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Abstract. This paper presents a simple two-factor model of nominal term structure
of interest rates, in which the log-price kernel has an autoregressive drift process and a
nonlinear GARCH volatility process. With these two state-variable processes, closed-
form solutions are derived for zero-coupon bond prices as well as yield to maturity for
a given time to maturity.

1. Introduction

This paper presents a simple two-factor model of the term-structure of interest rates
with the logarithm of the nominal discount factor (plus its long-term mean) and its
conditional variance serving as state variables.1 Motivated by prior research on interest-
rate processes,2 we model the dynamics of the state variables in the following way. The
first state variable, which is the logarithm of the nominal discount factor, is specified to
follow a first-order autoregressive, AR(1), process. The second state variable, which is
the conditional variance of the first state variable, is modeled as a nonlinear asymmetric
generalized autoregressive conditional heteroskedasticity (NGARCH) process. With
the above two state-variable processes, closed-form solutions are derived for the zero-
coupon bond price as well as the yield to maturity for a given time to maturity, with
the resulting yield to maturity being affine in the two state variables. Equivalently, the
yield is shown to be a function of the spread between the long-term and short-term
rates, the difference between conditional variance and its long-term mean, as well as
time to maturity. An alternative representation of the yield using another yield and its
conditional volatility is also derived in this paper. Finally, a simple calibration exercise
is performed to show that the proposed model is capable of producing a wide range
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of shapes of the yield curves and its volatility curves can also assume a wide range of
shapes other than that of the simple AR(1) model.

The remainder of the paper is organized as follows. In Section 2 we review the
GARCH process, its continuous-time version, and a rearranged discrete-time version.
The prices or yields of default-free bonds are derived and the functional dependence of
the short-term rate and the yields on the logarithm of the discount factor are presented
in Section 3. The importance of the selection of moments of both the volatility and
yield curves is stressed by presenting typical patterns of the yield and volatility curves
in Section 4. Section 5 contains concluding remarks. Finally detailed proofs for the
prices and yields formula are relegated to the Appendix.

2. The Model

Let ln mt be the lograithm of the nominal discount factor at time t. Let lt = ln mt+α,
where −α can be interpreted fruitfully as the long run mean for the short rate. Let σ2

t

be the conditional variance of the logarithm of discount factor between t and t + ∆,
where ∆ is the length of the equidistant time steps. This conditional variance is known
from the information set at time t. Next let lt and σ2

t be generated by the following
processes over ∆

lt+∆ = (1− ρ)lt + σtvt+∆, vt+∆
i.i.d∼N(0, 1) (1)

σ2
t+∆ = β0 + β1σ

2
t + β2σ

2
t (vt+∆ − γ)2, (2)

where vt+∆, conditional on information at time t, is a standard normal random variable
and i.i.d means ”identically and independently distributed as”.

The state variable lt in (1) follows an AR(1) process, while the conditional variance
σ2

t in (2) follows a nonlinear asymmetric GARCH (NGARCH) process, that has been
studied by Engle and Ng (1993) and Duan (1995). Note that this model is quite
similar to, but differs in some subtle ways from, the affine discrete-time GARCH models
proposed by Heston and Nandi (2000). While the Heston-Nandi model is designed
specifically to produce closed-form option prices, the specification in (1)-(2), like the
Engle-Ng model, is designed foremost to provide a good empirical fit to the interest-rate
data.

The variance process, σ2
t+∆, and the logarithm of the nominal discount factor, ln mt+∆,

are assumed to be correlated, such that

Covt

(
σ2

t+∆, ln mt+∆

)
= −2β2γσ3

t . (3)

Given β2 > 0, the negative parameter γ captures the positive correlation between the
discount factor and the volatility innovations. That is, γ controls the skewness or the
asymmetry of the distribution of the discount factor. Furthermore, the third power
term on σt accentuates the variation over time in the leverage effect. This feature of
the model is intended to enhance the model’s ability to fit the data to the extent that
the leverage effect figures prominently in the term structure of interest rate. Thus
our simple model accommodates two important stylized facts of the interest-rate data:
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volatility clustering and leverage effect. We also note that when γ = 0, the model
reduces to the GARCH model introduced by Bollerslev (1986).

Since vt+∆ and v2
t+∆ − 1 are uncorrelated by construction, the variance equation can

be rearranged in the following form

σ2
t+∆ − σ2

t = β0 − θσ2
t − 2β2γσ2

t vt+∆ + β2σ
2
t (v

2
t+∆ − 1),

where θ = 1− β1− β2(1 + γ2) with 1− θ measuring the persistence of the variance. As
the observation interval, ∆, shrinks to zero, a corresponding continuous-time system is
obtained as:

dlt = −ρ ltdt + σtdW1,t

dσ2
t = (β0 − θσ2

t )dt− 2β2γσ2
t dW1,t + β2σ

2
t dW2,t,

(4)

where (W1,t, W2,t) is a bi-variate standard Brownian motion. From this continuous-time
version, it is easy to see that the long-run variance of the logarithm of the discount factor
is β0/θ. That is, β0/θ is the unconditional variance or, equivalently, the unconditional
expectation of σ2

t , which is E[ σ2
t ] = β0/θ. Also, we impose a condition for covariance

stationarity such that E[ σ2
t+∆ ] = E[ σ2

t ] on the variance equation (2) via the following
parameter restrictions:3

β0 > 0 and θ > 0, ( i.e., β1 + β2(1 + γ2) < 1).

