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Abstract

This paper investigates alternative generalized method of moments (GMM) estima-
tion procedures of a stochastic volatility model with realized volatility measures. The
extended model can accommodate a more general correlation structure. General closed
form moment conditions are derived to examine the model properties and to evaluate the
performance of various GMM estimation procedures under Monte Carlo environment, in-
cluding standard GMM, principal component GMM, robust GMM and regularized GMM.
An application to five company stocks and one stock index is also provided for an em-
pirical demonstration.
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1 Introduction

Since the seminal works by Engle (1982) and Taylor (1986), there has been consider-
able interest in modeling the dynamics of the latent financial return volatility. Under
the Generalized Autoregressive Conditional Heteroscedasticity (ARCH/GARCH) and
Stochastic Volatility (SV) frameworks, the conditional variance is typically specified as
certain function of the past information on squared returns and volatilities. Despite
that the ARCH/GARCH and SV models have been extensively used in the literature,
as Andersen, Bollerslev, Diebold and Labys (2003) and Hansen, Huang and Shek (2010)
argue, these traditional models are slow at updating the information especially when the
volatility changes rapidly to a new level. This naturally sparks interest in developing and
building up alternative volatility models to accommodate these empirical characteristics.

On the other hand, rapid development in computer technology in the past two decades
has made the financial transaction data “visible” at the highest granularity. There is an
expanding literature on constructing volatility proxy using realized volatility measures
based on these high frequency trading data, see Andersen and Bollerslev (1998), An-
dersen, Bollerslev, Diebold and Labys (2003), Barndorff-Nielsen and Shephard (2004),
Zhang, Mykland and Ait-Sahalia (2005), Hansen and Lunde (2005), Barndorff-Nielsen,
Hansen, Lunde and Shephard (2008, 2010) and references therein. Although these real-
ized measures are more or less contaminated by microstructure noises and construction
biases, they reveal some important information about the current level of the volatil-
ity and are consequently useful for explaining the dynamic features of the volatility.
Therefore, incorporating the realized proxy element into the traditional volatility models
seems to be a natural extension, which helps for modeling and forecasting the volatility
movement.

Engle and Gallo (2006) introduce a GARCH process with realized measures, known
as Multiplicative Error Model (MEM). Hansen, Huang and Shek (2010) extend the model
to a more generalized structure by allowing a more flexible functional form on both latent
volatility and realized volatility equations, known as the realized GARCH model. Alter-
natively, within the SV framework, Takahashi, Omori and Watanabe (2009) develop an
extended SV structure by jointly modeling return, latent volatility and the correspond-
ing realized volatility measure. In this paper, we refer to this model as realized SV. The
common characteristic of both the realized GARCH and realized SV models is the link
equation (or measurement equation), which specifies a potential connection between the
latent volatility and the corresponding realized measure (or proxy). The realized SV
and realized GARCH models have many attractive features and perform better than the
conventional volatility models.

The realized SV and realized GARCH are comparable specifications in the litera-
ture. However, the SV estimation has been demonstrated difficult. In the traditional SV
framework, as is well known, the likelihood function has no closed form expression. The
problem essentially comes from the latent volatility sequence. In other words, the latent
conditional volatility at time t has to be integrated out in order to construct the objec-
tive likelihood function. Consequently, the standard likelihood function for an SV model
involves an integral with a dimension of sample size. This high dimensional integral is,
if not impossible, very difficult to solve. This estimation problem is also embedded in
the realized SV model structure. Various procedures for estimating the traditional SV
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parameters have been proposed in the literature, such as Simulated Maximum Likelihood
(SML) by Denielsson and Richard (1993), Quasi Maximum Likelihood (QML) by Harvey,
Ruiz and Shephard (1994), Markov Chain Monte Carlo (MCMC) by Jacquier, Polson
and Rossi (1994), Efficient Method of Moments (EMM) by Gallant and Tauchen (1996),
Generalized Method of Moments (GMM) by Andersen and Sorensen (1996), Character-
istic Function (CF) by Knight, Satchell and Yu (2002) etc. In particular, Takahashi,
Omori and Watanabe (2009) apply a simulation-based MCMC estimation for the real-
ized SV model. As Andersen and Sorensen (1996) argue, the simulation based estimation
strategies (such as MCMC and SML) would possibly suffer from the expensive computa-
tional cost as the SV setting is getting more and more complicated. For this particular
reason, Takahashi, Omori and Watanabe (2009) assume a simple correlation structure
in their realized SV model to simplify the MCMC procedure. In this paper, we examine
the GMM estimators under the realized SV structure by Monte Carlo methods. We first
(slightly) extend the realized SV model proposed by Takahashi, Omori and Watanabe
(2009) by accommodating a more flexible correlation structure. Furthermore, we inves-
tigate the finite sample properties of the different GMM estimation procedures of the
extended realized SV model.

We focus on analyzing the properties of different types of GMM estimations. Because
returns may have fat tail distributions, the standard GMM procedure could produce bad
estimates due to the unboundedness of its influence function. An outlier-robust version
of GMM estimator is therefore proposed by Ronchetti and Trojani (2001). Another
important issue is the selection of the moment conditions. We can derive a very large
number of moment conditions from our model, but it is not obvious which one should be
selected. As one can see in Section 4, arbitrary selections may deteriorate the quality of
the estimates. This problem has been raised in the context of the instrumental variable
estimation by Dominguez and Lobato (2004) but not in the case of moment conditions
that are not derived from orthogonality conditions. One approach, which was proposed
by Carrasco (2010), is to regularize the weighting matrix of the set of moment condi-
tions. Alternatively, Doran and Schmidt (2006) propose to select the most influential
conditions using the principal component approach. We investigate these alternative
GMM procedures via a Monte Carlo study.

The remainder of the paper is organized as follows. Section 2 presents the model
specification with the associated moment conditions. Section 3 discusses the GMM es-
timation procedures. Section 4 conducts the Monte Carlo experiments and provides an
empirical illustration. Section 5 concludes. All the proofs are presented in Appendix A
and some tables and figures are collected in the Appendix B.

2 Model Specification and Theoretical Moment Con-

ditions

Following Taylor (1986) and Ghysels, Harvey and Renault (1996), a standard discrete-
time SV model structure is presented as follows,

xt = exp(ht/2)ϵt

ht+1 = λ+ αht + ηt.
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There are two stochastic processes describing the dynamics of the returns and latent
volatilities. In the above set-up, xt is the continuously compounded return time series,
which can be constructed using the logarithmic price differences. Assuming unit variance
on the innovation (ϵt) of the return process, exp(ht) characterizes the conditional variance
at time t. The log-volatility, ht, is normally assumed to follow a stationary AR(1) process.
In general, to capture the leverage effect, we allow a certain correlation structure between
the innovations from the return and volatility processes. In particular, following Harvey
and Shephard (1996) and Yu (2005), the bivariate structure is assumed to be as follows:(

ϵt
ηt

)
∼ N

((
0
0

)
,

(
1 ρση
ρσv σ2

η

))
.

The asymmetric relationship between the return and future volatility can be captured
by the correlation coefficient parameter, ρ. Empirically, this correlation is found to be
significantly negative. In the literature, the above is normally referred as the asymmetric
stochastic volatility (ASV) model.

Takahashi, Omori and Watanabe (2009) extend the classical ASV model by incorpo-
rating realized volatility measures into the above setting. Consequently, they propose an
asymmetric SV with realized volatility (ASV-RV) , which is defined as

xt = exp(ht/2)ϵt (1)

yt = β + ht + ut (2)

ht+1 = λ+ αht + ηt, (3)

where the residuals follow the tri-variate Gaussianϵtut
ηt

 ∼ N

0
0
0

 ,

 1 0 ρση
0 σ2

u 0
ρση 0 σ2

η

 , (4)

and yt denotes the logarithm of realized volatility at time t. Due to the microstruc-
ture and non-trading hours noise, the realized volatility, constructed from the intra-daily
high frequency trading prices, may be a contaminated measure of the true latent volatil-
ity. Therefore, (2) builds up a link (or measurement) function between the constructed
realized measure and the true volatility.

In the ASV-RV model, one can see that there is no correlation assumed either between
ut and ϵt or ut and ηt. As Diebold and Strasser (2010) point out, the zero-correlation
assumption between the return (or price) and the microstructure noise in the literature
is perhaps erroneous. Interestingly, they detect a negative contemporaneous correlation
between the return (or price) and the microstructure noise. Therefore, this paper further
extends the ASV-RV model by accommodating the correlation between the residuals from
the measurement equation (ut) and the return process (ϵt). To generalize the correlation
structure, we also allow for the correlation between ut and ηt for additional statistical
flexibility.1 Furthermore, in the proposed model, we allow for some scale effects between

1We have not found any paper investigating this correlation. The addition of this correlation is
purely for a more flexible statistical model structure. If there exists no such correlation in practice, the
parameter estimate of this correlation should be expected statistically insignificant, and vice versa.
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the realized measure and latent volatility. Consequently, we define the generalized ASV-
RV (GASV-RV) as follows,

xt = exp(ht/2)ϵt (5)

yt = β1 + β2ht + ut (6)

ht+1 = λ+ αht + ηt (7)

where the residuals follow the tri-variate Gaussian distribution,ϵtut
ηt

 ∼ N

0
0
0

 ,

 1 ρ1σu ρ2ση
ρ1σu σ2

u ρ3σuση
ρ2ση ρ3σuση σ2

η

 , (8)

In the GASV-RV model, the unknown parameter vector to be estimated is defined
as θ = (β1, β2, λ, α, σu, ση, ρ1, ρ2, ρ3). To further examine the model properties, three sets
of moment conditions are derived and used as the inputs in the subsequent GMM esti-
mation. These three sets of moment conditions include moments and cross-moments of
the return, moments and cross-moments of the log realized volatility and cross-moments
of both the return and log realized volatility. We provide closed-form expressions in the
following three propositions.

