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Abstract

This paper investigates an efficient estimation method for a class of switch-
ing regressions based on the characteristic function (CF). We show that with
the exponential weighting function, the CF based estimator can be achieved
from minimizing a closed form distance measure. Due to the availability of
the analytical structure of the asymptotic covariance, an iterative estimation
procedure is developed involving the minimization of a precision measure of
the asymptotic covariance matrix. Numerical examples are illustrated via a
set of Monte Carlo experiments examining the implentability, finite sample
property and efficiency of the proposed estimator.
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1 Introduction

In recent years, increasing attention has been focused on the problem of dis-
continuous jumps or shifts among regimes in the data. One popular class
of the approaches to accommodate this characteristics is through the finite
mixture modeling. The most intuitive underlying assumption is that the
sample data is drawn from different sub-group components. In other words,
the population can be viewed as a mixture of distinct sources. In biology,
for instance, the heterogeneities often come from genders, species, genetics
classes and etc; see McLachlan and Peel (2000) and references therein. In
finance applications, for example, the stock returns can be viewed as mix-
tures of different information components; see Kon (1984). We shall see
that there are many other applications across different research disciplines,
including astronomy, engineering, economics, psychiatry and etc. Some of
the excellent surveys are collected in Everitt and Hand (1981), Titterington,
Smith and Makov (1985) and Mclachlan and Peel (2000). One main char-
acteristics of adopting mixture models is due to the flexibility nature. As a
note, it is well known that any continuous distribution can be approximated
arbitrarily well by an appropriate finite Gaussian mixtures. In addition, the
interpretation of mixture models is straightforward. In this paper, we inves-
tigate a class of mixture models, namely switching regressions (SWR), which
can be viewed as natural extensions of the mixtures of normal (MN) settings.

In general, if a random variable Y is drawn from a K-component MN, its
probability density function (pdf) is defined as,

f(y) =
K∑

k=1

pkφk(y; µk, σ
2
k) (1)

where pk is the mixing proportion or weight of the kth component in the

mixture with the restrictions that 0 ≤ pk ≤ 1 and
K∑

k=1

pk = 1. For k =

1, 2, ..., K,

φk(y; µk, σ
2
k) =

1√
2πσ2

k

exp(−(y − µk)
2

2σ2
k

)

The SWR generalizes (1) by allowing the means changing across observations.
Consequently, it extends to the following set up, for i = 1, 2, ..., n,

f(yi) =
K∑

k=1

pkφk(yi; µki, σ
2
k) (2)
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where µki = x′iβk. Or equivalently, it can be expressed as the following
regression system,

yi = x′iβ1 + u1i with probability p1

yi = x′iβ2 + u2i with probability p2 (3)

...

yi = x′iβK + uKi with probability pK

with uki ∼ N(0, σ2
k). In general, x′i is n×m and the corresponding coefficient

βk is m× 1.1 Then, we have (K ×m + 2K − 1) unknown parameters, which
is specified as θ = (p1, ..., pK−1; β1, ..., βK ; σ2

1, ..., σ
2
K)′.

The above representations allow great flexibility to capture various den-
sity shapes, however, the flexibility causes the problems in the likelihood
function. More specifically, the likelihood function under the above mixture
settings is unbounded over the parameter space and consequently, the conven-
tional maximum likelihood estimator (MLE) is not well defined.2 Attempting
to solve this fundamental statistical problem alternative to likelihood-based
approach dates back to Cohen (1967) and Day (1969), who apply the method
of moments (MOM) for estimating the mixture parameters. Due to the ineffi-
ciency of the MOM estimator, Quant and Ramsey (1978) and Schimdt (1982)
propose an approach based on the moment generating function (MGF). Al-
ternatively, a class of estimation methods based on the characteristic function
(CF) have been used in this context, see Tran (1998), Knight and Yu (2002)
and Xu and Knight (2008).3

In this paper, an iterative estimation procedure is developed based on
both the closed form objective distance function and the asymptotic covari-
ance measure. This proposed iterative procedure essentially updates the
weighting function and consequently, it improves the estimation efficiency
and reduces the computational cost.

The paper is organized as follows. Section 2 derives an closed form dis-
tance function between the theoretical CF and its empirical counterpart

1If x′i is a set of different order of lagged values of yi, (3) assumes the similar set up as
the mixture autoregressions (MAR) structure, see Wong and Li (2000).

2We will provide more discussions on the failure of the ordinary MLE procedure in the
next section.

3Another popular class of the estimation approaches for mixture models are the
Bayesian methods. In this paper, we are not trying to conduct a general survey. An
excellent survey regarding to Bayesian type approaches is documented in McLanchlan and
Peel (2000).
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(ECF) under a general exponential weighting kernel for the SWR. It also
discusses the asymptotic properties of the proposed estimator along with the
iterated procedure. Section 3 conducts a set of Monte Carlo simulations and
demonstrate the improvement of the asymptotic efficiency. Section 4 con-
cludes the paper. All the proofs, Tables and Figures are collected in the
Appendix.

