
Test for High Dimensionality of Random and Estimated

Vectors

Abstract

Although the fast advancing computing techniques support rapid increase of the

dimension of data or number of parameters, the corresponding statistical inference

methods are few in the literature. The main reason for the failure of many classical

inference methods is that the asymptotic properties of random vectors with infinite

sample size may not hold when its dimension towards infinity and proportionally ap-

proaches the sample size. It has attracted many scholars to seek proper methods under

this case we called "high dimensional settings", since 1958. Although these studies have

provided some modified methods under different asymptotic relationships between the

sample size and dimension, a more basic question about how to determine the dimen-

sion of a given data sample is high or low has not been considered. Therefore, this

paper proposes a general test to distinguish high dimensional and classical settings for

both random and estimated vectors. Results from a simulation study suggest that our

test can work very well.
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1 Introduction

Prior to 1950, most of practical problems consisted of a relatively large number of

experimental units with a relatively small number of features which were measured (Rowell,

1976). Therefore, traditional theories and practice were limited to the "small dimension of

variables and large sample size" scenario. This scenario naturally reflected the contemporary

limitations of computers and graphical display. Over the last 25 years, however, Lindsay

(2004) pointed out that the environment for practical problems has changed dramatically,

with the huge evolution of data acquisition technologies and computing facilities. The main

scenarios to be investigated steadily evolve into the "large dimension and small sample size,"

or in some cases "large dimension and large sample size." With the latest development of

computing techniques, such as the neural network, this allows for data with much larger

dimensions to be dealt with. Most of the latest large language models have contained more

than 100 billions trainable parameters in Zhao (2023). Not only do the techniques develop

rapidly, but the high-dimensional theories also advance dramatically. Theoretical studies

have focused on two aspects: modify classical theories and investigate new theories.

Modification of the classical theories started early, since many classical methods will fail

if the dimension is sufficiently large compared to the sample size. This type of failure was

firstly noticed by Dempster (1958), who showed that the classical Hotelling’s T-squared test

became undefined as the number of variables became close to, or even exceeded the number

of degrees of freedom within sample for estimation of the variance and co-variance matrix.

A related simulation, which showed the failure of the Hotelling’s T-squared test, was also

proposed by Bai & Saranadasa (1996). On the other hand, some classical estimators and

their properties have changed and need to be re-built under the high-dimensional scenario.

The properties of M estimators in the linear regressions have been studied by Huber (1973),

Portnoy (1984) and Portnoy (1991), while the properties of estimators in the non-linear

regressions are focused by Portnoy (1988) and He & Shao (2000). Additionally, the classical

F-test and likelihood-ratio test, which will fail if the dimension is large compared to the

sample size, are corrected by Calhoun (2011) and Sur & Candès (2019), respectively.

On the other hand, an increasing number of novel and useful properties are found under
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the high-dimensional scenario. For instance, Jimenez & Landgrebe (1998) showed that,

under the high-dimensional condition, the estimators in Lasso+mLS and Lasso+Ridge are

asymptotically normal and nonzero parameters have the same asymptotic normal distri-

bution when the zero parameters were known. Also, Chi et al. (2022) proved that the

discontinuous regression is allowed in random forests algorithm if the dimension of data is

high. The corresponding bias is bounded, which only correlates with the tree height and

column subsampling parameter when the sample size is large enough. Additionally, Ver-

shynin (2018) provided many practical theories for random vectors and matrices, such as

estimating concentration of the norm, approximating isometries, etc. These theories only

work when the number of coordinates of random vectors and the entries of random matrices

are sufficiently large. Specifically, when the dimension of random vectors or matrices grows

increasingly, some good properties start to appear. Overall, the "high dimensions" seems no

longer just a "curse" and can even be utilized, although the "curse of dimensionality" was

pointed out by Bellman (1957).

The idea behind high-dimensional theories is similar to that behind the central limit

theorem (CLT) in which the normal distribution appears in the case of a sufficiently large

sample size. In other words, under certain assumptions, statistical and probabilistic method-

ology that works for normal distributions can also be applicable to problems involving other

types of distributions as the sample size approaches infinity. Such applicability sometimes

collapses, given a finite sample in practice. In general, sample sizes equal to or greater than

30 are often considered sufficient for the CLT to hold. However, Lehmann (1999) showed

the distribution of the arithmetic mean of independent random variables from a binomial

distribution B(N, p) is still not a satisfactory approximation of a normal distribution even

when N is larger than 90, where the parameter p is equal to 0.05 and N is the sample size.

It is also stated that the speed of convergence is dependent on the underlying distribution

of the sample. Therefore, the general judgment criteria for an adequate sample size is not

always reliable, which constitutes a major concern for the failure of CLT. Determining how

large the sample size N is adequate to hold the CLT is essential in the observed finite sam-

ple. Similarly, one might ask how large the dimensions need to be for these high-dimensional

theories to hold, which is also essential. This is what we aims to answer. The "high dimen-
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sions", without any clear definition in the literature, is defined, in this paper, as the scenario

in which the high-dimensional theories hold or the high-dimensional properties appear.

Compared to the finite or low-dimensional scenario, the high-dimensional scenario be-

comes more common, which we are facing in reality but we usually do not realize it. Although

many methods have been proposed for high dimensions; however, a more basic question about

whether a given data sample is in high dimensions or not, has not been considered in the lit-

erature. In other words, there is no method which determines whether the high-dimensional

theories can be applied for a given data sample. Like the threshold for the sample size in

CLT, discussing a global threshold between the high and non-high dimensions is essential.

Therefore, this paper provides a general testing method to distinguish high from non-high

dimensions for random vectors. We classify the random vectors into two categories: vectors

not being estimated (random vectors) and vectors being estimated (estimated vectors) for

convenience. The null hypothesis in our paper is defined as

H0 : The dimension of the settings is high.

The "settings" represent the random or estimated vectors for which one aims to test. Failure

to reject the null hypothesis indicates that the "settings" are in high dimensions; and the

high-dimensional theories can be applied. If the null hypothesis was rejected, the "settings"

fall into the undefined non-high dimensions in which the availability of both classical and

high-dimensional theories is unknown. Finally, we provide guidance to determine the thresh-

old of high-dimensional settings based on a Monte Carlo study, which shows the performance

of our proposed test.

In section 2, the test for high dimensionality of random vectors is presented. Section 3 &

4 show the test for estimated vectors especially from linear and non linear regression models,

respectively. A Monte Carlo study is presented in section 5. Finally, section 6 concludes this

paper.

Notation. As mentioned in section 1, N and D represent the sample size and the

dimension of random and estimated vectors. D is allowed to approach N proportionally, but

is less than N . In the test of random vectors, we work on the random vectors {Vn}Nn=1 whose

realization is {vn}Nn=1. In the case of estimated vectors, Yn is the dependent variable while
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Xn is the independent random vector for n = 1, 2, ..., N . yn and xn are the corresponding

realizations respectively. Besides, the ℓ2-norm is denoted by ∥.∥. For a vector-valued function

f(β), define ∇fn(β0) :=
∂
∂β
fn(β)

∣∣
β=β0

and Hfn(β0) :=
∂2

∂β∂β⊤fn(β)
∣∣
β=β0

.

