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Abstract

Evidence suggests that consumers do not perfectly optimize, contrary to a critical assumption

of classical consumer theory. We propose a model in which consumer types can vary in both their

preferences and their choice behavior. Given data on demand and the distribution of prices,

we identify the set of possible values of the consumer surplus based on minimal rationality

conditions: every type of consumer must be no worse off than if they either always bought the

good or never did. We develop a procedure to narrow the set of surplus values using richer

datasets and provide bounds on counterfactual demands.
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1 Introduction

A key implicit assumption of the standard approach to analyzing consumer demand and welfare is

that consumers perfectly optimize. Yet it is clear from a number of empirical studies—if not from

introspection alone—that this assumption does not generally hold in practice. For example, simply

changing the way that prices are presented to consumers can have significant effects on demand

(Chetty, Looney, and Kroft, 2009; Finkelstein, 2009).1

Failures to optimize perfectly can occur for a variety of reasons. The consumer may not be fully

attentive to the price of a good they buy, perhaps because it is a habitual purchase, or because

∗We circulated an earlier draft of this paper under the title “Demand in the Dark”. We have benefited from the
comments of Sandro Ambuehl, Tibor Heumann, Zi Yang Kang, Anton Kolotilin, Nick Netzer, Marek Pycia, Andy
Zapechelnyuk, and various seminar and workshop audiences. Stewart is grateful to PSE for their hospitality. This
work was supported by ERC grant 770652 and by the Social Sciences and Humanities Research Council of Canada.

1See also Ito (2014) for empirical evidence that consumers do not correctly account for marginal electricity pricing
and Feldman, Katuščák, and Kawano (2016) for related evidence regarding marginal tax rates. Dickson and Sawyer
(1990) document that more than half of the supermarket shoppers they surveyed were unable to accurately report
the price of an item immediately after placing it in their cart. Taubinsky and Rees-Jones (2018) and Tipoe (2021)
find that there is significant heterogeneity in attention to prices.
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prices involve complexities that require effort to understand. Similarly, consumers may not always

be aware of the price of a good they do not buy. Alternatively, they may simply make stochastic

errors, as is typically assumed in random utility models. Varying salience of certain features of the

product, such as whether it is on sale, may also influence consumers’ choices.

How are we to make inferences about a consumer’s preferences and welfare in the absence of

optimal choices? We propose an approach grounded in minimal assumptions about the consumer’s

rationality. We focus on a setting with unit demand in which the data consist of a (downward-

sloping) demand curve indicating the probability of purchase at each price together with a distri-

bution of prices. Our rationality conditions require only that no type of consumer would be better

off if they switched to either always buying or never buying the good.

We consider an analyst who seeks to rationalize the data with a model describing a distribution

of types of the consumer, with each type specifying the consumer’s value together with their demand

curve.2,3 A model rationalizes the data if, at each price, the observed purchase probability is equal to

the expected demand across the types in the model. We study two main questions. First, what can

the analyst infer from the observed data about the surplus the consumer receives from participating

in the market for this good? Second, what can the analyst predict about the counterfactual demand

if the consumer were able to fully optimize? For each of these questions, we first obtain bounds

using simple datasets then show how to narrow these bounds with richer data.

Relative to our setting, the standard assumption of optimal choice (coupled with quasilinear

preferences) simplifies the analysis in two ways. First, each type has a threshold demand—buying

the good if and only if the price is below that type’s value for the good—and thus the value can be

directly inferred from its demand. Second, any demand curve admits a unique decomposition into

threshold demands of individual consumer types; thus the distribution of values can be directly

inferred from the overall demand curve. Calculating the total consumer surplus is then simply

a matter of adding up these values (weighted by the corresponding purchase probabilities) and

subtracting the expenditure. In contrast, in our setting, types with the same value may differ in

their demand, corresponding to differences in attention or sophistication. Thus values cannot be

directly inferred from demands, and demands need not take a simple threshold form.

There are generally many different models that can rationalize the data. First, the analyst must

consider various decompositions of the overall demand into demands of individual types. Second,

for each type, given its demand, there is a range of incentive-compatible values, i.e., values for

which our rationality conditions are satisfied. In light of this flexibility, it is not possible to pin

down the surplus exactly. For instance, the analyst can assume perfect optimization and rationalize

the demand in the standard way to obtain the usual consumer surplus. At the opposite extreme,

the analyst can attribute all stochasticity in behavior to errors by assuming a single type whose

2One special case of particular interest—to which it turns out that all of our results apply verbatim—involves a
consumer who is Bayes-rational but observes a noisy signal of the price. See Kocourek, Steiner, and Stewart (2022)
for details.

3While we describe the model in terms of a single consumer with stochastic preferences and choice behavior, an
equivalent interpretation is that there is a continuum of consumers each with fixed preferences and choice behavior.
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demand matches the observed demand. Or the analyst can employ a richer model with many types

that may or may not be optimizing.

We characterize the levels of consumer surplus (and counterfactual demands) across all ratio-

nalizations of the data. The levels of surplus consistent with the data comprise an interval ranging

from 0 to an upper bound that has a simple mathematical structure akin to that of the standard

consumer surplus. Just as the standard surplus is the area between the price line and the inverse

demand up to the quantity demanded, the upper bound is the area between the price line and

an “elevated” inverse demand up to the quantity demanded. As the name suggests, this elevated

demand—which depends on both the observed demand and the price distribution—lies above the

observed demand.

Each feasible level of surplus can be obtained with a simple model: as in the standard approach,

the observed demand is decomposed into threshold demands of individual types. However, the value

of each type need not be equal to the price at the corresponding threshold. For the upper bound on

surplus, this value is equal to the expectation of all prices conditional on exceeding the threshold.

In other words, each type’s value is the expectation of the price conditional on that type’s not

buying the good. The aforementioned elevated demand identifies, for each quantity, the value of

the type responsible for the marginal change in demand, that is, the type whose threshold lies at

the corresponding price on the original demand curve. Other levels of surplus can be obtained from

a similar model except with lower values for each type; for the lower bound, the values are chosen

so as to make them indifferent between their behavior and abstaining from the market.

The main object of our analysis is the random variable describing the value a randomly cho-

sen type assigns to the good, which we refer to as the stochastic value. Our bounds on surplus

and counterfactual demand are based on bounds on the stochastic value with respect to various

stochastic orders. For the upper bound on consumer surplus, we make use of the increasing convex

order (ICX), which can be viewed as the analogue of second-order stochastic dominance (SOSD)

for a decision-maker who is risk-loving instead of risk averse;4 for the lower bound on surplus, we

use SOSD; and for the bounds on counterfactual demand, we use first-order stochastic dominance

(FOSD).

Our proofs feature two distinct steps. In the first step, we identify how the relevant stochastic

order is related to the bound we seek to establish. For example, fixing the demand curve, we

provide an upper bound on surplus for each stochastic value that is increasing with respect to the

ICX order. The second, more substantive step involves identifying a bound on stochastic values

consistent with the observed data with respect to the relevant stochastic order.

For a given decomposition of the observed demand, finding bounds on the stochastic value is

straightforward: our rationality conditions state that each type’s value lies between its buying price

expectation and its non-buying price expectation, that is, between the expected price conditional on

this type buying the good or conditional on not buying the good, respectively. Otherwise, this type

would either benefit from switching to always buying the good or to never buying it. Increasing

4Thus whereas SOSD favors higher means and smaller spreads, ICX favors higher means and larger spreads.
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types’ values within these bounds generates an increase with respect to each of the stochastic orders

we consider. The main challenge in establishing bounds on the stochastic value involves the need

to consider all possible decompositions of the observed demand. As it turns out, the extremes

with respect to the ICX and SOSD orders are achieved by decomposing the demand into threshold

demands. The extremes with respect to FOSD correspond to a different decomposition.

Bounds on the stochastic value are particularly useful with richer data. In section 7, we consider

datasets comprising two or more market regimes that may differ in the distribution of prices and/or

the consumer’s behavior at any given price. For example, it could be that, as in Chetty, Looney,

and Kroft (2009), sales taxes are included in the posted price in one regime but not included in the

other. The analyst considers all rationalizations of the datasets in which the value of each type is

fixed across regimes (though its demand may vary).

We propose a simple procedure for narrowing the bounds on surplus or counterfactual demand

within each regime using the data from the other regimes. This procedure involves taking the

collection of bounds on the stochastic value across regimes and combining them to obtain a common

tighter bound. To compute this combined bound, we first translate the stochastic values into

functions that admit standard consumer-theoretic interpretations. To illustrate, consider the upper

bound on consumer surplus. The key idea is to associate each stochastic value with the convex

function describing the consumer surplus at each price if the consumer were to fully optimize. We

show that increases in the stochastic value with respect to the ICX order correspond to increases

in the associated consumer surplus function; upper bounds with respect to the ICX order therefore

correspond to upper bounds on this function. The bounds arising from each regime can be combined

by taking the convex closure of the minimum of these functions. Mapping this convex closure back

to a stochastic value yields a new upper bound with respect to the ICX order, and from there an

upper bound on consumer surplus.