2 SWR Model and An Iterative Estimation

Procedure

We start this section with examining the unboundedness in the mixture like-
lihood function and for illustrative purposes, we restrict our attention to the
case where the mixtures have two components. Consider the case where K=2
in (1), i.e., the mixture pdf of yi (i = 1, 2, ..., n) can be written as,

f(yi) =
p1√
2πσ2

1

exp(−(yi − µ1)
2

2σ2
1

) +
1− p1√

2πσ2
2

exp(−(yi − µ2)
2

2σ2
2

) (4)

We arbitrarily set the parameter values of µ2 and σ2
2 and choose µ1 to equal

to the jth element in the data, i.e., µ1 = yj. In other words, the jth
residual vanishes from the first regime. Then, for any p1 ∈ (0, 1) with the
chosen µ1, µ2 and σ2

2, we examine the behavior of the likelihood function
over a sequence of points as σ2

1 approaches to 0. In (4), for i = 1, 2, ..., n,
1−p1√
2πσ2

2

exp(− (yi−µ2)2

2σ2
2

) > 0. As σ2
1 → 0, for i = 1, ..., j − 1, j + 1, ..., n,

p1√
2πσ2

1

exp(− (yi−µ1)2

2σ2
1

) → 0. When i = j, p1√
2πσ2

1

exp(− (yj−µ1)2

2σ2
1

) = p1√
2πσ2

1

e0.

As σ2
1 approaches to 0, the first part of jth term in (4) will become arbi-

trarily large. Similar analysis applies to the SWR case where µ1i = x′iβ1

and µ2i = x′iβ2. Therefore, in general, the conventional MLE may falsely
maximize an unbounded likelihood, which leads to a numerical instability
problem.4

Observing the difficulties encountered in the standard MLE, in this paper,
we derive an alternative estimator based on the CF to solve the estimability
problem. The approach is also referred as an integrated squared error (ISE)
method, proposed in Heathcote (1977). In essence, the ISE estimation is

4Quant and Ramsey (1978) and Quant (1988) also point out that the problem is essen-
tially due to the singularity of the matrix of second partial derivatives of the log-likelihood
function, which is equivalent to a vanishing Jacobian for Gaussian mixtures model from
the conventional MLE approach.
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similar to the GMM and MGF approaches, which minimize a certain dis-
tance measure between the population components and the corresponding
empirical counterparts. In the general set-up of the SWR in (2) or (3), the
associated theoretical CF for yi is defined as follows,

Gi(yi; t, θ, xi) = E(ejtyi) =
K∑

k=1

pk exp(jx′iβkt− 1

2
σ2

kt
2) (5)

where j =
√−1. θ is a vector of the unknown parameters in the SWR, which

has (K ×m + 2K − 1) elements in general.

The ECF for the sample yi (i = 1, ..., n) from (2) or (3) is of the following
form,

gi(yi; t) = exp(jtyi) (6)

Continuously matching (5) and (6) under a general form of continuous
weighting functions, the distance measure is constructed as the objective
function for optimization.

D(y; θ, x) =
1

n

n∑
i=1

∫ +∞

−∞
|Gi(xi, yi; t, θ)− gi(yi; t)|2w(t)dt (7)

where w(t) is a weighting function which ensures the convergence of the
integral. In this paper, we adopt a Gaussian kernel form for w(t), i.e.,
w(t) = exp(−bt2). Parameter b can be viewed as a non-negative band-
width. This kernel form has been used extensively in the literature, see
Paulson et al. (1975), Heathcote (1977), Knight and Yu (2002), Besbeas and
Morgan (2002) and Xu and Knight (2008). There are several advantages
choosing this weighting kernel. In general, the exponential function tends to
put more weight around the origin, which is consistent with the CF theory
that the CF contains most information around the origin. In the SWR con-
text, we find that under this Gaussian kernel, both the distance function in
(7) and the asymptotic covariance structure of the estimator can be derived
in closed-form expressions. This would reduce the computational burden in
the practical implementation significantly. In addition, this weighting func-
tion continuously evaluates the distance between the theoretical CF and the
ECF, which avoids the two major problems arising from the discrete type of
methods: (i) the choice of the size of the evaluating grids and (ii) the choice
of the distance among the grids, see Schmidt (1982). However, as Paulson
et al. (1975) and Yu (2004) point out that, with a special weighting form
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exp(−t2), the estimation may lead to a poor efficiency. One way of improving
the efficiency is to use the cross-validation method for the selection of the
bandwidth, see Besbeas and Morgan (2002). In this paper, we develop an
efficient iterated procedure to continuously update the bandwidth via mini-
mizing a certain precision measure of the asymptotic covariance matrix. This
procedure will be discussed in details in the Monte Carlo section.

Proposition 1 If a random sample yi is generated from a K-regime re-
gression system defined in (2) or (3) and the distance measure is defined as
in (7), then the integral can be solved analytically and is given by:

D(y; θ, x) =
1
n

n∑

i=1




K∑

k=1

K∑

h6=k

2pkph

√
π

b + 1
2(σ2

k + σ2
h)

exp(− (x′iβk − x′iβh)2

4b + 2(σ2
k + σ2

h)
)

+
K∑

k=1

p2
k

√
π

b + σ2
k

− 2
K∑

k=1

pk

√
π

b + 1
2σ2

k

exp(−(yi − x′iβk)2

4b + 2σ2
k

)

)
(8)

Proof : See the Appendix.

