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Abstract

This paper develops a simple alternative estimation method for the GARCH mod-
els based on the empirical characteristic function. A set of Monte Carlo exper-
iments is carried out to assess the performance of the proposed estimator. The
results reveal that the proposed estimator has good finite sample properties and
is comparable to the conventional maximum likelihood estimator. The method is
applied to the foreign exchange data for empirical illustration.
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1 Introduction

Empirical research has shown that financial asset returns exhibit time-varying
volatility and volatility clustering. Consequently, time-dependent models have
gained much attention in the empirical finance literature. A benchmark model
family for capturing these features was developed by Engle (1982) and Bollerslev
(1986), and is popularly known as (Generalized) Autoregressive Conditional Het-
eroscedasticity (GARCH) model. In the GARCH specification, the underlying
conditional variance is modelled as a function of both the past squared errors and
past conditional variances. Empirical evidence shows that the GARCH model
captures the dynamic properties of financial data.

Methods for estimating parameters of GARCH models may be classified as
being either: (i) a likelihood based method, such as Maximum Likelihood Esti-
mation (MLE), Quasi-MLE (QMLE), see, for example, Bollerslev (1986) or (ii)a
moment-based method, such as Generalized Method of Moments (GMM), see,
for example, Rich, Raymond and Butler (1991). The purpose of this paper is to
provide an alternative estimator based on the Empirical Characteristic Function
(ECF). This estimator has several advantages. First, under certain weighting mea-
sures, a closed form objective distance function is available. This simplifies the
estimation procedure and can be easily implemented in practice. Second, the pro-
posed estimator has strong consistency and asymptotic normality properties, see
Heathcote (1977), Feuerverger (1990), Knight and Yu (2002). Third, the Fourier
inversion theorem implies a one-to-one mapping between the characteristic func-
tion (CF) and the likelihood function, which then means that the CF contains
the same amount of information as the distribution function. In addition, the CF
is always uniformly bounded due to the Fourier transformation. The likelihood
function is not always bounded over its parameter space in mixture models, such
as discrete mixtures of normal and switching regression models, which means the
MLE procedure may break down in practice. The CF based estimator does not
suffer from this problem. Specifically, Xu (2007) demonstrates that the CF based
estimator performs well when the MLE fails to converge in the estimation of dis-
crete mixture of normal and switching regression models. This paper illustrates
the estimation procedure via a conventional GARCH model , which deserves more
attention1 in future research.

This paper is organized as follows. Section 2 discusses the CF based estimator
in the general GARCH (p,q) specification. Section 3 conducts several Monte
Carlo simulations. Section 4 applies the proposed estimator to foreign exchange
rate (FX) data. Section 5 concludes the paper.

1For instance, if the data are drawn from different distributions (such as mixtures of normal)
in the GARCH settings, see Alexander and Lazar (2006), the MLE is not a suitable estimator
due to the singularities of the likelihood surface. Insisting on a likelihood based method may
lead to numerical instability (i.e., failure in convergence globally).
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2 GARCH Specification and CF-based Estima-

tor

Define Pt as the closing price on the trading day t. The daily return Xt is calcu-
lated as logarithmic closing price differences:

Xt = 100(log Pt − log Pt−1) t = 1, 2, ..., T. (1)

The normal GARCH (p,q) model assumes that the time-varying conditional vari-
ance of Xt is function of past information.

Xt|It−1 ∼ N(µ, σ2
t ) (2)

σ2
t = λ +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j (3)

where It−1 stands for the information set up to t − 1. The unknown parameter
vector is θ = (µ, λ, α1, ..., αp, β1, ..., βq). The stationarity and positivity conditions
require that

λ > 0; αi, βj ≥ 0 i = 1, ..., p, j = 1, ..., q
p∑

i=1

αi +

q∑
j=1

βj < 1.

The MLE is based on the following conditional normal density,

f(Xt|It−1) = (2πσ2
t )
− 1

2 exp

(
−(Xt − µ)2

2σ2
t

)
. (4)

The corresponding theoretical CF of (4) is defined as,

C(r, θ|It−1) = E(eirXt|It−1) = exp(iµr − 1

2
σ2

t r
2) (5)

where i =
√−1.

The empirical counterpart (ECF) associated with (5) is defined as,

Ct(r,Xt) = exp(irXt). (6)

The main idea of our proposed estimation strategy is to match continuously
the theoretical CF, (5), with its corresponding empirical component, (6), under
certain weighting measures. We refer to this estimation method as the continuous
ECF (CECF) procedure. The objective distance function is constructed as follows,

Dt(θ; X) =

∫
|Ct(r; Xt)− C(r; θ|It−1)|2w(r)dr. (7)

3



where w(r) is the weighting function, which ensures that the integral in (7) is well
defined.