We also impose another conditions for stationarity such that E[ lt+∆ ] = E[ lt ] on the
mean equation (1) by requiring that the speed of the mean-reversion equation obeys
the additional restriction that 0 < ρ < 2.

The continuous-time model in matrix form can be expressed as

d

(
lt
σ2

t

)
=

( −ρ lt
β0 − θσ2

t

)
dt +

(
σt 0

−2β2γσ2
t β2σ

2
t

)(
dW1,t

dW2,t

)

= b dt +
(
σ·1 σ·2

) (
dW1,t

dW2,t

)

Next using the Itô-Taylor formula, the Euler-Maruyama approximation scheme of
the continuous-time version of (4) can be written as

(
lt+∆

σ2
t+∆

)
=

(
lt
σ2

t

)
+ b∆ +

2∑
j=1

σ·j(Wj,t+∆ −Wj,t)

=

(
lt
σ2

t

)
+

( −ρ lt
β0 − θσ2

t

)
∆ +

(
σt

−2β2γσ2
t

)
∆tW1 +

(
0

β2σ
2
t

)
∆tW2

3To ensure that the conditional variance is always positive further restrictions need to be imposed
on β1 and β2 in (2). Alternatively, we can formulate the conditional variance by exponential GARCH
(EGARCH) process (Nelson (1991)) instead of the NGARCH process (Equation (2)). The EGARCH
process ensures positivity of the conditional variance and also allows for leverage effects and fat tails.
However we choose the NGARCH process in this paper because it has been shown by the existing
studies to be able to improve the fit of the model substantially better than the GARCH process.
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where ∆tWj = Wj,t+∆−Wj,t is an independent normal distribution with zero mean and
variance ∆, i.e., N(0, ∆). Thus, another way of writing the equations in (1) and (2) is

lt+∆ = ρ∆lt + σtzt+∆, zt+∆
i.i.d∼N(0, ∆) (5)

σ2
t+∆ = β0∆ + δσ2

t − 2β2γσ2
t zt+∆ + β2σ

2
t z

2
t+∆, (6)

where ρ∆ = 1− ρ∆ and δ = 1− (θ + β2)∆ = 1− (1− β1 − β2γ
2)∆.

3. Zero-Coupon Bond Pricing and Yield to Maturity

It is well-known that the absence of arbitrage opportunities is characterized by the
existence of an equivalent martingale measure Q, so that the time-t price of a default-
free, zero-coupon bond maturing at time t + T , Pt,T , is given by

Pt,T = EQt

[
exp

(∫ t+T

t

ln ms ds
)]

. (7)

By [i] partitioning the time interval [t, t+T ] into subintervals of equal size; [ii] utilizing
the Euler-Maruyama approximation scheme in (5) and (6) and the tree property of
conditional expectations; [iii] employing the trapezoidal rule to approximate the definite
integral in the exponential function; and finally [iv] letting the subinterval size shrink
to zero, we arrive at an analytical approximation formula for the nominal price at time
t of the default-free, zero-coupon bond maturing at time t + T . The result is stated in
the following theorem.4

Theorem 1. If the yield factors follow the discrete stochastic differential equations in
(5) and (6), the nominal price at time t of a default-free, zero-coupon bond maturing at
time t + T , Pt,T , is given by

ln(Pt,T ) = −αT +
1− e−ρT

ρ
lt +

β0

2θρ2
f(T ) +

σ2
t − β0/θ

2ρ2
g(T ), (8)

where

f(T ) = f(T ; ρ) = T − 2
1− e−ρT

ρ
+

1− e−2ρT

2ρ

g(T ) = g(T ; ρ, θ) =
1− e−θT

θ
− 2

e−θT − e−ρT

ρ− θ
+

e−θT − e−2ρT

2ρ− θ
,

(9)

where θ = 1− β1− β2(1 + γ2). Furthermore, EQt [
∫ t+T

t
ln ms ds ] is given by the first two

terms of ln P (t, T ), −αT + 1−e−ρT

ρ
lt.

In a simple case of constant conditional variance, σ2 = β0/θ, its corresponding nom-
inal price, Pt,T , has an exact analytical formula of the following form:

ln(Pt,T ) = −αT +
1− e−ρT

ρ
lt +

σ2

2ρ2
f(T ).

4This is a generalization of the result obtained in Choi and Wirjanto (2007) for the general one-factor
model.
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Proof: See Appendix.

Note that the nominal yield to maturity is defined as

y
(T )
t = −T−1 ln(Pt,T ).

From Theorem 1, the yield to maturity can be written in terms of the state variables,
lt and σ2

t , as:5

y
(T )
t = α− 1− e−ρT

ρT
lt − β0

2θρ2T
f(T )− σ2

t − β0/θ

2ρ2T
g(T ), (10)

where f(T ) and g(T ) are defined in (9).

