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Abstract

This paper considers Value at Risk measures constructed under a discrete mixture of normal

distribution on the innovations with time-varying volatility, or MN-GARCH, model. We adopt

an approach based on the continuous empirical characteristic function to estimate the param-

eters of the model using several daily foreign exchange rates’ return data. This approach has

several advantages as a method for estimating the MN-GARCH model. In particular, under

certain weighting measures, a closed form objective distance function for estimation is obtained.

This reduces the computational burden considerably. In addition, the characteristic function,

unlike its likelihood function counterpart, is always uniformly bounded over parameter space

due to the Fourier transformation. To evaluate the VaR estimates obtained from alternative

specifications, we construct several measures, such as the number of violations, the average size

of violations, the sum square of violations and the expected size of violations. Based on these

measures, we find that the VaR measures obtained from the MN-GARCH model outperform

those obtained from other competing models.
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1 Introduction

Rapid pace with which innovations in the design of derivative securities have taken place, cou-

pled with episodes of spectacular losses associated with derivatives over the past few decades

have made firms keenly aware of the rising prominence of risk management. This increased

focus on risk management has led to the development of various methods and tools to measure

the risks that firms are exposed to.

The most well-known risk-measurement tool, despite its various theoretical shortcomings,

is so-called Value at Risk (VaR). VaR is defined as the minimum expected loss on an asset, or a

portfolio of assets, over a certain holding period at a given confidence level. It is worth noting

that the use of VaR techniques in risk management has dramatically increased over the last few

decades. Financial institutions now are accustomed to using VaR techniques in managing their

trading risk and nonfinancial firms routinely adopt the technology for their risk-management

purposes as well. In addition, regulators also work on designs of new regulations around it.

Examples of these regulations include the determination of bank capital standards for market

risk and the reporting requirements for the risks associated with derivatives used by corpora-

tions.

Undoubtedly the ability to quantify risk exposure into a single number represents the most

appealling feature of the VaR technique. However, it is obvious that the technique is only as

good as the inputs into the VaR model. In this regard, many implementations of VaR so far

have assumed that asset returns are normally distributed. This assumption simplifies the com-

putation of VaR considerably, but it is apparently counterfactual since asset returns tend to

be characterized by high kurtosis and, sometimes, also high skewness (as in the case of equity

returns). High kurtosis, in particular, means that asset returns are fat tailed. This implies

that extreme events are much more likely to occur in practice than would be predicted based

on the normality distributional assumption. This suggests that the normality distributional
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assumption can produce VaR numbers that are distorted from the true risk faced by the firm.

Finite mixture models, in particular, discrete mixture of normal (MN) models, are an at-

tractive class of non-normal models for the purpose of modelling financial asset returns. These

models have been studied across different disciplines. See e.g. Everitt and Hand (1981), Titter-

ington, Smith and Makov (1985) and McLachlan and Peel (2000). One of the most appealling

features of the MN models for modelling asset returns is their ability to capture the leptokurtic,

skewed and multimodal characteristics of the asset returns. In addition, any continuous distri-

bution can be approximated arbitrarily well by a finite MN model. For instance, Kon (1984)

discusses its applications to 30 stocks in the Dow-Jones Industrial Average and concludes that

the MN models have substantially more descriptive validity than the Student’s t models. Lastly,

the MN models are easy to interpret if the asset returns are viewed as generated from different

information distributions. In this regard, the mixture proportion can accommodate parameter

cyclical shifts or switches among a finite number of regimes.

In a general set up of an MN model, we define a random variable X, where X = (X1, X2, ..., Xn),

which is drawn from K different normal distributions with probability (or mixing weight) pk;

i.e.,

X ∼ pkN(µk, σ
2
k) (1)

where pk ≥ 0, k = 1, 2, ..., K, and
K∑

k=1

pk = 1. In (1), there are (3K − 1) unknown parameters

to be estimated. This model is referred to as an MN(K) model. Its overall unconditional

probability density function (pdf) is given by

f(x) =
K∑

k=1

pkφ(x; µk, σ
2
k)
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where the kth mixture component pdf is

φ(x; µk, σ
2
k) =

1√
2πσ2

k

exp

[
−1

2

(
x− µk

σk

)2
]

In addition to the high kurtosis and skewness, evidence also has been presented over the

years that the volatility of asset returns tends to be time varying and clustered over time. Time-

independent models are not designed to accommodate such features. Instead, time-dependent

models have been proposed to capture this particular dynamics of asset returns. A benchmark

model in this class of models is known as the Autoregressive Conditional Heteroscedasticity

(ARCH) model, which is proposed by Engle (1982), and its generalized version, known as the

generalized ARCH (GARCH) model, which is suggested by Bollerslev (1986). While the con-

ditional variance of the asset return in the ARCH model is a linear function of past squared

innovations, the conditional variance of the asset returns in the GARCH model is a linear func-

tion of both past squared innovations and past conditional variances. However, there is ample

evidence to suggest that the GARCH models often fail to generate sufficient leptokurtosis rel-

ative to that observed in the data, in particular when the return’s innovation is assumed to

be normally distributed (GARCH-N). In response to this, Bollerslev (1987) proposes modelling

the innovation of the GARCH model with a Student’s t distribution (GARCH-t), while Nelson

(1991) propose a generalized error distribution (GED) for the innovation.

As an alternative approach, a number of authors examine an MN model in combination

with a GARCH (MN-GARCH) model by specifying the innovation of the mean regression to

have a conditional distribution that is an MN with GARCH variance components and the

probability that each observation belongs to a given volatility regime is kept constant. Notably

Vlaar and Palm (1993) are the first to propose an MN model, where the difference between the

conditional variances in each state is assumed to be constant. Another version is studied by

Bauwens, Bos and van Dijk (1999), and also by Bai, Russell and Tiao (2003), who consider a

mixture GARCH model in which the two conditional variances are proportional to each other.
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This is a model distribution which postulates that a large number of innovations are generated

by a normal density with a small variance, while a small number of innovations are generated

by a normal density with a large variance. More recently Haas, Mittnik and Paolella (2004)

and Alexander and Lazar (2006) propose a more general specification of the MN-GARCH mod-

els. In particular, Haas, Mittnik and Paolella (2004) allow for interdependence between the

variance components in each regime, while Alexander and Lazar (2006) extend the model to

include asymmetric GARCH processes.

Several models that are based on another type of mixture of distributions, known as Regime

Switching GARCH (RS-GARCH) models, also have been proposed in the literature. For in-

stance, Schwert (1989) considers a model in which returns can have either a high or low variance,

and a switch between these states is determined by a two-state Markov process. Hamilton and

Susmel (1994) and Cai (1994) introduce an ARCH model with regime-switching parameters to

take into account sudden changes in volatility. They use an ARCH specification instead of a

GARCH to avoid the problem of path dependence of the conditional volatility on the ruling

regime. Subsequently, a tractable Markov-switching GARCH model was presented by Gray

(1996) and a modification of his model was later on suggested by Klaassen (2002).