Our setup abstracts away from any costs associated with decision-making, such as attention

costs. Section 9 addresses how our results extend in the presence of such costs. In brief, as long

as choice behavior that is independent of the price incurs no cost, all of our bounds apply to the

consumer’s surplus net of these costs except for the lower bound with multiple regimes.

In a similar spirit to Bernheim and Rangel (2009), we propose a revealed-preference approach

to measuring the welfare of a decision-maker who may not be perfectly rational. Empirical studies

of behavioral welfare typically assume, either explicitly or implicitly, that certain observed choices

reveal the decision-maker’s true preferences.5 These preferences can then be used to assess the

welfare associated with other choices that could be suboptimal. For example, Chetty, Looney, and

Kroft (2009) and Taubinsky and Rees-Jones (2018) recover true preferences from consumer choices

when a tax is made salient and use these to measure the welfare loss arising from mistakes that

occur when the taxes are not salient; Bronnenberg et al. (2015) identify the true preferences from

experts’ choices and use these to evaluate non-experts’ welfare. An alternative approach, taken

by Gruber and Köszegi (2001), is to use a structural model that relates true preferences to choice

5See Bernheim and Taubinsky (2018) for a survey.
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behavior. Relative to these empirical studies, we make much weaker assumptions about the extent

to which true preferences can be inferred from the data, requiring only that behavior satisfies

certain minimal rationality conditions.

In the special case of our model in which errors are due to imperfect information, our work

can be viewed as combining revealed preference with information design, where the design has

the goal of maximizing or minimizing the surplus or counterfactual demand consistent with the

observed data.6 Bergemann, Brooks, and Morris (2022) identify bounds on counterfactual behavior

in abstract games. Theorem 4 in the present paper concerns counterfactual behavior in a more

specific setting, but unlike in Bergemann, Brooks, and Morris (2022), the distribution of preferences

in our model is not known to the analyst. Bergemann, Brooks, and Morris (2015, 2017) identify

the range of surplus values that can be attained for given preferences as information varies in a

monopolistic market or a first-price auction. Condorelli and Szentes (2020, 2022) characterize the

range of surplus values consistent with partial knowledge of demand in settings with market power

on the supply side. Regarding revealed preference, we are closest to the branch of the literature

that uses choice data to jointly identify preferences and information, as in Masatlioglu, Nakajima,

and Ozbay (2012) and Manzini and Mariotti (2014).

When considering bounds on surplus using data from multiple regimes, we represent random

variables as convex functions to construct bounds with respect to the ICX or SOSD order. A

similar technique has been used in Bayesian persuasion problems by Gentzkow and Kamenica

(2016) and Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017). Müller and Scarsini (2006) establish

lattice properties of these orders using the same transformation. This technique has a natural

interpretation in our context: the convex function that represents a given stochastic value maps

each price to the consumer surplus that would arise under that stochastic value under perfect

optimization.

Varian (1985) and Kang and Vasserman (2022) study a complementary problem of identifying

bounds on consumer surplus. In their models, consumers perfectly optimize but there are gaps in the

demand observed by the analyst. Kang and Vasserman (2022) discuss how to interpret their problem

in terms of concavification, along the lines of Kamenica and Gentzkow (2011). Sandomirskiy and

Ushchev (2022) use a different concavification problem to identify bounds on consumer welfare

across possible disaggregations of an observed aggregate demand curve. Our problem can also be

viewed as one of concavification—a connection we discuss in section 5—but in a different space

and with a different constraint. In all three cases, the space over which concavification occurs is

very large, making standard techniques inapplicable. Allen and Rehbeck (2021) provide bounds

on surplus from finite data sets for consumers who approximately optimize. In contrast, we focus

on idealized infinite data with different bounded rationality assumptions that are not nested with

theirs.

6While information design problems typically place no restrictions on the information structure, we impose an
implicit restriction to ensure that each type has monotone demand.
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2 Setup

An analyst observes data (Q,F ) describing the stochastic purchasing behavior of a consumer with

unit demand together with the distribution of prices. The demand function Q :
[
p, p
]
−→ [0, 1],

which we assume is non-increasing, specifies the probability Q(p) of purchase at each price p; we

denote by P (q) the inverse demand associated with Q(p).7 Prices are distributed according to the

continuous distribution F (p) with support
[
p, p
]
, where p ≥ 0. As is standard when measuring

consumer welfare, we assume that the analyst observes the choke price, i.e., Q(p) = 0; similarly, we

assume that Q(p) = 1.

The demand Q is an aggregation of many choices made by the consumer across which both

her valuations and her behavior may vary. In each such choice, the consumer faces a take-it-or-

leave-it offer at a random price p drawn according to F . (We denote random variables in bold

and their realizations with the corresponding non-bold symbol; all probabilities and expectations

are evaluated with respect to these bold variables unless otherwise stated.) The consumer has a

stochastic type i with support I ⊂ R. Each type i specifies the consumer’s value vi for the good

together with a non-increasing demand Qi(p).

We interpret the data as describing the choices of a single individual whose value for the good

may be changing and whose behavior also varies due to unobserved factors such as attention

or salience. We allow for the possibility that these factors are related to the value since, for

example, the consumer may be more attentive to the price when their value is lower. An alternative

interpretation of the data is that they combine choices made by a large population of consumers,

with each type corresponding to a distinct individual whose value and behavior are fixed.

We assume that the consumer’s value is independent of the price. This assumption is natural

for individual-level data, such as scanner data, where the individual is negligible from the perspec-

tive of the seller. If consumers’ values vary systematically over time—as, for instance, would be

expected for a seasonal product—then the analyst should split the data into periods within which

independence of values and prices is plausible. The tools developed in section 7 can be applied to

the separated data. If, however, the analyst fails to account for temporal variation that affects the

seller’s pricing strategy, then our results may not apply.

In the standard approach, each type would purchase the good whenever the price is below her

value. The demand Q then admits a unique disaggregation into threshold demands for each type

with a threshold equal to the type’s value. At any given price, summing the utilities across all types

gives the standard measure of consumer surplus. In our approach, allowing for behavior that is not

determined entirely by a type’s value for the good leads to two complications: first, the analyst

must consider many different ways of disaggregating the demand into demands of individual types;

second, once the demand has been disaggregated, each type’s demand does not pin down her value.

We impose a minimal rationality restriction on the types that the analyst can use to rationalize

the data: we require that no type can be worse off than she would be if she never bought the

7That is, P (q) := inf{p : Q(p) ≤ q}. Analogously, given any inverse demand function P̃ , we define the correspond-
ing demand function Q̃(p) = inf{q : P̃ (q) ≤ p}.
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good (regardless of its realized price), nor can she be worse off than if she always bought the good.

Letting si = E [(vi − p)Qi(p)] denote type i’s expected surplus, this restriction corresponds to the

pair of incentive compatibility constraints

si ≥ 0 (1)

and si ≥ vi − E[p]. (2)

This requirement imposes discipline on the relationship between a type’s value and its demand.

There are several reasons to expect that a consumer’s demand may not perfectly reflect her

value. It could be that she does not always check the price of the good, or does so only if she

notices that it is on sale; the posted price may not include taxes that the consumer does not

accurately compute; or the consumer may make random errors in assessing the value of the good,

as in a random utility model. In each of these cases, the consumer’s attentiveness and likelihood

of making a mistake could depend on the current value. The analyst therefore allows for types’

demands to vary along with their values in a general way, imposing only that no type makes

systematic errors such that they would be better off either always buying or never buying.

The analyst seeks to explain the observed choices with a model that consists of a distribution

M of types i ∈ I together with a specification (vi, Qi)i∈I of values and demand functions for each

type satisfying (1) and (2). We say that a given model rationalizes data (Q,F ) if Q(p) = E [Qi(p)]

for all p. Given a model that rationalizes the data, the (ex ante) consumer surplus is s = E [si].

In general, data can be rationalized by many different models which in turn yield different values

of surplus. We say that surplus s ∈ R is consistent with the data if there exists a model that

rationalizes (Q,F ) and generates surplus s.

Example 1. The analyst observes the linear demand function Q(p) = 1 − p and prices uniformly

distributed on [0, 1]. There are many possible models that rationalize this data. For instance,

it could be that, as in the standard analysis, the consumer always makes the optimal decision:

her value vi is uniformly distributed on [0, 1] and each type i demands the good precisely when

p < vi. For any realized price p, this consumer receives surplus (1 − p)2/2 (corresponding to the

area between the demand curve and the price). The expected consumer surplus for this model is

therefore s = E
[
(1− p)2/2

]
= 1/6.