The ISE-based estimates result from minimizing (8) with respect to (w.r.t)
the unknown parameter, θ, i.e., θ̂ ∈ argmin[D(y; θ, x)]. As a note, the band-
width parameter b is not treated as an unknown in (8). The reason is,
referring to Aitchison and Aitken (1976), that a naive optimization of the
distance function w.r.t b will yield meaningless result (b →∞). However, it
can be seen that b may play an important role for the estimation since θ̂ is
a function of b. Therefore, a robust selection procedure for b is needed for
improving the estimation efficiency. As mentioned earlier, with the closed
form distance measure in (8), the asymptotic covariance are available in an
analytical form. For simplicity, we provide the explicit expression of the
asymptotic covariance of θ̂ in the two-regime switching regression case where

yi = β1 + β2xi + u1i with probability p1

yi = γ1 + γ2xi + u2i with probability 1− p1 (9)

where for i = 1, 2, ..., n, u1i ∼ N(0, σ2
1) and u2i ∼ N(0, σ2

2). xi is n × 1. θ is
a 7× 1 vector as (p1, β1, β2, γ1, γ2, σ

2
1, σ

2
2)
′.

Proposition 2 If a random sample yi is generated from a 2-regime re-
gression system defined in (9), the distance measure is defined as in (8) with

K=2, and θ̂ = argmin[D(y; θ, x)], then
√

n(θ̂−θ)
d→ N(0, Λ−1ΩΛ−1) with the

closed form expressions for Λ and Ω. The derivations are given in the proof.

6



Proof : See the Appendix.

Based on the closed form asymptotic covariance, the iterative estimation
procedure can be implemented as the following steps:5

Step 1. Initiate the program with the starting bandwidth value of b, say
b0 ;

Step 2. With b = b0 and the data of y and x, minimize the closed form
distance function in (8) and get θ0 , i.e. θ̂0 = argmin[D(y; θ, x)];

Step 3. Plug θ̂0 into the asymptotic covariance matrix M and get M0.
Construct a precision measure, such as the trace or determinant of M , which
is a function of b. Update the bandwidth b via b1 = argmin[trace(M0)] or
b1 = argmin[det(M0)];

Step 4. Repeat the step 2 to 3 until a stopping criterion is met,6 for
example, |bt − bt−1| < ε and ε = 10−3.

Through the above procedure, the estimator’s efficiency is improved from
the updating process. For comparison, an asymptotic relative efficiency
(ARE) measure is constructed, which is defined as the trace of the inverse
of the information matrix over the trace of the asymptotic covariance ma-
trix from the updating ISE estimator. In the mixture models, it is difficult
to derive an analytical form of the information matrix, see Schimdt (1982).
Consequently, the comparisons are conducted numerically in the Monte Carlo
section.

3 Monte Carlo Experiments

A set of Monte Carlo experiments are carried out to examine the implentabil-
ity, finite sample property and efficiency of the proposed procedure. We set
up nine cases, in which the first four cases have been examined by Quandt
and Ramsey (1978) and the last five cases have been studies in Goldfeld and
Quandt (1972) and Quandt (1972). The experiment characteristics are pre-
sented in Table 1.7

5Xu and Knight (2008) apply a similar iterated procedure for estimating the MN pa-
rameters. See the paper for more details.

6Provided that the influence function of θ̂(b) is bounded, the optimal b theoretically
exists, which has been shown in Besbeas (1999).

7Some other experiments with different parameter designs have also been examined,
for example, x is generated from a normal distribution or student-t distribution. We found
similar results and patterns. To save space, those simulation results are not reported in
this paper.
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We first examine the asymptotic efficiency of the proposed iterative esti-
mator. Table 2 presents the diagonal elements from the asymptotic covari-
ance matrix of the proposed estimator under the optimal bandwidth value.
The optimal value, b∗, for each case, is determined by two precision mea-
sures, namely the trace minimization (IT-ISE-TRC) and the determinant
minimization (IT-ISE-DET). For comparison, the inverse of the information
matrix (IF) is numerically evaluated via the approximation of the expecta-
tion of the outer-product of the score vector or the negative expectation of
the Hessian matrix based on the log-likelihood function. Consequently, the
corresponding diagonal elements from the IF matrix are reported in the last
row of Table 2 for each case. Graphically, Figure 2 plots the trace and the
determinant over a certain range of b values in each simulation case. For all
the cases, the global optimal b values do exist. However, the optimal band-
width varies from case to case, for instance, b∗ changes from 0.3100 to 1.5120
under the trace minimization from Case 4 to Case 9. A more interesting
finding is that optimal b values are different under the two precision criteria
and in general, the trace minimization generates uniformly smaller asymp-
totic variances than the determinant minimization does for all the cases (see
Table 2 for the detailed comparisons). In addition, the asymptotic variances
from the IT-ISE-TRC are fairly close to those from the IF row. Therefore,
for the rest of the Monte Carlo simulations, we adopt the trace minimization
in the iterative procedure. To further examine the efficiency improvement by
iteratively updating the bandwidth parameter value, Table 3 constructs an
ARE comparison (using the trace measure). As noted from the table (bold
numbers in the 5th row), the proposed estimator achieves the highest effi-
ciency when b is updated to b∗ for each individual case. The optimal b values
for all the nine cases correspond to b∗ in Table 2 by the trace minimization.