In this paper, we follow Haas, Mittnik, and Paolella (2004) and Alexander and Lazar (2006)

in retaining the flexibility of the MN structure and incorporating the time-varying volatility

with a GARCH process. We have mentioned that the MN-GARCH model combines the ad-

vantages of both the MN distribution and the GARCH process. In addition and unlike the

GARCH-t model and others, the MN-GARCH model is founded on the normality assumption;

this allows for a component-wise application of the Central Limit Theorem. Furthermore, it

is capable of capturing the correlation structure and performing out-of-sample VaR forecasts

better than most competing GARCH-family models that include the GARCH-N and GARCH-t

models. We will demonstrate the latter property in this paper.
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Our main contribution in this paper is on the estimation methodology. While alternative

return distributions have been proposed that better reflect the stylized facts about asset re-

turns, such as asymmetry, heavy-tail and time-varying volatility, any new approach to the

extant work must confront the issue of tractability in computation, which is viewed as one

of the main advantages of the VaR. Both Haas, Mittnik and Paolella (2004) and Alexander

and Lazar (2006) among others adopt a likelihood-based method. In this paper, we adopt an

alternative approach based on the Continuous Empirical Characteristic Function (CECF). This

approach has several advantages as a method for estimating the MN-GARCH models. First,

under certain weighting measures, a closed form objective distance function can be derived.

This simplifies the estimation procedure considerably and renders the model to be easily im-

plemented in practice. Second, the estimator has strong consistency and asymptotic normality

properties, see Heathcote (1977), Feuerverger (1990), Knight and Yu (2002). Third, the Fourier

inversion theorem implies a one-to-one mapping between the characteristic function (CF) and

the likelihood function, indicating that the CF contains the same amount of information as the

distribution function. Lastly and most importantly, the CF is always uniformly bounded due

to the Fourier transformation. In contrast, the likelihood function is not always bounded over

its parameter space in the MN models, and the ML procedure may therefore break down in

practice.

We apply the MN-GARCH model along with the CECF estimation approach to five daily

foreign currencies including Canadian dollar (CAD), Euro (EUR), British pound (GBP), Japanese

yen (JPY) and German mark (DEM). We compute VaR estimates for the time-independent

normal (N) and MN models, the time-dependent GARCH-N and GARCH-t models, as well

as the MN-GARCH model for each of the five currencies. We show that the MN assumption

combined with the GARCH process provides a better performance relative to several other

popular models. In particular we show that the MN-GARCH model leads to a significantly

closer number of violations of VaR to the expected number of the violations than all of the

other competing models studied in this paper. In summary, combining the MN-GARCH model
6



with the CECF estimation technique allows us to capture skewed and fat-tailed distributions

of asset returns with volatility clustering, while maintaining tractability in the computation of

the VaR measures.

The remaining part of this paper is organized as follows. Section 2 presents the MN-

GARCH model and discusses its properties and section 3 outlines the estimation approach

based on the CECF. Section 4 discusses the VaR estimates obtained from our proposed model

as well as a number of other competing models. Section 5 concludes the paper. Appendix A

contains derivations of both conditional and unconditional third and fourth moments of the

MN-GARCH, GARCH-N and GARCH-t models’ innovations, and Appendix B contains the

proof of the main proposition in the paper.

2 The MN Model with Time-Varying Volatility

Define Pt as the closing price on the trading day t. The daily return Xt is calculated as

logarithmic closing price differences:

Xt = 100(log Pt − log Pt−1) ; t = 1, 2, ..., T (2)

Focussing on volatility modelling, we specify the simplest possible return process as:1

Xt = εt (3)

where we assume that εt follows a K-component MN conditional distribution with time-varying

volatility process:

εt|It−1 ∼ pkN(µk, σ
2
k,t) (4)

1In the empirical analysis, Xt can be specified to follow a general rth order autoregressive, or AR(r), process:

Xt = a0 +
r∑

i=1

aiXt−i + εt. In this case, the residuals ε̂t can be interpreted as the adjusted return and used in

place of Xt itself.
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for t = 1, 2, .., T and k = 1, 2, ..., K, where It−1 is the information set up to time t − 1,

0 ≤ pk ≤ 1 and
K∑

k=1

pk = 1. The conditional variance of each mixture component is specified as

a GARCH(m,n) process:

σ2
k,t = λk +

n∑
i=1

αkiε
2
t−i +

m∑
j=1

βkjσ
2
k,t−j (5)

where the individual variances are allowed to be related to the dependence on their own inno-

vation, εt.
2 Henceforth we denote the model represented by equations in (3), (4) and (5) as the

MN(K)-GARCH(m,n) model.

In the ensuing dicussion in this section, we set m = n = 1 and consider the conditional

variance of each mixture component given by:

σ2
k,t = λk + αkε

2
t−1 + βkσ

2
k,t−1 (6)

which we denote as the MN(K)-GARCH(1,1) model. We note that for k = 1, we obtain a

standard GARCH(1,1) model with normally distributed innovation terms which we previously

have denoted as the GARCH-N model. We also note that our ensuing discussion of the model’s

properties is based on the results obtained in Haas, Mittnik and Paollela (2004) and Alexander

and Lazar (2006). First, from (6), it is evident that for nonnegative conditional variance of

each mixture component, we need the following restrictions: λk > 0, αk ≥ 0, and βk ≥ 0.

Furthermore, the unconditional variance for the MN(K)-GARCH(1,1) model exists, and,

thus, the process {εt} is weakly stationary (given that the GARCH process is serially uncorre-

2A more general specification of the volatility process would be to modify (5) by allowing the past
values of the sth variance component to have nontrivial effect on current values of variance component:∑K

s=1

∑q
j=1 βksjσ

2
k,t−j . However this additional cross-dependence of individual variances is unlikely to lead

to substantial improvement of the model. See Haas, Mittnik and Paollela (2004) on this. For this reason and
for simplicity, we exclude this type of cross-dependence effect from (5).
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lated), if the root of the characteristic equation

[
K∑

k=1

pk

1− βk

(1− αk − βk)

]
K∏

k=1

(1− βk) = 0 (7)

is greater than one (See Appendix A). Equation (7) implies that, unlike the normal GARCH(1,1)

model, the restriction of αk + βk < 1 needs not hold for each k = 1, 2, ..., K. Instead, the

necessary and sufficient condition for the existence of the unconditional variance in the MN(K)-

GARCH(1,1) model is given by:
K∑

k=1

pk

1− βk

αk < 1 (8)

Equation (7) also implies that the model possesses a finite variance even when some of the

components may not be covariance stationary as long as the corresponding components’ weights

are sufficiently small. In particular, the overall unconditional variance of the model is (See

Appendix A):

E(ε2
t ) =

K∑

k=1

pkµ
2
k +

K∑

k=1

pk

1− βk

λk

K∑

k=1

pk

1− βk

(1− αk − βk)

(9)

where E(ε2
t ) ≡ E(σ2

t ), and the unconditional variance of each individual mixture component of

the model is:

E(σ2
k,t) =

λk + αkE(ε2
t )

1− βk

(10)

Given these last two results, the conditional and unconditional third and fourth moments of

the model’s innovation: E(ε3
t |It−1), E(ε3

t ), E(ε4
t |It−1), and E(ε4

t ), can be derived. See Appendix

A. These results, in turn, can be used to calculate conditional and unconditional skewness co-

efficients as
E(ε3t |It−1)

(σ2
t )3/2 and

E(ε3t |It−1)

[E(ε2t )]3/2 , as well as conditional and unconditional kurtosis coefficients

as
E(ε4t |It−1)

(σ2
t )2

and
E(ε3t |It−1)

[E(ε2t )]2
.
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3 The Estimation Methodology

As pointed out earlier and also discussed in Quandt(1988), the likelihood function is not always

bounded in the MN framework. Thus, the likelihood based method may breakdown in practice.