Alternatively, the data can be rationalized by a model with stochastic choices. Perhaps the

simplest such rationalization features a consumer with a single type. For each price realization

p, the consumer purchases the good with probability Q(p), which trivially generates the observed

aggregate demand. Inequalities (1) and (2) place limits on this type’s value, v: it must be at least

v = 1/3 to ensure that she does not prefer to abstain from buying, and at most v = 2/3 to ensure

that she does not prefer to always buy. Taking v = v leads to a surplus of E [(v − p)Q(p)] = 1/6;

taking v = v leads to a surplus of E [(v − p)Q(p)] = 0. Using values of v in between these two

extremes, any surplus in [0, 1/6] can be obtained.8

8That the upper bound of 1/6 is equal to the standard surplus is a coincidence that does not generally hold outside
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More complex models can yield additional values of the surplus. Consider two equally likely

types, 1 and 2, with respective demands

Q1(p) =

2(1− p) if p ≥ 1/2

1 otherwise
and Q2(p) =

0 if p ≥ 1/2

1− 2p otherwise.

Since (Q1 +Q2)/2 = Q, these individual demands generate the observed total demand. Given each

type’s demand Qi, inequalities (1) and (2) place restrictions on the values of the form vi ∈ [vi, vi].

Using the maximal values gives surplus 1
2

∑
i vi E [Qi(p)] − E[pQ(p)] = 2/9 (whereas the minimal

values again give a surplus of 0).9 4
We see from this example that it is possible to obtain values of the surplus consistent with the

data that exceed the standard consumer surplus. This observation may seem surprising since the

consumer in the standard model perfectly optimizes while in other models she does not. While

it is true that introducing imperfections in decision-making can only lower the surplus given the

consumer’s preferences, allowing for these imperfections expands the range of preferences that can

rationalize the data.

In the example, by splitting the aggregate demand across two types, we obtained higher levels

of surplus than can be obtained with only one type. The question remains, however, as to whether

further disaggregation of the two demands—or some other splitting—can expand the range of

attainable surpluses. As we show in the next sections, it turns out that a “maximal” disaggregation

of the demand can rationalize the highest value of the surplus (1/4 for Example 1).

3 Bounds on Consumer Surplus

3.1 Bounds for a single dataset

We identify tight bounds on the consumer surplus consistent with the observed data. To formulate

the result, we define, for arbitrary demand Q̃ and (possibly unrelated) inverse demand P̂ , the

functional

CS
(
Q̃, P̂ ; p

)
:=

∫ Q̃(p)

0

(
P̂ (q)− p

)
dq. (3)

When applied to the observed demand function Q and its inverse demand P , CS (Q,P ; p) returns

the standard consumer surplus. In the standard case, when the consumer always chooses optimally,

the inverse demand is equal to the her marginal benefit of consumption at each q. If the consumer

does not always choose optimally, the inverse demand is not generally equal to the marginal benefit.

Nonetheless, if Q̃ is the demand and P̂ the marginal benefit of consumption, then CS
(
Q̃, P̂ ; p

)
is

the consumer surplus (at price p).

of this example. On the other hand, 0 is a tight lower bound regardless of the data as there are always models in
which the consumer is indifferent whenever she buys the good.

9Type 1 buys with probability 3/4 and has maximal value v1 = 5/6 and type 2 buys with probability 1/4 and has
maximal value v2 = 11/18, giving a surplus of 1/2 · 5/6 · 3/4 + 1/2 · 11/18 · 1/4− 1/6 = 2/9.
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Figure 1: Elevated and lowered inverse demands for a particular inverse demand P (q) with uni-
formly distributed prices. In this case, P (q) is the midpoint between P (q) and 1. Likewise, P (q) is
the midpoint between P (q) and 0.

For any data (Q,F ), we provide tight bounds on the consumer surplus using CS(Q, P̂ ; p) for

appropriate choices of P̂ . Accordingly, define the elevated and lowered inverse demands to be

P (q) := E [p | p ≥ P (q)]

and P (q) := E [p | p ≤ P (q)] ,

respectively. These two functions are non-increasing and satisfy P (q) ≥ P (q) ≥ P (q) for all q; see

Figure 1 for an illustration.

Theorem 1. Consumer surplus s is consistent with data (Q,F ) if and only if

0 = E [CS (Q,P ;p)] ≤ s ≤ E
[
CS
(
Q,P ;p

)]
.

As explained above, CS
(
Q̃, P̂ ; p

)
is the surplus obtained by a consumer who demands Q̃(p) at

each p and receives marginal benefit P̃ (q) at each q. The upper bound in Theorem 1 corresponds

to the “highest possible” marginal benefit function consistent with the data, in a sense that is made

precise in the proof of the theorem in section 5. To obtain the marginal benefit function P , we

construct a model rationalizing the data in which the analyst associates every marginal increase in

demand with a different consumer type and takes each type’s value to be the largest one that is

consistent with its own demand. A similar construction with lower values can generate any surplus

between 0 and the upper bound.

Example 2. To illustrate the theorem, consider the data from Example 1. The empirical inverse

demand is P (q) = 1 − q, the elevated inverse demand is P (q) = (1 + P (q))/2 = 1 − q/2, and

E
[
CS
(
Q,P ;p

)]
= 1/4. Theorem 1 therefore indicates that surplus levels consistent with the data

are precisely those in the interval [0, 1/4]. In this case, the consumer surplus can be up to 3/2 times

as large as the standard surplus. 4

A special case of our environment that may be of particular interest arises when the consumer

is Bayesian but observes only a noisy signal of the price of the good. The noise in this signal could

9



result from inattention; for example, the consumer may assume that the price of the good exceeds

her willingness to pay unless she notices that it is on sale (in which case she checks the price). In this

case, a type of the consumer can be described by a value and an information structure: together,

these two elements determine the type’s demand function. Bayesian optimality implies that (1)

and (2) are satisfied for each type. Conversely, for each type (vi, Qi) satisfying (1) and (2), there

exists an information structure for which a Bayesian type with value vi would have demand Qi.
10

Therefore, Theorem 1 applies as written to this special case; in particular, Bayesian optimality does

not narrow the bounds relative to those obtained with our minimal rationality assumptions.

Instead of welfare, the analyst may be interested in predicting the consumer’s demand in some

counterfactual market regime. In section 8, we derive tight bounds on the demand that would

arise in a counterfactual market with a deterministic price, or, equivalently, in which the consumer

always chooses optimally.

3.2 Bounds for multiple datasets

The bounds on consumer surplus can be narrowed if the analyst observes the consumer’s choices

under varying market conditions, which we refer to as regimes. We assume that the consumer’s

valuations are fixed across regimes, but the regimes may differ in the distribution of prices or in the

purchasing behavior of each type at any given price (or both). For example, one such regime may

correspond to a publicly announced “sale” associated with a low distribution of prices while another

corresponds to the same market in the absence of a sale; the sale announcement may affect the

consumer’s stochastic choice at each price through changes in attention or salience. Alternatively,

the regimes may differ only in how prices are presented to consumers, as in the empirical studies

of Chetty, Looney, and Kroft (2009) and Finkelstein (2009).

Accordingly, suppose the analyst observes a separate dataset for each regime k = 1, . . . ,K. We

provide here a brief overview of how the analyst can combine these datasets to obtain a lower upper

bound on the surplus within each regime than that in Theorem 1. A similar construction leads to

nontrivial positive lower bounds. Section 7 describes both constructions in detail.

Let Qk(p) denote the observed demand in regime k and P k(q) the elevated inverse demand

computed using only the data from regime k. While, as noted above, P k describes the highest

marginal benefits consistent with the data in regime k, it may be that the model yielding these

marginal benefits is inconsistent with behavior in the other regimes, for example because the de-

mand in the other regimes is too low to be generated by a consumer with values this high. We

would therefore like to combine the elevated inverse demands across regimes to obtain a “lower”

inverse demand P∗(q) such that Ek [CS (Qk, P∗;p)] is an upper bound on the surplus, where Ek[·]
refers to the expectation given the distribution of prices in regime k. (Note that the upper bound

in Theorem 1 for regime k is Ek
[
CS
(
Qk, P k;p

)]
.)

10Given a type (vi, Qi), take the binary information structure that generates a “buy” signal with probability Qi(p)
and an “abstain” signal otherwise. By (1) and (2), following the action recommended by the signal is incentive
compatible.
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How should the elevated inverse demands be combined? The answer to this question depends

on the appropriate ordering of the marginal benefit functions. It turns out that this ordering can be

captured by comparing the standard consumer surplus CSk(p) obtained if a consumer with inverse

demand P k perfectly optimizes. Each such consumer surplus must be convex since the inverse

demand is downward-sloping. Let CS∗(p) be the highest convex function that lies below every

CSk(p) at each p. We show that differentiating CS∗(p) gives a demand curve whose inverse is the

desired marginal benefit function P∗; see Theorem 2 for details.

4 Preliminaries

The distribution of the consumer’s value of the good plays a central role in our analysis. As we

explain in this section, when the value is viewed as a random variable, stochastic orders on the

value are relevant for comparisons of demand and of consumer surplus.

Given a model, let v := vi be the consumer’s stochastic value of the good. Thus v is a random

variable partially describing the model, disregarding types’ demands. Let Qs(p;v) := Pr(v > p).