2 Test of Random Vectors

In this section, we first present the test statistic for multivariate normal random vectors and

its asymptotic property, and then extend the results to general random vectors. At the end

of this section, we introduce how to apply the proposed test.

2.1 Multivariate Normal Vectors

2.1.1 Identity Covariance Matrix

Suppose there is a sequence of i.i.d. (independent and identically distributed) D-dimension

random vectors {Vn}Nn=1 such that Vn ∼ N (0, ID×D) for each n. Our test statistic is defined

as the following:

T1 :=

√
D

2

 1

D

∥∥∥∥∥√N

(
1

N

N∑
n=1

Vn

)∥∥∥∥∥
2

− 1

 .

It is easy to show that T1
d→ N (0, 1). Rewrite

∥∥∥√N( 1
N

∑N
n=1 Vn)

∥∥∥2 as
∑D

d=1

(
1√
N

∑N
n=1 Vn,d

)2
where Vn,d is the dth element of the vector Vn. Since we know that 1√

N

∑N
n=1Vn,d ∼ N (0, 1)

is independent of N , and 1√
N

∑N
n=1 Vn,d is independent w.r.t. index d, it implies that the

central limit theorem gives us

T1
d→ N (0, 1).

2.1.2 Non-Identity Matrix

Now, the covariance matrix of Vn is ΩD, i.e., Vn ∼ N (0,ΩD) for each n. Standardize Vn by

Ṽn := Ω
− 1

2
D Vn ∼ N (0, ID×D).
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This is identical to the case in the section 2.1.1. As a result, there is

T2 :=

√
D

2

 1

D

∥∥∥∥∥√N

(
1

N

N∑
n=1

Ω
− 1

2
D Vn

)∥∥∥∥∥
2

− 1

 d→ N (0, 1).

2.2 General Vectors

In this section, a more general case without normality assumption is considered. Let {Vn}Nn=1

be a sequence of independent random vectors in RD, such that for n = 1, 2, ..., N ,

1. E [Vn] = α,

2. E
[
(Vn − α) (Vn − α)⊤

]
= ΩD.

2.2.1 α is known

If α is known, vectors can be easily centralized. Define the normalized sum with centralization

as

SV
N :=

1√
N

N∑
n=1

(Vn − α)

The high dimensional central limit theorem from Chernozhukov (2017) will be applied, since

the dimension D is no longer constant. As a result of it, the following assumptions are

required.

There are constant b, a sequence of constants BN ≥ 1 and a covariance estimator Ω̂N,D,

which satisfy the following conditions:

(a)
1

N

N∑
n=1

E
[
(Vn,d − αd)

2] ≥ b for all d = 1, 2, ..., D,

(b)
1

N

N∑
n=1

E
[
|Vn,d − αd|2+k

]
≤ Bk

N for all d = 1, 2, ..., D and k = 1, 2,

(c) E [exp (|Vn,d − αd|/BN)] ≤ 2 for all d = 1, 2, ..., D and n = 1, 2, ..., N,

(d)

(
B2

N log7 (DN)

N

)
= op (1) ,

(e)
∥∥∥Ω̂− 1

2
N,D − Ω

− 1
2

D

∥∥∥2 = op

(
1√
D

)
.
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Based on the central limit theorem from Chernozhukov (2017),√
D

2

(
1

D

∥∥∥Ω̂− 1
2

N,DS
V
N

∥∥∥2 − 1

)
d→ N (0, 1) .

Proof: Suppose W1,W2, ...,WN are independent centered normal random vectors in RD,

such that each Wn has the same covariance matrix as Vn, that is,

Wn ∼ N (0,ΩD)

with the normalized sum SW
N := 1√

N

∑N
n=1Wn. Under the conditions (a)-(d), it can be shown

that SV
N converges to SW

N in distribution. As a result of Ω− 1
2

D Wn ∼ N (0, ID×D), section 2.1

gives us √
D

2

 1

D

∥∥∥∥∥ 1√
N

N∑
n=1

Ω
− 1

2
D Wn

∥∥∥∥∥
2

− 1

 d→ N (0, 1) .

Based on the continuous mapping theorem and condition (e), there is

T3 :=

√
D

2

(
1

D

∥∥∥Ω̂− 1
2

N,DS
V
N

∥∥∥2
2
− 1

)
d→ N (0, 1) .

2.2.2 α is unknown - multiplier bootstrap

Once α is unknown, we need additional multipliers for normalization. Suppose {en}Nn=1 is a

sequence of i.i.d. N (0, 1) random variables which are independent of {Vn}Nn=1. Define the

different normalized sum from the one in section 2.2.1 as

SeV
N :=

1√
N

N∑
n=1

en(Vn − V̄N)

where V̄N = 1
N

∑N
n=1 Vn. Under conditions (a)-(d) in section 2.2.1, theorem 4.1 from Cher-

nozhukov (2017) implies that SeV
N converges in distribution to SW

N . Based on the similar

arguments in section 2.2.1,

T4 :=

√
D

2

(
1

D

∥∥∥Ω̂− 1
2

N,DS
eV
N

∥∥∥2 − 1

)
d→ N (0, 1) .
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Remark: There are four different test statistics introduced in this section for different cases

of random vectors respectively, but they are foundationally similar. The only difference is

the standardization. We introduce how to use the test for the most general case in section

2.2.2. Suppose one observes a realization {vn}Nn=1 of {Vn}Nn=1 and aims to check whether

this data is under high dimensional settings or not.

(i) Generate a sample e1, e2, ..., eN from N (0, 1).

(ii) Calculate the estimates of mean v̄N and covariance matrix Ω̂ from {vn}Nn=1.

(iii) Compute the test statistic t4 =

√
D

2

 1

D

∥∥∥∥∥Ω̂− 1
2

1√
N

N∑
n=1

en(vn − v̄N)

∥∥∥∥∥
2

− 1

 .

If |t4| > 1.96 (at 5% level of significance), we reject the null hypothesis, which means this

data sample is under classical settings. Therefore, the classical inference methods, such as

classical Hotelling’s T-squared test, can be applied. However, once |t4| ≤ 1.96, this data

sample is under high dimensional settings. One should apply the high dimensional versions

of the classical methods.

3 Test for Estimated Vectors from Linear Regressions

In this section, the test for high dimensionality of estimated vectors from the linear regression

model is introduced. Firstly, we define the linear regression model

Yn = X⊤
nβ0 + ϵn, n = 1, 2, ..., N

where {Xn,Yn}Nn=1 is a sequence of independent vectors with length D + 1, {ϵn}Nn=1 is a

sequence of i.i.d. random variables with zero means and a constant variance, and β0 is an

unknown D × 1 vector. The traditional linear model has the following assumptions:

1. {Xn,Yn}Nn=1 are i.i.d.,

2. Σ = E[XnX
⊤
n ] exists and ∥Σ∥ is bounded,

3. E[ϵn|Xn] = 0,

4. E[ϵ2n|Xn] = σ2.
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Define X as an N ×D matrix with X⊤
n as each row. Additionally, we require the following

assumptions.

Assumption 3.1 There is a positive constant B, such that for all n,

X⊤
nXn

D
≤ B.