For this reason, we follow Xu (2007) and adopt an estimation method based on the CECF in

this paper.3 Compared to the Discrete ECF (DECF) approach, we allow the grid points in the

objective distance measure to be continuous. This allows us to avoid making (arbitrary) choices

about the number of the grid points and the distances among the grid points. Under regular-

ity conditions, Heathcote (1977) and Knight and Yu (2002) established the strong consistency

and asymptotic normality properties for the CF based estimators. Yu (1998) provided some

evidence that the CECF method outperforms the DECF in estimating the Gaussian Moving

Average (MA) model. Furthermore, in the DECF estimation process, it seems impossible to

achieve a closed form solution while under our CECF procedure with an exponential weighting

function, we are able to find a closed-form solution for the objective distance measure. In this

section, we also present results for the general formula associated with any finite number of

normal components. Importantly, the CECF approach does not suffer from the aforementioned

two major problems associated with the finite grid points in the DECF approach.

It is important to re-iterate that the CF has a one-to-one mapping to the likelihood function

by Fourier inversion theorem and is always uniformly bounded in the parameter space. For this

reason, it is especially well suited for the estimation of the MN(K)-GARCH(m, n) model.

Specifically the CF associated with (4) and (5) is defined as:4

C(r, θ) = E(eirX) =
K∑

k=1

pk exp(iµkr − 1

2
σ2

k,tr
2) (11)

where i =
√−1.

3In this section, we return to the general MN(K)-GARCH(m,n) specification.
4Again, in the empirical analysis, the return, Xt, may be replaced by the adjusted return, which is the

residuals ε̂t from the AR(r) process for Xt, whenever it is necessary to do so.
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Noting that exp(irX) = cos(rX) + i sin(rX), we can rewrite (11) as:

C(r, θ) =
K∑

k=1

pk cos(µkr) exp(−1
2
σ2

k,tr
2) + i

K∑

k=1

pk sin(µkr) exp(−1
2
σ2

k,tr
2) (12)

Correspondingly, the empirical counterpart (ECF) of (11) is defined as:

Ct(r,X) = exp(irXt) (13)

Similarly, (13) can be decomposed into the sum of the real and imaginary parts:

Ct(r,X) = cos(rXt) + i sin(rXt) (14)

Lastly, following Xu (2007), we construct the following distance measure (in L2 space) by

continuously matching (11) and (13):

Dt(θ; X) =

∫
|Cn(r; X)− C(r; θ)|2 exp(−br2)dr (15)

where b is a non-negative real number and θ is the unknown parameter vector in the model.

In (15), exp(−br2) is the weighting function. This weighting measure retains certain prop-

erties of the Gaussian kernel. Focusing on (15), we derive a general closed form expression of

the objective distance measures for the MN(K)-GARCH(m,n) model as this provides an easy

implementation for the estimation.

Proposition 1: If the return Xt is generated from (3), (4) and (5) and the distance measure
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under the CECF is defined as in (15), then the closed form expression for (15) is given by:

Dt(θ; X) =

√
π

b
+

K∑

k=1

p2
k

√
π

b + σ2
k,t

− 2
K∑

k=1

(
pk

√
π

1
2
σ2

k,t + b
exp(−(Xt − µk)

2

4b + 2σ2
k,t

)

)

+ 2
∑

k 6=h

pkph

√
π

b + 1
2
(σ2

k,t + σ2
h,t)

exp

(
− (µk − µh)

2

4b + 2(σ2
k,t + σ2

h,t)

)
(16)

Proof : See Appendix B.

The implementation of the CECF based estimation essentially requires a minimization of

D(θ) =
T∑

t=1

Dt(θ; X) with respect to the unknown parameters in the model. The CECF esti-

mator has an asymptotic normal distribution, see Heathcote (1977), which is

√
T (θ̂ − θ) ∼ N(0, Λ−1ΩΛ−1) (17)

where Λ = E
(

∂D2(θ)
∂θ∂θ′

)
and Ω = E

(
∂D(θ)

∂θ
∂D(θ)

∂θ′

)
.

In summary, with the CECF procedure, we can theoretically estimate any finite MN(K)-

GARCH(m,n) models. As there is a closed-form expression for the objective distance measure,

the estimation procedure is easily implemented in practice. Moreover, the Monte Carlo results

reported in Xu (2007) suggest that the CECF estimator produces good finite sample properties

and is a comparable estimator to the standard ML estimator. In particular, the CECF pro-

cedure performs very well against any other discrete-type methods in the cases when the ML

estimator fails to converge.

4 The Empirical VaR Results

We apply the model along with the CECF procedure to five foreign exchange rates (FX) daily

trading prices including CAD, EUR, GBP, JPY and DEM. All currencies are in terms of US

dollars. The sample period covers 21 years from January 02, 1985 to December 30, 2005. The
12



daily prices are transformed into continuously compounded returns based on (2). The data

summary statistics are provided in Table 1. From the table, we see that, for the returns of

CAD and GBP, there are significant positive sample skewness coefficients, suggesting a greater

likelihood of large increases in returns than decreases. For the remaining currency returns,

there are significant negative sample skewness coefficients, indicating a greater probability of

large decreases in returns than increases, with the exception of the returns of Euro dollar which

is not significant. These results suggest that it is important to accommodate the asymmetric

nature of the return distributions when the VaR measure is calculated. In addition, for all of

the five foreign currency returns, the sample kurtosis coefficients are far in excess of three and

significant, providing evidence of fat tailed distributions for the returns. Next the Ljung-Box-

Pierce statistics of the returns in level provide no evidence of autocorrelation up to five lags,

with the exception for the returns on EUR. In fact there is no autoregressive effects necessary

to fit the conditional mean returns for all of the currencies, except for EUR. For the latter,

we find that a simple AR(1) process provides the best fit according the Bayesian Information

Criterion (BIC). As a result, the innovation for this return series is the adjusted one. Lastly,

as expected, the Ljung-Box-Pierce statistics of the squared returns are highly significant for all

of the five currencies, providing evidence of volatility clustering in the returns.

As a next step, we estimate the GARCH-N, GARCH-t and MN-GARCH models, 5 using

the five foreign currency returns. The estimation results are reported in Table 2. First we note

that in estimating the GARCH-N and GARCH-t models, we did not impose the restriction

that µ1 = 0; instead, we treat it as a free parameter in the estimation. However, in all of

the cases, the estimate is quantitatively small and in almost all of the cases also statistically

not significant (except for the GARCH-t model for CAD and GBP). Second, when calculating

the unconditional variance of each individual mixture component of the model according to

(10), we find that small estimated values of the unconditional variance (or long run volatility)

component tend to be accompanied by larger estimated values of the mixing weight parameters

5In the empirical section the MN has two components and all of the GARCH models are of order (1, 1).
13



(p1 and p2 = 1− p1). This result can be interpreted as follows. The MN-GARCH model is able

to uncover two distinct volatility regimes in the foreign currency return data; one is associated

with a normal market condition which occurs most of the time over the sample period, and

another is associated with an abnormal market condition, which occurs only infrequently over

the sample period. Lastly, the estimated mixing weights parameters can be interpreted as the

frequencies with which the low and high regimes occur over the sample period.