As the time to maturity, T , tends to zero, the nominal (instantaneous) short rate
reduces to the following expression

rt = lim
T→0

y
(T )
t = α− lt = − ln mt, (11)

where the second equality is obtained by applying the L’Hospital’s rule into functions
such as f(T )/T and g(T )/T . Thus, it follows as a simple computation using (4) that the
dynamics for the nominal short rate can be written as a system of stochastic processes

drt = −dlt = ρ(α− rt)dt− σtdW1,t

dσ2
t = (β0 − θσ2

t )dt− 2β2γσ2
t dW1,t + β2σ

2
t dW2,t.

(12)

which essentially captures the tendency for the interest rate to revert to its long-run
equilibrium level α at a speed ρ.

In a simple case of constant conditional variance, σ2 = β0/θ, it reduces to the
well-known Vasicek (1977) model and if the nominal price, Pt,T−t, is represented by
A(t, T )e−rtB(t,T ), where ln(A(t, T )) = −α(T − t) + α(1−e−ρ(T−t))/ρ + σ2f(T − t)/(2ρ2)
and B(t, T ) = (1− e−ρ(T−t))/ρ, then A(t, T ) and B(t, T ) satisfy the following system of
differential equations 




∂A

∂t
− ραAB +

1

2
σ2AB2 = 0

∂B

∂t
− ρB + 1 = 0.

Similarly, as the time to maturity tends to infinity, the nominal long-term rate is
defined as

y
(∞)
t = lim

T→∞
y

(T )
t = α− β0

2θρ2
. (13)

Note that it does not depend on the nominal short rate rt. Thus, combining the short-
term rate with the long-term rate, the nominal yield to maturity can be rearranged into
the following form

y
(T )
t = y

(∞)
t − 1− e−ρT

ρT
(y

(∞)
t − rt) +

g(T )

2ρ2T
(β0/θ − σ2

t ) +
β0

4θρ3T
(1− e−ρT )2, (14)

5This shows that the yield to maturity is an affine function of the two state variables (logarithm of
discount factor and conditional variance) defined in (1) and (2), in contrast to quadratic models (such
as Ahn, Dittmar and Gallant (2002)) in which the yield is a quadratic function of the state variables.
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which implies that the yield to maturity is obtained by adjusting the long-term rate
by the spread between the long-term and short-term rates, the difference between the
current and long-run variances (Note: this is a new feature resulting from the GARCH
effect on the variance equation), and the time to maturity.

Since the state variable, lt or rt,
6 is unobservable, when we estimate the model param-

eters or calibrate the model, the shortest yield, for example, y
(∆)
t for a ∆ time-period,

is an alternative state variable instead of lt or rt. To this end, we state the following
proposition:

Proposition 1. The mean of the logarithm of nominal discount factor, lt, can be

expressed in terms of the one-period ahead state variables, y
(∆)
t−∆ and σt−∆, as

lt =
√

∆σt−∆ψt − ρ∆(1− ρ∆)

1− e−ρ∆

(
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

)
(15)

where ψt is a standard normal distribution.

Proof: See Appendix.

Substituting rt with α− lt in the equation (15), we have another form of (14) which
is stated with its variance and kurtosis in the following theorem.

Theorem 2. If the yield factors follow the discrete stochastic differential equations in

(5) and (6), the yield to maturity, y
(T )
t , can be written in terms of the shortest yield,

y
(∆)
t−∆, and the volatility, σt−∆, as

y
(T )
t =

∆(1− ρ∆)

T

1− e−ρT

1− e−ρ∆

(
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

)

+ y
(∞)
t − 1− e−ρT

ρT
σt−∆

√
∆ψt +

g(T )

2ρ2T
(β0/θ − σ2

t ) +
β0

2θρ2

(
1− f(T )

T

)
,

(16)

where σ2
t = β0∆ + δσ2

t−∆− 2β2γσ2
t−∆

√
∆ψt + β2σ

2
t−∆∆ψ2

t and δ = 1− (1− β1− β2γ
2)∆

and its variance and kurtosis per ∆ time period are

Vart−∆

(
y

(T )
t

)
= Et−∆[ (ut)

2 ] = C2 + 2D2

K
(
y

(T )
t

)
=

Et−∆

[
(ut)

4
]

(
Vart−∆(y

(T )
t )

)2 =
3C4 + 2D4

(C2 + 2D2)2
< 3,

where ut = y
(T )
t − Et−∆[ y

(T )
t ] and

C =
σt−∆

√
∆

ρT

(
β2γg(T )σt−∆/ρ− (1− e−ρT )

)

D = − g(T )

2ρ2T
β2σ

2
t−∆∆.

Proof: See Appendix.