Assumption 3.2 There are positive constants b and c, such that the minimum and maximum

eigenvalues of X⊤X
N

satisfy

λmin

(
X⊤X
N

)
≥ b, λmax

(
X⊤X
N

)
≤ c.

Assumption 3.3 (Conditions for high dimensional CLT) Suppose there are constant e and

a sequence of constants BN ≥ 1 such that

(a)
1

N

N∑
n=1

E
[
(Xnϵn)

2
d

]
≥ e for all d = 1, 2, ..., D,

(b)
1

N

N∑
n=1

E
[
(Xnϵn)

2+k
d

]
≤ Bk

N for all d = 1, 2, ..., D and k = 1, 2,

(c) E [exp (| (Xnϵn)d |/BN)] ≤ 2 for all d = 1, 2, .., D and n = 1, 2, ..., N,

(d)

(
B2

N log7 (DN)

N

)
= op (1) .

Assumption 3.4 ∥∥∥∥∥
(
X⊤X
N

)−1/2

−Σ−1/2

∥∥∥∥∥ = op(
1√
D
).

Before the test statistic, we need to ensure that the OLS (ordinary least square) estimator

β̂ we applied in this section is valid. Define

β̂ = argmin
β

N∑
n=1

(
Yn −X⊤

nβ
)2

.

Lemma 3.1. (Consistency) Under Assumptions 3.1 & 3.2, ∥β̂ - β0∥2 = Op(
D
N
).

Remark: OLS estimator is just one method we used for convenience. There have been

other novel estimation methods which could be valid under high dimensional settings and

may provide a faster rate of convergence. This paper focuses on the idea of testing the high
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dimesionality, so the attempt of other estimators can be an extension of our test.

Lemma 3.2. Under Assumptions 3.1 - 3.4, we have√
D

2

(
1

D

∥∥∥σ−1
(
N−1X⊤X

)1/2√
N
(
β̂ − β0

)∥∥∥2
2
− 1

)
d→ N (0, 1) .

3.1 Test Statistic

Lemma 3.2 could be an idea of calculating the test statistic for high dimensions; however,

in practice, the true value of β is unknown, so we use the average of the bootstrapped

estimates replacing the true value to obtain a proper statistic. The bootstrapping method

is implemented as follows:

(i) Estimate β̂ (OLS) and ϵ̂n where ϵ̂n := Yn −X⊤
n β̂ for n = 1, 2, ..., N .

(ii) Independent of the observed data DN := {(Yn,Xn) : 1 ≤ n ≤ N}, use a random num-

ber generator to generate R1, R2, ..., RN
iid∼ Rademacher. Define Y∗

n := X⊤
n β̂ + Rnϵ̂n for n =

1, 2, ..., N .

(iii) Re-estimate β using the data {(Y∗
n,Xn) : 1 ≤ n ≤ N}. Denote it by β∗.

(iv) Repeat steps (ii)-(iii) B times. We calculate the following and denote it as t∗k

t∗k :=

√
D

2

 1

D

∥∥∥∥∥∥
[(

X⊤X
)−1

(
N∑

n=1

ϵ̂2nXnX
⊤
n

)(
X⊤X

)−1

]−1/2√
B

(
1

B

B∑
b=1

β∗
b − β̂

)∥∥∥∥∥∥
2

2

− 1

 .

(v) Repeating steps (ii)-(iv) K times produces a sequence {t∗k}Kk=1. The test statistic is

T ∗
N,D,K,B := K

1
2 sup

z∈R

∣∣∣∣∣K−1

K∑
k=1

1(−∞,z](t
∗
k)− Φ(z)

∣∣∣∣∣ (1)

where Φ(.) is the CDF of the standard normal distribution.

Theorem 3.1 Under Assumptions 3.1 - 3.3, after setting B,K such that K
D

= op(1) and
√
KD

7
4√

B
= op(1), there is

T ∗
N,D,K,B

d→ sup
z∈R

|B (Φ (z))|

where B(.) is the Brownian bridge.

Remark: For one realization {xn, yn}Nn=1 of {Xn,Yn}Nn=1, in order to check whether

this data is under high dimensional settings or not, one can follow the above bootstrapping
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method and obtain the test statistic. If the statistic does pass the Kolmogorov–Smirnov

test of standard normality, then the null hypothesis is not rejected. Therefore, any classical

inference methods for this realization {xn, yn}Nn=1 could be undefined. The high dimensional

versions of classical methods should be considered.

4 Test for Estimated Vectors from Non Linear Regres-

sions

This section extends the result of linear regression to non linear case. The non linear model

is defined as

Yn = f(Xn, β) + ϵn, n = 1, 2, ..., N

where {Yn,Xn}Nn=1 is a sequence of independent vectors with length J + 1, {ϵn}Nn=1 is a

sequence of i.i.d. random variables with zero means and a constant variance, β is a D × 1

vector of unknown parameters, and f is a known non linear function. In general, we assume

1. {Yn,Xn}Nn=1 are independent,

2. Σ = E[∇fn(β0)∇⊤
fn(β0)

] has a bounded norm,

3. E[ϵn|Xn] = 0,

4. E[ϵ2n|Xn] = σ2.

Additionally, the following assumptions are required.

Assumption 4.1 There are constants B and δ such that

D∑
d=1

N∑
n=1

(
∇fn,d(β)

)2 ≤ BDN for all β with ∥β − β0∥ ≤ δ.

Assumption 4.2 There is a constant δ2 such that all eigenvalues of

1

N

N∑
n=1

∇fn,d(β̃)
∇⊤

fn,d(β)

are non-negative for all β with ∥β − β0∥ ≤ δ2 and β̃, between β0 and β.
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Assumption 4.3 Suppose that there are constants b and a and a sequence of constants

BN ≥ 1 such that

(a)
1

N

N∑
n=1

E
[
t2n,d
]
≥ b for all d = 1, 2, ..., D,

(b)
1

N

N∑
n=1

E
[
t2+k
n,d

]
≤ Bk

N for all d = 1, 2, ..., D and k = 1, 2,

(c) E
[
exp

(
|tn,d|
BN

)]
≤ 2 for all d = 1, 2, .., D and n = 1, 2, ..., N,

(d)

(
B2

N log7 (DN)

N

)
→ 0,

where tn,d = (σ−1Ω− 1
2 ϵn∇fn(β0))(d).

Assumption 4.4 1
N

∑N
n=1∇fn(β)∇⊤

fn(β)
converges uniformly in β in an open neighborhood

of β0 with respect to the L2 norm, which is∥∥∥∥∥ 1

N

N∑
n=1

∇fn(β)∇⊤
fn(β) −

1

N

N∑
n=1

∇fn(β0)∇⊤
fn(β0)

∥∥∥∥∥ = op

(
1

D1/2

)
for any β with ∥β − β0∥2 = Op

(
D
N

)
.

Assumption 4.5 For any β with ∥β − β0∥ = Op

(
D
N

)
, we have∥∥∥∥∥ 1

N

N∑
n=1

[fn (β0)− fn (β)]Hfn(β)

∥∥∥∥∥ = op

(
1

D1/2

)
,∥∥∥∥∥ 1

N

N∑
n=1

ϵnHfn(β)

∥∥∥∥∥ = op

(
1

D1/2

)
.