To determine which model fits the data best in sample, we use a number of model selection

criteria. First, for the models’ ability to describe the empirical data, we simulate a set of ran-

dom variables via the estimated models. Then the first four unconditional realized moments

are constructed for comparisons against the corresponding data moments.6 To eliminate the

random number generator effects, we use a large sample size as 10,000 and with 1,000 repli-

cations. The average moments results are reported in Table 3. For all of the five currency

returns, the MN-GARCH model delivers the first four unconditional moment estimates that

are unequivocally closest to the realized counterparts. Interestingly, for EUR, GBP and JPY

the unconditional fourth moment (kurtosis) estimates of the GARCH-t model are implausibly

large, pointing to the possibility of the non-existence of the fourth moment in the case of the

GARCH-t model. Next we compute ”pseudo” Akaike Information Criterion (AIC) and BIC

criterion based on the log-likelihood values constructed from the CF parameter estimates of

each model. Both criteria appear to favor the GARCH-t model followed by the MN-GARCH

model and then the GARCH-N model in almost all of the cases. These results are broadly con-

sistent with the findings reported in Alexander and Lazar (2006). However there are reasons to

doubt these results given that both the AIC and BIC measures are based on likelihood values.

As pointed out earlier, the likelihood function in the MN-GARCH may not be well defined. In

this paper we address this problem by minimizing the distance constructed from the CF and

the ECF instead of maximizing the likelihoods. The information criterion measures based on

6We compare how closely the first four unconditional realized moments: mean, variance, skewness and excess
kurtosis (which is the kurtosis in excess of 3) of the data are matched by the corresponding unconditional values
simulated from the GARCH-N, GARCH-t and MN-GARCH models.
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the likelihood may therefore be unreliable.

To further evaluate these competing models, we also construct VaR measures for comparison

purpose according to:

K∑

k=1

pk

∫ V aRt

−∞
φ(Xt; µk, Σk,t)dXt = 1− CL (18)

where CL is the confidence level (97.5% or 99%); φ(.) is the normal probability density func-

tion; and (p, µ, Σ) are the parameters in the mixture components. The above equation is solved

by using a Newton’s method. As a next step, the parameter estimates from Table 2 along with

the estimates of the latent volatilities are used to construct the empirical VaR measures under

the GARCH-N model, the GARCH-t model and the MN-GARCH model. We also calculate

the VaRs with the conventional normal and MN specifications by using 250-day rolling esti-

mation windows. Specifically, we construct a 250-day rolling estimation window and compute

the VaRs based on a one-day holding period at the 99.0 % one-sided confidence level. To start

the program, we set the first 250 sample data points as the initial window. The window is

moving over the time horizon as the trading day (t) increases, i.e, [Xt−i]
i=250
i=1 ,7 Since the rolling

windows are constructed for the empirical estimation of the volatility of the time-independent

models (N and MN), we obtain a set of estimates for each rolling sample. Therefore, for com-

parison purposes, we plot the standard deviation estimates from the normal and MN models

as well as the corresponding conditional volatility estimates from the GARCH-N, GARCH-t

and MN-GARCH models in Figures 1.1-1.5 for all of the five foreign currency returns. From

the figures, there seem to be no appreciable differences, at least visually, among the three time-

dependent models. But, as a group, they are visibly more capable than the time-independent

models in tracking down the movements of volatility of the returns over time for obvious reasons.

To examine the performance of the VaRs obtained from the various competing models, we

7This just to re-iterate the point again that, in practice, the raw return series, Xt, may be replaced by its
adjusted version, ε̂t.
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perform “backtesting” in the following ways. A violation is said to occur when Xt < V aRt.

That is,

It =





1 if Xt < V aRt;

0 otherwise.

where E[It] = N(1 − CL) is the number of violations (NoV). In addition, a Likelihood-Ratio

(LR) test statistic, which is proposed by Christoffersen (1998), can be calculated as:

LR = 2 log

[(
γ∗
γ

)n (
1− γ∗
1− γ

)N−n
]
∼ χ2

(1)

where N is the sample size, n is the number of violations, γ∗ = n
N

, and γ is the confidence

level. The critical values for this test statistic are 6.635 and 3.841 respectively at the 1% and

5% significance levels.

To further evaluate the performance of the calculated VaR, we also construct the following

quadratic loss function proposed by Lopez (1998) :

St =





1 + (Xt − V aRt)
2 if Xt < V aRt;

0 otherwise.

to take into account the magnitude of the violations. This measure is called the Sum Square of

Violations (SSV). Lastly, there is an alternative way to deal with the problem of aggregating

the frequency with the size of the exceptions, by focusing on the average size of the exception:

At =





Xt−V aRt

V aRt
if Xt < V aRt;

0 otherwise.

This is known as the Average Size of Violations (ASV).

The results of calculating the above measures (NoV with LR test statistics in parenthesis,
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ASV, and SSV) are reported in Tables 4.1-4.5 for all of the five foreign currency returns at

the 99% confidence levels. In addition, for comparison, we also record the expected number

of violations. As expected, for all of the five foreign currency returns, the actual numbers of

violations under the normal model is substantially higher than the expected number of viola-

tions. This is followed by the VaR constructed under the GARCH-N model. In addition, at

the 5% significance level, the LR test statistic rejects the null hypothesis that the true viola-

tion rate is 1% for the VaRs calculated under both the normal model and the GARCH-N model.

Except for EUR, the VaRs constructed under the MN model perform well in terms of the

number of violations with insignificant LR statistics. Venkataraman (1997) also analyzed the

VaR performance under a MN model. Consistent with our results, he demonstrated that the

VaR constructed under the MN model performs substantially better than the VaR under the

normal model. However Venkataraman (1997) used a Bayesian simulation-based estimation

method, which is computationally intensive. Interestingly the MN model is able to capture fat

tailed characteristic of the asset returns very well. So even if it does not allow for time varying

volatility or volatility clustering in the asset returns, the VaR measures obtained from the MN

model seem to vastly outperform those obtained from not only the normal model but also the

GARCH-N model.

As to the VaR calculated under the GARCH-t model, the actual numbers of violation under

this model are fairly close to the expected numbers and the LR statistics do not reject the null

hypothesis that the true violation rate is 1% for the VaRs calculated under this model, except

for JPY.

Lastly the calculated LR test statistics do not allow us to reject the null hypothesis that the

true violation rate of the VaR constructed under the MN-GARCH model is 1% for all of the

five currency return considered in this study. Moreover, Tables 4.1-4.5 also show that overall

the measures of number of violation for these VaRs are fairly close to the expected numbers.
17



Similarly the measures of SSV and ESV are generally smaller for the VaRs calculated under

the MN-GARCH model than those computed under the other four competing models. These

results suggest that the MN-GARCH model provides more superior VaR measures than those

obtained under the conventional normal and GARCH-N models as well those constructed under

the MN and GARCH-t models. The reason for this conclusion is easy to explain. Time-varying

and clustering volatility characteristics of the asset returns are not captured by the normal and

MN models, while kurtosis is not sufficiently generated by the GARCH-N model and apparently

even by the GARCH-t model.