Proposition 1. Given the GASV-RV model specified in Equations (5) to (8), for m, n,
k ≥ 0, the closed form cross-moment expression for xt and xt+k are,2

E
(
xnt x

m
t+k

)
= exp

(
mλ

2

k∑
j=1

αj−1

)
exp

(
m2σ2

η

8

k∑
j=2

α2(k−j)

)

× ∂M
(n)
2

∂r(n)
∥∥
r=(n+mαk)/2 × ∂M

(m)
1

∂r
(m)
1

∥r1=0,r2=0,r3=0

× ∂M
(n)
1

∂r
(n)
1

∥∥
r1=0,r2=0,r3=mαk−1/2 (9)

where M1 and M2 are defined as two moment generating functions (MGF) specified in
the proof.

Proof. see Appendix A

Proposition 2. Given the GASV-RV model specified in Equations (5) to (8), for k ≥
0, the first two order moments and the cross-moment expressions for yt and yt+k are,

Eyt = β1 +
λβ2
1− α

, (10)

Ey2t = β2
1 + 2β1β2

λ

1− α
+ σ2

u +
β2
2λ

2

(1− α)2
+

β2
2σ

2
η

1− α2
, (11)

2We use the convention that
∑b

j=a fj = 0 for b < a, where fj is the functional form indexed by j.
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and

E(ytyt+k) = β2
1 +

2β1β2λ

1− α
+

β2
2λ

2

(1− α)

k∑
j=1

αj−1

+ β2
2α

k

(
σ2
η

1− α2
+

λ2

(1− α)2

)
+ β2ρ3σuση. (12)

Proof. see Appendix A

Proposition 3. Given the GASV-RV model specified in Equations (5) to (8), for m, n,
k > 0, the closed form cross-moment expressions for xt and yt+k are,

E(xnt yt+k) = β1E(x
n
t ) + β2λ

k∑
j=1

αj−1E(xnt ) + β2α
k ∂M2

∂r

∥∥
r=n/2 × ∂M

(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0

+ β2α
k−1M2

(
r =

n

2

)
× ∂M

(n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0 , (13)

E(xnt y
2
t ) = β2

1E(x
n
t ) + β2

2

∂M
(2)
2

∂r(2)
∥∥
r=n/2 × ∂M

(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0 (14)

+ M2

(
r =

n

2

) ∂M
(n+2)
1

∂r
(n)
1 ∂r

(2)
2

∥r1=0,r2=0,r3=0

+ 2β1β2
∂M2

∂r

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0

+ 2β1M2

(
r =

n

2

) ∂M
(n+1)
1

∂r
(n)
1 ∂r

(1)
2

∥r1=0,r2=0,r3=0

+ 2β2
∂M2

∂r

∥∥
r=n/2

∂M
(n+1)
1

∂r
(n)
1 ∂r

(1)
2

∥r1=0,r2=0,r3=0 ,

and,

E(xnt y
2
t+1) = β2

1E(xnt ) + β2
2λ

2E(xnt ) + β2
2α

2∂M
(2)
2

∂r(2)

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0 (15)

+ β2
2M2

(
r =

n

2

) ∂M
(n+2)
1

∂r
(n)
1 ∂r

(2)
3

∥r1=0,r2=0,r3=0 + 2λαβ2
∂M2

∂r

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0

+ 2λβ2
2M2

(
r =

n

2

) ∂M
(n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0 + 2αβ2
2

∂M2

∂r

∥∥
r=n/2

∂M
(n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0

+ M2

(
r =

n

2

) ∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0
∂M

(2)
1

∂r
(2)
2

∥r1=0,r2=0,r3=0 + 2β1β2λE(xnt )

+ 2β1β2α
∂M2

∂r

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0 + 2β1β2M2

(
r =

n

2

) ∂M
(n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0 .
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Proof. see Appendix A

Based on the formulas provided in Propositions 1 to 3, some specific moments of
interests can be easily backed out from the proposed model. We will investigate these
moment conditions further in the subsequent sections.

3 GMM Estimation on GASV-RV Model

Let ψt be a q × 1 vector with typical element (xnt x
m
t+k), (y

n
t y

m
t+k) or (xnt y

m
t+k), for some

m, k, and n ∈ {0, 1, 2, 3, ...}, and ψ(θ0) = E(ψt(θ0)) be the theoretical moments of the
GASV-RV model defined by the equations (5) to (8). Let gt(θ) = [ψt − ψ(θ)], then the
GMM estimator θ̂ of the true vector of coefficients θ0 is based on the following moment
conditions:

E[gt(θ0)] = 0, (16)

and is the solution to:
min
θ∈Θ

ḡ(θ)′Ω̂−1ḡ(θ), (17)

where Θ is the admissible parameter space implied by the model, ḡ(θ) = [
∑T

t=1 ψt/T −
ψ(θ)] and Ω̂ is a consistent estimate of the asymptotic covariance matrix of

√
nḡ(θ0). In

most cases, the estimation of the covariance matrix requires a first step estimate of θ0
obtained by setting the weighting matrix to the identity matrix, unless the continuous
updated GMM is used. However, since we can separate the sample from the theoretical
moments, there is no need for a first step estimate as long as we compute the covariance
matrix from the centered sample moment conditions. Indeed, if θ̃ is a first step estimate,
then (ψt−ψ(θ̃)− ḡ(θ̃)) = (ψt−ψ̄), where ψ̄ =

∑
t ψt/T , for any θ̃. Hall (2000) argues that

the power of the GMM over-identifying restrictions test may be improved because the
centered covariance matrix estimator is consistent under both the null that the model
is correctly specified and under the alternative. Therefore, the estimator defined by
equation (17) is a one-step GMM with the estimate of the covariance matrix given by:

Ω̂ =
T−1∑

t=−T+1

ω(t/s)Γ̂t,

where ω is the kernel function. s is the bandwidth and Γ̂i =
∑

t(ψt − ψ̄)(ψt−i − ψ̄)′/T .
For the choice of kernel and bandwidth, we use the quadratic spectral kernel and the
bandwidth selection procedure proposed by Andrews (1991). This choice produces a more
efficient estimate of the covariance matrix but is more computationally intensive since
the weights converge to zero at a slower rate than the ones associated with the Parzen
or Bartlett kernel. In a Monte Carlo study of GMM estimations of a simple SV model,
Andersen and Sorensen(1996) show that such automatic bandwidth selection improves
the quality of the estimator. Because the one-step GMM does not require a first step
estimate to compute the optimal weighting matrix, the properties of the estimator should
be comparable to the continuous updated GMM. The latter is shown to be less biased
than the two-step GMM because the presence of a first step estimate in the objective
function adds an extra term in the second order bias (see Newey and Smith (2004) ).
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It is well-known in the literature on robust statistics that sample moments are not
the most efficient methods to estimate the population moments especially when the data
comes from fat-tail distributions. Outliers can not only increase the volatility of sample
moments, but also bias the statistics based on them. For example, population mean
is sometimes more efficiently estimated by the sample median or weighted sum rather
than by sample mean. In the context of GMM, Ronchetti and Trojani (2001) show how
the fat-tail distributed data may affect the properties of the estimators by looking at its
influence function defined as:

IFt(θ0) = −
[
G′Ω−1G

]−1
G′Ω−1gt(θ0),

where G = E[∂gt(θ0)/∂θ]. The condition of robustness for any statistical method is
the boundness of its influence function. Clearly, if we have observations from heavy tail
distributions, the influence function of GMM may not be bounded because it is linearly
related to the moment function which is itself unbounded. Several methods have been
proposed to increase the robustness of GMM estimators. One approach is to choose a
norm that is less sensitive to outliers. A natural choice is the L1 norm, as suggested
by Jong and Han (2002), because the objective function is the sum of absolute values
instead of squared values like the usual L2 norm. However, the objective function based
on L1 is not differentiable everywhere which increases the difficulty of obtaining a solution
especially when ḡ(θ) is highly non-linear. Another approach, which is similar to the M-
estimates in the context of least square regressions, is to transform gt(θ) by a function
that is less sensitive to outliers. Ronchetti and Trojani (2001) propose to bound the
moment function by applying the following Huber function:

H(a;C) =

{
a if |a| ≤ C

sign(a)C if |a| > C
,

where C is the robustness parameter and sign(a) = 1 if a ≥ 0 and -1 if a < 0. Lee and
Halverson (2004), who analyze the properties of a robust estimator of the variance based
on the Huber function for fat tail generalized Gaussian random variables, show that the
robustness parameter should increase with the sample size. In other words a larger sample
size requires less robustness. Park (2009) applies the same robust GMM (RGMM) to a
GARCH-M model and finds that RGMM estimators out-perform the standard GMM in
terms of the mean square errors. We will analyze different level of robustness in RGMM
in the Monte Carlo section.

Since ḡ(θ) = [ψ̄ − ψ(θ)], we only need to replace ψ̄ by a robust estimator of E(ψt).
Because our moment conditions have different magnitudes, we standardize them before
selecting which ones to be truncated. We can then choose the same C for all moment
conditions. The standardized vector ψst is defined as:

ψst =
ψt

ŝd(ψt)
.

We then define the following weights:

wit(C) =

{
1 if |ψsit| ≤ C

C/|ψsit| if |ψsit| > C
,
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for i = 1, ..., q. Then, the robust estimator of E(ψit) is defined as:

ψ̄ri =
1

T

T∑
t=1

wit(C)ψit

One can see that the larger is the outlier the smaller is wit(C), which reduces its impact
on the estimated moment. If we were to have unbounded observation, the weight would
go to zero. The influence function of GMM based on these robust estimates of the
population moments is therefore bounded. Hence, the RGMM estimator is defined as:

θ̂r = argmin
Θ
ḡr(θ)

′Ω̂−1
r ḡr(θ),

where ḡr(θ) = [ψ̄r − ψ(θ)] and Ω̂r is an heteroscedasticity and autocorrelation consistent
(HAC) estimate of the covariance matrix of

√
T (ψ̄r). Inference on θ̂r can be based on the

truncated moment conditions. We approximate the distribution of θ̂r by its asymptotic
distribution, which is normal, with variance:

[Ĝr
′
Ω̂−1
r Ĝr]

−1/T,

where Ĝr = ∂ḡr(θ̂r)/∂θ = −∂ψ(θ̂r)/∂θ. In section 4, we examine the properties of RGMM
with different robustness parameters.