Assumption 4.6 ∥∥∥∥∥ 1

N

N∑
n=1

∇fn(β0)∇⊤
fn(β0)

−Σ

∥∥∥∥∥ = op

(
1

D1/2

)
,∥∥∥∥∥∥

(
1

N

N∑
n=1

∇fn(β0)∇⊤
fn(β0)

)1/2

−Σ1/2

∥∥∥∥∥∥ = op

(
1

D1/2

)

for any β such that ∥β − β0∥2 = Op(
D
N
).

Similar to Lemma 3.1, we need the consistency of the least square estimator,

β̂ = argmin
β

N∑
n=1

(Yn − f(Xn, β))
2 .
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Lemma 4.1 (Consistency) Under Assumptions 4.1 & 4.2, ∥β̂ − β∥2 = Op(
D
N
).

Lemma 4.2 Under Assumptions 4.1 - 4.6, we have√
D

2

 1

D

∥∥∥∥∥∥σ−1

(
1

N

N∑
n=1

∇fn(β̂)∇
⊤
fn(β̂)

) 1
2 √

N
(
β̂ − β0

)∥∥∥∥∥∥
2

− 1

 d→ N (0, 1) .

4.1 Test Statistic

The test statistic via bootstrapping method is obtained as follows:

(i) Estimate β̂ (LS) and ϵ̂n where ϵ̂n := Yn − f(X⊤
n β̂), n = 1, 2, ..., N .

(ii) Independent of the observed data Dn := {(Yn,Xn) : 1 ≤ n ≤ N}, use a random num-

ber generator to generate R1, R2, ..., RN
iid∼ Rademacher. Define Y∗

n := f(X⊤
n β̂) + Rnϵ̂n, n =

1, 2, ..., N .

(iii) Re-estimate β using the data {(Y∗
n,Xn) : 1 ≤ n ≤ N}. Denote it by β∗.

(iv) Repeat steps (ii)-(iii) B times. Calculate the following and denote it as t∗k

t∗k :=

√
D

2

 1

D

∥∥∥∥∥Σ̂−1/2
√
B

(
1

B

B∑
b=1

β∗
b − β̂

)∥∥∥∥∥
2

− 1


where Σ̂ =

(∑N
n=1 ∇fn(β̂)∇

⊤
fn(β̂)

)−1(∑N
n=1 ϵ̂

2
n∇fn(β̂)∇

⊤
fn(β̂)

)(∑N
n=1 ∇fn(β̂)∇

⊤
fn(β̂)

)−1

.

(v) Repeating steps (ii)-(iv) K times provides a sequence of {t∗k}Kk=1. The test statistic is

R∗
N,D,K,B := K

1
2 sup

z∈R
|K−1

K∑
k=1

1(−∞,z] (t
∗
k)− Φ (z) | (2)

where Φ (.) is the CDF of the standard normal distribution.

Theorem 4.1. Under Assumptions 4.1 - 4.5, let B and K satisfy
√

K
D

= op (1) and
√
KD

7
4

√
BN

3
2
=

op (1) , which gives

R∗
N,D,K,B

d→ sup
z∈R

|B (Φ (z)) |

where B (.) is the Brownian bridge.

Remark: The idea in non-linear case is similar to that in linear case, but more assump-

tions (4.4 & 4.5) are required especially for the covariance matrix estimator, since we use

the simplest one. Other covariance matrix estimators for high dimensional settings could be

tried to release some assumptions as an extension of our test.
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4.2 Example: Logistic Regressions

The required assumptions seem complicated for the general non-linear case; however, for the

logistic regression, only one assumption is needed. This assumption has been studied by Sur

& Candès (2019).

Assumption 4.7. Xn ∼ N (0, N−1ID), E[ϵ2n|Xn] =
1
N

Theorem 4.2. Under Assumption 4.7, for the logistic regression model, after letting B and

K satisfy
√

K
D

= op(1) and
√
KD

7
4

√
BN

3
2
= op(1), we have

R∗
N,D,K,B

d→ sup
z∈R

|B(Φ(z))|

where B(.) is the Brownian bridge.

5 Monte Carlo Study

In this section, we present a Monte Carlo study to illustrate the size and power of our test.

We consider different designs for three cases: random vectors, estimated vectors from the

linear regression model, and estimated vectors from the non-linear regression model. We set

different sample sizes N , from 100 to 2000. Within each case, the dimension D is chosen from

2 to 100. To keep the running time manageable, these results are based on 300 simulations.

For random vectors, suppose there is a sequence of D-dimension random vectors {Vn}Nn=1.

14



We considered four different designs.

Design i. Vn ∼ N (0, ID×D)

Design ii. Vn ∼ N (α, ID×D)

α = (1, 2, ..., D)′

Design iii. Vn ∼ N (α,ΩD)

α = (1, 2, ..., D)′

ΩD,ii = 1,where i = 1, 2, ...D.

ΩD,ij = 0.8,where i, j = 1, 2, ...D, i ̸= j.

Design iv. Vn ∼ N (α,ΩD)

α = (1, 2, ..., D)′

ΩD,ii = 1,where i = 1, 2, ...D.

ΩD,ij = 0.8,where i = D, j = D − 1 or i = D − 1, j = D.

For the first three designs, we know the true values of the mean and variance-covariance

matrix for the distribution of {Vn}Nn=1.

For the fourth design, we estimate the mean of the distribution as

α =
1

N

N∑
n=1

Vn.

ΩD is a bandable covariance matrix. With this class of high dimensional covariance matrices,

Bickel and Levina (2008b) introduced the following estimators:

Uα(M0,M) = {Σ : max
j

∑
i

{|σij| : |i− j| > k} ≤ Mk−α for all k > 0

0 <M−1
0 ≤ λmin(Ω) ≤ λmax(Ω) ≤ M 0}

Ω̂k = Bk(S):=(sij1(|i−j|≤k))

where λmin(·) and λmax(·) are the minimum and maximum eigenvalues of a matrix, α is a

constant, and 1(·) is an indicator function. They prove that if k = kn ≍ (N−1 log p)−1/(2(α+1)),

15



then uniformly over the class Uα, for Gaussian or light-tailed data,

∥Σ̂kn −Σ∥ = OP

((
log(D)

N

)α/(2(α+1))
)

= ∥Σ̂
−1

kn −Σ−1∥.

For estimated vectors from the linear regressions, the data generating process (DGP) is

Yn = X⊤
nβ0 + ϵn

where β0 = (0, 0, ..., 0)⊤ and ϵn ∼ N (0, 1). For the distribution of Xn, three designs are

considered.

Design v. Xn ∼ N (0, ID×D) for all n = 1, 2, ..., N.

Design vi. Xn ∼ χ2
1 for all n = 1, 2, ..., N.

Design vii. Xn ∼ N (0, ID×D) for all n <
N

2
,

Xn ∼ χ2
1 for all n ≥ N

2
.

For the non-linear case, since the restrictions on the non-linear function and the regressors

are strict, we only consider one design (Design viii).

Yn =
1

1 + e−X⊤
n β0

+ ϵn

where Xn ∼ N
(
0, 1

N

)
, ϵn ∼ N

(
0, 1

N

)
and β0 = (0, 0, ..., 0)⊤.