5 Conclusion

Given that the excess kurtosis, and to some extent, also skewness, are prominent features of

the asset returns, the MN model is a highly attractive candidate and has been used in prior

research to model the financial asset returns with some successes. However, the MN model, as

a time-independent model, is not designed to capture volatility clustering which also charac-

terizes the asset returns equally saliently. In this paper, we combined the MN model with the

GARCH process, and considered the MN-GARCH model as a volatility model to construct the

VaR measures.

We are not the first to consider the MN-GARCH model as a volatility model. However

we are the first to introduce a new estimation approach based on the CF for the MN-GARCH

model. Most prior research, for efficiency and inference considerations, has adopted a likelihood-

based method for estimating the parameters of the MN-GARCH model. However we stress in

this paper that the implementation of the ML method critically requires the model’s likelihood

function to be bounded in its parameter space. As a well-known problem, even though it is often

not reported in prior studies, this condition can fail in the MN-GARCH model. In such a case,

the ML method may generate a local (instead of a global) optimum. In this paper, we dealed

with this estimation issue by adopting an alternative estimation approach based on the CECF.
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We argued that this method does not suffer from the same shortcoming as the likelihood-based

method because the required Fourier transformation ensures that the characteristic function

is always uniformly bounded. Furthermore, under certain weighting measures, we are able to

obtain a closed form objective distance function for estimation. This simplifies the estimation

considerably and can be easily implemented in practice, which is completely in sink with one

of the main appeal of the normal model as a volatility generator for the VaR measure.

In the empirical section, we also constructed VaR measures under the MN-GARCH model

using our estimates for the five daily foreign currency returns. For comparison, we also cal-

culate the VaR measures under four competing models: the normal and MN models as well

as the GARCH-N and GARCH-t models. We show that the VaR measures calculated from

the MN-GARCH model clearly outperformed those obtained under the other competing models.

There are still several important outstanding issues. First, this paper only deals with the

VaR on the individual assets. It is of interest to examine how well this particular approach

works in the context of the VaR of a portfolio of a large number of assets. Second, further

research is needed to construct a test statistic that can formally determine the number of

mixture components in the MN(K)-GARCH(m,n) model for a particular sample of data under

study. Third, in the context of equity returns, we need to accommodate a potential leverage

effect. The leverage effect can potentially be accommodated in the MN(K)-GARCH(m,n) model

by allowing for time varying mixture components as well as time varying mean components:

εt|It−1 ∼ pk,tN(µk,t, σ
2
k,t), where k = 1, 2, ..., K, and t = 1, 2, ..., T . These are the topics for

future research.
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Appendix A

Derivations of the Models’ Properties

Express the K component variance equations in the MN(K)-GARCH(1,1) model

σ2
k,t = λk + αkε

2
t−1 + βkσ

2
k,t−1

as a (K × 1) vector of equations




σ2
1,t

σ2
2,t

...
σ2

K,t


 =




λ1

λ2

...
λK


 +




α1

α2

...
αK


 ε2t−1 +




β1 0 ... 0
0 β2 ... 0
... ... ... ...
0 0 ... βK







σ2
1,t−1

σ2
2,t−2

...
σ2

K,t−1




Without loss of generality, we set K = 2 in deriving the ensuing results, and work with a (2×1) vector
of component variance equations in the MN(2)-GARCH(1,1) model:

(
σ2

1,t

σ2
2,t

)
=

(
λ1

λ2

)
+

(
α1

α2

)
ε2t−1 +

(
β1

0 β2

)(
σ2

1,t−1

σ2
2,t−2

)

Using the law of iterated expectations, the unconditional expectation of the component variances can
be expressed as

(
E(σ2

1,t)
E(σ2

2,t)

)
=

[(
1 0
0 1

)
−

(
β1 0
0 β2

)
−

(
α1

α2

) (
p1 p2

)]−1 [(
λ1

λ2

)
+

(
α1

α2

)(
p1 p2

) (
µ2

1

µ2
2

)]

which can be further written as

(
E(σ2

1,t)
E(σ2

2,t)

)
=

(
1− β1 − α1p1 −α1p2

−α2p1 1− β2 − α2p2

)−1 (
λ1 + α1(p1µ

2
1 + P2µ

2
2)

λ2 + α2(p1µ
2
1 + P2µ

2
2)

)

The above equation implies that the necessary and sufficient condition for the existence of the
unconditional variance is given by

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
=

[(
1 0
0 1

)
−

(
β1 0
0 β2

)
−

(
α1

α2

) (
p1 p2

)]
> 0

Next, we calculate the determinant as follows. First we write it as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
= Det

[(
1 0
0 1

)
−

(
β1 0
0 β2

)]
− (

p1 p2

) [(
1 0
0 1

)
−

(
β1 0
0 β2

)]+ (
α1

α2

)

where [.]+ is the adjoint matrix of [.]. Then we write it as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
= Det

[(
1− β1 0

0 1− β2

)]
− (

p1 p2

) [(
1− β1 0

0 1− β2

)]+ (
α1

α2

)

which can be further expressed as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
= (1− β1)(1− β2)−

(
p1 p2

) (
1− β2 0

0 1− β1

)(
α1

α2

)
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Note that this expression can be rewritten as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
= (1− β1)(1− β2)− [p1(1− β2)α1 + p2(1− β1)α2]

or as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
=

[
(1− β1)(1− β2)− p1(1− β2)α1 − p2(1− β1)α2

(1− β1)(1− β2)

]
(1− β1)(1− β2)

or as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
=

1− (1− β2)p1α1 − (1− β1)p2α2

(1− β1)(1− β2)
or as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
=

[
1−

(
p1

1− β1
α1 +

p2

1− β2
α2

)]
(1− β1)(1− β2)

Lastly this expression can be written succinctly as

Det

(
E(σ2

1,t)
E(σ2

2,t)

)
=

[
1−

2∑

k=1

pk

1− βk
αk

]
2∏

k=1

(1− βk)

Alternatively, we can write

1−
(

p1

1− β1
α1 +

p2

1− β2
α2

)
(1− β1)(1− β2)

as

(p1 + p2)− p1α1

1− β1
− p1α1

1− β1

or as

p1 − p1α1

1− β1
+ p2 − p2α2

1− β2

or as

p1(1− β1)− p1α1

1− β1
+

p2(1− β2)− p2α2

1− β2

or as

p1

1− β1
(1− α1 − β1) +

p2

1− β2
(1− α2 − β2)

Thus, we have shown that

1−
2∑

k=1

pk

1− βk
αk =

2∑

k=1

pk

1− βk
(1− αk − βk)

The unconditional variance of the innovation of the MN(2)-GARCH(1,1) model is given by

E(ε2t ) =
(
p1 p2

)(
E(σ2

1t)
E(σ2

2t)

)
+

(
p1 p2

) (
E(µ2

1)
E(µ2

2)

)
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This in turn can be expressed as