For any price p, Qs(p;v) is the probability with which the consumer would buy the good in the

standard model (except possibly at atoms of v).11 Therefore, we refer to Qs(p;v) as the standard

demand function for v. We use the superscript s throughout to indicate elements relating to the

standard model.

Note that the standard demand function is the complementary distribution function of v. Like-

wise, the standard inverse demand function P s(q;v)—which is the inverse to the demand Qs(p;v)—

is the complementary quantile function of v.

In light of the connection between the distribution of the stochastic value and the demand,

first-order stochastic dominance comparisons of v correspond to rankings of the associated standard

demands. Indeed, the following statements are equivalent: (i) v′ first-order stochastically dominates

v; (ii) Qs (p;v′) ≥ Qs (p;v) for all p; and (iii) P s (q;v′) ≥ P s (q;v) for all q.12

Our bounds on consumer surplus make use of the so-called convex order. Gentzkow and Ka-

menica (2016) and Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017) identify a mapping from

random variables to convex functions that is useful for making comparisons with respect to this

order. Define the function CSs(·;v) : R −→ R by

CSs(p;v) :=

∫ ∞
p

Qs
(
p′;v

)
dp′. (4)

This mapping has a natural interpretation in our context: it is the standard consumer surplus at

price p for a consumer with stochastic value v.13 Observe that CSs(p;v) is convex in p because Qs

11If v has an atom at p, then the demand in the standard model lies in the closed interval between the left and
right limits of Qs(·;v) at p.

12We use first-order stochastic dominance order in section 8 where we study bounds on counterfactual demand that
would arise in the absence of imperfections in choice.

13Gentzkow and Kamenica (2016) and Kolotilin et al. (2017) map each random variable to the integral of the lower
tail of its distribution function. For our purposes, the relevant integral is over the upper tail of the complementary
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is downward-sloping.

In addition to its economic interpretation, the function CSs(·;v) characterizes the convex order

on v. Given two real-valued random variables x and y, y dominates x in the increasing convex

order, denoted by y �icx x, if there exists a random variable z such that z first-order stochastically

dominates x and y is a mean-preserving spread of z.

Lemma 1. For any v′ and v, v′ �icx v if and only if CSs(p;v′) ≥ CSs(p;v) for every price p.

Proof. The result follows from Theorem 4.A.2 of (Shaked and Shanthikumar, 2007) together with

the fact that Qs(p;v) is the complementary distribution function of v.

The increasing convex order is closely related to second-order stochastic dominance, denoted

here by �sosd.14 (Indeed, y �icx x if and only if −x �sosd −y.) Roughly speaking, both orders

favor higher values, but the increasing convex order favors spreads while second-order stochastic

dominance disfavors them. Lemma 1 is essentially the analogue for the increasing convex order of

the usual characterization of SOSD in terms of integrals of the lower tails of distribution functions.

Given a stochastic value v and demand Q̃(p), a special role in our analysis will be played

by CS
(
Q̃, P s (·;v) ; p

)
. This quantity is the highest possible surplus a consumer with value v and

demand Q̃(p) can achieve, which is attained when the measure Q̃(p) of the highest types are the ones

that buy the good. We abuse notation and write CS(Q̃,v; p) for CS
(
Q̃, P s (·;v) ; p

)
throughout.

The next result suggests how the increasing convex order can be useful outside of the standard

model, for a consumer who makes imperfect choices.

Lemma 2. For every demand function Q̃ and any price p, CS(Q̃,v; p) is nondecreasing in v with

respect to the increasing convex order.

Clearly, a first-order stochastic dominance increase of values increases the consumer surplus

CS(Q̃,v; p). A mean-preserving spread of the values also increases this surplus because it is com-

puted under the assumption that, for each p, it is the measure Q̃(p) of types with the highest values

that buy. The gross surplus at a given price is therefore proportional to the mean value conditional

on being among these buying types, which increases with a mean-preserving spread. The proof of

this lemma—and those of other results not proved in the main text—may be found in the appendix.

5 Proof of Theorem 1

We begin by identifying the set of values consistent with the demand of a given type. We say that

a value vi is consistent with demand Qi if vi together with Qi satisfy inequalities (1) and (2). Given

distribution function.
14Recall that y second-order stochastically dominates x if there exists z such that x is a mean-preserving spread

of z and y first-order stochastically dominates z.
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Qi, let

vi := E [p | Qi(p) ≥ q] = E [p | p ≤ Pi(q)] ,

vi := E [p | Qi(p) ≤ q] = E [p | p ≥ Pi(q)] ,

where q ∼ U [0, 1] and Pi is the inverse demand associated with Qi. Since type i buys with

probability Qi(p) at each price p, vi and vi are, respectively, the expected price conditional on the

event that consumer of type i does or does not make a purchase. Accordingly, we refer to vi as

the buying price expectation and to vi as the non-buying price expectation. Note that, since Qi is

downward sloping, vi ≤ vi.

Lemma 3. A value vi is consistent with Qi if and only if vi ≤ vi ≤ vi.

This result follows directly from inequalities (1) and (2); we omit the details of the proof.

We divide Theorem 1 into its sufficiency and necessity claims. To prove sufficiency, we first show

by construction that each surplus between 0 and E
[
CS
(
Q,P ;p

)]
is consistent with the data. For

the necessity claim, we prove that no other levels of surplus are consistent with the data. For the

latter, we show that the stochastic value associated with the construction yielding the upper bound

on surplus provides an upper bound with respect to the increasing convex order. (For necessity, it

suffices to consider only the upper bound: since the lower bound on surplus is 0, it follows trivially

from (1) that no lower surplus can be obtained.)

To prove the sufficiency claim, we construct for each s ∈
[
0,E

[
CS
(
Q,P ;p

)]]
a model that

generates surplus s. Let the type i be uniformly distributed on [0, 1] and let each realization i

generate the demand function Qi(p) = 1p≤P (i). Thus type i always buys when the price is below

P (i) and never buys at prices above P (i). Note that the average demand across all types is equal

to the observed demand Q, as needed for the model to rationalize the data:

E [Qi(p)] = Pr (P (i) ≥ p) = Pr (i ≤ Q(p)) = Q(p).

By Lemma 3, a value vi is consistent with demand Qi if vi ≤ vi ≤ vi. Due to the choice of Qi, we

have vi = P (i) and vi = P (i). Since type i buys if and only if i ≤ Q(p), taking vi = vi for all i gives

ex ante surplus E
[
CS
(
Q,P ;p

)]
; we refer to this model as the upper threshold model. At the other

extreme, taking vi = vi for all i gives E [CS (Q,P ;p)] = 0 since the value P (i) of each type i is equal

to its expected expenditure. For any s ∈
(
0,E

[
CS
(
Q,P ;p

]))
, taking vi = λP (i)+(1−λ)P (i) with

λ = s/E
[
CS
(
Q,P ;p

)]
yields surplus s. This completes the proof that lying in the given interval

is sufficient for s to be consistent with the data.

We now shift our attention to the other direction, namely, that lying in the given interval is a

necessary condition for consistency of surplus with the data. We say that a stochastic value v is

consistent with data (Q,F ) if there exists a model satisfying v
d
= vi that rationalizes (Q,F ). We

provide an upper bound on stochastic values consistent with the data with respect to the increasing

convex order. Let v := P (i) and v := P (i) for i ∼ U [0, 1]. Thus v and v are, respectively, the
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Figure 2: Example illustrating the effect of splitting demand into threshold demands. (a) For
p ∼ U [0, 1], the non-buying price expectation associated with demand Qi is the expected price
across the shaded region with both coordinates uniformly distributed, which is 11

16 . (b) Splitting
type i into two (equally likely) types with threshold demands gives non-buying price expectations
of 7

8 and 5
8 . The average of these two expectations conditional on not buying is 7

8 ·
1
4 + 5

8 ·
3
4 = 11

16 ,
whereas the unconditional average is 7

8 ·
1
2 + 5

8 ·
1
2 = 3

4 >
11
16 .

stochastic values associated with the upper threshold model and the corresponding model for the

lower bound constructed above. For the proof of Theorem 1, we make use only of v; v is needed

in subsections 6 and 7.2.

The following lemma is the core technical insight underlying the necessity part of Theorem 1.

Lemma 4. If a stochastic value v is consistent with data (Q,F ), then v �icx v.

The proof of this lemma, which is in the appendix, starts by considering an arbitrary model

rationalizing the data with values vi and demands Qi(p) for each type i. We then amend the model

in two steps such that (i) each step leads to an increase in the stochastic value with respect to

the increasing convex order and (ii) in combination, the two steps transform the original stochastic

value v = vi to v.

In the first step, we replace the value vi of each type i with i’s non-buying price expectation

vi (given the demand Qi). Since, by Lemma 3, vi ≥ vi, this replacement leads to a first-order

stochastic dominance increase in the stochastic value and hence also to an increase with respect to

the increasing convex order.