To further demonstrate the implentability and finite sample property of
the proposed updating procedure, we generate the random samples following
the parameter set-up specified in Table 1. The iterative procedure in section
2 is applied for all the Monte Carlo estimation experiments. As mentioned,
due to the availabilities of the closed forms in both the objective distance
function and asymptotic covariance matrix, the computation cost is not a
big constraint. Approximately, each iteration duration is about 2 seconds.8

8The duration of the iterative estimation may depend on other factors, such as the ini-
tial values, the characteristics of the sampling data, the stopping rules for the convergence
both in the parameters and bandwidth, optimization software as well as computer speed
and etc. Here, we just provide an average approximation time on a computer with CPU
6400 at 2.13G Hz (0.99 GB of RAM) using Matlab 7.1.
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With this advantage, we perform 1000 replications for all the cases without
much computational burden. The experiment results are reported in Table 4.

Several standard measures are constructed for evaluating the Monte Carlo
estimates including mean, bias and the root of mean square error (RMSE).
Another reliability measure for the estimator, namely the Kolmogorov-Smirnov
(K-S) test statistics, is also shown in Table 4. The mean values of the es-
timates are, in general, fairly close to the true parameter values. Since for
each simulation loop the iterative procedure generates an optimal b, 1000 b∗s
are produced for each simulating case. We report the average value over the
1000 replications in the last column of Table 4. As shown, the values of b∗s
are very close to the asymptotic values reported in Table 2. This is also con-
sistent with the illustration of convergence for b in Figure 1. Inspecting on
the bias and RMSE measures, we find that the proposed estimation proce-
dure produces stable estimates. Noting that even though our sampling sizes
are small (50, 60, 100 and 120), the bias and RMSE are generally small and
behave well as expected. In Case 9, we detect a relatively large RMSE for
σ2

2, which is 11.0147. The reason is that with a large variance on one mixture
component, the probability of producing outliers is high. Consequently, the
outliers deteriorate the quality of the estimates by increasing the overall bias
and variance. We also identify some consistent results as shown in Quandt
and Ramsey (1978), Goldfeld and Quandt (1972) and Quandt (1972). Case
1 and 3 only differ in the sample sizes in each replication. We find that
increasing sample size will improve the quality of the estimates. In other
words, the bias and RMSE become uniformly smaller in a larger-sample sim-
ulation compared with a smaller-sample simulation. Similar argument can
be also applied for the comparison of Case 5 and 6. We expected that when
the probability of one mixture component increases (high asymmetry), the
quality of the estimates gets worse. However, from the simulation results, it
is ambiguous. For example, through the comparisons between Case 1 and 2
as well as Case 3 and 4, this happens only 8 out of 14 possible pair compar-
isons. We observe similar patterns in the comparison of Case 5 and 7. Case
5 and 8 differ only in the variance of the second regime. Bias and RMSE are
generally smaller in the lower-variance case (Case 5). Lastly, the regressor, x
, is generated from a wider-interval uniform distribution in Case 9 compared
to Case 5. We find, as expected, the bias and RMSE are generally smaller in
Case 9 (with high separability) than those in Case 5 (with low separability).

Furthermore, a K-S normality test is carried out to investigate the asymp-
totic normality property of the proposed estimator. The K-S statistics are
presented for each experiment in Table 4. The results show that for 39 out of
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56 cases, normality can not be rejected at either 5% or 1% confidence level.
Increasing the sample size will improve the quality of the K-S measure, see
Case 2 and 4. Figure 2 presents the distributions of the estimates over the
1000 replications via the qq-plots.9 As shown, most of the estimates fit well
with the 45-degree quantile line against the normality. This reinforces the
K-S test results reported in Table 4. Overall, the proposed procedure seems
well-implementable and produces good finite sample properties.

4 Conclusion

This paper uses an iterative bandwidth-updating procedure based on the ISE
estimator to efficiently estimate the SWR models. Due to the availabilities of
both the objective distance function and the asymptotic covariance matrix,
the procedure is easily implemented without much computational burden.
The improvement of the estimation efficiency has been shown asymptotically
and experimentally. The Monte Carlo simulation shows that the estimator
generates sensible results and has good finite sample properties.