When we have a large number of possible moment conditions, it is not obvious which
one should be selected. If we select a small number of conditions, the objective function
may become locally flat and prevent the algorithm from converging within the parameter
space, especially if some conditions weakly identify the parameters. If we choose too
many conditions, the covariance matrix of the moment conditions may become badly
conditioned. One approach, proposed by Carrasco (2010) in the context of instrumental
variable estimation, is to select a large set of moment conditions and then regularize the
weighting matrix. The method was proposed for GMM based on conditional moment
conditions for which the instruments are related to the regressors through an unknown
function. In that case, the number of possible moment conditions may be higher than the
sample size. It is therefore required to use some regularization scheme. Carrasco (2010)
also argues that bad performance of GMM in some applications, such as the estimation of
the return to education in which the number of instruments are over 200, may come from
the large number of instruments more than their weakness. However, what is considered
to be a large number is not clearly established. It is therefore worth exploring in our
case even if the number of conditions is (at most) 36. Propositions 1 to 3 show that, in
theory, the number could be increased without limit.

Using the singular value decomposition of the covariance matrix Ω̂, we can write the
GMM objective function as follows:

ḡ(θ)′Ω̂−1ḡ(θ) =

q∑
i=1

1

µ̂i
< ḡ, ψ̂i >

2, (18)

where µ̂i is the ith eigenvalue of Ω̂ in decreasing order and ϕ̂i its associated orthonor-
malized eigenvector. The objective function can become very unstable if the number
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of conditions is large and many eigenvalues are close to zero. The regularized GMM
(RLGMM) is defined as:

θ̂r = argmin
Θ

q∑
i=1

µ̂i
µ̂2
i + ν

< ḡ, ψ̂i >
2, (19)

where ν is the regularization parameter that prevents the objective function from being
unstable when the eigenvalues are close to zero. Since µi/(µ

2
i + ν) is negligible when the

eigenvalue is close to zero, the method selects automatically the most influential moment
conditions. Carrasco (2010) proposes a data driven method for selecting ν. But the
approach can only be applied to linear models with conditional moment conditions. It
remains uncertain how it affects the properties of the estimator when the conditions are
highly nonlinear. In the linear case, increasing ν is equivalent to decreasing the number
of conditions. Following Newey and Smith (2004), it should make the estimator less
efficient but less biased. The effect on the RMSE is uncertain 3. The distribution of the
J-test cannot be easily derived in that case because ν is a form of nuisance parameter
that contaminates the Chi-square distribution. There are ways to deal with that problem
such as using the approach proposed by Imhof (1961), but this is beyond the scope of
this paper.

Alternatively, we can truncate the summation of the objective function (18):

ḡ(θ)′Ω̂−1
pc ḡ(θ) =

v∑
i=1

1

µ̂i
< ḡ, ψ̂i >

2, (20)

where v < q and Ω̂−1
pc is the singular value decomposition of Ω̂−1 in which the inverse

of the (q − v) smallest singular values of Ω̂ in the diagonal matrix are set to zero.
Since by definition, ψ̂i associated with the largest singular value is obtained by solving

maxψ
̂V ar(ψ′[

√
T ḡ]) subject to ψ′ψ = 1, this method selects the most influential orthog-

onal combination of moment conditions. This principal component GMM (PCGMM)
approach is proposed by Doran and Schmidt (2006) as a way to improve the finite sam-
ple properties of GMM estimator when the number of conditions is large. The J-test of
PCGMM is asymptotically distributed as a Chi-squared distribution with (v − dim(θ))
degrees of freedom. Increasing v is therefore like adding moment conditions accordingly.

4 Monte Carlo Experiments and Empirical Illustra-

tion

4.1 Monte Carlo Design

In this section, we carry out several Monte Carlo experiments to investigate the finite
sample properties of different GMM estimators presented in the previous section under
certain controlled environment. In particular, the following four sets of simulations are
conducted: (1) Sensitivity analysis on the choice of moment conditions; (2) Analysis of the

3See Chaussé (2011) for a Monte Carlo study based on nonlinear moment conditions.
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efficiency with respect to variations of the model parameters and sample sizes; (3) Com-
parison across/within alternative GMM estimators, including standard GMM, RGMM,
RLGMM and PCGMM; (4) Examination of non-nested model mis-specifications. Each
simulation case is replicated 1000 times using R (“GMM” estimation based on Chaussé
(2010)). To test the convergence, we use random number generator to initialize the
starting parameter values.4

First, in order to make fair comparisons across different simulation cases, we set up a
benchmark model with parameter values, θ ≡ (β1, β2, λ, α, σu, ση, ρ1, ρ2, ρ3) = (0.10, 0.90,
-0.01, 0.95, 0.30, 0.20, -0.10, -0.30, 0.00). Most of the parameter values in the benchmark
are chosen to be close to some parameter estimates based on Takahashi, Omori and
Watanabe (2009). But given that Takahashi, Omori and Watanabe (2009)’s model does
not have ρ1 and ρ3, we choose some common empirical values for these two parameters
based on the data.5

Based on Propositions 1, 2 and 3, we can produce as many closed-form theoretical
moment conditions as needed. Following Andersen and Sorensen (1996), the general
guide to our initial moment selection is to focus on relatively lower-order moments with
small lags (no more than 5). Therefore, our simulation study relies on subsets of 36
moments. More specifically, the 36 moments consist of (a) 4 marginal moments for xt
and yt, i.e., E(x

i
t) with (i = 2, 4) and E(yjt ) with (j = 1, 2); (b) 15 auto-correlation

moments for xt and yt, i.e., E(x
i
tx
j
t+k) with (i = 1, 2; j = 1, 2 and k = 1, 2, 3, 4, 5) and

E(ytyt+k) with (k = 1, 2, 3, 4, 5); (c) 17 cross moments of xt and yt, i.e., E(x
i
ty
j
t+k) with

(i = 1, 2; j = 1, 2 and k = 1, 2, 3, 4, 5). We believe that these 36 moments are sufficient for
the GMM estimation of 9 unknown parameters and are sufficient for practical purposes.6

In the first group of experiments, we examine GMM estimation on various combi-
nations of the above set (or certain subsets) of moments. The experimental design is
presented in Table 1. More specifically, case 1a uses the full set (36) of moments in the
estimation, and in cases 1b to 1d, we pick some subsets of the moment conditions which
are commonly used in the literature, such as the first four marginal moments, autocor-
relations (with different orders and lags), and cross-moments (with different orders and
lags) etc. In the last set (1x*), the moment selection is determined by the corresponding
principal components (PC), which would effectively drop some “less important” moments
automatically according to the rank of the eigenvalues of the weighting matrix. Since
there is no prior information about the optimal number of non-zero eigenvalues, which is
still one of the open questions in the GMM literature, we analyze all the possibilities from

4We compare unbiased and biased starting values to verify the robustness of the estimation proce-
dures. The results show that the convergence is stable.

5There are no typical values for β1 and β2 (depending on the quality of the realized volatility measures)
in practice. In our case, we intentionally set β1 and β2 to be 0.10 and 0.90 to create some bias and scale
effects between the true volatility and RV proxy in the simulation. Theoretically, if the realized measure
is a good approximation for the true volatility, β1 is normally close to 0 and β2 is expected to be close
to 1. In addition, we found some numerical convergence problems with ρ3 according to our empirical
results. We suspect that there might be some identification issue with ρ3. Therefore, we set ρ3 to be
zero in the rest of the paper. Furthermore, we have also experimented with many alternative sets of the
parameters’ values, including most of the scenarios in the empirical section and some other cases. Those
results are available upon request.

6We have also experimented with some other larger sets of the moment conditions, such as extending
the lags up to 10 and increasing the power to higher orders. We found that the results are very similar
as those presented in this paper.
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23 to 35 (denoted as 23momPC to 35momPC). So in total, there are 13 sub-simulations
in 1x*.

Table 1: Monte Carlo Design #1.

Moments Selection # of Moments
(1a) Full Set 36
(1b) E(xit) (i=2,4), E(yit) (i=1,2), E(x2tx

2
t+1), 13

E(ytyt+1), E(x
n
t y

m
t+k)(n=1,2; m=1,2; k=0,1)

(1c) 13 moments in (1b), E(x2tx
2
t+2), 19

E(ytyt+2), E(x
n
t y

m
t+k)(n=1,2; m=1,2; k=2)

(1d) Full set without the moments with lag of k = 5 32
(1x*) Auto-Selection via Principle Component {23, 24, ..., 35}

Note: * denotes that the moments selection process has been done using Principal Component (PC)
approach proposed by Doran and Schmidt (2006).

In the second group of simulations, we investigate the performance of the GMM es-
timator under different parameter configurations and under different sample sizes. The
experiment characteristics are displayed in Table 2. Case 2a is set to be the benchmark
case in this group for comparisons. In Cases 2b and 2c, the sample size is set to 500,
and 3000 respectively. For Case 2d, β2 = 1, ρ1 and ρ3 equal to zero, and other param-
eters remain the same as the benchmark. With this particular parameter setting, our
model is reduced to the model presented in Takahashi, Omori and Watanabe (2009).
Lastly, case 2e only increases the variance (σ2

u) of the measurement equation to see the
model performance when the realized volatility measure is a noisy estimator of the latent
volatility.7

Table 2: Monte Carlo Design #2.

β1 β2 λ α σu ση ρ1 ρ2 ρ3 n
(2a) 0.10 0.90 -0.01 0.95 0.30 0.20 -0.10 -0.30 0.00 1500
(2b) 0.10 0.90 -0.01 0.95 0.30 0.20 -0.10 -0.30 0.00 500
(2c) 0.10 0.90 -0.01 0.95 0.30 0.20 -0.10 -0.30 0.00 3000
(2d) 0.10 1.00 -0.01 0.95 0.30 0.20 0.00 -0.30 0.00 1500
(2e) 0.10 0.90 -0.01 0.95 1.20 0.20 -0.10 -0.30 0.00 1500

Note: The bold numbers highlight the differences for each case comparing to the benchmark case, (2a).

In the third group of simulations, we investigate alternative GMM estimation proce-
dures discussed in section 3. We compare the performance of these GMM procedures on
the benchmark case. In particular, for standard GMM and PCGMM, we use the results
from simulation groups #1 and #2. For RGMM, we analyze the estimator with different
levels of the robustness parameter C. For RLGMM, we examine the performance with
respect to different regularization coefficients, ν.