In this paper, we use w(r) = exp(−br2), where b is a non-negative real num-
ber. This weighting measure2 retains certain properties of the Gaussian kernel.
With this weighting function, we are able to derive a closed form expression of
the objective distance function in (7), which simplifies estimation.

Proposition 1. If Xt is generated from (2) and (3) and the distance measure
based on the CECF is defined as in (7), then the closed form expression for (7) is
given by:

Dt(θ; X) =

√
π

b
+

√
π

b + σ2
t

− 2

√
π

b + 1
2
σ2

t

exp

(
−(Xt − µ)2

4b + 2σ2
t

)
. (8)

Proof: See the Appendix.

The implementation of CECF requires minimization of D(θ) =
T∑

t=1

Dt(θ; X)

with respect to the unknown parameters in the model.

Heathcote (1977) establishes the asymptotic normality of the CECF estimator,

√
T (θ̂ − θ) ∼ N(0, Λ−1ΩΛ−1) (9)

where Λ = E
(

∂D2(θ)
∂θ∂θ′

)
and Ω = E

(
∂D(θ)

∂θ
∂D(θ)

∂θ′

)
.

The parameter b may impact the efficiency of the estimation. Xu (2007) pro-
poses an efficient iterative procedure to estimate both θ and b. The idea is to
iteratively minimize certain measure (such as the trace or determinant) of the
covariance matrix for θ̂ with respect to b. However, in the GARCH settings, the
covariance matrix in (9) is not available in an analytical form and the iterative
procedure is not straightforward to apply. In the simulation section, we experi-
ment with different b values to assess the impact on efficiency. The results show
that in our cases, the effects are not very significant. In the empirical application,
we set the b value to be 1.

3 Experimental Design and Results

In this section, we conduct several Monte Carlo experiments (Exp.) to compare
the performance of the CECF estimator and the conventional MLE. Each experi-
ment is replicated 200 times. The characteristics of the simulations are presented
in Table 1.

2This weighting function form has been used in the literature, see Heathcote (1977), Knight
and Yu (2002) and Xu (2007).
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Table 1: Monte Carlo Experiments

Exp. µ λ α1 α2 β1 β2 b T
1 0.001 0.001 0.02 - 0.9 - 1 3000
2 0.001 0.001 0.02 - 0.9 - 1 1000
3 0.001 0.001 0.02 - 0.9 - 2 3000
4 0.001 0.001 0.02 - 0.9 - 3.5 3000
5 0.001 0.001 0.15 - 0.7 - 1 3000
6 -0.1 0.001 0.05 - 0.9 - 1 3000
7 0.001 0.001 0.01 0.02 0.9 - 1 3000
8 0.001 0.001 0.01 0.02 0.5 0.4 1 10000

The experiment results are reported in Table 2 (Exp. 1-4) and Table 3 (Exp.
5-8)3. We construct the measures of mean, bias and root of mean squared error
(RMSE) for comparison purposes4. First, we want to examine the performance of
the CECF estimator across different GARCH environments. Exp.1 and 2 differ
only in the sample size in each replication. We find that, in general, large sam-
ples produce smaller biases and RMSEs as expected. This raises some practical
concerns about the impact of the limited samples on the CECF estimation. In
the empirical section, we will discuss this issue in more details. As mentioned,
the parameter b may impact the efficiency of the CECF estimator. We conduct
Exp.1, 3 and 4 with different b values.5 We find that the means are all close to
the true parameter values and we observe no significant differences in terms of the
bias and the RMSE. This implies that the marginal contribution of parameter b
to the estimation efficiency is relatively small in our cases. For this reason, we set
b = 1 in the empirical estimation. In Exp.5 and Exp.6, we change some parameter
values. The results show that the CECF estimator generates stable estimates. It
is worth noting that in Exp.6, when µ is significantly different from 0, we observe
slightly bigger bias and RMSE. We find a similar pattern in the MLE estimates.
However, this problem is not serious in practice because it can be solved by trans-
forming the GARCH structure with a conditional mean. Exp.7 and Exp.8 are
carried out to assess the performance of the CECF estimator in GARCH (2,1)
and GARCH(2,2) models. As expected, the results are qualitatively unchanged
in terms of the bias and RMSE measures.

3The capital letters C and M in Table 2 and 3 stand for CECF and MLE respectively.
4In the working paper version, other measures were also constructed for more detailed com-

parison, such as range, standard deviation, coverage rate etc. To save space, the results are not
reported in this paper.