Appendix

Proof of Proposition 1

Noting that exp(jtz) = cos(tx) + j sin(tx), j =
√−1, (5) can be written

as:

Gi(yi; t, θ, xi) =
K∑

k=1

pk cos(x′iβkt) exp(−1

2
σ2

kt
2) + j

K∑

k=1

pk sin(x′iβkt) exp(−1

2
σ2

kt
2)

Correspondingly, (6) can be transformed in a similar way as:

gi(yi; t) = cos(tyi) + j sin(tyi)

Define Di(y; θ, x) =
∫ +∞
−∞ |Gi(xi, yi; t, θ)−gi(yi; t)|2 exp(−bt2)dt, then |Gi(xi, yi; t, θ)−

gi(yi; t)|2 can be separated into the real and imaginary parts (R and I), i.e.,

|Gi(xi, yi; t, θ)− gi(yi; t)|2 = cos(tyi)−
K∑

k=1

pk cos(x′iβkt) exp(−1

2
σ2

kt
2)

+ j

(
sin(tyi)−

K∑

k=1

pk sin(x′iβkt) exp(−1

2
σ2

kt
2)

)

9To save space, the qq-plots for the first 5 parameters are reported for each simulation
case. The variance estimates are generally found to be significantly deviated from the
normality (except for Case 4). Those graphs are available upon request.
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Hence,

|Gi − gi|2 = R2 + I2

= 1 + 2
K∑

k=1

K∑

h6=k

pkph exp(−1

2
t2(σ2

k + σ2
h)) cos(t(x′iβk − x′iβh))

+
K∑

k=1

p2
k exp(−σ2

kt
2)− 2

K∑

k=1

pk exp(−1

2
σ2

kt
2) cos(t(yi − x′iβk))

Now ignoring the constant term, we evaluate integral of the above expression

with exp(−bt2). Note that cos(x) = exp(jx)+exp(−jx)
2

and sin(x) = exp(jx)−exp(−jx)
2j

.

Di =
∫ +∞

−∞
(R2 + I2) exp(−bt2)dt

= 2
K∑

k=1

K∑

h6=k

∫
pkph exp(−1

2
t2(σ2

k + σ2
h))

exp[jt(x′iβk − x′iβh) + exp[−jt(x′iβk − x′iβh)])
2

exp(−bt2)dt

+
K∑

k=1

∫
p2

k exp(−(σ2
k + b)t2)dt− 2

K∑

k=1

∫
pk exp(−1

2
σ2

kt2) cos(t(yi − xiβk)) exp(−bt2)dt

=
K∑

k=1

K∑

h6=k

2pkph

√
π

b + 1
2 (σ2

k + σ2
h)

exp(− (x′iβk − x′iβh)2

4b + 2(σ2
k + σ2

h)
)

+
K∑

k=1

p2
k

√
π

b + σ2
k

− 2
K∑

k=1

pk

√
π

b + 1
2σ2

k

exp(− (yi − x′iβk)2

4b + 2σ2
k

)

Therefore, substituting Di into the distance measure in (8), defined as D(y; θ, x) =

1
n

n∑
i=1

Di, completes the proof.

Proof of Proposition 2

In general, we define the prime as the differentiation w.r.t. the parameter
vector. Let Re[f ] and Im[f ] be the real and imaginary part of f respectively.
Then,

D′(θ) =
∂D(θ)

∂θ
= − 2

n

n∑
i=1

Hi(θ)

With Hi(θ) =
∫ (

(cos(tyi)−Re[Gi])
∂Re[Gi]

∂θ + (sin(tyi)− Im[Gi])
∂Im[Gi]

∂θ

)
exp(−bt2)dt.

Let Ωi = var(∂Di(θ)
∂θ

). Then var
(

∂D(θ)
∂θ

)
= 4

n2 var(
n∑

i=1

Hi) =
1

n

n∑
i=1

Ωi =
1

n
Ω.
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From Heathcote (1977), Hi is bounded and by the Central Limit Theorem
(CLT) and Laws of Large Numbers(LLN), at the true parameter value, θ∗,
we have,

√
nD′(θ∗) d→ N(0, Ω)

Now, we take the expectation of the second derivative of D(θ) evaluated at
θ∗, which is,

E(D′′(θ)) = E

(
∂D2(θ∗)
∂θ∂θ′

)
= Λ

First-order Taylor expansion of D′(θ̂) around the true parameter value, θ∗,
yields,

D′(θ̂) = D′(θ∗) + (θ̂ − θ∗)D′′(θ∗)

Then, the Slutsky Theorem immediately implies,

√
n(θ̂ − θ)

d→ N(0, Λ−1ΩΛ−1)

In the two regime-switching case (when K = 2) defined in (9), the dis-
tance function, (8), can be written as the following closed form:

D(y; θ, x) =
1
n

n∑

i=1

(
2p1(1− p1)

√
π

b + 1
2(σ2

1 + σ2
2)

exp(−(β1 + β2xi − γ1 − γ2xi)2

4b + 2(σ2
1 + σ2

2)
)

+ p2
1

√
π

b + σ2
1

+ (1− p1)2
√

π

b + σ2
2

− 2p1

√
π

b + 1
2σ2

1

exp(−(yi − β1 − β2xi)2

4b + 2σ2
1

)

− 2(1− p1)
√

π

b + 1
2σ2

2

exp(−(yi − γ1 − γ2xi)2

4b + 2σ2
2

)

)

There are 7 unknown parameters to be estimated, which are (p1, β1, β2, γ1, γ2, σ
2
1, σ

2
2).