6From (11) and (13), it clearly does not matter whether we choose lt or rt.
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Note that Theorem 2 implies that the excess kurtosis of nominal yields to maturity
is negative when the logarithm of the nominal discount factor is specified as an AR(1)-
NGARCH(1,1) process.7

Before proceeding to the next section, we make a few more remarks about the features
of our proposed model vis-a-vis those of the existing models in the literature. First, for
a fixed maturity time T , the zero-coupon bond price at time t is given by

Pt,T−t = F (lt, σ
2
t , t) = exp

(
A(T − t) + Bl(T − t)lt + Bσ(T − t)σ2

t

)
, (17)

where

A(T − t) = −α(T − t) +
β0

2θρ2

[
f(T − t)− g(T − t)

]

Bl(T − t) =
1− e−ρ(T−t)

ρ

Bσ(T − t) =
g(T − t)

2ρ2

Then by the Itô formula, the zero-coupon bond-price process can be expressed as

dPt,T−t = DF (lt, σ
2
t , t)dt +

(
Bl(T − t) Bσ(T − t)

) (
σt 0

−2β2γσ2
t β2σ

2
t

)(
dW1,t

dW2,t

)
, (18)

where

DF (lt, σ
2
t , t) = F

(
−A′(τ)−B′

l(τ)lt −B′
σ(τ)σ2

t − ρBl(τ)lt + Bσ(τ)(β0 − θσ2
t )

+
1

2
B2

l (τ)σ2
t − 2β2γBl(τ)Bσ(τ)σ3

t +
1

2
β2

2(1 + 4γ2)B2
σ(τ)σ4

t

)

= F
(
α− lt − 2β2γBl(τ)Bσ(τ)σ3

t +
1

2
β2

2(1 + 4γ2)B2
σ(τ)σ4

t

)
(19)

with τ = T − t. This result shows that our model nests the quadratic term structure
model (QTSM) for γ = 0. This QTM is proposed by Constantinides (1992) and further
studied by Ahn, Dittmar, and Gallant (2002). More importantly, equation (17) shows
that our model is exponential-affine in the sense of Duffie and Kan (1996); however it
is not affine, since equation (19) shows that equation (3.8) in Duffie and Kan (1996) is
not satisfied.

Second, the instantaneous, arithmetic expected bond return for a fixed maturity time
T with τ = T − t is defined as R(t, τ) = Et[ dPt,τ ]/Pt,τdt. Then the arithmetic term
premium, defined as R(t, τ)− rt, is given by

R(t, T − t)− rt = β2Bσ(τ)σ3
t

[1

2
β2(1 + 4γ2)Bσ(τ)σt − 2γBl(τ)

]
(20)

which is obtained by taking the conditional expectation of (19) and using the result
that rt = α− lt. This result shows that, for a given maturity bond, the term premium
can switch signs, depending on the state variable and the conditional variance σ2

t .

7This should be interpreted as a short-term prediction only as a negative excess kurtosis of the
nominal yields to maturity in the long run is hard to reconcile with the empirical data of the interest
rates.
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Third, given the set up of our proposed model, it is almost too tempting to argue that
since equation (4) assumes that the drift of the short rate depends on the short rate only
and the drift of the variance depends on the variance only, and also since the variance
of the short rate is the only state variable, driving the variance of the variance, equation
(4) represents a restricted version of the well-known two-factor model of Longstaff and
Schwartz (1992) where both the short rate and the state variable Vt appears in the two
drift terms and the two diffusion terms. However a closer examination reveals that our
model is not nested within the Longstaff-Schwartz model. That is, although equation
(21) in the Longstaff-Schwartz model bears similarity to our equation (10), there are also
important differences between our proposed model and the Longstaff-Schwartz model.
This is best seen by differentiating equation (14) with respect to rt and use equation
(12) for drt and the second equation in (14) for dσt to obtain the sensitivity of the yield
with respect to the interest rate

dyT
t = f1(T )(α− rt)− f2(T )(β0 − θσ2

t )dt + [f3(T )σ2
t − f4(T )σt]dW1t − f5(T )σ2

t dW2t

where fj(T ) for j = 1, ..., 5 are coefficients which are functions of T ; that is, although
the drift term of our yield-to-maturity equation is the same as that in the Longstaff-
Schwartz model, the diffusion terms have different specifications. In particular, the
diffusion term in our model depends not only on σt as does the diffusion term in their
model, but it also depends on σ2

t . Moreover, the dynamics of the state variables, repre-
sented by equations (2) and (3) in Longstaff and Schwartz (1992) are clearly different
from the dynamics characterizing our model in (4).

4. The yield and Volatility Curves

In this section we provide the typical patterns of the yield and volatility curves of
the nominal yield-to-maturity of the AR(1) process (which is the Vasicek (1977) model)
as well as the AR(1)-NGARCH(1,1) process with the time-to-maturity and show the
importance of the moments of both the volatility and yield curves when we calibrate
the model to match market data.

As we noted in (10) or (16), parameters affecting the shape of the yield curves are
the current volatility, σt, the long-run variance, β0/θ, the AR(1) coefficient, ρ, the re-
produced parameter from a stationary restriction on the conditional variance equation,

θ, the current short-term yield, y
(T )
t−∆, the long-run short-term yield, E[ y(∆) ], and the

long-term spread, α. Figures 1 – 4 present the typical patterns of the yield and volatility
curves of the AR(1) or AR(1)-NGARCH(1,1) processes and their related functions such
as f(T ; ρ) and g(T ; ρ, θ) defined in Theorem 1 and are calculated from the parameter
values set in Table 1. For the random innovation at t−∆, we assume that ψt ∼ N(0, 1)
have 7 possible values: [−2, −1, −0.5, 0, 0.5, 1, 2 ].