In the second step, we decompose the demand of each type into demands of the form Qj(p) =

1p≤ρ for some ρ; we refer to such functions as threshold demands. More specifically, we replace

each type i with a stochastic type j such that each realization j has a threshold demand and the

average demand across j is Qi. (If Qi is itself a threshold demand, then such a decomposition is

trivial.) We assign to each j the value vj equal to its non-buying price expectation. Replacing

each i with the corresponding j clearly increases the spread in the values. For this change to be an

increase with respect to the increasing convex order, it suffices to show that it also increases the

means, i.e., that E [vj] ≥ vi for each i. To see why the last inequality holds, notice that, by the

Law of Iterated Expectations, the expected non-buying price expectation conditional on not buying

is unaffected by the decomposition of the demand Qi(p). Since higher values of vj are associated
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with lower probabilities of not buying, when compared to the conditional expectation, the relative

weight assigned to higher values vj in the unconditional expectation is larger, as claimed. See

Figure 2 for an illustration.

Taken together, the two steps transform the original model into one in which all types have

threshold demands and values equal to their non-buying price expectations, and the average demand

is Q. The associated stochastic value is v, as needed for the proof of Lemma 4.

We now establish an interim upper bound on consumer surplus that holds for each realization

p of the random price p. We say that a function s(p) is an interim consumer surplus consistent

with the data if there exists a model that rationalizes the data for which

s(p) = E [(vi − p)Qi(p)] .

Lemma 5. If s(p) is an interim consumer surplus consistent with the data, then s(p) ≤ CS
(
Q,P ; p

)
.

Proof. First note that, for a given stochastic value v, the consumer can suffer from two types of

losses relative to optimal behavior: (i) the probability of purchase at a given price may not be

optimal, i.e., Q(p) may differ from Qs(p;v), and (ii) the set of types purchasing the good at a given

price may not be those with the highest values. Starting from any model that rationalizes the data,

reallocating demands across types to eliminate this latter loss (ignoring incentive compatibility)

gives an upper bound CS (Q,v; p) on the interim surplus at each p for models with stochastic value

v. Therefore, the surplus s(p) generated by any such model satisfies

s(p) ≤ CS (Q,v; p) ≤ CS (Q,v; p) = CS
(
Q,P ; p

)
,

where the middle inequality follows from Lemmas 2 and 4.

Since the interim surplus is bounded from above by CS
(
Q,P ; p

)
for each price p, the ex ante

surplus is bounded by E
[
CS
(
Q,P ;p

)]
, as needed. This concludes the proof of Theorem 1.

6 Related Results

Theorem 1 has connections with several other questions.

First, Lemmas 1 and 4 together have immediate implications for the counterfactual consumer

surplus that would arise under optimal choice.

Corollary 1. Given data (Q,F ), the consumer surplus that would arise if the consumer chose

optimally is no greater than CSs (p;v).

Second, as in Bayesian persuasion, the upper bound on consumer surplus can be viewed as the

value of a concavification problem. Just as Kamenica and Gentzkow (2011) split the prior belief

into posterior beliefs under a Bayes-plausibility constraint, we split the aggregate demand Q(p) into

individual types’ demands Qi(p) under the constraint E [Qi] = Q. The objective in the persuasion
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problem is to maximize the expected value across posteriors. Likewise, our objective is to maximize

the expected surplus E [s (Qi)], where s (Qi) is the highest surplus for type i consistent with demand

Qi. (Due to the high dimensionality of this problem, standard concavification techniques are not

sufficient to identify a solution.) Threshold demands can be viewed as analogous to degenerate

posteriors insofar as neither can be further split. Since the upper threshold model splits the original

demand into threshold demands, it is analogous to full disclosure in the persuasion problem. The

optimality of this model is nontrivial since the objective function s(Qi) is not convex.15

Finally, all of the results stated so far have symmetric counterparts regarding a different welfare

measure. Consumer surplus s captures the consumer’s benefit from freely choosing whether to buy

relative to not having the option to buy the good. Define the complementary consumer surplus

ŝ := E [(1−Qi(p)) (p− vi)] ,

which captures the consumer’s benefit from freely choosing whether to buy relative to being forced to

buy the good, i.e., not having the option not to buy the good. One can think of the complementary

surplus as the gain relative to universal provision of the good financed by a tax equal to the average

price.

Whereas consumer surplus is maximized when the consumer’s value is high, complementary

consumer surplus is maximized when the consumer’s value is low. In both cases, however, greater

spreads in values are associated with higher (complementary) surplus. Consequently, the relevant

ranking of stochastic values for the complementary surplus is (the reverse of) second-order stochastic

dominance: a lower bound with respect to �sosd provides an upper bound on ŝ.

Just as v is the highest and the most spread out stochastic value consistent with the data, v is

the lowest and the most spread out such stochastic value. More precisely, v is a lower bound with

respect to �sosd on all v consistent with the data. While the central step of the proof of Lemma 4

was to show that a decomposition into threshold demands induces a mean-increasing spread of the

non-buying price expectations, a symmetric argument implies that the same decomposition induces

a mean-decreasing spread of the buying price expectations.

By analogy to the functional CS, let

ĈS
(
Q̃, P̂ ; p

)
:= E

[∫ 1

Q̃(p)

(
p− P̂ (q)

)
dq

]
.

Note that, just as E [CS (Q,P ;p)] = 0, E
[
ĈS
(
Q,P ;p

)]
= 0. Complementary consumer surplus ŝ

is consistent with data (Q,F ) if and only if

0 = E
[
ĈS
(
Q,P ;p

)]
≤ ŝ ≤ E

[
ĈS (Q,P ;p)

]
;

this is the mirror image of Theorem 1. Since the proof of this result is analogous to that of

15To see this, consider Qi(p) = 1 for p < p − ε and Qi(p) = 0 otherwise. For small ε, s(Qi) ≈ p − E[p] and
s(Qi/2) ≈ 0 < s(Qi)/2.
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Theorem 1, we omit the details.

Example 3. Consider the same data as in Example 1, namely, Q(p) = 1−p and p ∼ U [0, 1]. In this

case, the empirical inverse demand is P (q) = 1 − q, the lowered inverse demand is P = P (q)/2 =

(1 − q)/2, giving an upper bound on complementary consumer surplus of E
[
ĈS(Q,P ;p)

]
= 1/4.

4

7 Multiple Datasets

We now extend the model to allow for the possibility that the analyst observes demand in two or

more market regimes that may differ in the distribution of prices or in the consumer’s behavior

(or both), as discussed in subsection 3.2. The analyst observes a profile of datasets
(
Qk, F k

)
,

k = 1, . . . ,K, where Qk(p) and F k(p) are, respectively, the probability that the consumer makes a

purchase at each price p and the distribution of prices in regime k and each (Qk, F k) satisfies the

assumptions on data made in section 2. The consumer has a stochastic type i, with each realization

i specifying her value vi for the good and her (nonincreasing) demand function Qki (p) in each regime.

The distribution of types and the value of each type are the same across all regimes. A model for

the analyst consists of a distribution of types together with a specification of
(
vi, Q

1
i , . . . , Q

K
i

)
i

for

each type.

We say that a model rationalizes the profile of datasets
(
Qk, F k

)
k

if, for each regime k, it

rationalizes dataset (Qk, F k) when each type i has demand Qki . In particular, within each regime,

we impose the basic rationality assumptions described by (1) and (2). A stochastic value v is

consistent with the profile of datasets
(
Qk, F k

)
k

if there exists a model that rationalizes this profile

and satisfies v
d
= vi.

Example 4. Consider two regimes. The data in regime 1 consist of the linear demand Q1(p) = 1−p
and uniform price distribution p ∼ U [0, 1], as in Example 1. The data in regime 2 consist of the

step-function demand Q2(p) = 1p≤2/3 and uniform price distribution p ∼ U [2/3−ε, 2/3+ε], where

0 < ε ≤ 1/3. These two regimes are jointly rationalizable, for example by a single type with value

2/3 and demand Qk(p) for k = 1, 2. 4

Given a model, the interim consumer surplus in regime k at price p is

sk(p) = E
[
Qki (p) (vi − p)

]
.

We write sk = E
[
sk(p)

]
for the ex ante surplus in regime k. Consumer surplus sk(p) in regime k is

consistent with the profile of datasets (Qk, F k)k if there exists a model that rationalizes this profile

and generates surplus sk(p) in regime k (and analogously for the ex ante surplus).

7.1 Upper bound

The next result provides an upper bound on the surplus within each regime that generally improves

upon the bounds that can be obtained for each regime separately. The basic idea is to derive the
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Figure 3: Convexification for the two regimes described in Example 4 with ε = 1/3. Note that the
graphs depict only prices p ∈ [1/2, 1] since the convexification is trivial for p < 1/2. (a) Standard
consumer-surplus functions: (dashed) CSs

(
p;v1

)
, (dotted) CSs

(
p;v2

)
, (thick) the convexification

CSs
∗(p). (b) Standard demands associated with stochastic values: (dashed) Qs

(
p;v1

)
, (dotted)

Qs
(
p;v2

)
, (thick) Qs

∗(p).

upper bounds on the stochastic value with respect to the increasing convex order when considering

each regime separately and to combine them in such a way as to generate a tighter bound. The

approach therefore requires combining bounds on random variables with respect to this stochastic

order. To do so, building on ideas of Gentzkow and Kamenica (2016) and Kolotilin et al. (2017),

we exploit the connection described in section 4 between random variables and convex functions—

in this case, the stochastic value and the standard consumer surplus. According to Lemma 1,

comparisons of stochastic values in the increasing convex order correspond to comparisons of the

standard consumer surplus. Using this connection, we find the largest random variable that satisfies

the bounds on the stochastic value across all of the regimes by finding the largest convex function

lying below the corresponding bounds on the standard consumer surplus.