7We have also done simulations by changing other parameter values. To save space, we do not report
those results in this paper. However, the results are available upon request.
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In the last group of experiments, we examine the potential mis-specification effects on
both the model and GMM procedures. In particular, two sub-experiments (nested and
non-nested mis-specifications) are conducted in this group. First, we generate the data
following the benchmark model (in case 2a) and estimate the model with the restrictions
ρ1 = 0 and ρ3 = 0, which are typically assumed in the literature. Second, we mis-
specify the data generating process (DGP) by using another popular model, the realized
GARCH, recently proposed by Hansen, Huang and Shek (2010). More specifically, we
simulate the data from a log-linear realized GARCH (1,2) process with the parameter
values taken from S&P 500 empirical estimates (see Table 3 in Hansen, Huang and Shek
(2010)). The DGP is

xt =
√
htϵt

log(yt) = −0.18 + 1.04 log(ht)− 0.07ϵt + 0.07(ϵ2t − 1) + ut

log(ht) = 0.04 + 0.70 log(ht−1) + 0.45 log(yt−1)− 0.18 log(yt−2)

where ϵt ∼ N(0, 1), and ut ∼ N(0, 0.382).

4.2 Monte Carlo Results

In the first group of experiments, various sets of moment conditions (see moments selec-
tion specification in Table 1) are used for estimating the model parameters. Since there
are as many as 19 sets of simulations in this group, we only report some representative
results. These results are presented in Table 3. According to the results, there is no
“best” (or “optimal”) combination of moments which uniformly dominates other cases
in terms of the bias and RMSE measures. However, selecting moments using the PC
technique in general produces slightly smaller bias and RMSE comparing to the corre-
sponding case without the PC-selection process (for example, 25mom versus 25momPC,
32mom versus 32momPC and etc). This is generally consistent with the findings estab-
lished in Doran and Schmidt (2006). We also find that 23momPC to 35momPC performs
similarly, in other words, there is no significant difference regarding the bias and RMSE.
Theoretically, given a large sample size, the empirical standard deviations from the sim-
ulation of GMM estimators should be close to the standard deviations based on the
asymptotic distribution. But, we observe some differences between these two measures.
For example, in the 13mom case, almost for all the parameters, we observe significant
gaps between the sample and asymptotic components. The Kolmogorov-Smirnov (K-S)
test is conducted to investigate the asymptotic normality property of the estimator. The
normality is rejected for almost all the parameter estimates from 13mom. This suggests
that the estimation based on 13mom is not reliable and the distribution of the estimates
is not well approximated by the asymptotic distribution. The inference based on the
results may therefore provide some misleading information. A possible reason is that
the information contained in the selected moments is not rich enough, which creates an
identification problem. In this group of experiments, we also conduct the J-test and
record the non-convergence rate for each case. The results are presented in Table 4. As
expected, as the number of moments increases, the empirical size of J-test deviates from
the nominal level. However, 23momPC to 33momPC produce reasonable J-test statistics.
Lastly, as the number of moments increases, the non-convergence rate drops. In general,
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the non-convergence rate is low except for the 13mom case where the failure rate is as
high as 16%, which is certainly not recommended for practical implementations.

Sensitivity experimental (group # 2.) results are summarized in Table 5.8 Consis-
tent with our expectation, when the sample size decreases/increases (see case 2b/2c),
both the bias and RMSE increase/ decrease uniformly. The difference between the sam-
ple standard error and the asymptotic standard error becomes smaller in general as the
sample size increases, which suggests consistency. Comparing between case 2d (Taka-
hashi, Omori and Watanabe (2009)’s model) and case 2a (benchmark), we find very
similar simulation results in terms of bias and RMSE. This result implies that even when
there are no correlations assumed (ρ1 = ρ3 = 0), the proposed methodology can still
capture the characteristics, and all parameter estimates exhibit good finite sample prop-
erties. Lastly, in case 2e, we increase the variance on the measurement equation (i.e,
the constructed realized volatility estimator is contaminated with some large unexpected
measurement errors). We find that the quality of the estimates in general becomes a
little worse (RMSE increases for all parameters). The K-S test statistics (K-S Stats)
and p-value (K-S p-value) are presented in the last two columns of Tables 5. Overall,
increasing the sample size improves the quality of the K-S measure. For example, when
the sample size is 500 (case 2b), the Normality is rejected for four parameter estimates,
while when sample size increases to 3000 (case 2c), the Normality cannot be rejected
for all parameter estimates. Figure 1 presents the distributions of the estimates over the
1000 replications via the QQ-plots for case 2a and 2c. As shown, most of the estimates fit
well with the 45-degree quantile line against the normal distribution. This reinforces the
K-S test results reported in Table 5. Overall, the estimators exhibit good finite sample
properties.

As mentioned, the third group simulations compare alternative GMM estimators.9

The comparisons are based on the estimation of the benchmark case (2a). In particu-
lar, three GMM estimators are investigated via simulations. We provide the results of
PCGMM with different moment truncations, RGMM with different robust parameters
and RLGMM with different regularization parameter values. These results are reported
in Tables 6-8, respectively. We have done experiments of PCGMM for various moment
truncations. We report the results for the truncations {23, 26, 29, 32, 33, 35}. In general,
the RMSE decreases as the number of moment conditions increases. But the RMSE sta-
bilizes around 32-33 truncation level. For RGMM, we have done experiments for a wide
range of C values. We present the RMSE measures from C = 1 to C = 6.5 in Table 7.
We can see that as C increases, the RMSE decreases and stabilizes around C = 5 for all
parameter estimates. Finally, the RLGMM is analyzed using ν = 0.001 to ν = 0.1. We
report the RMSE results for ν ∈ {0.001, 0.005, 0.01, 0.04, 0.07, 0.1} in Table 8. As one
can see, the RLGMM performs very similarly in terms of RMSE when ν is in the interval
of [0.001, 0.1]. But the difference is not very significant. RLGMM does not smooth the
inverse of the weighting matrix as drastically as PCGMM. The difference among the ν’s
is therefore not significantly big. Our results suggest that PCGMM performs generally
better than the alternatives. All three GMM estimation procedures will be applied in

8To save space, we only report the simulation results based on the full set of 36 moments. The results
for other combinations of the moment conditions are available upon request.

9We only report what we consider to be the most important results. All other tables are available
upon request.
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the empirical section.
In the last group of the simulations, we examine the performance under certain mis-

specified environment. In particular, we first simulate the data following the benchmark
case and estimate the model with the restrictions ρ1 = ρ3 = 0 using 33momPC and
36mom, respectively. The results are presented in Table 9. In general, 33momPC and
36mom produce very similar estimates for all parameters. The most interesting finding
is that under this misspecified case, the bias and RMSE of ρ2 become significantly larger
comparing to the benchmark case (see model 2a in Table 5). In particular, the bias of ρ2
increases from around 0.02 to 0.10 and the RMSE of ρ2 increases from around 0.086 to
0.120. This result implies that in practice ignoring ρ1 in the model will produce positive
bias on the leverage coefficient. This result also consistently supports our earlier argu-
ment that the assumption of ρ1 being zero may not be a reasonable one in practice. In
the second sub-experiment, we simulate the data following a completely different DGP
(realized LGARCH). Four different GMM procedures are applied to estimate the sim-
ulated data, namely 33momPC, RLGMM(ν=0.01), RGMM(C=5.5) and 36mom. Since
these two models do not share any common parameters, the standard measures (such
as bias and RMSE) can not be constructed for evaluation. Table 10 reports the mean,
median and sample standard deviation over 1000 replications for each GMM estimator.
From the Table 10, one can see that these four estimators produce similar estimates for
all parameters. It is worth mentioning that the true persistence in the realized LGARCH
is around 0.99, but, the estimated persistence is only around 0.93 under the GASV-RV.
This is consistent with the result of Carnero, Pena and Ruiz (2004) that the GARCH-like
models tend to generate larger persistence than SV-type models. To further evaluate the
performance of the proposed model under this mis-specified environment, we present the
moment comparisons in Table 11.10 Following the true DGP, we approximate the true
moments by using large sample simulations. Specifically, we take the mean values of each
moment condition over 10,000 replications with sample size of 50,000. These moment
values are used for the benchmark. Then, we plug the mean parameter estimates from
33momPC, RLGMM(v=0.01), RGMM(C=5.5) and 36mom into the theoretical moment
expressions to get the corresponding moment values. As we can see, GASV-RV model
can still produce moments quite close to the true ones. This indicates that even under
this mis-specified process, the GASV-RV model can capture many characteristics from
the data in terms of moment measures.

4.3 An Empirical Illustration

In this section, we provide an empirical illustration of the proposed methodology using
five company stocks and one index data, including AIG, CVX, JPM, PG, T and S&P
500. The data set consists of intra-daily high frequency (tick-by-tick) transaction prices
over the period roughly from 2003 to 2008. This data set has also been examined by
Hansen, Huang and Shek (2010). Therefore, for comparisons, we also estimate the com-
peting model (realized GARCH) proposed by Hansen, Huang and Shek (2010). Two
inputs for the model are used for the estimation. First, daily return is calculated as the

10As a note, only a subset of representative moments are reported in Table 11.
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logarithmic price differences.11 The second input of the model is the realized volatility
measure. In this paper, following Hansen, Huang and Shek (2010), we use the realized
kernel proposed by Barndorff-Nielsen, Hansen, Lunde and Shephard (2008, 2010). As
demonstrated in the aforementioned papers, the realized kernel estimator is robust to the
market microstructure noise and provides a better proxy for the latent volatility. Figure
2 presents the plots for the return and realized kernel estimates for S&P 500 index.