The left (right) panels of Figures 1 and 3 present the yield curves for the AR(1)
(AR(1)-NGARCH(1,1)) process and the left panels of Figures 2 and 4 depict the volatil-
ity curves of the AR(1) process, the AR(1)-NGARCH(1,1) process, and the market data
for the yield volatility of On-the-Run Treasuries in 1987 presented in Fabozzi (1993) -
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Parameters ρ θ σt β0/θ y
(T )
t−∆ E[ y(∆) ] α γ

1(a) 0.12 0.08 0.012 0.02 0.02 0.05 0.07 -0.56

1(c) 0.25 0.02 0.02 0.015 0.04 0.05 0.08 -2

1(e) 0.05 0.03 0.01 0.015 0.035 0.055 0.07 -0.6

3(a) 0.2 0.25 0.01 0.02 0.03 0.05 0.06 -0.4

3(c) 0.07 0.1 0.02 0.022 0.05 0.04 0.07 -0.5

3(e) 0.16 0.01 0.02 0.01 0.05 0.035 0.07 -0.6

Table 1. Parameter Values for Figures 1– 4 This table provides
parameter values for Figures 1–4. Since θ = 1 − β1 − β2(1 + γ2) is a
function of β1 and β2, given by γ, there are infinite pairs (β1, β2) satisfying
θ; thus, we impose the restriction that β1 = (1− θ)/6.

See in particular Exhibit 22-10 in Fabozzi (1993). Finally, the right panels of Figures 2
and 4 present the function, f(T ; ρ), which appears in both processes and the function,
g(T ; ρ, θ), which appears only in the NGARCH processes. These panels illustrate the
effects of the magnitude of function values in f(T ) and g(T ) on the volatility curve.

Since the random part in (16) at time t−∆ can be written as

Cψt + Dψ2
t ,

where C = σt−∆

√
∆

ρT

(
β2γg(T )σt−∆/ρ−(1−e−ρT )

)
and D = − g(T )

2ρ2T
β2σ

2
t−∆∆, the volatility

of yield curve, which we call a volatility curve, is calculated as

√√√√Vart−∆

(y
(T )
t − y

(T )
t−∆

y
(T )
t−∆

)
=

√
C2 + 2D2

y
(T )
t−∆

.

Figures 1a–1b, 3a–3b, and 2a and 4a illustrate that although the yield curves are uni-
formly upward-sloping, the volatility curves take different shapes depending on whether
the corresponding model is an AR(1) process or an AR(1)-NGARCH(1,1) process. In
addition they show that the yield curves retain their upward-sloping shape independent
of the sign of the shock. However, Figures 1c–1d and 2c illustrate that the yield curve
can change its shape when the shock is negative. Furthermore, Figures 1e–1f and 2e
show that although the model parameter values are kept the same, except for the pa-
rameter value of γ, the yield curves take different shapes. The volatility curves display
even more strikingly different shapes. In this regard, the AR(1)-NGARCH(1,1) process
has a volatility curve, which has been shown empirically to have fitted the observed
volatility curve very well. Thus, we have demonstrated that the NGARCH model for
the conditional variance of interest rates is a necessary component of the model and it
is important that we take into account the moments of the volatility and yield curves
in calibrating the model to match the market data. Finally, Figures 3c–3d, 3e–3f, and
4c and 4e produce the results for the case of the downward-sloping yield curves.
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5. Conclusions

This paper presented a simple model of the nominal term structure of interest rates.
The proposed model was derived with specific considerations for data availability and
model tractability as discussed so eloquently in Dai and Singleton (2003). To achieve
this objective, we established a linkage between the discrete-time version of the model
and its continuous-time counterparts. This was done in two steps. First, the nominal
discount factor was selected as a state variable of the model. Second, the logarithm
of the discount factor was specified as an AR(1) process with its conditional variance
following an NGARCH process. This particular modeling strategy has several appeals:
[i] the NGARCH process has been shown in the literature to have fitted market data
empirically rather well; [ii] it allows mathematical tractability in deriving the formula
for the prices or yields-to-maturity (yields) of default-free bonds; [iii] the functional
dependence of the short-rate on this state variable was easily obtained from the es-
tablished linkage between the discrete-time model and its continuous-time counterpart.
In other words, the model tractability, which is obtained through the linkage between
the discrete-time GARCH models and the bivariate diffusion processes as limiting cases,
was exploited to show that the short-term rate is linearly dependent on the logarithm of
this state variable in the limit; [iv] in a simple case of constant conditional variance, the
discrete-time term-structure model reduces to the well-known Vasicek (1977) model;
and finally [v] the comparison between the yield volatility of On-the-Run Treasuries
with the volatility curve of our model indicates that it is important to take into account
the moments of both the volatility and yield curves in calibrating the model for the
purpose of matching with the real data.

