2]

dz

}

≤(1− δ)Lu
1

K
+ 2δ

(
V K − V K

)
Lh

1

K
,

where Lu, Lh are maximal lipschitz constants for u, h, and with m1 = min{h(q′K+qK), h(q′+

qK)} and m2 = max{h(q′K + qK), h(q′ + qK)}. The result follows: for any ε > 0, choose

K large enough so that the worst incentive violation can be bounded by ε. An analogous

argument holds for V K , qK .

Point (ii) follows by construction of σ̄K .

As for point (iii), using the PRD defined with (28), one can construct a binary state

variable that supports σ̄K . Define a state variable SK ∈ {A,B} such that

PAB(Q) = Pr[ζ ∈ Ω | Q],

PBA(Q) = Pr[ζ ∈
{

Ω \ Ω
}
| Q].

(31)

Then, using this state variable as the binary state underlying a binary policy ρ as in

section 5, it is quick to check that indeed W i(ρ, s) as defined in (8) represents long term
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expected discounted payoffs when players follow a bang-bang strategy with q = ρ(A),

q = ρ(B) and partitions for a PRD support Ω,Ω. Then, when ρ(A), ρ(B) are chosen to

equal qK , qK , the resulting profile will be a ε equilibrium of the game with long-run payoffs

defined through W i(ρ, s), by an argument analogous to the one above.

�
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