In Tables 1 & 2, since we know the true values of the mean and covariance matrix for the

random vectors, the empirical rejection rates in Designs i,ii, and iii share the same results:

the empirical rejection rates approach 1 as D decreases to 2; the empirical rejection rates do

not decrease to 0.05 when N is less than or equal to 200 and even D increases to 100; the

empirical rejection rates are less than 0.1 when D is 30 and N is 2000. When the sample

sizes are 300, 500, 1000, 2000, we obtain the following results. In Design i, the "dividing

line" of 0.1 for the empirical rejection rates are 50, 40, 30, 30, respectively; In Design ii,

the "dividing line" of 0.1 for the empirical rejection rates are 70, 70, 30, 30, respectively;

In Design iii, the "dividing line" of 0.1 for the empirical rejection rates are 80, 70, 60, 30,

respectively. In Design iv, since we estimate the values of the mean and covariance matrix

for the random vectors, we obtain a different conclusion: the empirical rejection rates do
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not decrease to 0.05 when N is less than or equal to 300 and even D increases to 100; the

"dividing line" of 0.1 for the empirical rejection rates, when sample size is 2000, is 60, which

is quite larger than that in the first three designs.

The results in Tables 3 & 4 also suggest that our test for estimated vectors works well.

For Design v, when the independent random vector Xn is normal, the empirical rejection

rates approach 1 as D decreases to 2. Additionally, we fail to reject the null hypothesis

when the dimension D increases up to 100, as the empirical rejection rates are close to the

nominal value 0.05 (at 5% level of significance). This is true for all sample sizes. The di-

mension D = 100 seems to be the cutoff, the "dividing line" of 0.05, for judging the high

dimensional settings under our specific designs. Even when we change the distribution of

Xn to the Chi-squared distribution in Design vi or to the combination of the normal and

Chi-squared distribution in Design vii, the results are still consistent. For the non-linear case

in Design viii, our test performs well under N = 500, 1000, 2000. However, when N = 100,

the rejection rate decreases first but increase rapidly up to 1 as D rises beyond 30. This issue

is caused by the least square estimator which does not provide good estimates for such small

sample sizes and such large dimensions. As we mentioned, one can try other estimators as

extensions of our test. Overall, these results suggest that our test appears to have a good

size and power for moderate sample sizes.
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Table 1: Empirical rejection rates in designs for random vectors: Part I

Design i Design ii

Sample size N Sample size N

D 100 200 300 500 1000 2000 100 200 300 500 1000 2000

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 0.628 0.588 0.606 0.592 0.568 0.558 0.618 0.589 0.556 0.564 0.602 0.505

4 0.476 0.452 0.470 0.470 0.406 0.502 0.517 0.473 0.469 0.477 0.385 0.498

5 0.468 0.428 0.394 0.388 0.366 0.376 0.511 0.432 0.396 0.367 0.365 0.385

6 0.400 0.360 0.340 0.368 0.376 0.320 0.414 0.352 0.331 0.404 0.341 0.345

7 0.364 0.354 0.288 0.298 0.300 0.278 0.394 0.375 0.265 0.284 0.290 0.288

8 0.302 0.276 0.324 0.232 0.262 0.296 0.280 0.288 0.299 0.239 0.262 0.313

9 0.336 0.264 0.264 0.248 0.272 0.232 0.350 0.285 0.285 0.240 0.283 0.218

10 0.276 0.252 0.224 0.212 0.184 0.218 0.250 0.264 0.224 0.211 0.199 0.223

20 0.216 0.220 0.152 0.118 0.130 0.114 0.221 0.236 0.161 0.120 0.122 0.108

30 0.184 0.162 0.146 0.126 0.096 0.092 0.198 0.147 0.146 0.118 0.095 0.096

40 0.164 0.120 0.136 0.090 0.092 0.082 0.164 0.119 0.124 0.093 0.084 0.075

50 0.174 0.118 0.100 0.070 0.095 0.080 0.175 0.108 0.106 0.074 0.092 0.074

60 0.188 0.118 0.088 0.105 0.070 0.098 0.194 0.118 0.112 0.108 0.074 0.097

70 0.150 0.088 0.098 0.078 0.072 0.072 0.148 0.094 0.090 0.072 0.067 0.070

80 0.154 0.106 0.089 0.070 0.110 0.060 0.164 0.112 0.081 0.069 0.098 0.059

90 0.142 0.128 0.082 0.094 0.074 0.064 0.146 0.131 0.079 0.093 0.067 0.070

100 0.154 0.108 0.098 0.080 0.058 0.052 0.144 0.099 0.095 0.075 0.058 0.050

NOTE: The columns report the fraction of simulations for which the p-value is less than 0.05. We set B = 500.
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Table 2: Empirical rejection rates in designs for random vectors: Part II

Design iii Design iv

Sample size N Sample size N

D 100 200 300 500 1000 2000 100 200 300 500 1000 2000

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 0.685 0.637 0.552 0.620 0.542 0.549 0.684 0.601 0.723 0.684 0.661 0.655

4 0.481 0.492 0.462 0.515 0.390 0.522 0.484 0.488 0.494 0.511 0.480 0.520

5 0.484 0.431 0.410 0.401 0.342 0.348 0.493 0.440 0.405 0.433 0.406 0.387

6 0.440 0.336 0.308 0.373 0.405 0.331 0.468 0.405 0.364 0.398 0.382 0.335

7 0.341 0.345 0.286 0.327 0.279 0.298 0.373 0.367 0.302 0.301 0.354 0.331

8 0.311 0.269 0.304 0.229 0.261 0.274 0.332 0.303 0.346 0.249 0.268 0.342

9 0.342 0.250 0.258 0.252 0.258 0.222 0.362 0.277 0.285 0.255 0.323 0.276

10 0.282 0.240 0.239 0.232 0.192 0.211 0.308 0.255 0.235 0.247 0.185 0.220

20 0.220 0.203 0.164 0.127 0.138 0.109 0.223 0.249 0.174 0.129 0.144 0.121

30 0.187 0.147 0.144 0.121 0.090 0.086 0.211 0.168 0.166 0.135 0.108 0.106

40 0.161 0.110 0.139 0.089 0.096 0.085 0.167 0.142 0.157 0.098 0.100 0.115

50 0.179 0.107 0.091 0.067 0.121 0.082 0.192 0.130 0.116 0.079 0.129 0.103

60 0.185 0.126 0.092 0.115 0.070 0.095 0.208 0.126 0.105 0.117 0.079 0.091

70 0.138 0.090 0.103 0.077 0.066 0.069 0.156 0.093 0.107 0.091 0.103 0.075

80 0.143 0.101 0.088 0.070 0.109 0.065 0.159 0.111 0.128 0.083 0.083 0.062

90 0.143 0.139 0.084 0.103 0.070 0.066 0.168 0.153 0.089 0.099 0.080 0.072

100 0.148 0.112 0.102 0.073 0.055 0.049 0.162 0.121 0.112 0.082 0.061 0.055

NOTE: The columns report the fraction of simulations for which the p-value is less than 0.05. We set B = 500.
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Table 3: Empirical rejection rates in designs for estimated vectors from linear regressions