E(ε2t ) =
(
p1 p2

) (
µ2

1

µ2
2

)




Det





1 0

0 1


−


β1 0

0 β2


+


λ1

λ2




(
p1 p2

)

(
p1 p2

)

µ1

µ2







Det

[(
1 0
0 1

)
−

(
β1 0
0 β2

)
+

(
λ1

λ2

) (
p1 p2

)]




Using similar steps as before, we can eventually obtain the following expression for the uncondi-
tional variance of the model’s innovation as

E(ε2t ) =

2∑

k=1

pkµ
2
k +

2∑

k=1

pk

1− βk
λk

1−
2∑

k=1

pk

1− βk
αk

or as

E(ε2t ) =

2∑

k=1

pkµ
2
k +

2∑

k=1

pk

1− βk
λk

2∑

k=1

pk

1− βk
(1− αk − βk)

The unconditional fourth moment of the model’s innovation, if exists, is given by

E(ε4t ) = 3
(
p1 0 0 p2

)



[E(σ2
1,t)]

2

E(σ2
1,t)E(σ2

2,t)
E(σ2

2,t)]E(σ2
1,t)

[E(σ2
2,t)]

2


 + 6

(
p1 p2

) (
µ2

1E(σ2
1,t)

µ2
2E(σ2

2,t)

)
+

(
p1 p2

)(
µ4

1

µ4
2

)

which can be rewritten as

E(ε4t ) = 3
2∑

k=1

pk[E(σ2
k,t)]

2 + 6
2∑

k=1

pkµ
2
kE(σ2

k,t) +
2∑

k=1

pkµ
4
k

and the conditional fourth moment is

E(ε4t |It−1) = 3
2∑

k=1

pk[σ2
k,t]

2 + 6
2∑

k=1

pkµ
2
kσ

2
k,t +

2∑

k=1

pkµ
4
k

Similarly, the third unconditional moment of the model’s innovation is given by

E(ε3t ) = 3
(
p1 p2

) (
µ2

1E(σ2
1,t)

µ2
2E(σ2

2,t)

)
+

(
p1 p2

)(
µ3

1

µ3
2

)
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which can be rewritten as

E(ε3t ) = 3
2∑

k=1

pkµkE(σ2
k,t) +

2∑

k=1

pkµ
3
k

and the conditional third moment is

E(ε3t |It−1) = 3
2∑

k=1

pkµkσ
2
k,t +

2∑

k=1

pkµ
3
k

Furthermore the unconditional fourth moment of the model’s innovation can be expressed explicitly
as

E(ε4t ) =

3p′B−1f +
2∑

k=1

6pkµ
2
k

[
λk + αkE(ε2t )

1− βk

]2

+
2∑

k=1

pkµ
4
k

1− 3p′B−1g

where
(
p1 p2

)
,

B =
(

1− β2
1 − 2α1β1e11 −2α1β1e12

−2α2β2e21 1− β2
2 − 2α2β2e22

)

eij = aijpj , where

[aij ] =




1 +
K∑

k 6=1,k=1

pkβ1αk

1− β1βk

−p2α1β2

1−β1β2

−p1α2β1

1−β2β1
1 +

K∑

k 6=2,k=1

pkβ2αk

1− β2βk




g =
(

α2
1 + 2α1β1d1

α2
2 + 2α2β2d2

)

di =
2∑

j=1

aij




2∑

k 6=j,k=1

pkαjαk

1− βjβk




f =
(

w1 + 2α1β1c1

w2 + 2α2βKc2

)

wk = λ2
k + E(ε2t )2λkαk + 2λkβk

(
λk + αkE(ε2t )

1− βk

)

ck =
2∑

j=1

akj




2∑

k 6=j,k=1

pkrjk

1− βjβk


 +

λj + αjE(ε2t )
1− βj

2∑

k=1

pkµ
2
k

and

rik = λiλk + E(ε2t )(λiαk + λkαi) + βi
λi + αiE(ε2t )

1− βi
wk + βk

λk + αkE(ε2t )
1− βk

wi
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For k = 1, we obtain the conditional variance of the standard GARCH(1,1) model as:

σ2
1,t = λ1 + α1ε

2
t−1 + β1σ

2
1,t−1

with
Xt = εt

where
εt|It−1 ∼ N(µ1, σ

2
1,t)

for the GARCH-N model with µ1 = 0. The unconditional variance for the GARCH-N model is:

E(ε2t ) =
λ1

1− α1 − β1

The conditional and unconditional skewness coefficients are zero, while the conditional kurtosis coef-
ficient is 3. In addition, the unconditional kurtosis coefficient is given by:

E(ε4t ) =
3

E(ε2t )
λ2

1 + 2λ1E(ε2t )(α1 + β1)
1− β2

1 − 3α2
1 − 2α1β1

For a GARCH-t model, we first write

Xt = Ztσ
2
1,t

where
Zt|It−1 ∼ t(v)

where µ1 = 0 with the probability density function:

g(Zt.v) =
Γ

(
v+1
2

)
√

(v − 2)πΓ
(

v
2

)
(

1 +
Z2

t

v − 2

)− v+1
2

The variance for the GARCH-t model is identical to the variance of the GARCH-N model. The
conditional and unconditional skewness coefficients are zero. The conditional kurtosis coefficient for
v > 4 is:

E(ε4t |It−1) =
3v − 6
v − 4

while the unconditional kurtosis coefficient is:

E(ε4t ) =
E(ε4t |It−1)

[E(2t )]2
λ2

1 + 2λ1E(ε2t )(α1 + β1)
1− β2

1 − E(ε4t |It−1)α2
1 − 2α1β1

where v is the degree of freedom parameter.
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Appendix B

Proof of Proposition 1

Using (12) and (14), we have:

CT (r,X)− C(r, θ) = cos(rXt)−
K∑

k=1

pk cos(µkr) exp(−1
2
σ2

k,tr
2)

+ i[sin(rXt)−
K∑

k=1

pk sin(µkr) exp(−1
2
σ2

k,tr
2)]

Let

A = cos(rXt)−
K∑

k=1

pk cos(µkr) exp(−1
2
σ2

k,tr
2)

B = sin(rXt)−
K∑

k=1

pk sin(µkr) exp(−1
2
σ2

k,tr
2)

Then,

|CT (r,X)− C(r, θ)|2 = A2 + B2

= cos2(rXt) + sin2(rXt)

+
K∑

k=1

p2
k exp(−σ2

k,tr
2)

− 2
K∑

k=1

pk exp(−1
2
σ2

k,tr
2) (cos(µkr) cos(rXt) + sin(µkr) sin(rXt))

+ 2
∑

k 6=h

pkph exp
(
−1

2
r2(σ2

k,t + σ2
h,t) cos(r(µk − µh)

)

We evaluate each part in the integral with the exponential weighting function exp(−br2). The
first part is only a function of data which can be viewed as a constant term (and it will not affect the
optimization results).