We apply PCGMM, RGMM and RLGMM estimation procedures to the GASV-RV
model. The empirical estimation results are reported in Table 12. In general, the empir-
ical estimates are consistent with some well-established findings in the literature. The
latent volatility process is highly persistent, i.e., α values are generally close to one, and
are all statistically significant. 12 As expected, the persistence under the SV structure is
slightly lower than the GARCH-like specification, see the results from Monte Carlo results
in section 4.2 (simulation group # 4) and Carnero, Pena and Ruiz (2004). The estimates
on β1 and β2 in the link equation are similar to those reported in Hansen, Huang and
Shek (2010), which reenforces the fact that the realized measure of the volatility based
on the kernel estimator is a fairly good proxy for the conditional variance. Especially, β2
is close to one, which suggests the realized kernel is roughly proportional (scale) to the
latent volatility. To capture the leverage effect, the realized GARCH model specifies a
leverage function (a Hermite polynomial in Hansen, Huang and Shek (2010)), while the
GASV-RV model assumes a general tri-variate correlation structure. The leverage coef-
ficient ρ2 is found to be negative and significant, which is consistent with SV literature.
Moreover, we find that estimates on ρ1 are negative and most of them are significant.
This empirically supports the argument in Diebold and Strasser (2010) that there may
exist a negative contemporaneous correlation between the return and the realized volatil-
ity noise. The J-test statistics in the last column show that the proposed model cannot
be rejected at 1% significance level for most of the empirical data (except SPY), and most
GMM methods. Furthermore, for comparison, we also estimate the GASV-RV model by
restricting ρ1 to be zero. The empirical results are provided in Table 13. We find that
all the parameter estimates behave similarly, except the leverage coefficient (ρ2). Specif-
ically, ρ2 becomes uniformly smaller (in absolute terms) and sometimes this correlation
becomes positive (although not significant), which is not consistent with the literature
findings. This phenomenon can be explained from the results based on our nested mis-
specification simulation (see Experiment #.4). In other words, if ρ1 is dropped out from
the model, the leverage effect is reduced. In addition, from the J-statistics, we observe
that the model without ρ1 is rejected for most of the cases.

Next, we want to make empirical comparisons on the performance of the realized
GARCH and GASV-RV models based on the sample data. It is difficult to conduct a
direct comparison between the two specifications although both models assume great
similarity of the structure. Therefore, we construct empirical moment evaluation for four
model specifications including GASV-RV, Restricted GASV-RV (RGASV-RV), realized

11In this paper, we adopt the open-to-close return definition to capture the market open activity, see
Hansen, Huang and Shek (2010). In addition, we have also used the close-to-close return in the empirical
estimation. These results are available upon request.

12As a note, we should be careful with these results when the J-test is rejected. As shown by Hall
and Inoue (2003), the asymptotic distribution of the GMM estimators under misspecified models can be
very different from the one under correctly specified models. Therefore, the size of all tests from models
in which the J-test is rejected are biased.
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LGARCH(1,2) and realized LGARCH(1,1) in Table 14. More specifically, we use the
data moments as the benchmark. The corresponding model moments from GASV-RV,13

LGARCH(1,1) and LGARCH (1,2) are calculated based on the empirical estimates from
each model.14 In general, GASV-RV behaves very similarly as the other two realized
LGARCH models in terms of moments, which indicates that both specifications are
competitive alternatives for practical applications. One interesting observation from
Table 14 is that both GASV-RV and LGARCH-RV underestimate the empirical kurtosis
of the returns. For instance, the empirical return kurtosis of JPM is 28.50, but the
implied kurtosis from either GASV-RV or LGARCH-RV is much smaller. One possible
reason is that under both model specifications, the innovation in the return process is
assumed to be Gaussian, which is not enough to accommodate the empirical heavy-
tail characteristics. This suggests that an alternative thick-tail distribution (such as t
distribution or mixture of normal distribution) would be more appropriate to capture the
extra kurtosis.15 We also find that in general, the proposed GASV-RV performs slightly
better than alternative models. Especially, the GASV-RV can capture the correlation
between the return and future realized volatility better.

5 Conclusion

This paper provides a good extension to the Monte Carlo study of Andersen and Sorensen
(1996) by further examining the GMM estimation of an extended SV model with realized
volatility measures. General closed form moment conditions are achieved and used in
alternative GMM procedures. Given a (relatively large) set of moments, different mo-
ment selection schemes with respect to the weighting matrix are investigated. The Monte
Carlo results show that selecting moments automatically via PCGMM and RLGMM pro-
cedures improves the efficiency of the GMM estimator (in terms of RMSE) more than the
arbitrary moment selections. In the case of badly conditioned weighting matrix of the
moments, RLGMM provides an efficient way to solve the estimation problem. We find
that the PCGMM, RGMM, and RLGMM procedures improve the quality of the GMM
estimator. Empirical applications to five stocks and one stock index are also provided
for illustration. PCGMM, RGMM and RLGMM produce similar empirical parameter
estimates. Besides the common findings in the literature that we can reproduce (such
as significant leverage effect), we find some negative correlations between the measure-
ment equation (realized volatility) and return process. Empirical results also show that
the GASV-RV and realized GARCH models are comparable specifications and behave
similarly in terms of moments.

Lastly, we want to summarize several issues which remain of interest in this paper.
The model fails to generate the observed excess kurtosis. How do we accommodate a
heavy tail distribution into the model specification without complicating the estimation

13Noticing that the empirical estimates across PCGMM, RGMM and RLGMM are similar, we only
construct the empirical moments based on PCGMM for demonstration.

14The realized LGARCH model is estimated by using the Quasi maximum likelihood (QML) method
proposed in Hansen, Huang and Shek (2010).

15The theoretical moments would be very different and complicated if one distribution is not Gaussian
in the tri-variate structure. One possible solution would be to use Copula-based method to accommodate
general dependence with specified marginals. We will leave this for future research.
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procedure? Can we find a more efficient way to choose moments and number of moment
conditions? What are the asymptotic comparisons between the realized GARCH and
realized GASV specifications? How do we achieve robust and reliable inference given the
model is misspecified? We will leave these for future research.
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Appendix

A Proofs

Proof of Proposition 1.
Based on the tri-variate Gaussian specification in (8), we first define the following two
MGFs:

M1 = E exp(r1ϵt + r2ut + r3ηt)

=

∫
ϵt

∫
ut

∫
ηt

exp(r1ϵt + r2ut + r3ηt)f(ϵt, ut, ηt)dηtdutdϵt

= exp

(
1

2
r21 +

1

2
r22σ

2
u +

1

2
r23σ

2
η + ρ1r1r2σu + ρ2r1r3ση + ρ3r2r3σuση

)
where f(ϵt, ut, ηt) is the tri-variate Gaussian density from (8). Similarly we have,

M2 = E exp(rht)

= exp

(
λr

1− α
+

σ2
ηr

2

2(1− α2)

)
Then,

E
(
xnt x

m
t+k

)
= E

[
exp

(
nht
2

)
ϵnt exp

(
mht+k

2

)
ϵmt+k

]
Given that ht follows an AR(1) process specified in (7), by recursive substitutions, we
can easily achieve ht+k as follows,

ht+k = λ
k∑
j=1

αk−1 + αkht +
k∑
j=1

αk−jηt+j−1

By substituting ht+k into the above expectation, we have,

E
(
xnt x

m
t+k

)
= E

[
exp

(n
2
ht

)
exp

(
mλ

2

k∑
j=1

αk−1 +
mαk

2
ht +

m

2

k∑
j=1

αk−jηt+j−1

)
ϵnt ϵ

m
t+k

]

= exp

(
mλ

2

k∑
j=1

αk−1

)
× E

[
exp

(
n+mαk

2
ht

)]
× E

[
exp

(m
2
αk−1ηt

)
ϵnt

]
× E

(
ϵmt+k

)
× E

(
m

2

k∑
j=2

αk−jηt+j−1

)

To work out the expectations in closed forms, we need to use the properties of the joint
MGFs defined above. Define ∂M(n)

∂r(n) ||r=a as taking the nth partial derivative of the mo-
ment generating function M with respect to the corresponding variable r and evaluating
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the whole resulting function at (r = a). Then, we have,

E

[
exp

(
n+mαk

2
ht

)]
=
∂M

(n)
2

∂r(n)
∥∥
r=(n+mαk)/2

E
[
exp

(m
2
αk−1ηt

)
ϵnt

]
=
∂M

(n)
1

∂r
(n)
1

∥∥
r1=0,r2=0,r3=mαk−1/2

E
(
ϵmt+k

)
=
∂M

(m)
1

∂r
(m)
1

∥r1=0,r2=0,r3=0

E

(
m

2

k∑
j=2

αk−jηt+j−1

)
= exp

(
m2σ2

η

8

k∑
j=2

α2(k−j)

)

Combining all the above closed-form expressions, we complete the proof of the Proposi-
tion 1.

Proof of Proposition 2.
Given yt and ht specifications in (6) and (7),

E(yt) = β1 + β2E(ht) = β1 + β2λ/(1− α)

E(y2t ) = β2
1 + β2

2E(h
2
t ) + E(u2t ) + 2β1β2λ/(1− α) + 2β2E(htut)

= β2
1 +

β2
2λ

2

(1− α)2
+

β2
2σ

2
η

1− α2
+ σ2

u + 2β1β2
λ

1− α

E(ytyt+k) = E(β1 + β2ht + ut)(β1 + β2ht+k + ut+k)

From (7), we have ht+k = λ

k∑
j=1

αk−1 + αkht +
k∑
j=1

αk−jηt+j−1. We substitute the ht+k

into the E(ytyt+k) expression and get,

E(ytyt+k) = β2
1 + 2β1β2λ/(1− α) + β2

2E

[
ht

(
λ

k∑
j=1

αk−1 + αkht +
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αk−jηt+j−1
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= β2
1 +

2β1β2λ

1− α
+

β2
2λ
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k∑
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αj−1 + β2
2α

k

(
σ2
η

1− α2
+

λ2

(1− α)2

)
+ β2ρ3σuση

Proof of Proposition 3.
Based on the tri-variate Gaussian specification in (8), we define two MGFs, M1 and M2,

20



given in the Proof of Proposition 1.