Let vk be the upper bound on stochastic values consistent with the data for regime k with

respect to the increasing convex order as in Lemma 4.16 For each k, the bound vk corresponds to the

convex function CSs
(
p;vk

)
. The upper bound using data across all regimes therefore corresponds

to the largest convex function that lies below each CSs
(
p;vk

)
. Accordingly, let CSs

∗(p) denote the

convex closure of the function mink CS
s
(
p;vk

)
.17 By extension of the terminology of Kamenica

and Gentzkow (2011), we refer to CSs
∗ as the convexification of mink CS

s
(
p;vk

)
.

To map CSs
∗ back to a stochastic value, recall from section 4 that CSs (p;v) is the integral of the

upper tail of the standard demand Qs (p;v), which is the complementary distribution function of v.

Define the demand function Qs
∗(p) = −∂−CSs

∗(p), where ∂− denotes the left derivative. Note that

16That is, vk = P
k
(i) with i ∼ U [0, 1], where the elevated demand for regime k is P

k
(i) = E

[
p | p ≥ P k(i)

]
with

p ∼ F k and P k is the inverse demand to Qk.
17Recall that the convex closure of a function g(p) is the function that maps each p to inf {s : (p, s) ∈ co(g)}, where

co(g) denotes the convex hull of the graph of the function g. In the terminology of convex analysis, CSs
∗ is the

biconjugate function to mink CSs
(
p;vk

)
.
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Bound from Theorem 1 Bound from Theorem 2

Regime 1 E1

[
CS
(
Q1,v1;p

)]
= 0.25 E1

[
CS
(
Q1,v∗;p

)]
≈ 0.238

Regime 2 E2

[
CS
(
Q2,v2;p

)]
≈ 0.167 E2

[
CS
(
Q2,v∗;p

)]
≈ 0.125

Table 1: Upper bounds on consumer surplus for the two regimes from Example 4 with the
parameter ε = 1/3.

1−Qs
∗ is a distribution function and let v∗ be a stochastic value associated with this distribution.18

See Figure 3 for an illustration.

The following result is the main step underlying the upper bound for multiple regimes.

Lemma 6. If a stochastic value v is consistent with the profile of datasets, then v∗ �icx v.

Proof. Follows from Theorem 3.2 of Müller and Scarsini (2006).

A direct argument is as follows. If v is consistent with the profile of datasets, then it is consistent

with each dataset separately; thus vk �icx v for each regime k. By Lemma 1, mink CS
s
(
p;vk

)
≥

CSs (p;v). Since CSs (p;v) is convex in p, CSs (p;v) is no greater than the convexification of

mink CS
s
(
p;vk

)
. Finally, again by Lemma 1, v∗ �icx v.

Combining Lemmas 2 and 6 leads to the following upper bound on the consumer surplus within

each regime.

Theorem 2. If the interim consumer surplus sk(p) in regime k is consistent with the profile of

datasets, then sk(p) ≤ CS
(
Qk,v∗; p

)
.

As an immediate consequence, the ex ante consumer surplus in regime k consistent with the

profile of datasets is bounded from above by Ek
[
CS
(
Qk,v∗;p

)]
where the expectation is with

respect to the distribution of prices in regime k. See Table 1 for an illustration.

Proof of Theorem 2. Given a stochastic value v, the interim consumer surplus sk(p) in regime k is

at most CS
(
Qk,v; p

)
because this is the surplus associated with having the measure Qk(p) of types

with the highest values buy at p. By Lemma 2, CS
(
Qk,v; p

)
is nondecreasing in v with respect

to the increasing convex order. Finally, by Lemma 6, any stochastic value v consistent with the

profile of datasets is bounded by v∗ in the increasing convex order.

Lemma 6, when combined with Lemma 1, also provides an upper bound on the counterfactual

consumer surplus that would arise if the consumer perfectly optimized.

Corollary 2. Given a profile of datasets
(
Qk, F k

)
k
, the consumer surplus that would arise if the

consumer chose optimally is no greater than CSs
∗(p).

18Since CSs
∗ is convex, its left derivative exists, and Qs

∗ is nonincreasing and left-continuous. Additionally, CSs
∗(p) =

0 for p > p and CSs
∗(p) has slope −1 for p < p; hence, limp→−∞Qs

∗(p) = 1 and limp→+∞Qs
∗(p) = 0. Thus, 1−Qs

∗ is
a distribution function.
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7.2 Lower bound

An analogous construction to that for the upper bound can be used to obtain a nontrivial lower

bound on surplus using data from multiple regimes. Given a stochastic value v and demand Q(p),

we can compute a lower bound on surplus by supposing that the measure Q(p) of the lowest types

purchase the good at each p (as opposed to the highest types we used for the upper bound). Under

this assignment, roughly speaking, lower means and greater spreads of the stochastic value both

reduce the lower bound on surplus. Consequently, the relevant ordering of stochastic values is �sosd

(as opposed to �icx for the upper bound).

To represent the second-order stochastic dominance order, we define the complementary stan-

dard consumer surplus

ĈS
s
(p;v) :=

∫ p

−∞

(
1−Qs

(
p′;v

))
dp′

and note that it is nondecreasing and convex in p. By the well known characterization of Hadar and

Russell (1969) and Rothschild and Stiglitz (1970), the ranking of stochastic values v with respect

to �sosd implies the opposite ranking of ĈS
s
(p;v), and the converse also holds provided the latter

ranking is consistent across all p. Following the analogous construction to that for the upper bound,

let ĈS
s

∗(p) be the convexification of mink ĈS
s (
p;vk

)
, where, for each k, vk is the lower bound on

stochastic values with respect to �sosd consistent with the dataset (Qk, F k) (see section 6 for the

definition of vk). Let v∗ be the stochastic value associated with ĈS
s

∗.
19 Along the same lines as

in Lemma 6, v∗ is a lower bound with respect to �sosd on stochastic values v consistent with the

profile of datasets.

Let P̂ (q;v) := P s(1− q;v) denote the qth lowest quantile of v.

Theorem 3. If the interim consumer surplus sk(p) in regime k is consistent with the profile of

datasets, then sk(p) ≥ CS
(
Qk, P̂ (·,v∗) ; p

)
.

Once again, taking expectations with respect to the price in each regime gives a lower bound

on the ex ante surplus in that regime.

To understand this result, consider a consumer with stochastic value v. According to the data

for regime k, a measure Qk(p) of types buy at each price p. Selecting the types with the lowest

values generates surplus CS
(
Qk, P̂ (;v); p

)
in regime k; this lower bound is nondecreasing in v with

respect to second-order stochastic dominance. Finally, because stochastic values consistent with

the profile of datasets are bounded from below with respect to �sosd by v∗, the bound on sk(p)

from the theorem applies.

Example 5. To illustrate the lower bound, consider the regimes from Example 4 with ε = 1/3. In this

case, v1 is uniformly distributed on [0, 1/2] and v2 is almost surely equal to 1/2. Thus v2 second-

order stochastically dominates v1, making the convexification trivial with v∗ = v2. The lower

bound from Theorem 3 on the ex ante consumer surplus in regime 1 is therefore 1/2·1/2−1/6 = 1/12

and the lower bound in regime 2 is 0. 4
19That is, let 1−Qs (·;v∗) be the right derivative of ĈS

s
, observe that it is a distribution function, and let v∗ be

a random variable with this distribution.
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7.3 Tightness of the bounds

Theorem 1 provides tight bounds on consumer surplus for data from a single market regime; for

each value within the bounds, we have constructed a model for which the surplus is equal to that

value. While the bounds on surplus in Theorems 2 and 3 are generally tighter within each regime

than the bounds obtained from the data in that regime alone, they are not themselves tight bounds.

Example 6. To illustrate, consider the upper bound for the two regimes from Example 4 with

ε ≤ 1/6. In this case, CSs (p;v2) ≤ CSs (p;v1) for all p, making the convexification trivial:

CSs
∗(p) ≡ CSs (p;v2). Therefore, v∗

d
=v2 almost surely takes on the value 2/3 + ε/2, which is the

non-buying price expectation for regime 2. However, this value is not consistent with the data for

regime 1 since the non-buying price expectation of at least some types must be no more than 2/3

(the non-buying price expectation for demand Q1(p)). Thus, the upper bound on consumer surplus

in regime 1 constructed in Theorem 2 is not attainable in this case. 4

If the analyst observes only one market regime, then, to determine the range of values of

consumer surplus, it suffices to consider types with simple threshold demands. With multiple

regimes, decompositions into threshold demands are not generally sufficient; it can happen that the

regimes are not jointly rationalizable by any model with threshold demands (but can be rationalized

by other models).20 The constructions in Theorems 2 and 3 circumvent this complication by using

a bound on surplus in each regime based on threshold demands. The upside of this approach is

that the combined bound is simple. The downside is that the combined bound need not correspond

to a model that rationalizes the profile of datasets, and hence the bound is not generally tight.