The obvious next step is to actually establish the empirical advantages of the proposed
model vis-a-vis the existing comparable models based on real data evaluation. To do so,
we would first need to carefully discuss several critical statistical issues such as: what
are the conditional densities of the state variables in this model? Which estimation
technique is most appropriate to the model? What restrictions on the parameters of
the model should be imposed to rule out arbitrage opportunities? What econometric
issues may be involved when the state variables of the model are unobservable?, and
so on. Moreover, an assessment of the empirical goodness-of-fit of the proposed model
may also prove worthwhile. In particular, it is useful to analyze the models ability to
capture the historical movements in the yields and volatilities for a full sample as well as
for different subsamples, and perform across models comparisons. In this regard, since
the proposed model in this paper is a two-factor model, good candidates for the model
comparisons include a two-factor affine Gaussian model (with constant volatility), and
Longstaff and Schwartz (1992, using interest rate and its volatility as state variables).
Other multifactor models known to have empirical support, e.g. Ahn, Dittmar and
Gallant (2002), and Dai and Singleton (2000), may also serve as good candidates for
this model comparison exercise. These empirical exercises would, among other things,
allow us [i] to better asses how well our model actually capture the historical movement
in yields, [ii] whether it is able to produce different shapes of the yield curves, [iii]
whether the model’s parameters can easily be identified, and [iv] which parameters of
the model actually govern the dynamics of the state variables. All of these empirical
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questions need to be answered satisfactorily before the empirical appeal of the proposed
model can be truly established.
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Appendix

Proof of Theorem 1:

By partitioning the interval [t, t + T ] into t0 = t < t1 < · · · < tn = t + T with

tj = t + j∆ and ∆ = T
n
, we compute the conditional expectation of exp

(∫ t+T

t
ln ms ds

)
under the equivalent martingale measure Q. For simplicity, we denote ltj , σtj , ztj , and

EQtj by lj, σj, zj, and Ej, respectively for j = 0, 1, . . . , n− 1 and assume that t = 0.

The trapezoidal rule is employed to approximate the definite integral in the exponent
function of (7)), so that the integral part can be written in terms of lt instead of ln mt

∫ t+T

t

ln ms ds ≈ −αT + ∆In,

where In = l0/2+ l1 + · · ·+ ln−1 + ln/2. It follows as an application of the tree property
of conditional expectation that

exp(δT )Pt,T ≈ E0 E1 · · ·En−1

[
e∆In

]
.

To compute the conditional expectation of e∆In , it is necessary to represent lj in terms
of random variables {zj}j=1,...,n and obtain as an application of induction arguments on
AR(1) process that

lj = ρj
∆l0 + ρj−1

∆ σ0z1 + · · ·+ ρ∆σj−2zj−1 + σj−1zj

for j = 1, . . . , n, where ρ∆ = 1 − ρ∆. A simple computation using the above formula
yields the result that

In = an+1l0 +
n∑

j=1

an−j+1σj−1zj, (21)

where a1 = 1/2, aj =
1−ρj−1

∆

1−ρ∆
+

ρj−1
∆

2
for j = 2, . . . , n, and an+1 = 1

2
+ ρ∆

1−ρn−1
∆

1−ρ∆
+

ρn
∆

2
. To

compute the conditional expectations, we stated a well-known result in the following
lemma.

Lemma A1. Suppose that ψ is a standard normal distribution, i.e., ψ ∼ N(0, 1).
Then we have

E[ eb
√

Tψ] = e
1
2
b2T .

Furthermore, the moment generating function of Q(ψ) = (ψ − w)2 is

E[ evQ(w) ] = exp
(−w2

2

) 1√
1− 2v

exp
( w2

2(1− 2v)

)
(22)

First, applying the first equation of Lemma A1 into the case a1σn−1zn in In, we have

En−1

[
e∆a1σn−1zn

]
= e∆3a2

1σ2
n−1/2,

which implies that

ln En−1[ e
∆In ] = ∆In−1 + ∆3a2

1σ
2
n−1/2
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where

Ik = an+1l0 +
k∑

j=1

an−j+1σj−1zj

for k = 1, 2, . . . , n. Using the recursive formula in (6) with t = tn−2, the random part
in ln En−1[ e

∆In ] at time tn−2 is written as

In−1,r = ∆
(
a2σn−2zn−1 + ∆2a2

1σ
2
n−1/2

)

= vn−1(ψn−1 − wn−1)
2 − vn−1w

2
n−1 +

∆3

2
a2

1(β0∆ + δσ2
n−2),

where vn−1 = β2∆
4a2

1σ
2
n−2/2, wn−1 = [γ−a2/(β2∆

2a2
1σn−2)]/

√
∆, and ψn−1 = zn−1/

√
∆

is a standard normal distribution.

Second, applying (18) into vn−1(ψn−1 − wn−1)
2 in In−1,r with vn−1 and wn−1 and the

tree property of conditional expectation, we have

ln En−2[ e
∆In ] = ∆In−2 +

∆3

2
a2

1(β0∆ + δσ2
n−2)

+
w2

n−1

2

(
1/(1− 2vn−1)− 1− 2vn−1

)− 1

2
ln(1− 2vn−1).