Following the construction of Ω and Λ, we essentially need to solve for the
two expectations in the Ω and Λ expressions. With an analytical form of
Di, the software Maple or Mathematica can be applied for solving the closed
form solutions of each corresponding elements in the asymptotic covariance
matrix. Alternatively, in this paper, we develop the closed form solution of
Ω and Λ based on the solutions for asymptotic covariance in the mixtures
of two normal case. The following results are established in Xu and Knight
(2008) and Xu (2007).
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In the mixtures of two normal case, θm = (p1, µ1, µ2, σ
2
1, σ

2
2) and

√
n(θ̂m−

θ)
d→ N(0, (Λm)−1Ωm(Λm)−1), where

Λm
ij = Um

ij + V m
ij × exp

(
− (µ1 − µ2)

2

4b + 2σ2
1 + 2σ2

2

)
i, j = 1, 2, ..., 5

with

Um =




√
π√

b+σ2
1

+
√

π√
b+σ2

1

0 0 − p1
√

π

4(b+σ2
1)

3
2

(1−p1)
√

π

4(b+σ2
1)

3
2

p2
1

√
π

2(b+σ2
1)

3
2

0 0 0

(1−p1)2
√

π

2(b+σ2
2)

3
2

0 0

3p2
1

√
π

16(b+σ2
1)

5
2

0

3(1−p1)2
√

π

16(b+σ2
2)

5
2




V m =




V 11 V 12 V 13 V 14 V 15
V 22 V 23 V 24 V 25

V 33 V 34 V 35
V 44 V 45

V 55




The expressions for V m matrix are available in Xu and Knight (2008) and
Xu (2007).

In our two regime switching regression case, only the mean of each mixture
component changes across the observations, particularly, µ1 = β1 + β2xi and
µ2 = γ1 + γ2xi. The following relations can be easily derived through the
Chain rule of the derivatives, for example,

E(
∂2D

∂p1∂β1

) = E(
∂2D

∂p1∂µ1

∂µ1

∂β1

) = E(
∂2D

∂p1∂µ1

);

E(
∂2D

∂β1∂β2

) = E(
∂2D

∂µ1∂µ1

∂µ1

∂β1

∂µ1

∂β2

) = E(
∂2D

∂µ1∂µ1

)xi;

E(
∂2D

∂β1∂γ2

) = E(
∂2D

∂µ1∂µ2

∂µ1

∂β1

∂µ2

∂γ2

) = E(
∂2D

∂µ1∂µ2

)xi;

E(
∂2D

∂β2∂γ2

) = E(
∂2D

∂µ1∂µ2

∂µ1

∂β2

∂µ2

∂γ2

) = E(
∂2D

∂µ1∂µ2

)x2
i ;

E(
∂2D

∂β2∂σ2
1

) = E(
∂2D

∂µ1∂σ2
2

∂µ1

∂β2

) = E(
∂2D

∂µ1∂σ2
2

)xi
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Other corresponding elements in the Λ matrix can be easily derived in similar
way as shown above. In other words, given the closed form of Λm, we can fill
in the Λ matrix (7× 7) using the above transformations. Specifically,

Λi =




Λm
11 Λm

12 Λm
12xi Λm

13 Λm
13xi Λm

14 Λm
15

Λm
22 Λm

22xi Λm
23 Λm

23xi Λm
24 Λm

25

Λm
22x

2
i Λm

23xi Λm
23x

2
i Λm

24xi Λm
25xi

Λm
33 Λm

33xi Λm
34 Λm

35

Λm
33x

2
i Λm

34xi Λm
35xi

Λm
44 Λm

45

Λm
55




Similarly, the Ω matrix in SWR case can be expressed using the Ωm matrix
from the mixtures of two normal case using the following transformations,
for example,

E(
∂D

∂p1

∂D

∂β1

) = E(
∂D

∂p1

∂D

∂µ1

∂µ1

∂β1

) = E(
∂D

∂p1

∂D

∂µ1

);

E(
∂D

∂β1

∂D

∂β2

) = E(
∂D

∂µ1

∂D

∂µ1

∂µ1

∂β1

∂µ1

∂β2

) = E(
∂D

∂µ1

∂D

∂µ1

)xi;

E(
∂D

∂β1

∂D

∂γ2

) = E(
∂D

∂µ1

∂D

∂µ2

∂µ1

∂β1

∂µ2

∂γ2

) = E(
∂D

∂µ1

∂D

∂µ2

)xi;

E(
∂D

∂β2

∂D

∂γ2

) = E(
∂D

∂µ1

∂D

∂µ2

∂µ1

∂β2

∂µ2

∂γ2

) = E(
∂D

∂µ1

∂D

∂µ2

)x2
i ;

E(
∂D

∂β2

∂D

∂σ2
1

) = E(
∂D

∂µ1

∂D

∂σ2
1

∂µ1

∂β2

) = E(
∂D

∂µ1

∂D

∂σ2
1

)xi

Consequently,

Ωi =




Ωm
11 Ωm

12 Ωm
12xi Ωm

13 Ωm
13xi Ωm

14 Ωm
15

Ωm
22 Ωm

22xi Ωm
23 Ωm

23xi Ωm
24 Ωm

25

Ωm
22x

2
i Ωm

23xi Ωm
23x

2
i Ωm

24xi Ωm
25xi

Ωm
33 Ωm

33xi Ωm
34 Ωm

35

Ωm
33x

2
i Ωm

34xi Ωm
35xi

Ωm
44 Ωm

45

Ωm
55
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Table 1 Monte Carlo Simulation Design