8 Bounds on Counterfactual Demand

Returning to the original model in which the analyst observes a single dataset (Q,F ) that may

result from imperfect optimization, we now consider the counterfactual demand that would arise if

instead the consumer were to perfectly optimize and purchase precisely when her value vi exceeds

the price p. These bounds apply equally to a counterfactual market with a fixed, deterministic

price where our minimal rationality conditions imply that the consumer would choose optimally.

As for consumer surplus, bounds on counterfactual demand correspond to bounds on the con-

sumer’s stochastic value, albeit with respect to a different stochastic order: while the increasing

convex order and second-order stochastic dominance provide the relevant bounds for consumer

surplus, the bounds for counterfactual demand correspond to first-order stochastic dominance.

To state these bounds, define the doubly elevated and doubly lowered inverse demands, respec-

20Example 4 provides one such example when ε < 1/6. If the demand from regime 1 is decomposed into threshold
demands, then a nonzero mass of types must have thresholds below 1/3 − 2ε. The non-buying price expectation of
such types is less than 2/3−ε. Therefore, these types would not buy at any price that occurs in regime 2, contradicting
that Q2(p) = 1 for p ≤ 2/3.
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Figure 4: Doubly elevated and doubly lowered inverse demands, P (thick grey) and P (thick

dashed), for given inverse demand P (black). For each q, P (q) is the expected price conditional
on p and q lying in the upper-left grey area. Similarly, P (q) is the expected price conditional on

the lower-right grey area. For comparison, the thin grey and thin dashed curves depict P and P ,
respectively.

tively, by

P (q) := E [p | p ≥ P (q),q ≤ q]

and P (q) := E [p | p ≤ P (q),q ≥ q] ,

where q ∼ U [0, 1] and p ∼ F . Both functions are non-increasing. Relative to the elevated and

lowered inverse demands P and P , these inverse demands are further elevated and lowered, i.e.,

P (q) ≥ P (q) and P (q) ≤ P (q) for all q. To see this, observe that P (q) is a convex combination of

P (q′) across q′ ∈ [0, q] and P is non-increasing; a symmetric argument shows that P (q) ≤ P (q).

See Figure 4 for an illustration.

Theorem 4. For every stochastic value v consistent with data (Q,F ), the standard inverse demand

function satisfies

P (q) ≤ P s(q;v) ≤ P (q)

for all q. These bounds are tight in the sense that for each q, there exists a stochastic value v

consistent with the data such that P s(q;v) = P (q), and similarly for P (q).

We sketch the argument for the upper bound; the argument for the lower bound is analogous.

For each q, given any stochastic value v, the standard inverse demand P s(q;v) is a particular

quantile of v (namely, the (1 − q)th quantile). The model that maximizes the counterfactual

inverse demand at q among those rationalizing the data is therefore the one that maximizes this

quantile. Accordingly, bounds on counterfactual demand correspond to bounds on stochastic values

with respect to first-order stochastic dominance.

How can we maximize a given quantile of v (among stochastic values consistent with the data)?

Recall that the highest value compatible with a type’s demand is its non-buying price expectation.

It turns out that this non-buying price expectation is maximized when no other type has a higher
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value and the demand of this type is as large as possible. Accordingly, to maximize the value at

the (1− q)th quantile, we use a model in which the type with the highest value has measure q and

demand min{Q(p)/q, 1}. By construction, the non-buying price expectation of this type is exactly

P (q). To see that the bound is tight, note that such a type can be part of a model that rationalizes

the data (in which the remaining measure 1− q of types generate the residual demand).

As with consumer surplus, data from multiple market regimes can be used to tighten the bounds

on counterfactual demand. Assuming, as in section 7, that preferences are stable across regimes, a

tighter bound can be obtained by simply taking the minimum and maximum, respectively, of the

upper and the lower bounds from Theorem 4 across all of the regimes.

9 Decision-Making Costs

By defining the surplus si = E [(vi − p)Qi(p)] to be the expected value less the price, we have

implicitly assumed that there are no other costs associated with decision-making. We now consider

bounds on consumer welfare in the presence of such costs, which we assume are unobservable to

the analyst. This more general approach encompasses models such as those in rational inattention

where the consumer obtains information at a cost before making a purchasing decision.

To this end, we distinguish between the surplus si that we have considered until this point and

the net expected utility s̃i that accounts for any decision costs; thus s̃i ≤ si. In this framework,

our basic rationality assumption is that no type can improve its net expected utility by switching

to either always or never buying. In addition, we assume that either always or never buying the

good minimizes decision costs. Normalizing this minimal decision cost to 0, these assumptions are

described by the inequalities

s̃i ≥ 0 (5)

and s̃i ≥ vi − E[p]. (6)

Since si ≥ s̃i, inequalities (1) and (2) follow from (5) and (6). In particular, Lemma 1 ap-

plies, constraining each type’s value to lie between its buying and non-buying price expectations.

Consequently, all of the bounds we have identified on the stochastic value v—either for a single

dataset (Lemma 4) or for multiple datasets (Lemma 6 and the analogous lower bound from subsec-

tion 7.2)—still apply. Moreover, all of our bounds on surplus or counterfactual demand also still

apply.

What about bounds on the net expected utility? Let s̃ = E[s̃i] denote the ex ante net expected

utility. The main result from Theorem 1 applies to this case:

0 ≤ s̃ ≤ E
[
CS
(
Q,P ;p

)]
.

The lower bound follows immediately from (5). The upper bound holds because s̃ ≤ s and the

upper bound holds for s. Similarly, the tighter upper bound in Theorem 2 using multiple datasets
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applies. However, the tighter lower bound in Theorem 3 using multiple datasets does not apply to

the net expected utility; decision costs could lower the expected utility below these bounds.

10 Discussion

If the analyst does not know whether the consumer engages in optimal choice behavior, the con-

sumer surplus cannot be point identified from price and demand data. Nonetheless, weak rationality

assumptions impose significant restrictions on the levels of surplus consistent with the data. Identi-

fication of the consumer surplus can be further sharpened by combining data from market regimes

with varying priors or consumer demands.

Two relevant questions related to this project remain open. First, the bounds we provide

under multiple regimes are not tight; our bounds rely on separate rationalizations for each regime,

whereas, in principle, identification of the surplus can be tightened by simultaneously rationalizing

the profile of datasets. Second, in the interest of generality, we have imposed minimal structure on

the relationship between the consumer’s value and her demand. Depending on the context, there

may be additional structure that could be used to narrow the bounds on surplus or counterfactual

demand.

A Proofs

Proof of Lemma 2. Note that

CS
(
Q̃,v; p

)
= CS

(
Q̃, P s(·;v); p

)
=

∫ Q̃(p)

0
P s(q;v)dq − Q̃(p)p.

Consider any v and v′ such that v′ �icx v. Since the expenditure Q̃(p)p does not depend on the

stochastic value, it suffices to prove that
∫ q∗
0 P s (q;v′) dq ≥

∫ q∗
0 P s(q;v)dq for each q∗ ∈ [0, 1]. Fix

q∗. For p = P s (q∗;v′), ∫ q∗

0
P s
(
q;v′

)
dq = CSs

(
p;v′

)
+ pq∗

≥ CSs (p;v) + pq∗

≥
∫ q∗

0
(P s(q;v)− p)dq + pq∗

=

∫ q∗

0
P s(q;v)dq;

the first inequality follows from Lemma 1 while the second follows from the observation that

CSs (p;v) = maxq′
∫ q′
0 (P s(q;v)− p)dq.

Proof of Lemma 4. Step 1 : Consider a model such that each type i has value vi and demand
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Qi(p). Let v = vi be the associated stochastic value. Let v′ = vi, where vi = E [p | q ≥ Qi(p)] for

q ∼ U [0, 1] denotes the non-buying price expectation associated with demand Qi. By Lemma 3,

vi ≥ vi for each i. Thus, v′ �icx v (because v′ first-order stochastically dominates v).

Step 2 : For each type i, define a random variable vi as follows. Let Pi(q) be the inverse

demand to demand Qi, let P i(q) = E[p | p ≥ Pi(q)] be the elevated demand of type i, and define

the stochastic value vi = P i(q) for q ∼ U [0, 1]. Finally, let v′′ = vi; thus v′′ is a spread of v′ that

replaces v′i = vi with vi for each i.