As a subinterval size, ∆, shrinks, vn−1 is sufficiently small. Thus we can approximate
ln(1− 2vn−1) by −2vn−1 and 1/(1− 2vn−1)− 1− 2vn−1 = 4v2

n−1/(1− 2vn−1) by 4v2
n−1,

and then obtain

ln En−2[ e
∆In ] ≈ ∆In−2 +

∆3

2
a2

1(β0∆ + δσ2
n−2) + 2v2

n−1w
2
n−1 + vn−1

= ∆In−2 +
∆4

2
β0a

2
1 +

∆3

2
a2

1σ
2
n−2

(
δ + β2∆ + (β2γa1σn−2∆

2 − a2/a1)
2
)

≈ ∆In−2 +
∆4

2
β0a

2
1 +

∆3

2
a2

1σ
2
n−2

(
δ + β2∆ + (a2/a1)

2
)

= ∆In−2 +
∆4

2
β0a

2
1 +

∆3

2
σ2

n−2b2,

where the second approximation comes from approximating β2γa1σn−2∆
2 − a2/a1 by

a2/a1, since a2 = 1 + ρ∆/2 and a1 = 1/2 implies that a2/a1 = O(1), and b2 = (δ +
β2∆)b1 + a2

2 with the initial value b1 = a2
1.

Similarly, using the recursive formula in (6) with t = tn−3, the random part in
ln En−2[ e

∆In ] at time tn−3 is written as

In−2,r = ∆
(
a3σn−3zn−2 + ∆2b2σ

2
n−2/2

)

= vn−2(ψn−2 − wn−2)
2 − vn−2w

2
n−2 +

∆3

2
b2(β0∆ + δσ2

n−3),

where vn−2 = β2∆
4b2σ

2
n−3/2, wn−2 = [γ− a3/(β2∆

2b2σn−3)]/
√

∆, and ψn−2 = zn−2/
√

∆
is a standard normal distribution. Thus, we have a similar computational structure as
in the case of t = tn−2. That is, we have

ln En−3[ e
∆In ] = ∆In−3 +

∆4

2
β0(b1 + b2) +

∆3

2
σ2

n−3b3,
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where bj = (δ + β2∆)bj−1 + a2
j = (1 − θ∆)bj−1 + a2

j with the initial value b1 = a2
1 for

j = 2, . . . , n.

Continuing this procedure, we have

ln E1[ e
∆In ] = ∆I1 +

∆4

2
β0(b1 + b2 + · · ·+ bn−2) +

∆3

2
σ2

1bn−1.

Finally,

ln E0[ e
∆In ] = an+1l0∆ +

∆4

2
β0(b1 + b2 + · · ·+ bn−2)

+ ln E0[ e
∆(anσ0z1+∆2bn−1σ2

1/2) ]

= an+1l0∆ +
∆4

2
β0(b1 + b2 + · · ·+ bn−1) +

∆3

2
σ2

0bn.

(23)

To obtain the convergence result as n approaches +∞, we need several computational
steps. Recall that the number e is defined as the limit of the sequence, i.e.,

lim
n→∞

(
1 +

1

n

)n
= e,

which implies that for ∆ = T/n,

lim
n→∞

(
1− c∆

)n
= e−cT .

Applying this result to a sequence, we have the following lemma.

Lemma A2. Given the sequence {aj}, if a sequence {bn} is described by b1 = a2
1

and the recursive relationship bj = (1 − θ∆)bj−1 + a2
j for j = 2, . . . , n, then bj can be

explicitly written as

bj =

j∑
i=1

a2
i (1− θ∆)j−i.

Also, its partial sum is
n−1∑
j=1

bj =
( n∑

j=1

a2
j − bn

)/
(θ∆). (24)

In particular, if aj = 1
ρ∆

+ cρρ
j−1
∆ with cρ = 1

2
− 1

ρ∆
for j = 1, 2, . . . , n,

∆3bn =
1− (1− θ∆)n−1

ρ2θ
+ (

∆2

4
− 2cρ∆

ρ
− c2

ρ∆
2)(1− θ∆)n−1∆

+
2cρ∆

ρ

(1− θ∆)n − (1− ρ∆)n

ρ− θ
+ c2

ρ∆
2 (1− θ∆)n − (1− ρ∆)2n

2ρ− θ − ρ2∆

Thus, its limit, limn→∞ ∆3bn, is g(T ; ρ, θ)/ρ2, where

g(T ; ρ, θ) =
1− e−θT

θ
− 2

e−θT − e−ρT

ρ− θ
+

e−θT − e−2ρT

2ρ− θ

Also, we have

∆3

n∑
j=1

a2
j =

∆n

ρ2
+

2cρ∆

ρ2
(1− ρn

∆) + c2
ρ∆

2 1− ρ2n
∆

2ρ− ρ2∆
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and its limit, limn→∞ ∆3
∑n

j=1 a2
j , is f(T ; ρ)/ρ2, where

f(T ; ρ) = T − 2
1− e−ρT

ρ
+

1− e−2ρT

2ρ

where cρ = 1/2−1/(ρ∆), hence, limn→∞ ∆cρ = −1/ρ. Finally, an+1∆ = (1
2
+ρ∆

1−ρn−1
∆

1−ρ∆
+

ρn
∆

2
)∆ has the limit

1− e−ρT

ρ
.

Substituting the relationship in (20) into (19) and rearranging terms give us the result
that

ln E0[ e
∆In ] = an+1l0∆ +

β0

2θ
∆3

n∑
j=1

a2
j +

σ2
0 − β0/θ

2
∆3bn.

Thus, as the observation interval approaches zero, the desired result (8) is obtained as
a simple application of Lemma A2.