Part 1 =

∫
exp(−br2)dr =

√
π

b

Part 2 =

∫ K∑

k=1

p2
k exp(−σ2

k,tr
2) exp(−br2)dr =

K∑

k=1

∫
p2

k exp(−(σ2
k,t + b)r2)dr

=
K∑

k=1

p2
k

√
π

b + σ2
k,t
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Part 3 = −2
∫ K∑

k=1

pk exp(−1
2
σ2

k,tr
2)[cos(µkr) cos(rXt) + sin(µkr) sin(rXt)] exp(−br2)dr

= −2
K∑

k=1

∫
pk exp(−1

2
σ2

kr
2) cos(r(Xt − µk)) exp(−br2)dr

= −2
K∑

k=1


pk

√
π

1
2σ2

k,t + b
exp(−(Xt − µk)2

4b + 2σ2
k,t

)




Part 4 =
∫

2
∑

k 6=h

pkph exp(−1
2
r2(σ2

k,t + σ2
h,t)) cos(r(µk − µh)) exp(−br2)dr

= 2
∑

k 6=h

∫
pkph exp(−1

2
r2(σ2

k,t + σ2
h,t))

exp[ir(µk − µh)] + exp[−ir(µk − µh)]
2

exp(−br2)dr

= 2
∑

k 6=h

pkph

√
π

b + 1
2(σ2

k,t + σ2
h,t)

exp

(
− (µk − µh)2

4b + 2(σ2
k,t + σ2

h,t)

)

Combining the results from the above integrations will yield the closed form solution stated in Propo-
sition 1.
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Figure 1.1: Volatility Series – CAD
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Figure 1.2: Volatility Series – EUR
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Figure 1.3: Volatility Series – GBP
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Figure 1.4: Volatility Series – JPY
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Figure 1.5: Volatility Series – DEM

1986 1990 1994 1998 2002 2006
0.4

0.5

0.6

0.7

0.8

0.9

1

N

1986 1990 1994 1998 2002 2006

0.4

0.5

0.6

0.7

0.8

0.9

1

MN

1986 1990 1994 1998 2002 2006
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

GARCH-N

1986 1990 1994 1998 2002 2006
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

GARCH-t

1986 1990 1994 1998 2002 2006
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

MN-GARCH

33



Table 1: Summary Statistics of Sample Data

CAD EUR GBP JPY DEM
Length 5371 5403 5372 5383 5373
Mean -0.0025 0.0097 0.0077 -0.0140 -0.0121

St. Dev. 0.3559 0.6765 0.6596 0.7119 0.7066
Skewness 0.0795 -0.0328 0.0724 -0.5127 -0.1229

(SE) (0.0334) (0.0333) (0.0334) (0.0334) (0.0334)
Excess Kurtosis 2.4485 2.2713 3.8074 5.3776 2.1497

(SE) (0.0668) (0.0666) (0.0668) (0.0667) (0.0668)
Minimum -1.9887 -4.1874 -4.4760 -6.9075 -4.8325
Maximum 1.7964 4.8272 4.5529 4.2060 3.3139

JB 1343.66 1159.08 3241.45 6707.67 1045.08
[P − value] [0.000] [0.000] [0.000] [0.000] [0.000]
ACF1(Xt) -0.0067 -0.0390 0.0149 0.0085 -0.0164
(LBP1) (0.2441) (8.2291) (1.1961) (0.3966) (1.4493)

[P − value] [0.621] [0.004] [0.274] [0.529] [0.229]
ACF2(Xt) -0.0034 -0.0048 0.0037 -0.0090 -0.0054
(LBP2) (0.3079) (8.3521) (1.2692) (0.8334) (1.6057)

[P − value] [0.857] [0.015] [0.530] [0.659] [0.448]
ACF3(Xt) -0.0071 -0.0087 -0.0070 -0.0065 0.0061
(LBP3) (0.5811) (8.7575) (1.5336) (1.0650) (1.8043)

[P − value] [0.901] [0.033] [0.675] [0.787] [0.614]
ACF4(Xt) -0.0202 -0.019 0.0069 -0.0071 0.0125
(LBP4) (2.7835) (10.6635) (1.7924) (1.3296) (1.8127)

[P − value] [0.595] [0.031] [0.774] [0.856] [0.770]
ACF5(Xt) -0.0142 -0.0101 0.0065 0.0215 0.0022
(LBP5) (3.8748) (11.2197) (2.0227) (3.8146) (1.8384)

[P − value] [0.568] [0.047] [0.846] [0.576] [0.871]
ACF1(Xt) 0.1271 0.1034 0.1137 0.1449 0.0689
(LBP1) (86.85) (57.76) (69.47) (113.06) (25.49)

[P − value] [0.000] [0.000] [0.000] [0.000] [0.000]
ACF2(Xt) 0.1093 0.1077 0.1358 0.0599 0.0689
(LBP2) (151.10) (120.48) (168.65) (132.39) (51.00)

[P − value] [0.000] [0.000] [0.000] [0.000] [0.000]
ACF3(X2

t ) 0.1175 0.1446 0.1176 0.0430 0.0500
(LBP3) (225.30) (233.57) (243.03) (142.33) (64.45)

[P − value] [0.000] [0.000] [0.000] [0.000] [0.000]
ACF4(X2

t ) 0.1121 0.0731 0.1269 0.0557 0.0499
(LBP4) (292.85) (262.44) (329.69) (159.05) (77.83)

[P − value] [0.000] [0.000] [0.000] [0.000] [0.000]
ACF5(X2

t ) 0.1197 0.0819 0.0948 0.0404 0.0385
(LBP5) (369.87) (298.71) (378.05) (167.86) (85.81)

[P − value] [0.000] [0.000] [0.000] [0.000] [0.000]
Notes: For a return series Xt, the mean is µ = E(Xt), the standard deviation

is σ =
√

E[(Xt − µ)2], the skewness coefficient is = E[(Xt − µ)3]/σ3, and
the excess kurtosis coefficient is = E[(Xt − µ)4]/σ4. Assuming i.i.d return,

the standard errors of the respective sample quantities are SE(µ̂) = σ̂/
√

(T ),

SE(σ̂2) =
√

2σ̂/T , SE(ŝk) =
√

6/T , and SE(k̂) =
√

24/T , where ”̂.” denotes
sample or estimated quantity and T is the total number of observations. JB
is the Jargue-Bera normality test distributed as a Chi-square (2), and LBPτ

is the Ljung-Box-Pierce statistic to test for the joint significance of the first τ
lags of the sample autocorrelation coefficients of (.), or ACF (.), distributed as
a Chi-square (τ).
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Table 2: Parameter Estimates of Competing Models

p1 µ1 µ2 λ1 λ2 α1 α2 β1 β2 v
CAD
GARCH-N - -0.0014 - 0.0013 - 0.0527 - 0.9380 -

- (0.0041) - (1.7e-04) - (0.0034) - (0.0039) -
GARCH-t - -0.0063 - 7.4e-04 - 0.0555 - 0.9383 - 9.0538

- (0.0039) - (1.9e-04) - (0.0052) - (0.0056) - (0.7888)
GARCH-MN 0.0497 0.0019 -0.0040 0.0032 0.0007 0.0111 0.0469 0.9897 0.9393 -

(0.0002) (0.0007) (0.0007) (0.0500) (0.0009) (0.0137) (0.0038) (0.1122) (0.0107) -
EUR
GARCH-N - 0.0087 - 0.0067 - 0.0438 - 0.9418 -