We will show that v′′ �icx v′ (and hence v′′ �icx v). It suffices to show that vi ≤ E [vi] for each

i. Indeed, for q ∼ U [0, 1], by the Law of Iterated Expectations,

vi = E [p | q ≥ Qi(p)]

= E [p | p ≥ Pi (q)]

= E [E [p | p ≥ Pi (q) ,q] | p ≥ Pi (q)]

= E
[
P i (q) | p ≥ Pi (q)

]
= E

[
P i (q) | q ≥ Qi(p)

]
.

Since q conditional on q ≥ Qi(p) first-order stochastically dominates q itself and P i (q) is nonin-

creasing, it follows that

vi ≤ E
[
P i (q)

]
= E [vi] ,

as needed.

Step 3 : We conclude by proving that v′′
d
=v. Consider any p at which Q is continuous and let

ṽ = E[p | p ≥ p]. For any j ∈ [0, 1],

j = Pr (v ≥ ṽ) =⇒ P (j) = ṽ =⇒ P (j) = p =⇒ j = Q(p).

Hence Pr(v ≥ ṽ) = Q(p). Likewise, Pr (vi ≥ ṽ) = Qi(p) for almost all i (i.e., for all i except those

for which Qi is discontinuous at p), and thus

Pr
(
v′′ ≥ ṽ

)
= Pr (vi ≥ ṽ) = E [Qi(p)] = Q(p) = Pr (v ≥ ṽ)

for all ṽ from a dense subset of the support of v and v′′, as needed.

Proof of Theorem 3. Consider a model consistent with the profile of datasets and let v be its

associated stochastic value. Recall that P̂ (q;v) = P s (1− q;v) is the qth lowest quantile of v.

Note that

sk(p) ≥ CS
(
Qk, P̂ (·;v); p

)
for each k since the right-hand side is the expected consumer surplus if the measure Qk(p) of types

with the lowest values buy at price p.

For any price p and any two stochastic values v and v′ such that v �sosd v′ and any demand
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function Q̃, we claim that

CS
(
Q̃, P̂ (·;v); p

)
≥ CS

(
Q̃, P̂ (·;v′); p

)
.

The proof of this claim is analogous to that of Lemma 2. In particular, we may disregard expendi-

tures since they depend only on the first and the last arguments of CS. It suffices to prove that if

v �sosd v′, then
∫ q∗
0 P̂ (q;v) dq ≥

∫ q∗
0 P̂ (q;v′) dq for every q∗. Fixing q∗ and letting p = P̂ (q∗;v′),

we have ∫ q∗

0
P̂
(
q;v′

)
dq = q∗p− ĈS

s (
p;v′

)
≤ q∗p− ĈS

s
(p;v)

≤ q∗p−
∫ q∗

0

(
p− P̂ (q;v)

)
dq

=

∫ q∗

0
P̂ (q;v) dq;

the first inequality follows from the integral condition for v �sosd v′ and the second from the fact

that ĈS
s
(p;v) = maxq̂

∫ q̂
0

(
p− P̂ (q;v)

)
dq.

Therefore, if a stochastic value v is consistent with the profile of datasets, then

sk(p) ≥ CS
(
Qk, P̂ (·;v); p

)
≥ CS

(
Qk, P̂ (·;v∗) ; p

)
since v �sosd v∗.

Proof of Theorem 4. We prove only the upper bound; the argument for the lower bound is analo-

gous.

For any q ∈ (0, 1] consider a demand function Q̃ that attains values in [0, q], i.e., a nonincreasing

function from [p, p] onto [0, q]. Let

ṽ
(
Q̃; q

)
:= E

[
p | q ≥ Q̃(p)

]
and w

(
Q̃; q

)
:= qPr

(
q ≥ Q̃(p)

)
for q ∼ U [0, q] and p ∼ F . To interpret these two functions, consider a model with type distribution

M and a subset I ′ ⊆ I of types such that Pr (i ∈ I ′) = q and Q̃(p) =
∫
i∈I′ Qi(p)dM(i). Then

ṽ
(
Q̃; q

)
is the expected price conditional on a type randomly drawn from I ′ not making a purchase

and w
(
Q̃; q

)
is the probability that a randomly drawn type lies in I ′ and does not buy.

Note the following recursion. For any qa, qb ∈ (0, q] such that qa + qb = q and any two demands
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Figure 5: Illustration of the definitions of Q∗, Q̃, and Q0.

Qa and Qb that attain values in [0, qa] and [0, qb], respectively, such that Qa +Qb = Q̃,

ṽ
(
Q̃; q

)
=
w (Qa; qa) ṽ (Qa; qa) + w (Qb; qb) ṽ (Qb; qb)

w (Qa; qa) + w (Qb; qb)
. (7)

Given any model and a subset I ′ of types such that Pr (i ∈ I ′) = q, let v∗ := infi∈I′ vi. To

establish the upper bound, it suffices to show for each q that the supremum of v∗ across all models

that rationalize the data and subsets I ′ such that Pr (i ∈ I ′) = q is at most P (q).

Fix a model with type distribution M on I and types (vi, Qi) that rationalizes the data. Fix a

set I ′ of types such that Pr (i ∈ I ′) = q. Let Q̃(p) =
∫
i∈I′ Qi(p)dM(i) be the demand generated by

the types in I ′. Note that

inf
i∈I′

vi ≤ ṽ
(
Q̃; q

)
since, by Lemma 3, vi ≤ vi for each type i, where vi is the non-buying price expectation associated

with the demand Qi of type i and ṽ
(
Q̃; q

)
is a convex combination of vi across i ∈ I ′.

Let Q∗(p) := min{Q(p), q} and observe that P (q) = ṽ (Q∗; q). It suffices to show that

ṽ
(
Q̃; q

)
≤ ṽ (Q∗; q) (8)

for all q and all demands Q̃ that can be generated by a subset I ′ of types from a model that

rationalizes the data and satisfies Pr (i ∈ I ′) = q. For all such demands Q̃, both Q̃ and Q(p)− Q̃(p)

are nonnegative and nonincreasing because they are the demands induced by types in I ′ and I \ I ′,
respectively.

Let Q̃(p) be any demand function attaining values in [0, q] such that Q(p)− Q̃(p) is nonnegative

and nonincreasing. Let p∗ := P (q) and q∗ := Q̃ (p∗). Since Q̃(p) ≤ Q∗(p) ≤ q for all p, we have

that q∗ ≤ q. Define the demand function Q0(p) := min
{
Q̃(p), q∗

}
that attains values in [0, q∗] and

let Q1(p) := Q∗(p)−Q0(p) and Q2(p) := Q̃(p)−Q0(p). See Figure 5 for an illustration.

Note that Q1(p) is nonincreasing: it is equal to q− q∗ for p ≤ p∗ and to Q(p)− Q̃(p) for p ≥ p∗.
The function Q2(p) is also nonincreasing since it is equal to Q̃(p) − q∗ ≥ 0 for p ≤ p∗ and to 0
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for p > p∗. Let P0, P1, and P2 be the inverse demand functions associated with Q0, Q1, and Q2,

respectively. Note that P0 and P1 lie above P2 in the strong sense that both P0 and P1 only attain

values above p∗ while P2 only attains values below p∗.

Recall that ṽ(Q̃; q) can be written as E
[
p | p ≥ P̃ (q)

]
for q ∼ U [0, q], where P̃ is the inverse

demand to Q̃; similarly, w(Q̃; q) can be written as qPr
(
p ≥ P̃ (q)

)
. It follows that ṽ (Q1; q − q∗) ≥

ṽ (Q2; q − q∗), ṽ (Q0; q
∗) ≥ ṽ (Q2; q − q∗), and w (Q2; q − q∗) ≥ w (Q1; q − q∗). Finally, since Q∗ =

Q0 +Q1 and Q̃ = Q0 +Q2, we have from (7) that

ṽ (Q∗; q) =
w (Q0; q

∗) ṽ (Q0; q
∗) + w (Q1; q − q∗) ṽ (Q1; q − q∗)

w (Q0; q∗) + w (Q1; q − q∗)

and ṽ
(
Q̃; q

)
=
w (Q0; q

∗) ṽ (Q0; q
∗) + w (Q2; q − q∗) ṽ (Q2; q − q∗)

w (Q0; q∗) + w (Q2; q − q∗)
.

Therefore,

ṽ (Q∗; q) = ṽ (Q0; q
∗) +

w (Q1; q − q∗)
w (Q0; q∗) + w (Q1; q − q∗)

(ṽ (Q1; q − q∗)− ṽ (Q0; q
∗))

≥ ṽ (Q0; q
∗) +

w (Q1; q − q∗)
w (Q0; q∗) + w (Q1; q − q∗)

(ṽ (Q2; q − q∗)− ṽ (Q0; q
∗))

≥ ṽ (Q0; q
∗) +

w (Q2; q − q∗)
w (Q0; q∗) + w (Q2; q − q∗)

(ṽ (Q2; q − q∗)− ṽ (Q0; q
∗))

= ṽ
(
Q̃; q

)
,

which establishes inequality (8), as needed.
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