Also, by the linear property of the expectation operator and the i.i.d property of
{zj}, it is easy to see that

E0

[ ∫ t+T

t

ln ms ds
] ≈ −αT + an+1l0∆ → −αT +

1− e−ρT

ρ
l0

In a simple case of constant conditional variance, σ2 = β0/σ, the recursive formula
of lj can be written as

lj = ρj
∆l0 + ρj−1

∆ σ
√

∆ψ1 + · · ·+ ρ∆σ
√

∆ψj−1 + σ
√

∆ψj

for j = 1, . . . , n, where ρ∆ = 1−ρ∆ and {ψj = zj/∆} are i.i.d standard normals. Thus,
we have a similar form for (17) as follows

In = an+1l0 +
n∑

j=1

an−j+1σ
√

∆ψj.

Using the i.i.d property of {ψj}, it is easy to obtain a similar form for (19) as follows

ln E0[ e
∆In ] = an+1l0∆ +

∆3

2
σ2

n∑
j=1

a2
j .

As the observation interval approaches zero, the limit results in Lemma 2 provides us
the desired result.

Proof of Proposition 1:

Recall that we have equation (10) with T = ∆

y
(∆)
t = α− 1− e−ρ∆

ρ∆
lt − β0

2θρ2∆
f(∆)− σ2

t − β0/θ

2ρ2∆
g(∆)
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Applying the stationary property such as E[ lt ] = 0 and E[ σ2
t ] = β2/θ, this equation

can be rearranged as

y
(∆)
t − E[ y(∆) ] = −1− e−ρ∆

ρ∆
lt − σ2

t − β0/θ

2ρ2∆
g(∆) (25)

Substituting lt by (5) in terms of lt−∆ and σt−∆ and replacing lt−∆ by (21) in terms of

y
(∆)
t−∆ and σt−∆, we have another form of (21) as follows

y
(∆)
t − E[ y(∆) ] = (1− ρ∆)

[
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

]

− 1− e−ρ∆

ρ∆
σt−∆

√
∆ψt − σ2

t − β0/θ

2ρ2∆
g(∆)

Subtracting the above equation from (21), we have

1− e−ρ∆

ρ∆
lt =

1− e−ρ∆

ρ∆
σt−∆

√
∆ψt − (1− ρ∆)

[
y

(∆)
t−∆ − E[ y(∆) ] +

σ2
t−∆ − β0/θ

2ρ2∆
g(∆)

]
,

which gives us the desired result in (15).

Proof of Theorem 2:

Combining (11) with (12), we have

y
(∞)
t − rt = lt − β0

2θρ2
.

Substituting lt in this above equation by (15) and then plugging this result into (14)
give us the desired result in (16).

The random part in (16) at time t−∆ can be written as

Cψt + Dψ2
t ,

where C = σt−∆

√
∆

ρT

(
β2γg(T )σt−∆/ρ− (1− e−ρT )

)
and D = − g(T )

2ρ2T
β2σ

2
t−∆∆. Thus, using

the moments of the standard normal distribution ψ, that is, E[ ψ2K ] = 1 × 3 × · · · ×
(2k − 1) for k = 1, 2, . . . and the fact that the odd moments are zero, we have

y
(T )
t − Et−∆[ y

(T )
t ] = Cψt + D(ψ2

t − 1).

A simple calculation provides us the desired result about the variance and kurtosis of
the nominal yields to maturity.
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Figure 1. Typical patterns of the yield curves in the case of the AR(1)
process or AR (1)-NGARCH(1,1) process and the desired result (equation
(8)) is obtained with the time to maturity.
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(d) ρ = 0.25, θ = 0.02, σt = 0.02,
β0/θ = 0.015
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(e) ρ = 0.05, θ = 0.03, σt = 0.01,
β0/θ = 0.015
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(f) ρ = 0.05, θ = 0.03, σt = 0.01,
β0/θ = 0.015

Figure 2. Typical patterns of the volatility curves in the case of AR(1)
process or AR(1)-NGARCH(1,1) process when function values appear in
the yield curve and with the time to maturity.
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(a) ρ = 0.20, θ = 0.25, σt = 0.01,
β0/θ = 0.02
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(b) ρ = 0.20, θ = 0.25, σt = 0.01,
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(d) ρ = 0.07, θ = 0.1, σt = 0.02,
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(f) ρ = 0.16, θ = 0.01, σt = 0.02,
β0/θ = 0.01

Figure 3. Typical patterns for the yield curves in the case of AR(1)
process or AR(1)-NGARCH(1,1) process and with the time to maturity.
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(a) ρ = 0.20, θ = 0.25, σt = 0.01,
β0/θ = 0.02
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(b) ρ = 0.20, θ = 0.25, σt = 0.01,
β0/θ = 0.02
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(c) ρ = 0.07, θ = 0.1, σt = 0.02,
β0/θ = 0.022
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(d) ρ = 0.07, θ = 0.1, σt = 0.02,
β0/θ = 0.022
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(e) ρ = 0.16, θ = 0.01, σt = 0.02,
β0/θ = 0.01
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(f) ρ = 0.16, θ = 0.01, σt = 0.02,
β0/θ = 0.01

Figure 4. Typical patterns for the volatility curves in the case of AR(1)
process or AR(1)-NGARCH(1,1) process where function values appear in
the yield curve and with the time to maturity.