- (0.0084) - (0.0012) - (0.0038) - (0.0056) -
GARCH-t - 0.0077 - 2.0e-07 - 0.0572 - 0.9427 - 6.5876

- (0.0071) - (4.4e-04) - (0.0058) - (0.0052) - (0.5764)
GARCH-MN 0.3364 0.0099 0.0113 0.0064 -0.0005 0.0212 0.0599 0.9820 0.8883 -

(0.0017) (0.0019) (0.0019) (0.0283) (0.0067) (0.0044) (0.0039) (0.0224) (0.0139) -
GBP
GARCH-N - 0.0098 - 0.0026 - 0.0358 - 0.9580 -

- (0.0075) - (4.5e-04) - (0.0024) - (0.0029) -
GARCH-t - 0.0138 - 0.0025 - 0.0396 - 0.9559 - 5.3229

- (0.0071) - (7.7e-04) - (0.0050) - (0.0053) - (0.4512)
GARCH-MN 0.3025 0.0024 -0.0104 0.0006 0.0007 -0.0004 0.0469 0.9907 0.9655 -

(0.0015) (0.0019) (0.0022) (0.0140) (0.0162) (0.0017) (0.0047) (0.3280) (0.0158) -
JPY
GARCH-N - -0.0081 - 0.0148 - 0.0491 - 0.9222 -

- (0.0090) - (0.0012) - (0.0033) - (0.0048) -
GARCH-t - 0.0051 - 0.0110 - 0.0473 - 0.9328 - 4.6621

- (0.0080) - (0.0026) - (0.0069) - (0.0097) - (0.3067)
GARCH-MN 0.6273 0.0064 -0.0048 -0.0022 0.0032 0.0188 0.0096 0.9591 0.9922 -

(0.0030) (0.0013) (0.0018) (0.0112) (0.0969) (0.0024) (0.0025) (0.0288) (0.0885) -
DEM
GARCH-N - -0.0081 - 0.0067 - 0.0366 - 0.9501 -

- (0.0088) - (0.0012) - (0.0034) - ( 0.0051) -
GARCH-t - -0.0048 - 0.0059 - 0.0344 - 0.9545 - 6.4051

- (0.0086) - (0.0017) - (0.0050) - (0.0069) - (0.6244)
GARCH-MN 0.0604 0.0064 -0.0137 -0.0012 0.0016 0.0167 0.0165 0.9973 0.9736 -

(0.0003) (0.0018) (0.0018) (0.1798) (0.0087) (0.0060) (0.0015) (0.0378) (0.0155) -

Notes: Parameters are estimated by the CECF approach and the
numbers in parentheses are the standard errors of the parameter
estimates.
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Table 3: Models’ Moment Comparisons and Information Based Criteria

Mean Std Skewness Excess Kurtosis AIC BIC Log (L)
CAD
Data -0.0025 0.3559 0.0795 2.4485 - - -
GARCH-N 0.0001 0.3733 - 1.1258 3330.2 3390.9 -1661.08
GARCH-t 0.0001 0.3455 - 5.7156 3028.6 3104.5 -1509.32
MN-GARCH -0.0036 0.3525 0.0086 1.7987 3088.6 3225.2 -1535.3
EUR
Data 0.0097 0.6765 -0.0328 2.2713 - - -
GARCH-N -0.0001 0.6811 - 0.4547 10693 10754 -5342.5
GARCH-t 0.0000 0.6088 - 17.7688 10558 10634 -5273.9
MN-GARCH 0.0103 0.6856 -0.0029 1.8223 10584 10720 -5282.9
GBP
Data 0.0077 0.6596 0.0724 3.8074 - - -
GARCH-N 0.0003 0.6476 - 0.7190 9919.1 9979.8 -4955.56
GARCH-t -0.0001 0.7343 - 10.0798 9629.5 9705.4 -4809.74
MN-GARCH 0.0066 0.7183 0.0618 4.6173 9861.8 9998.4 -4921.9
JPY
Data -0.0140 0.7119 -0.5127 5.3776 - - -
GARCH-N 0.0001 0.7183 - 0.2717 11219 11280 -5605.39
GARCH-t -0.0002 0.7435 - 10.9000 10690 10766 -5339.86
MN-GARCH -0.0190 0.6852 -0.4199 5.3562 10974 11111 -5478.2
DEM
Data -0.0121 0.7066 -0.1229 2.1497 - - -
GARCH-N 0.0000 0.7100 - 0.3190 11187 11248 -5589.44
GARCH-t 0.0003 0.7287 - 3.7441 10985 11061 -5487.5
MN-GARCH -0.0129 0.7046 0.0095 2.9326 11094 11230 -5537.8

Notes: The values of Log(L) are constructed from parameters es-
timated by the CECF approach.

Table 4.1: CAD Performance of VaR at the 99.0% Confidence Level

Normal MN GARCH-N GARCH-t MN-GARCH
NoV 78 57 60 49 57

(12.2026)** (0.6379) (1.4444) (0.0977) (0.6379)
ASV 0.0043 0.0032 0.0025 0.0021 0.0022
SSV 0.0167 0.0122 0.0126 0.0102 0.0119

Expected number of violations: 51.21 for CAD
* and ** denotes significance at the 5% and 1% levels respectively.

Table 4.2: EUR Performance of VaR at the 99.0% Confidence Level

Normal MN GARCH-N GARCH-t MN-GARCH
NoV 86 68 77 64 43

(19.3889)** (4.8320)* (11.0401)** (2.8305) ( 1.5113)
ASV 0.0048 0.0035 0.0040 0.0031 0.0021
SSV 0.0233 0.0179 0.0202 0.0161 0.0117

Expected number of violations: 51.53 for EUR
* and ** denote significance at the 5% and 1% levels respectively.
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Table 4.3: GBP Performance of VaR at the 99.0% Confidence Level

Normal MN GARCH-N GARCH-t MN-GARCH
NoV 97 56 88 55 58

(32.7393)** (0.4373) (21.9598)** (0.2752) (0.8694)
ASV 0.0056 0.0029 0.0044 0.0024 0.0027
SSV 0.0252 0.0147 0.0223 0.0139 0.0146

Expected number of violations: 51.22 for GBP
* and ** denote significance at the 5% and 1% levels respectively.

Table 4.4: JPY Performance of VaR at 99.0% Confidence Level

Normal MN GARCH-N GARCH-t MN-GARCH
NoV 99 63 97 68 50

(35.1638)** (2.4991) (32.5402)** ( 4.9623)* (0.0351)
ASV 0.0076 0.0042 0.0069 0.0043 0.0033
SSV 0.0368 0.0233 0.0344 0.0242 0.0207

Expected number of violations: 51.33 for JPY
* and ** denote significance at the 5% and 1% levels respectively.

Table 4.5: DEM Performance of VaR at the 99.0% Confidence Level

Normal MN GARCH-N GARCH-t MN-GARCH
NoV 80 62 79 53 51

(13.9357)** (2.1432) (13.0457)** (0.6110) (0.0010)
ASV 0.0039 0.0029 0.0035 0.0020 0.0021
SSV 0.0201 0.0153 0.0190 0.0125 0.0124

Expected number of violations: 51.23 for DEM
* and ** denote significance at the 5% and 1% levels respectively.
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