E(xnt yt+k) = E [exp(nht/2)ϵ
n
t (β1 + β2ht+k + ut+k)]

= β1E[exp(nht/2)ϵ
n
t ] + β2E

[
exp(nht/2)ϵ

n
t
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n
t ) + β2λ

k∑
j=1

αj−1E(xnt ) + β2α
kE
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2
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)
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]
E(ϵnt )
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[
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E(ϵnt ηt)

Based on the property of the MGF, we can work out each expectation in the above
expression as follows,

E
[
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2
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)
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]
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∂M2

∂r

∥∥
r=n/2
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(n)
1
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2
ht

)]
=M2

(
r =

n

2
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(n+1)
1
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(n)
1 ∂r3

∥r1=0,r2=0,r3=0

Combining all the above closed-form expressions, we complete the proof of E(xnt yt+k) in
the Proposition 3.

Similarly, we have,
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and,
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As a note, the E(xnt ) expression can be directly taken from the results in Proposition 1.

B Results

B.1 Monte Carlo Simulations
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Table 3: Different Moment Combinations (Selective) (Non-convergence rate for 13 to
36 moments are: 0.16, 0.002, 0.002, 0.002, 0.077, 0.0089, 0.097, 0.006, ), (J-test size for
13 to 36 moments are: 0.17, 0.13, 0.098, 0.08, 0.082, 0.19, 0.11, 0.17, )

Bias RMSE sample S-E K-S stats P-value (K-S)

β1

13mom 0.0227 0.0481 0.0424 0.0225 0.6920
17mom 0.0285 0.0513 0.0427 0.0279 0.4181
21mom 0.0323 0.0538 0.0431 0.0274 0.4417
25mom 0.0359 0.0566 0.0438 0.0319 0.2597
25momPC 0.0324 0.0544 0.0428 0.0339 0.2006
32mom 0.0630 0.0820 0.0525 0.0366 0.1362
32momPC 0.0571 0.0765 0.0508 0.0380 0.1106
36mom 0.0625 0.0821 0.0533 0.0510 0.0111

β2

13mom 0.0636 0.1100 0.0898 0.0562 0.0036
17mom 0.0509 0.0953 0.0806 0.0490 0.0165
21mom 0.0562 0.0983 0.0806 0.0477 0.0210
25mom 0.0615 0.1016 0.0809 0.0528 0.0076
25momPC 0.0527 0.0953 0.0719 0.0494 0.0151
32mom 0.1078 0.1425 0.0932 0.0616 0.0010
32momPC 0.1176 0.1593 0.1076 0.0478 0.0206
36mom 0.1083 0.1436 0.0943 0.0558 0.0040

λ

13mom -0.0090 0.0170 0.0144 0.0926 0.0000
17mom -0.0040 0.0085 0.0075 0.0437 0.0436
21mom -0.0045 0.0085 0.0072 0.0516 0.0098
25mom -0.0050 0.0086 0.0071 0.0477 0.0213
25momPC -0.0052 0.0075 0.0065 0.0400 0.0816
32mom -0.0079 0.0193 0.0176 0.2083 0.0000
32momPC -0.0069 0.0099 0.0072 0.0471 0.0237
36mom -0.0080 0.0181 0.0162 0.1964 0.0000

α

13mom -0.0345 0.0599 0.0490 0.0604 0.0014
17mom -0.0085 0.0191 0.0172 0.0341 0.1958
21mom -0.0085 0.0156 0.0131 0.0468 0.0251
25mom -0.0085 0.0147 0.0120 0.0358 0.1547
25momPC -0.0046 0.0127 0.0093 0.0357 0.1556
32mom -0.0123 0.0628 0.0616 0.3216 0.0000
32momPC -0.0127 0.0207 0.0163 0.0269 0.4622
36mom -0.0121 0.0595 0.0582 0.3245 0.0000
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MC Experiment #1. Results (Different Moment Combinations) [ Table 3 cont’ed ]

Bias RMSE sample S-E K-S stats P-value (K-S)

σu

13mom -0.0157 0.0326 0.0286 0.0729 0.0000
17mom 0.0004 0.0122 0.0122 0.0195 0.8429
21mom 0.0002 0.0101 0.0101 0.0346 0.1828
25mom -0.0003 0.0098 0.0098 0.0236 0.6344
25momPC -0.0002 0.0060 0.0061 0.0664 0.0003
32mom 0.0011 0.0101 0.0101 0.0169 0.9389
32momPC -0.0145 0.0489 0.0467 0.0692 0.0001
36mom 0.0004 0.0097 0.0097 0.0177 0.9137

ση

13mom 0.0132 0.0642 0.0629 0.0286 0.3847
17mom -0.0169 0.0331 0.0284 0.0322 0.2525
21mom -0.0179 0.0278 0.0213 0.0192 0.8561
25mom -0.0190 0.0273 0.0196 0.0234 0.6441
25momPC -0.0110 0.0237 0.0107 0.0261 0.5048
32mom -0.0339 0.0395 0.0203 0.0178 0.9109
32momPC -0.0301 0.0371 0.0217 0.0233 0.6506
36mom -0.0340 0.0393 0.0197 0.0241 0.6091

ρ1

13mom 0.0069 0.0590 0.0586 0.0232 0.6535
17mom 0.0129 0.0546 0.0531 0.0189 0.8662
21mom 0.0137 0.0551 0.0534 0.0187 0.8736
25mom 0.0135 0.0556 0.0540 0.0192 0.8535
25momPC 0.0023 0.0474 0.0474 0.0450 0.0348
32mom 0.0194 0.0545 0.0510 0.0210 0.7691
32momPC 0.0123 0.0520 0.0508 0.0301 0.3251
36mom 0.0188 0.0548 0.0515 0.0211 0.7665

ρ2

13mom 0.0234 0.1534 0.1517 0.1341 0.0000
17mom 0.0091 0.0989 0.0985 0.0449 0.0353
21mom 0.0158 0.0875 0.0861 0.0241 0.6092
25mom 0.0166 0.0858 0.0842 0.0178 0.9080
25momPC 0.0163 0.1059 0.1027 0.0574 0.0027
32mom 0.0190 0.0854 0.0833 0.0180 0.9023
32momPC 0.0229 0.0811 0.0882 0.0347 0.1788
36mom 0.0193 0.0859 0.0837 0.0181 0.8988
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Table 4: J-test and Non-Convergence Rate

Size = 0.01 Size = 0.05 Size = 0.1 Non-Convergence(%)
13mom 0.0670 0.1660 0.2610 0.1597
17mom 0.0380 0.1270 0.2010 0.0020
21mom 0.0280 0.0980 0.1690 0.0020
25mom 0.0230 0.0800 0.1490 0.0020
25momPC 0.0240 0.0820 0.1300 0.0775
32mom 0.0800 0.1910 0.2760 0.0089
32momPC 0.0410 0.1100 0.1840 0.0967
36mom 0.0730 0.1720 0.2620 0.0060
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Table 5: Monte Carlo Experiment #2. Results

Bias RMSE sample S-E K-S stats P-value (K-S)

β1

model2a 0.0626 0.0821 0.0531 0.0514 0.0101
model2b 0.1643 0.2078 0.1274 0.0677 0.0003
model2c 0.0370 0.0495 0.0328 0.0336 0.2094
model2d 0.0689 0.0901 0.0580 0.0474 0.0226
model2e 0.0651 0.0990 0.0746 0.0424 0.0549

β2

model2a 0.1090 0.1427 0.0922 0.0574 0.0028
model2b 0.2259 0.3436 0.2591 0.0877 0.0000
model2c 0.0694 0.0886 0.0551 0.0293 0.3568
model2d 0.1182 0.1549 0.1002 0.0567 0.0032
model2e 0.1933 0.2559 0.1678 0.0476 0.0215

λ

model2a -0.0075 0.0106 0.0075 0.0457 0.0309
model2b -0.0198 0.0302 0.0228 0.0947 0.0000
model2c -0.0043 0.0064 0.0048 0.0267 0.4727
model2d -0.0082 0.0112 0.0077 0.0459 0.0296
model2e -0.0035 0.0124 0.0118 0.1230 0.0000

α

model2a -0.0103 0.0160 0.0122 0.0466 0.0263
model2b -0.0245 0.0431 0.0355 0.0955 0.0000
model2c -0.0061 0.0101 0.0081 0.0199 0.8228
model2d -0.0125 0.0175 0.0123 0.0554 0.0043
model2e 0.0000 0.0334 0.0334 0.0807 0.0000

σu

model2a 0.0004 0.0097 0.0097 0.0183 0.8927
model2b -0.0074 0.0199 0.0185 0.0273 0.4708
model2c 0.0023 0.0074 0.0070 0.0167 0.9442
model2d 0.0002 0.0102 0.0102 0.0255 0.5329
model2e -0.0233 0.0360 0.0275 0.0207 0.7862

ση

model2a -0.0339 0.0392 0.0196 0.0259 0.5147
model2b -0.0493 0.0631 0.0395 0.0357 0.1730
model2c -0.0255 0.0289 0.0138 0.0293 0.3551
model2d -0.0310 0.0362 0.0186 0.0264 0.4889
model2e -0.0565 0.0757 0.0504 0.0264 0.4892

ρ1

model2a 0.0187 0.0548 0.0515 0.0205 0.7947
model2b 0.0201 0.0966 0.0945 0.0217 0.7541
model2c 0.0179 0.0412 0.0371 0.0192 0.8556
model2d 0.0139 0.0573 0.0556 0.0222 0.7089
model2e 0.0070 0.0304 0.0297 0.0156 0.9675

ρ2

model2a 0.0193 0.0859 0.0837 0.0177 0.9118
model2b 0.0265 0.1685 0.1665 0.0426 0.0613
model2c 0.0210 0.0620 0.0584 0.0393 0.0912
model2d 0.0181 0.0841 0.0821 0.0208 0.7777
model2e -0.0462 0.1981 0.1927 0.0728 0.0001
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Figure 1: QQ-Plots of the Estimates
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Table 6: RMSE for the PC-GMM

Trunc=23 Trunc=26 Trunc=29 Trunc=32 Trunc=33 Trunc=35
β1 0.0756 0.0746 0.0746 0.0765 0.0750 0.0748
β2 0.2180 0.1891 0.1685 0.1593 0.1331 0.1311
λ 0.0100 0.0102 0.0101 0.0099 0.0094 0.0092
α 0.0281 0.0253 0.0214 0.0207 0.0160 0.0153
σu 0.0665 0.0589 0.0524 0.0489 0.0134 0.0100
ση 0.0479 0.0410 0.0373 0.0371 0.0375 0.0378
ρ1 0.0881 0.0756 0.0672 0.0520 0.0553 0.0552
ρ2 0.1125 0.0993 0.0930 0.0811 0.0858 0.0859