Design v Design vi Design vii

Sample size N Sample size N Sample size N

D 100 500 1000 2000 100 500 1000 2000 100 500 1000 2000

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 0.607 0.600 0.623 0.580 0.583 0.547 0.550 0.597 0.570 0.607 0.603 0.550

4 0.467 0.470 0.460 0.420 0.427 0.440 0.430 0.420 0.470 0.467 0.463 0.423

5 0.387 0.363 0.407 0.380 0.340 0.373 0.363 0.380 0.380 0.400 0.380 0.377

6 0.297 0.313 0.287 0.300 0.333 0.313 0.313 0.283 0.300 0.283 0.290 0.337

7 0.293 0.260 0.243 0.283 0.230 0.297 0.240 0.270 0.283 0.290 0.287 0.223

8 0.213 0.227 0.193 0.230 0.207 0.260 0.243 0.233 0.233 0.217 0.207 0.233

9 0.250 0.250 0.250 0.230 0.227 0.177 0.213 0.240 0.200 0.230 0.223 0.223

10 0.223 0.190 0.203 0.217 0.190 0.200 0.203 0.213 0.260 0.197 0.200 0.270

20 0.160 0.110 0.117 0.140 0.110 0.127 0.153 0.130 0.117 0.177 0.107 0.143

30 0.133 0.110 0.130 0.097 0.113 0.083 0.100 0.077 0.093 0.093 0.083 0.097

40 0.080 0.090 0.080 0.093 0.077 0.067 0.097 0.097 0.080 0.130 0.063 0.080

50 0.080 0.050 0.113 0.080 0.080 0.070 0.087 0.080 0.063 0.073 0.070 0.093

60 0.077 0.100 0.087 0.060 0.087 0.060 0.067 0.057 0.077 0.083 0.063 0.053

70 0.070 0.070 0.073 0.057 0.080 0.073 0.050 0.047 0.067 0.043 0.060 0.040

80 0.073 0.067 0.050 0.063 0.073 0.077 0.063 0.057 0.050 0.060 0.057 0.073

90 0.050 0.050 0.047 0.060 0.067 0.060 0.057 0.060 0.030 0.053 0.053 0.060

100 - 0.047 0.057 0.057 - 0.050 0.053 0.057 - 0.057 0.047 0.053

NOTE: The columns report the fraction of simulations for which the p-value is less than 0.05. We set B = 500

and K = 100 for Designs v-vii.
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Table 4: Empirical rejection rates for estimated vec-

tors from non-linear regressions

Design viii

Sample size N

D 100 500 1000 2000

2 1.000 1.000 1.000 1.000

3 0.583 0.573 0.553 0.568

4 0.403 0.436 0.413 0.447

5 0.307 0.360 0.390 0.354

6 0.213 0.317 0.330 0.341

7 0.190 0.233 0.260 0.268

8 0.123 0.230 0.257 0.245

9 0.077 0.200 0.247 0.172

10 0.097 0.223 0.160 0.128

20 0.083 0.130 0.140 0.156

30 1.000 0.113 0.137 0.079

40 1.000 0.067 0.083 0.075

50 1.000 0.083 0.077 0.068

60 1.000 0.090 0.087 0.061

70 1.000 0.047 0.063 0.065

80 1.000 0.057 0.063 0.057

90 1.000 0.060 0.053 0.044

100 - 0.053 0.037 0.041

NOTE: We set B = 500 and K = 100 for Design viii.
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6 Conclusion

We have shown how to test for high dimensionality of random and estimated vectors espe-

cially from the linear and non-linear regression models. One can use this method to check

whether their vectors are under high dimensional or classical settings and then decide to use

some high dimensional versions of inference methods from existing literature. Results from

the simulation study suggest that our test can work well for both random and estimated vec-

tors. Some concerns about applying the least square estimator in our test could be raised,

as there have been some advanced estimation methods in the literature. We suggest this as

a potential extension of our test by replacing the least square estimator by other estimators.
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Appendices

Proof of Lemma 3.1 Let’s first define F (β) =
∑N

n=1Xn

(
ϵn −X⊤

nβ
)
. WLOG assume

β = 0. Then there is a root β̂ of the equation F (β) = 0 satisfying ∥β̂∥2 = Op (D/N) if

the result 6.3.4 of Ortega and Rheinboldt (1970) holds here. It equivalently to show that

β⊤F (β) < 0 for ∥β∥2 = BD/N .

β⊤F (β) =
N∑

n=1

X⊤
nβ
(
ϵn −X⊤

nβ
)
=

N∑
n=1

X⊤
nβϵn − β⊤XnX

⊤
nβ =: M1 −M2.

We know that M1 ≤ ∥β∥∥
∑N

n=1 Xnϵn∥. Under assumption 3.3,

E

[
∥

N∑
n=1

Xnϵn∥2
]
=

D∑
d=1

N∑
n=1

X2
n,dE

[
ϵ2n
]
≤ BND.

Therefore, Chebychev’s inequality implies that for any ϵ > 0 there is a constant C1, such

that for all n

P
{
M1 ≤ C1

√
ND∥β∥ for all β

}
≥ 1− ϵ.

For M2, assumption 3.2 implies that there is a constant δ such that
N∑

n=1

β⊤XnX
⊤
nβ ≥ bN∥β∥2

for all β with ∥β∥ ≤ δ. As a result, there is N0 such that for n ≥ N0

P{M1 −M2 ≤ C1

√
ND∥β∥ − bN∥β∥2 for all β with ∥β∥ ≤ δ} ≥ 1− ϵ.

Let
√
C = 2C1/b and choose N⊤

0 > N such that C
(
D/N⊤) ≤ δ2, for n ≥ N⊤

0 then

P
{
M1 −M2 ≤ 0 for all β with ∥β∥2 = CD/N

}
≥P
{
M1 −M2 ≤ −1

2
BbD for all β with ∥β∥2 = CD/N

}
≥ 1− ϵ.

Proof of Lemma 3.2 Let’s consider σ−1
(
N−1X⊤X

) 1
2
√
N
(
β̂ − β0

)
first.

σ−1
(
N−1X⊤X

) 1
2
√
N
(
β̂ − β0

)
= σ−1

(
N−1X⊤X

)−1/2 1√
N

N∑
n=1

Xnϵn

=σ−1Σ−1/2 1√
N

N∑
n=1

Xnϵn + σ−1
((

N−1X⊤X
)−1/2 −Σ−1/2

) 1√
N

N∑
n=1

Xnϵn

= : (a) + (b) .
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For (a), assumption 3.3 implies that 1√
N

∑N
n=1Xnϵn converges to W which follows a multi-

variate normal distribution with the covariance matrix σ2Σ, so σ−1Σ−1/2 1√
N

∑N
n=1 Xnϵn will

converge to standard multivariate normal distribution. Then√
D

2

(
1

D
∥σ−1

(
N−1X⊤X

)1/2√
N
(
β̂ − β0

)
∥22 − 1

)
=

∥ (a) ∥2 −D√
2D

+
e√
D

where e consists of ∥ (b) ∥2 and (a)⊤ (b). Assumption 3.4 provides that ∥ (b) ∥2 = op

(√
D
)
;

and

(a)⊤ (b) ≤ ∥ (a) ∥∥ (b) ∥ = op

(√
D
)
.