Case p1 β1 β2 γ1 γ2 σ2
1 σ2

2 xi n

1 0.5 -1.0 0.5 -3.08333 1.0 3.0 2.0 U(0, 10) 50
2 0.8 -1.0 0.5 -3.08333 1.0 3.0 2.0 U(0, 10) 50
3 0.5 -1.0 0.5 -3.08333 1.0 3.0 2.0 U(0, 10) 100
4 0.8 -1.0 0.5 -3.08333 1.0 3.0 2.0 U(0, 10) 100

5 0.5 1.0 1.0 0.5 1.5 2.0 2.5 U(10, 20) 60
6 0.5 1.0 1.0 0.5 1.5 2.0 2.5 U(10, 20) 120

7 0.75 1.0 1.0 0.5 1.5 2.0 2.5 U(10, 20) 60
8 0.5 1.0 1.0 0.5 1.5 2.0 25.0 U(10, 20) 60
9 0.5 1.0 1.0 0.5 1.5 2.0 2.5 U(0, 40) 60
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Table 2 Comparisons of Asymptotic Variances from ISE under
Optimal b Values and Information Matrix

var(p1) var(β1) var(β2) var(γ1) var(γ2) var(σ2
1) var(σ2

2) b∗

Case 1.
IT-ISE-TRC 0.0265 0.2056 0.0104 0.0940 0.0047 0.0853 0.1310 0.4152
IT-ISE-DET 0.0394 0.2586 0.0137 0.1371 0.0074 0.0703 0.1963 1.6737

IF 0.0279 0.2427 0.0120 0.1028 0.0050 0.1161 0.1368 -
Case 2.

IT-ISE-TRC 0.0269 0.0838 0.0042 0.5892 0.0296 0.0353 0.8098 0.3121
IT-ISE-DET 0.0378 0.0990 0.0052 0.8487 0.0456 0.0274 1.1848 1.6582

IF 0.0291 0.0959 0.0048 0.6410 0.0313 0.0435 0.8778 -
Case 3.

IT-ISE-TRC 0.0064 0.0492 0.0025 0.0225 0.0011 0.0211 0.0323 0.4129
IT-ISE-DET 0.0098 0.0640 0.0034 0.0338 0.0018 0.0175 0.0489 1.6761

IF 0.0053 0.0449 0.0022 0.0207 0.0010 0.0186 0.0255 -
Case 4.

IT-ISE-TRC 0.0065 0.0203 0.0010 0.1427 0.0072 0.0087 0.2009 0.3100
IT-ISE-DET 0.0094 0.0244 0.0013 0.2081 0.0113 0.0068 0.2948 1.6622

IF 0.0056 0.0178 0.0009 0.1293 0.0063 0.0074 0.1631 -
Case 5.

IT-ISE-TRC 0.0001 0.0486 0.0002 0.0628 0.0003 0.0092 0.0151 0.7136
IT-ISE-DET 0.0001 0.0493 0.0002 0.0638 0.0003 0.0097 0.0157 0.9503

IF 0.0001 0.0546 0.0002 0.0698 0.0003 0.0104 0.0164 -
Case 6.

IT-ISE-TRC 2.16e-5 0.0120 4.91e-5 0.0155 0.0001 0.0023 0.0038 0.7103
IT-ISE-DET 2.24e-5 0.0121 4.93e-5 0.0157 0.0001 0.0024 0.0039 0.9434

IF 2.17e-5 0.0121 4.98e-5 0.0145 0.0001 0.0022 0.0032 -
Case 7.

IT-ISE-TRC 0.0001 0.0299 0.0001 0.1431 0.0006 0.0055 0.0349 0.6603
IT-ISE-DET 0.0001 0.0295 0.0001 0.1473 0.0006 0.0054 0.0381 0.9723

IF 0.0001 0.0301 0.0001 0.2172 0.0009 0.0056 0.0599 -
Case 8.

IT-ISE-TRC 0.0003 0.0538 0.0002 1.1286 0.0042 0.0175 2.6414 0.9587
IT-ISE-DET 0.0003 0.0534 0.0002 1.1279 0.0042 0.0181 2.6173 1.0909

IF 0.0004 0.0607 0.0003 0.9944 0.0039 0.0184 3.7729 -
Case 9.

IT-ISE-TRC 0.0001 0.0086 1.36e-5 0.0108 1.72e-5 0.0089 0.0137 1.5120
IT-ISE-DET 0.0001 0.0087 1.36e-5 0.0108 1.72e-5 0.0094 0.0139 2.0753