Table 7: RMSE for the Robust-GMM

C = 2 C = 3 C = 3.5 C = 4 C = 5.5 C = 6
β1 0.1883 0.1236 0.1127 0.1054 0.0934 0.0908
β2 0.2572 0.2029 0.1929 0.1831 0.1616 0.1566
λ 0.0782 0.0113 0.0107 0.0105 0.0101 0.0100
α 0.0200 0.0160 0.0161 0.0167 0.0165 0.0166
σu 0.0429 0.0128 0.0116 0.0109 0.0101 0.0100
ση 0.0671 0.0479 0.0458 0.0442 0.0412 0.0405
ρ1 0.0604 0.0544 0.0543 0.0542 0.0541 0.0539
ρ2 0.0925 0.0858 0.0853 0.0853 0.0845 0.0842
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Table 8: RMSE for the Regularized-GMM

ν =0.001 ν =0.005 ν =0.01 ν =0.04 ν =0.07 ν =0.1
β1 0.0760 0.0741 0.0734 0.0723 0.0718 0.0716
β2 0.1389 0.1515 0.1615 0.1907 0.2082 0.2223
λ 0.0095 0.0092 0.0091 0.0088 0.0086 0.0084
α 0.0158 0.0170 0.0180 0.0207 0.0220 0.0228
σu 0.0113 0.0202 0.0272 0.0457 0.0569 0.0674
ση 0.0377 0.0375 0.0379 0.0409 0.0431 0.0448
ρ1 0.0547 0.0558 0.0577 0.0655 0.0712 0.0784
ρ2 0.0865 0.0872 0.0884 0.0933 0.0965 0.0990
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Table 9: Monte Carlo Experiment #4. Results (Nested mis-specification)
Bias RMSE sample S-E K-S stats P-value (K-S)

β1
33momPC 0.05660 0.07515 0.04946 0.04288 0.05114
36mom 0.05709 0.07548 0.04939 0.03838 0.10601

β2
33momPC 0.08743 0.12506 0.08947 0.05096 0.01127
36mom 0.08862 0.12494 0.08811 0.05198 0.00914

λ
33momPC -0.00596 0.00910 0.00688 0.04791 0.02058
36mom -0.00604 0.00918 0.00691 0.04431 0.03991

α
33momPC -0.00905 0.01587 0.01305 0.05452 0.00533
36mom -0.00917 0.01578 0.01286 0.04988 0.01401

σu
33momPC 0.00302 0.01365 0.01332 0.02371 0.62925
36mom 0.00188 0.00996 0.00978 0.02151 0.74566

ση
33momPC -0.03480 0.04019 0.02011 0.01856 0.88214
36mom -0.03445 0.03984 0.02003 0.01314 0.99533

ρ2
33momPC 0.09927 0.11904 0.06573 0.02048 0.79694
36mom 0.10071 0.11963 0.06461 0.02409 0.60928
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Table 10: Monte Carlo Experiment #4. Results (Non-nested mis-specification)

Mean Median sample S-E

β1

Full Set of Moments (36) -0.01730 -0.01612 0.08289
PCGMM (33) -0.01094 -0.01336 0.08105
RLGMM (ν = 0.01) -0.04295 0.01740 0.60583
RGMM (C=5.5) 0.00528 0.00581 0.07730

β2

Full Set of Moments (36) 1.10467 1.09871 0.08602
PCGMM (33) 1.10109 1.09556 0.08380
RLGMM (ν = 0.01) 1.14533 1.18676 0.42474
RGMM (C=5.5) 1.12299 1.12039 0.08678

λ

Full Set of Moments (36) -0.05565 -0.05004 0.03426
PCGMM (33) -0.04759 -0.04310 0.02883
RLGMM (ν = 0.01) -0.04516 -0.04277 0.02165
RGMM (C=5.5) -0.05885 -0.05306 0.03117

α

Full Set of Moments (36) 0.93075 0.93669 0.02791
PCGMM (33) 0.94056 0.94567 0.02599
RLGMM (ν = 0.01) 0.93692 0.93998 0.02131
RGMM (C=5.5) 0.92890 0.93522 0.02840

σu

Full Set of Moments (36) 0.26152 0.26213 0.01366
PCGMM (33) 0.28700 0.28957 0.02254
RLGMM (ν = 0.01) 0.22090 0.22510 0.04912
RGMM (C=5.5) 0.25749 0.25871 0.01481

ση

Full Set of Moments (36) 0.20595 0.20371 0.02886
PCGMM (33) 0.19140 0.18801 0.02956
RLGMM (ν = 0.01) 0.18900 0.19066 0.02860
RGMM (C=5.5) 0.20243 0.19910 0.02889

ρ1

Full Set of Moments (36) -0.24703 -0.24663 0.09035
PCGMM (33) -0.22666 -0.22759 0.08608
RLGMM (ν = 0.01) -0.30677 -0.28985 0.13602
RGMM (C=5.5) -0.25277 -0.24982 0.09074

ρ2

Full Set of Moments (36) -0.15144 -0.15085 0.11247
PCGMM (33) -0.16571 -0.16362 0.12421
RLGMM (ν = 0.01) -0.14187 -0.14446 0.15199
RGMM (C=5.5) -0.15505 -0.15286 0.11204
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Table 11: Monte Carlo Experiment #4. Results (Selective Moments Comparison)

Full PCGMM RLGMM RGMM Benchmark
Var(xt) 0.5247 0.5260 0.5610 0.5068 0.7721

Kurt(xt) 4.1197 4.1211 4.0189 4.2516 4.5033
Mean(yt) -0.9050 -0.8926 -0.8629 -0.9273 -0.6505
Var(yt) 0.4654 0.4675 0.4323 0.4323 0.5815

Kurt(yt) 2.9837 2.9765 2.9521 2.9056 2.8742
E(ytyt+1) 1.1793 1.1589 1.1039 1.2043 0.9005
E(ytyt+3) 1.1312 1.1171 1.0600 1.1563 0.8580
E(xtyt) -0.0450 -0.0454 -0.0491 -0.0447 -0.0600

E(xtyt+1) -0.0240 -0.0243 -0.0223 -0.0225 -0.0286
E(xtyt+3) -0.0208 -0.0215 -0.0195 -0.0209 -0.0204
E(xtyt+5) -0.0180 -0.0191 -0.0172 -0.0180 -0.0189
E(x2ty

2
t ) 0.4047 0.4056 0.4075 0.4050 0.4897

E(xty
2
t+1) 0.0356 0.0355 0.0314 0.0372 0.0213

E(x2ty
2
t+1) 0.4130 0.4120 0.4128 0.4125 0.4912
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B.2 Empirical Results

Figure 2: SPY Daily Return and Realized Kernel
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Table 12: Empirical Estimates

β1 β2 λ α σu ση ρ1 ρ2 J-test

AIG

Full
0.30 0.74 -0.01 0.96 0.34 0.27 -0.09 -0.32 46.48
(0.03) (0.04) (0.00) (0.01) (0.01) (0.03) (0.06) (0.11) (0.02)

PC
0.31 0.74 -4.5e-03 0.97 0.36 0.26 -0.07 -0.32 36.59
(0.03) (0.04) (0.00) (0.01) (0.01) (0.03) (0.06) (0.12) (0.06)

RG
0.29 0.75 -4.1e-03 0.96 0.33 0.28 -0.07 -0.31 33.84
(0.03) (0.04) (0.00) (0.01) (0.03) (0.03) (0.07) (0.11) (0.21)

R
0.30 0.74 -0.01 0.97 0.33 0.25 -0.11 -0.36 56.76
(0.02) (0.04) (0.00) (0.01) (0.01) (0.03) (0.06) (0.12) (0.00)

CVX

All
0.14 1.15 1.8e-03 0.93 0.29 0.16 -0.26 -0.26 51.38
(0.03) (0.09) (0.00) (0.01) (0.01) (0.02) (0.05) (0.07) (0.00)

PC33
0.15 1.13 1.1e-03 0.94 0.32 0.15 -0.22 -0.26 44.70
(0.03) (0.09) (0.00) (0.01) (0.01) (0.02) (0.04) (0.08) (0.01)

Reg(0.01)
0.12 1.22 3.5e-03 0.92 0.25 0.17 -0.26 -0.21 36.82
(0.04) (0.13) (0.00) (0.02) (0.05) (0.02) (0.09) (0.08) (0.12)

Rob(5.5)
0.14 1.19 2.3e-04 0.93 0.29 0.15 -0.26 -0.26 58.38
(0.03) (0.10) (0.00) (0.01) (0.01) (0.02) (0.04) (0.07) (0.00)

JPM

All
0.19 0.82 -0.01 0.95 0.31 0.27 -0.18 -0.27 43.60
(0.03) (0.06) (0.00) (0.01) (0.01) (0.03) (0.06) (0.09) (0.03)

PC33
0.20 0.80 -4.9e-03 0.96 0.35 0.25 -0.14 -0.29 30.18
(0.03) (0.06) (0.00) (0.01) (0.02) (0.03) (0.05) (0.10) (0.22)

Reg(0.01)
0.19 0.82 -4.1e-03 0.95 0.30 0.27 -0.16 -0.31 27.20
(0.03) (0.06) (0.00) (0.01) (0.04) (0.03) (0.07) (0.10) (0.51)

Rob(5.5)
0.19 0.83 -4.9e-03 0.95 0.31 0.27 -0.18 -0.26 44.51
(0.03) (0.06) (0.00) (0.01) (0.01) (0.03) (0.06) (0.09) (0.02)

PG

All
0.30 0.94 -0.06 0.89 0.29 0.25 -0.22 -0.37 60.57
(0.04) (0.07) (0.01) (0.02) (0.01) (0.02) (0.05) (0.06) (0.00)

PC33
0.30 0.92 -0.05 0.90 0.33 0.23 -0.20 -0.41 45.38
(0.04) (0.07) (0.01) (0.01) (0.01) (0.02) (0.04) (0.07) (0.01)