As a result, by continuous mapping theorem, we obtain the desired result.

Proof of Theorem 3.1 Rewrite the T ∗
N,D,K,B,

T ∗
N,D,K,B =

√
K sup

z∈R

(
1

K

K∑
k=1

1(−∞,z] (t
∗
k)− Φ (z)

)

=
√
K sup

z∈R

(
1

K

K∑
k=1

1(−∞,z] (t
∗
k)− E

(
1(−∞,z] (t

∗
k)
)
+ E

(
1(−∞,z] (t

∗
k)
)
− Φ (z)

)

=
√
K sup

z∈R

(
1

K

K∑
k=1

1(−∞,z] (t
∗
k)− E

(
1(−∞,z] (t

∗
k)
))

+K
1
2 sup

z∈R

(
E
(
1(−∞,z] (t

∗
k)
)
− Φ (z)

)
=: (3.a) + (3.b)

Firstly, let’s show that t∗k
d→ N (0, 1).

For each β∗
b , we know that

β∗
b =

(
X⊤X

)−1X⊤Y∗
b =

(
X⊤X

)−1X⊤
(
Xβ̂ +Rb

N ϵ̂
)
= β̂ +

(
X⊤X

)−1
N∑

n=1

XnR
b
nϵ̂n.

From above, conditional on DN := {{Yn,Xn} : n = 1, 2, ..., N}, we have E [β∗
b ] = β̂ and

var (β∗
b ) = E

[(
X⊤X

)−1X⊤Rb
N ϵ̂ϵ̂

⊤Rb
N

⊤X
(
X⊤X

)−1
]

=
(
X⊤X

)−1 E

[
N∑

n=1

(
Rb

n

)2
ϵ̂2nXnX

⊤
n

] (
X⊤X

)−1

=
(
X⊤X

)−1

(
N∑

n=1

ϵ̂2nXnX
⊤
n

)(
X⊤X

)−1
.
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As a result, conditional on DN , high dimensional CLT (under assumption 3.3) implies that[(
X⊤X

)−1

(
N∑

n=1

ϵ̂2nXnX
⊤
n

)(
X⊤X

)−1

]−1/2√
B

(
1

B

B∑
b=1

β∗
b − β̂

)
d
= W

where W ∼ N (0, ID×D). Therefore, by continuous mapping theorem, there is t∗k
d→ N(0, 1).

For (3.a), since the class C = {(−∞, z] : z ∈ R} is a Donsker class. It is known that

(3.a) converges weakly in l∞(R) to a Brownian bridge B (P{t∗k < z}), and so converges to

B(Φ(z)) as D,B → ∞ because P{t∗k < z} → Φ(z).

For (3.b),

(3.b) = K
1
2 (P{t∗k < z} − Φ (z)) .

We aim to show that under some conditions, there is (3.b) = op (1). Since we know that

P{t∗k < z} − Φ (z) → 0 as D,B → ∞, once the convergence rate is obtained, K can be set

comparatively small to achieve our goal. We can rewrite (3.b) as

(3.b) =
√
K
(
P{t∗k < z} − P{t0 < z}+ P{t0 < z} − Φ (z)

)
=
√
K
(
P{t∗k < z} − P{t0 < z}

)
+K

1
2

(
P{t0 < z} − Φ (z)

)
= : (3.b.1) + (3.b.2)

where t0 =
√

D
2

(
1
D

∑D
d=1 Z

2
d − 1

)
with Zd ∼ N (0, 1) for d = 1, 2, ..., D. Based on Berry–Esseen

theorem, we have that

(3.b.2) ≤ C1E [|Zd|3]√
D

≤ C1

√
K

D

for a constant C1. Similarly, for (3.b.1), there is a constant C2 such that

(3.b.1) ≤C2
K

1
2D

1
4

B
3
2

B∑
b=1

E

[∥∥∥∥[(X⊤X
)−1 (X⊤DX

) (
X⊤X

)−1
]−1/2 (

β∗
b − β̂

)∥∥∥∥3
]

=C2

√
KD

1
4

√
B

E

[∥∥∥∥[(X⊤X
)−1 (X⊤DX

) (
X⊤X

)−1
]−1/2 (

β∗
b − β̂

)∥∥∥∥3
]

where D := Diag (ϵ̂21, ϵ̂22, ..., ϵ̂2N). By assumption 3.2,

E

[∥∥∥∥[(X⊤X
)−1 (X⊤DX

) (
X⊤X

)−1
]−1/2 (

β∗
b − β̂

)∥∥∥∥3
]

≤
∥∥N−1X⊤X

∥∥3 ∥∥∥(N−1X⊤DX
)−1/2

∥∥∥3 E [∥∥∥√N
(
β∗
b − β̂

)∥∥∥3] ≤ C3D
3
2
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for a constant C3. Therefore, we have (3.b) = op (1) for B and K with
√
KD

7
4√

B
→ 0 and

K
D

→ 0.

Proof of Lemma 4.1 WLOG let’s assume β0 = 0. Similar to Lemma 3.1, it suffices to

show that β⊤F (β) < 0 for ∥β∥2 = BD/N where F (β) =
∑N

n=1∇fn(β) (Yn − f (Xn, β)).

β⊤F (β) =
N∑

n=1

∇⊤
fn(β)β (ϵn + f (Xn, 0)− f (Xn, β))

=
N∑

n=1

∇⊤
fn(β)βϵn −

N∑
n=1

∇⊤
fn(β)β (f (Xn, β)− f (Xn, 0))

=: M1 −M2.

For M1, M1 ≤ ∥β∥∥
∑N

n=1∇fn(β)ϵn∥ and under assumption 4.1, there is

E∥
N∑

n=1

∇fn(β)ϵn∥2 =
D∑

d=1

N∑
n=1

∇2
fn,d(β)

Eϵ2n ≤ BND.

Therefore, Chebychev’s inequality implies that for any ϵ > 0 there is a constant C1 such that

P{M1 ≤ C1

√
ND∥β∥ for all β} ≥ 1− ϵ.

For M2,

M2 =
N∑

n=1

∇⊤
fn(β)β (f (Xn, β)− f (Xn, 0)) =

N∑
n=1

∇⊤
fn(β)β∇

⊤
fn(β̃)β

=
N∑

n=1

β⊤∇fn(β)∇⊤
fn(β̃)β ≥ C2N∥β∥2 (assumption 4.2)

for all β with ∥β∥ ≤ δ2.

Thus, there is N such that for n ≥ N

P{M1 −M2 ≤ C1

√
ND∥β∥ − C2N∥β∥2 for all β with ∥β∥ ≤ δ} ≥ 1− 2ϵ.

Let
√
C = 2C1/C2 and choose N⊤ > N , so that C

(
D/N⊤) ≤ δ2 for n ≥ N⊤. Then we have

P{M1 −M2 ≤ 0 for all β with ∥β∥2 = CD/N}

≥P{M1 −M2 ≤ −1/2BC2D for all β with ∥β∥2 = CD/N} ≥ 1− 2ϵ.
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Proof of Lemma 4.2 Recall

SN (β) =
N∑

n=1

(Yn − f (Xn, β))
2 .