IF 0.0001 0.0094 1.62e-5 0.0118 1.98e-5 0.0104 0.0152 -
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Figure 1 Optimal Bandwidth Values
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Table 3 Asymptotic Relative Efficiency Comparisons

b values Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
b = 0.005 1.0580 1.1581 0.8214 0.8080 0.8512 0.8391 1.2759 1.1857 0.8720
b = 0.01 1.0602 1.1602 0.8230 0.8095 0.8530 0.8408 1.2783 1.1885 0.8742
b = 0.1 1.0934 1.1910 0.8476 0.8313 0.8818 0.8697 1.3192 1.2327 0.9116
b = b∗ 1.1391 1.2194 0.8794 0.8531 0.9641 0.9627 1.4386 1.3524 1.0895
b = 1 1.0597 1.0844 0.8138 0.7490 0.9391 0.9477 1.3960 1.3521 1.0856
b = 5 0.3190 0.2799 0.2483 0.1751 0.3727 0.3560 0.4788 1.0581 0.7153
b = 10 0.1075 0.0893 0.0902 0.0421 0.2810 0.2645 0.3606 0.7440 0.3456
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Table 4 Monte Carlo Simulation Statistics Summary
* Normality is not rejected at 5% significance level (cut-off value is 0.0428);
** Normality is not rejected at 1% significance level (cut-off value is 0.0513).

p1 β1 β2 γ1 γ2 σ2
1 σ2

2 b∗

Case 1.
Mean 0.5029 -0.8921 0.4887 -3.2915 1.0284 1.8732 1.2613 0.4139
Bias 0.0029 0.1079 -0.0113 -0.2082 0.0284 -1.1268 -0.7387 -

RMSE 0.1883 1.0541 0.2067 1.2777 0.2216 1.7929 1.1237 -
K-S 0.0704 0.0290** 0.0436* 0.0390** 0.0433* 0.1176 0.1060 -

Case 2.
Mean 0.6299 -0.6020 0.4259 -3.0489 0.9517 2.0281 1.0556 0.3108
Bias -0.1701 0.3980 -0.0741 0.0344 -0.0483 -0.9719 -0.9444 -

RMSE 0.2358 1.2016 0.1865 1.4306 0.2426 1.5987 1.3292 -
K-S 0.1007 0.0313** 0.0545 0.0251** 0.0436* 0.0822 0.1805 -

Case 3.
Mean 0.5202 -1.0565 0.5066 -3.0992 1.0125 2.2628 1.4440 0.4121
Bias 0.0202 -0.0565 0.0066 -0.0158 0.0125 -0.7372 -0.5560 -

RMSE 0.1783 1.0376 0.1814 0.9780 0.1684 1.4027 1.0025 -
K-S 0.0757 0.0304** 0.0801 0.0508* 0.0221** 0.0679 0.0790 -

Case 4.
Mean 0.7178 -0.8979 0.4710 -2.9912 0.9640 2.5088 1.0031 0.3096
Bias -0.0822 0.1021 -0.0290 0.0921 -0.0360 -0.4912 -0.9969 -

RMSE 0.1659 0.8005 0.1279 1.4358 0.2523 1.0877 1.2900 -
K-S 0.1140 0.0503* 0.0425** 0.0579 0.0276** 0.0300** 0.1640 -

Case 5.
Mean 0.4998 1.0601 0.9975 0.3886 1.5080 1.8432 2.3257 0.7138
Bias -0.0002 0.0601 -0.0025 -0.1114 0.0080 -0.1568 -0.1743 -

RMSE 0.0751 1.6036 0.1027 1.9707 0.1244 0.7229 1.0072 -
K-S 0.0177** 0.0279** 0.0234** 0.0407** 0.0341** 0.0738 0.0961 -

Case 6.
Mean 0.4996 1.1761 0.9896 0.5390 1.4979 1.9653 2.3950 0.7114
Bias -0.0004 0.1761 -0.0104 0.0390 -0.0021 -0.0347 -0.1050 -

RMSE 0.0519 1.2503 0.0788 1.1967 0.0764 0.5445 0.6664 -
K-S 0.0267** 0.0286** 0.0312** 0.0317** 0.0277** 0.0669 0.0638 -

Case 7.
Mean 0.7434 0.9739 1.0019 0.4123 1.5071 1.9167 1.9796 0.6630
Bias -0.0066 -0.0261 0.0019 -0.0877 0.0071 -0.0833 -0.5204 -

RMSE 0.0600 1.3336 0.0859 2.3752 0.1508 0.5809 1.2609 -
K-S 0.0427* 0.0171** 0.0193** 0.0445* 0.0464* 0.0614 0.1095 -

Case 8.
Mean 0.5159 0.9444 1.0047 0.8845 1.4905 1.8933 18.6509 0.9606
Bias 0.0159 -0.0556 0.0047 0.3845 -0.0095 -0.1067 -6.3491 -

RMSE 0.1079 1.7107 0.1120 6.2877 0.4071 0.8952 11.0147 -
K-S 0.0431* 0.0288** 0.0326** 0.0507* 0.0474 * 0.0708 0.0651 -

Case 9.
Mean 0.5020 1.0741 0.9969 0.4801 1.5001 1.8376 2.2657 1.5032
Bias 0.0020 0.0741 -0.0031 -0.0199 0.0001 -0.1624 -0.2343 -

RMSE 0.0760 0.6837 0.0283 0.6742 0.0285 0.7107 0.8799 -
K-S 0.0161** 0.0286** 0.0232** 0.0204** 0.0263** 0.0721 0.0625 -
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Figure 2 QQ-Plot of the Estimates

1. p1 β1 β2 γ1 γ2
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