5In the working paper version, we also experiment with other b values across different GARCH
settings. The results are very similar to those reported in Table 1.
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Table 2: Simulation Results Comparison (Exp. 1 – 4)

µ λ α1 β1

Exp. 1
Mean-C -0.6e-04 0.0017 0.0219 0.8438
Mean-M -0.2e-04 0.0017 0.0223 0.8433
Bias-C -0.0011 0.0007 0.0019 -0.0569
Bias-M -0.0010 0.001 0.0023 -0.0567
Rmse-C 0.0022 0.0019 0.0112 0.1581
Rmse-M 0.0022 0.0020 0.0115 0.1639
Exp. 2
Mean-C 0.0001 0.0022 0.0294 0.7927
Mean-M 0.0004 0.0022 0.0293 0.7910
Bias-C -0.0009 0.0012 0.0094 -0.1073
Bias-M -0.0006 0.0012 0.0093 -0.1090
Rmse-C 0.0032 0.0026 0.0220 0.2257
Rmse-M 0.0034 0.0032 0.0233 0.2688
Exp. 3
Mean-C -0.3e-04 0.0016 0.0217 0.8463
Bias-C -0.0010 0.0006 0.0017 -0.0537
Rmse-C 0.0022 0.0018 0.0112 0.1524
Exp. 4
Mean-C -0.3e-04 0.0017 0.0218 0.8445
Bias-C -0.0010 0.0007 0.0018 -0.0555
Rmse-C 0.0022 0.0018 0.0110 0.1526

Second, the CECF estimator is compared to the conventional MLE in each
experiment. We find that in many cases, the MLE produces slightly smaller RMSE
than the CECF estimator. The reason is intuitive in that the MLE is the most
asymptotically efficient under certain regularity conditions. However, overall, the
CECF estimator performs as efficiently as the MLE with small differences between
their bias and RMSE. We also expect that the differences would decrease as the
sample size and the number of replications increase.

4 Empirical Application

The data contains 21 years (January 02, 1985 to December 30, 2005) of daily
trading prices for 4 FX series including Canadian dollar (CAD), Euro (EUR),
British pound (GBP) and Japanese yen (JPY). All of the currencies are in terms of
US dollars. The daily returns are constructed as the logarithmic price differences
in the usual way based on (1). Some summary statistics of the sample data are
presented in Table 4.

We apply the proposed CECF estimator and the MLE with the GARCH(1,1)
model to all four currencies. The empirical results are reported in Table 5.

Overall, the empirical results from Table 5 are consistent with the empirical
literature. We find that the GARCH coefficients are generally high (> 0.9) and
the sum of the ARCH and GARCH coefficients is close to one. This indicates
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Table 3: Simulation Results Comparison (Exp. 5 – 8)

µ λ α1 α2 β1 β2

Exp. 5
Mean-C -0.0002 0.0011 0.1439 - 0.6933 -
Mean-M -0.0001 0.0010 0.1479 - 0.6962 -
Bias-C -0.0012 0.0001 -0.0061 - -0.0067 -
Bias-M -0.0011 0.0000 -0.0021 - -0.0038 -
Rmse-C 0.0018 0.0003 0.0259 - 0.0599 -
Rmse-M 0.0017 0.0002 0.0191 - 0.0409 -
Exp. 6
Mean-C -0.0003 0.0013 0.0517 - 0.8853 -
Mean-M -0.0002 0.0011 0.0506 - 0.8933 -
Bias-C 0.0997 0.0003 0.0017 - -0.0147 -
Bias-M 0.0998 0.0001 0.0006 - -0.0067 -
Rmse-C 0.0997 0.0006 0.0138 - 0.0360 -
Rmse-M 0.0998 0.0005 0.0114 - 0.0302 -
Exp. 7
Mean-C 0.0002 0.0016 0.0071 0.0247 0.8580 -
Mean-M 0.0002 0.0014 0.0081 0.0240 0.8703 -
Bias-C -0.0008 0.0006 -0.0029 0.0047 -0.0420 -
Bias-M -0.0008 0.0004 -0.0019 0.0040 -0.0297 -
Rmse-C 0.0023 0.0025 0.0196 0.0222 0.1847 -
Rmse-M 0.0023 0.0015 0.0193 0.0223 0.1092 -
Exp. 8
Mean-C -0.0002 0.0012 0.0119 0.0210 0.3858 0.4953
Mean-M -0.0001 0.0012 0.0116 0.0197 0.4495 0.4370
Bias-C -0.0012 0.0002 0.0019 0.0010 -0.0142 -0.0047
Bias-M -0.0011 0.0002 0.0016 -0.0003 0.0495 -0.0630
Rmse-C 0.0017 0.0006 0.0073 0.0102 0.1535 0.1539
Rmse-M 0.0017 0.0005 0.0080 0.0112 0.3207 0.3090

Table 4: Summary Statistics of Sample Data

CAD EUR GBP JPY
Length 5371 5403 5372 5383
Mean -0.0025 0.0097 0.0077 -0.0140

Variance 0.1267 0.4577 0.4351 0.5068
Skewness 0.0795 -0.0328 0.0724 -0.5125
Kurtosis 5.4452 5.2681 6.8027 8.3715
Minimum -1.9887 -4.1874 -4.4760 -6.9075
Maximum 1.7964 4.8272 4.5529 4.2060

the high persistent pattern of the underlying conditional volatilities. A direct
comparison between our CECF estimator and the MLE shows that our proposed
estimation method generates comparable estimates to the MLE.