By taking Taylor expansion for ∂SN

∂β

∣∣∣∣
β̂

around the true value β0, there is

∂SN

∂β

∣∣∣∣
β̂

=
∂SN

∂β

∣∣∣∣
β0

+
∂2SN

∂β∂β⊤

∣∣∣∣
β∗

(
β̂ − β0

)
where β0 is the true value. Since the β̂ is the minimizer of SN (β), the left hand side of the

above equation is zero. Therefore, we obtain

− 1

N

∂2SN

∂β∂β⊤

∣∣∣∣
β∗

√
N
(
β̂ − β0

)
=

1√
N

∂SN

∂β

∣∣∣∣
β0

. (3)

Let’s first consider 1
N

∂2SN

∂β∂β⊤

∣∣∣∣
β∗

. Differentiating it with respect to β yields

1

N

∂2SN

∂β∂β⊤ =
2

N

N∑
n=1

∇fn(β)∇⊤
fn(β) −

2

N

N∑
n=1

[fn (β0)− fn (β)]Hfn(β) −
2

N

N∑
n=1

ϵnHfn(β).

Then, we can rewrite 1
N

∂2SN

∂β∂β⊤

∣∣∣∣
β∗

to 2Σ+ (i) + (ii) + (iii) + (iv) in which

(i) = 2
1

N

N∑
n=1

∇fn(β0)∇⊤
fn(β0)

− 2Σ,

(ii) = 2
1

N

N∑
n=1

∇fn(β∗)∇⊤
fn(β∗) − 2

1

N

N∑
n=1

∇fn(β0)∇⊤
fn(β0)

,

(iii) = − 2

N

N∑
n=1

[fn (β0)− fn (β
∗)]Hfn(β∗),

(iv) = − 2

N

N∑
n=1

ϵnHfn(β∗).

As a result, (3) becomes

√
N
(
β̂ − β0

)
= (2Σ)−1 1√

N

∂SN

∂β

∣∣∣∣
β0

+ e
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where e = (2Ω)−1 ((i) + (ii) + (iii) + (iv))
√
N
(
β̂ − β0

)
.

Now,

σ−1

(
1

N

N∑
n=1

∇fn(β̂)∇
⊤
fn(β̂)

)1/2√
N
(
β̂ − β0

)
=σ−1Σ1/2 (2Σ)−1 1√

N

∂SN

∂β

∣∣∣∣
β0

+ σ−1
(
Σ̂1/2 −Σ1/2

)
(2Σ)−1 1√

N

∂SN

∂β

∣∣∣∣
β0

+ σ−1Σ1/2e

= : (4.a) + (4.b) + (4.c)

where Σ̂ = 1
N

∑N
n=1∇fn(β̂)∇

⊤
fn(β̂)

.

Therefore, we can write
√

D
2

 1
D

∥∥∥∥∥σ−1

(
1
N

∑N
n=1∇fn(β̂)∇

⊤
fn(β̂)

) 1
2 √

N
(
β̂ − β0

)∥∥∥∥∥
2

− 1

 as

√
D

2

(
1

D
∥ (4.a) ∥2 − 1

)
+

e∗√
D

where e∗ consists of the sum of squared norms of (4.b),(4.c) plus the sum of the inner products

| (4.a)⊤ (4.b) |,| (4.a)⊤ (4.c) |,| (4.b)⊤ (4.c) |.

Under assumption 4.3, high dimensional CLT and continuous mapping theorem imply that√
D

2

(
1

D
∥ (4.a) ∥2 − 1

)
d→ N (0, 1) .

We are left to show that e∗ = op(
√
D). Assumptions 4.4-4.7 are sufficient to yield e∗ =

op(
√
D).

Proof of Theorem 4.1 The proof of Theorem 4.1 is a simple combination of the proofs for

Theorem 3.1 and Lemma 4.2.

Proof of Theorem 4.2

(Consistency) WLOG let’s assume β0 = 0. Similar to Lemma 3.1, it suffices to show that

β⊤F (β) < 0 for ∥β∥2 = BD/N where F (β) =
∑N

n=1∇fn(β) (Yn − f (Xn, β)).

β⊤F (β) =
N∑

n=1

∇⊤
fn(β)β (ϵn + f (Xn, 0)− f (Xn, β))

=
N∑

n=1

∇⊤
fn(β)βϵn −

N∑
n=1

∇⊤
fn(β)β (f (Xn, β)− f (Xn, 0))

=: M1 −M2.
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For M1, M1 ≤ ∥β∥∥
∑N

n=1∇fn(β)ϵn∥, and there is a constant C1 such that

E

[
∥

N∑
n=1

∇fn(β)ϵn∥2
]
=

D∑
d=1

N∑
n=1

∇2
fn,d(β)

E
[
ϵ2n
]
≤ C1

D∑
d=1

N∑
n=1

1

N

1

N
≤ C1

D

N
.

Therefore, Chebychev’s inequality implies that for any ϵ > 0 there is a constant C1 such that

P

{
M1 ≤ C1

√
D

N
∥β∥ for all β

}
≥ 1− ϵ

For M2,

M2 =
N∑

n=1

∇⊤
fn(β)β (f (Xn, β)− f (Xn, 0)) =

N∑
n=1

∇⊤
fn(β)β∇

⊤
fn(β̃)β =

N∑
n=1

β⊤∇fn(β)∇⊤
fn(β̃)β

= : β⊤X⊤D1Xβ = ∥D1/2
1 Xβ∥2 = ∥D1/2

1 ∥2∥X∥2∥β∥2

where D1 = Diag

 ex
⊤
1 β(

1+ex
⊤
1 β

)2
ex

⊤
1 β̃(

1+ex
⊤
1 β̃

)2 , ...,
ex

⊤
Nβ(

1+e
x⊤
N

β
)2

ex
⊤
Nβ̃(

1+e
x⊤
N

β̃
)2

. Exercise 4.4.7 in (Ver-

shynin (2018)) implies that there is a constant C2 such that ∥X∥ ≥ C2 with high probability.

Together with upper bound for M1, the lower bound for M2 implies that β⊤F (β) < 0 with

high probability.

Now, we left to show that assumption 4.3-4.5 hold. Assumption 4.3 is trivial. For

assumption 4.4,∥∥∥∥∥ 1

N

N∑
n=1

∇fn(β)∇⊤
fn(β) −

1

N

N∑
n=1

∇fn(β0)∇⊤
fn(β0)

∥∥∥∥∥ =
1

N
∥X⊤D2X∥

where D2 = Diag

 (
ex

⊤
1 β

)2

(
1+ex

⊤
1 β

)4 −

(
ex

⊤
1 β0

)2

(
1+ex

⊤
1 β0

)4 , ...,

(
ex

⊤
Nβ

)2

(
1+e

x⊤
N

β
)4 −

(
ex

⊤
Nβ0

)2

(
1+e

x⊤
N

β0

)4

. Theorem 4.4.5 in

(Vershynin (2018)) implies that ∥X∥ is bounded with high probability, so we have∥∥∥ 1
N

∑N
n=1 ∇fn(β)∇⊤

fn(β)
− 1

N

∑N
n=1∇fn(β0)∇⊤

fn(β0)

∥∥∥ ≤ Op(
1
N
) = op(

1√
D
). For assumption 4.5,

one can use the similar strategy to obtain the desired upper bound.
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