Reg(0.01)
0.29 0.95 -0.06 0.90 0.32 0.23 -0.15 -0.38 34.36
(0.05) (0.09) (0.01) (0.02) (0.03) (0.03) (0.05) (0.07) (0.19)

Rob(5.5)
0.30 0.91 -0.06 0.89 0.29 0.24 -0.18 -0.33 66.21
(0.04) (0.07) (0.01) (0.02) (0.01) (0.02) (0.05) (0.06) (0.00)

SPY

All
-0.09 0.88 -0.12 0.90 0.25 0.30 -0.42 -0.42 124.72
(0.07) (0.06) (0.02) (0.01) (0.01) (0.02) (0.06) (0.06) (0.00)

PC33
-0.06 0.90 -0.08 0.92 0.29 0.26 -0.34 -0.46 107.64
(0.06) (0.06) (0.02) (0.01) (0.01) (0.03) (0.05) (0.07) (0.00)

Reg(0.01)
0.01 1.03 -0.04 0.95 0.29 0.20 -0.26 -0.40 58.41
(0.04) (0.05) (0.01) (0.01) (0.04) (0.03) (0.06) (0.09) (0.00)

Rob(5.5)
-0.03 0.94 -0.09 0.91 0.25 0.26 -0.38 -0.41 116.17
(0.07) (0.07) (0.02) (0.01) (0.01) (0.02) (0.06) (0.06) (0.00)

T

All
0.24 0.81 0.01 0.93 0.34 0.28 -0.15 -0.35 38.21
(0.03) (0.05) (0.00) (0.01) (0.01) (0.03) (0.06) (0.09) (0.09)

PC33
0.25 0.79 0.01 0.94 0.37 0.26 -0.13 -0.37 33.89
(0.03) (0.05) (0.00) (0.01) (0.02) (0.03) (0.06) (0.10) (0.11)

Reg(0.01)
0.24 0.80 0.01 0.93 0.33 0.28 -0.16 -0.35 31.30
(0.03) (0.05) (0.00) (0.01) (0.03) (0.03) (0.07) (0.10) (0.30)

Rob(5.5)
0.25 0.80 0.01 0.93 0.34 0.28 -0.15 -0.35 36.33
(0.03) (0.06) (0.00) (0.01) (0.01) (0.03) (0.06) (0.10) (0.13)

Note: Bold numbers represent the significance above 10% level (for example, including 1% and 5%). The
Bold and Italic numbers on the last column represent that the J-statistics cannot reject the model at 1%
significance level.
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Table 13: Empirical Estimates (ρ1 = 0)

GMM β1 β2 λ α σu ση ρ2 J-test

AIG

All
0.293 0.734 -0.006 0.962 0.336 0.278 -0.191 48.842
(0.025) (0.035) (0.003) (0.008) (0.010) (0.030) (0.058) (0.012)

PC33
0.304 0.733 -0.005 0.967 0.365 0.261 -0.210 38.223
(0.025) (0.035) (0.003) (0.008) (0.013) (0.032) (0.064) (0.058)

Reg(0.01)
0.291 0.748 -0.004 0.961 0.330 0.280 -0.239 34.872
(0.027) (0.037) (0.003) (0.009) (0.028) (0.034) (0.081) (0.209)

Rob(5.5)
0.296 0.725 -0.008 0.964 0.332 0.256 -0.179 59.892
(0.024) (0.040) (0.003) (0.009) (0.010) (0.033) (0.063) (0.001)

CVX

All
0.148 1.090 0.003 0.928 0.292 0.167 0.027 85.830
(0.033) (0.087) (0.003) (0.014) (0.009) (0.018) (0.054) (0.000)

PC33
0.163 1.066 0.002 0.947 0.334 0.148 0.014 73.119
(0.033) (0.083) (0.002) (0.013) (0.014) (0.020) (0.062) (0.000)

Reg(0.01)
0.123 1.213 0.003 0.923 0.258 0.159 -0.048 51.241
(0.040) (0.134) (0.003) (0.021) (0.046) (0.023) (0.063) (0.007)

Rob(5.5)
0.156 1.145 0.001 0.933 0.294 0.148 0.042 95.711
(0.034) (0.102) (0.002) (0.015) (0.009) (0.019) (0.058) (0.000)

JPM

All
0.180 0.813 -0.005 0.950 0.308 0.263 -0.057 53.402
(0.028) (0.061) (0.004) (0.012) (0.009) (0.031) (0.050) (0.004)

PC33
0.193 0.792 -0.005 0.961 0.353 0.236 -0.090 37.630
(0.028) (0.061) (0.004) (0.012) (0.015) (0.033) (0.060) (0.066)

Reg(0.01)
0.189 0.815 -0.004 0.953 0.308 0.259 -0.181 32.638
(0.029) (0.061) (0.004) (0.013) (0.035) (0.034) (0.081) (0.293)

Rob(5.5)
0.180 0.820 -0.005 0.948 0.306 0.267 -0.046 53.224
(0.027) (0.065) (0.004) (0.013) (0.010) (0.031) (0.049) (0.004)

PG

All
0.276 0.880 -0.055 0.891 0.293 0.255 -0.167 83.158
(0.033) (0.059) (0.009) (0.015) (0.012) (0.022) (0.044) (0.000)

PC33
0.280 0.869 -0.046 0.911 0.331 0.235 -0.195 68.309
(0.033) (0.056) (0.009) (0.015) (0.014) (0.023) (0.049) (0.000)

Reg(0.01)
0.276 0.927 -0.050 0.901 0.321 0.236 -0.291 43.212
(0.038) (0.076) (0.011) (0.019) (0.027) (0.028) (0.062) (0.044)

Rob(5.5)
0.282 0.867 -0.057 0.892 0.293 0.252 -0.159 82.064
(0.034) (0.061) (0.010) (0.015) (0.010) (0.023) (0.043) (0.000)

SPY

All
-0.065 0.914 -0.058 0.934 0.263 0.234 -0.056 169.611
(0.046) (0.048) (0.011) (0.010) (0.010) (0.023) (0.044) (0.000)

PC33
-0.050 0.923 -0.047 0.946 0.300 0.209 -0.078 148.879
(0.046) (0.049) (0.010) (0.010) (0.013) (0.024) (0.049) (0.000)

Reg(0.01)
0.004 1.056 -0.026 0.961 0.289 0.181 -0.135 78.963
(0.036) (0.052) (0.007) (0.009) (0.035) (0.024) (0.062) (0.000)

Rob(5.5)
-0.014 0.960 -0.057 0.937 0.264 0.223 -0.061 158.296
(0.056) (0.056) (0.011) (0.010) (0.011) (0.023) (0.045) (0.000)

T

All
0.242 0.805 0.008 0.931 0.339 0.279 -0.161 45.602
(0.029) (0.054) (0.004) (0.012) (0.011) (0.026) (0.052) (0.026)

PC33
0.254 0.789 0.007 0.943 0.372 0.257 -0.181 40.361
(0.029) (0.053) (0.004) (0.012) (0.017) (0.028) (0.059) (0.036)

Reg(0.01)
0.241 0.801 0.009 0.935 0.337 0.274 -0.208 36.932
(0.031) (0.054) (0.004) (0.013) (0.027) (0.029) (0.077) (0.148)

Rob(5.5)
0.253 0.808 0.008 0.937 0.337 0.273 -0.157 42.478
(0.030) (0.060) (0.004) (0.012) (0.011) (0.028) (0.054) (0.051)

Note: Bold numbers represent the significance above 10% level (for example, including 1% and 5%). The
Bold and Italic numbers on the last column represent that the J-statistics cannot reject the model at 1%
significance level.
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Table 14: Empirical Evaluation between GASV-RV versus GARCH-RV

Moments Data GASV-RV RGASV-RV LGARCH (1,2) LGARCH (1,1)

Var(xt)

AIG 3.1346 1.2390 1.4019 1.8787 1.6636
CVX 1.5760 1.1426 1.1517 1.4670 1.5278
JPM 3.5840 1.4562 1.2982 9.9298 0.8106
PG 0.8210 0.6304 0.6947 0.8525 0.8354
SPY 0.8833 0.5517 0.6355 0.7774 0.8110
T 2.8238 1.5404 1.5416 1.4044 2.5776

Kurt(xt)

AIG 9.8994 7.5016 7.8777 5.0188 6.4528
CVX 4.3621 3.6221 3.6668 3.3380 3.6125
JPM 28.5051 6.3402 5.9266 10.1135 5.3895
PG 5.8355 3.9596 3.9656 3.4715 3.6782
SPY 8.0488 4.5231 4.5727 4.4107 5.3376
T 7.3966 5.3548 5.3171 4.4916 5.3364

Kurt(yt)

AIG 2.8758 2.9925 2.9888 2.9956 2.9943
CVX 3.1848 2.9986 3.0011 3.0345 3.0161
JPM 2.7852 3.0037 2.9943 2.9534 2.9979
PG 4.0287 2.9967 2.9967 3.0216 3.0120
SPY 3.0837 3.0022 2.9909 2.9997 2.9977
T 3.1894 2.9963 2.9964 3.0145 3.0050

Corr(xt, yt+1)

AIG -0.0948 -0.0722 -0.0423 -0.0101 -0.0120
CVX -0.1514 -0.0734 0.0081 -0.0577 -0.0195
JPM -0.0440 -0.0405 -0.0465 -0.0134 -0.0287
PG -0.0387 -0.1351 -0.1016 -0.0376 -0.0288
SPY -0.1192 -0.1087 -0.0333 -0.0411 -0.0285
T -0.0625 -0.0646 -0.0481 -0.0182 -0.0131

Corr(x2
t , yt)

AIG 0.4529 0.3417 0.3437 0.3518 0.3696
CVX 0.4010 0.2426 0.2358 0.3299 0.3518
JPM 0.2900 0.3451 0.3406 0.4040 0.4059
PG 0.3739 0.2583 0.2564 0.3392 0.3609
SPY 0.4001 0.3122 0.3166 0.3868 0.4068
T 0.4556 0.3195 0.3198 0.4023 0.4147
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