As mentioned earlier, in this empirical application section, we discuss a practi-
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Table 5: Empirical Estimates

µ λ α1 β1

CAD
CECF -0.0028 0.0012 0.0435 0.9453

(0.0001) (0.0002) (0.0014) (0.0033)
MLE -0.0014 0.0012 0.0526 0.9380

(0.0041) (0.0012) (0.0033) (0.0039)
EUR
CECF 0.0105 0.0124 0.0498 0.9168

(0.0006) (0.0035) (0.0009) (0.0060)
MLE 0.0087 0.0067 0.0437 0.9418

(0.0083) (0.0011) (0.0038) (0.0056)
GBP
CECF 0.0109 0.0045 0.0332 0.9512

(0.0004) (0.0024) (0.0017) (0.0043)
MLE 0.0098 0.0026 0.0358 0.9580

(0.0074) (0.0004) (0.0023) (0.0028)
JPY
CECF 0.2e05 0.0127 0.0339 0.9301

(0.0001) (0.0037) (0.0007) (0.0108)
MLE -0.0081 0.0147 0.0493 0.9221

(0.0090) (0.0012) (0.0032) (0.0048)

Note: The standard errors are in the parentheses.

cal issue regarding to the impact of limited sample sizes on the CECF estimation.
Following Ng and Lam (2006), we construct the correlation measures of the con-
ditional volatilities implied from different sample sizes with those from the whole
sample data, including {500, 700, 1000, 1500, 2000, 2500, 4000, whole sample}.
The results are in Table 6.

Table 6: Correlation Measures

500 700 1000 1500 2000 2500 4000 whole sample
CAD 0.6641 0.6598 0.7883 0.7804 0.8839 0.9024 0.9233 1.0000
EUR 0.9784 0.9775 0.9779 0.9896 0.9710 0.9818 0.9967 1.0000
GBP 0.9360 0.9768 0.9859 0.9809 0.9777 0.9948 0.9997 1.0000
JPY 0.8406 0.7981 0.7974 0.9143 0.9371 0.9715 0.9957 1.0000

Table 6 indicates that for CECF estimation of the conventional GARCH mod-
els, a sample size of 1500 is, in general, enough to generate comparatively high
correlations. However, it may not always be the case in practice.
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5 Conclusion

This paper provides a simple estimation method based on the CF for GARCH
models. Under the exponential weight function, the closed-form distance measure
between the CF and the corresponding ECF is available, which simplifies estima-
tion. Evidence from both Monte Carlo experiments and empirical applications
shows that the CECF estimator is a comparable estimator to the MLE in the
conventional GARCH settings. This estimation method deserves more attention
in the literature, especially when the regularity conditions do not hold for the
MLE, which is the case for mixture-GARCH models.

Appendix

Proof of Proposition 1

Noting that exp(irx) = cos(rx) + i sin(rx), (5) can be rewritten as:

exp(iµr − 1
2
σ2

t r
2) = cos(µr) exp(−1

2
σ2r2) + i sin(µr) exp(−1

2
σ2r2).

Similarly, the ECF, (6) can also be decomposed into two parts as,

exp(irXt) = cos(rXt) + i sin(rXt).

Then, it is straightforward to get,

|Ct(r; Xt)− C(r; θ|It−1)|2 = cos2(rXt) + sin2(rXt) + exp(−σ2
t r

2)

− 2 exp(−1
2
σ2

t r
2) [cos(µr) cos(rXt) + sin(µr) sin(rXt)] .

We evaluate the above expression in the one-dimensional integral with the exponen-
tial weighting function exp(−br2). Using the result, cos(x) = exp(ix)+exp(−ix)

2 , it is easy
to show:

∫ (
1 + exp(−σ2

t r
2)− 2 exp(−1

2
σ2

t r
2) cos(Xtr − µr)

)
exp(−br2)dr

=

√
π

b
+

√
π

b + σ2
t

− 2

√
π

b + 1
2
σ2

t

exp

(
−(Xt − µ)2

4b + 2σ2
t

)
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