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Abstract

This paper extends the stochastic conditional duration model by imposing mixtures
of bivariate normal distributions on the innovations of the observation and latent equa-
tions of the duration process. This extension allows the model not only to capture the
asymmetric behavior of the expected duration but also to easily accommodate a richer
dependence structure between the two innovations. In addition, it proposes a novel esti-
mation methodology based on the empirical characteristic function. A set of Monte Carlo
experiments as well as empirical applications based on the IBM and Boeing transaction
data are provided to assess and illustrate the performance of the proposed model and the
estimation method. One main empirical finding in this paper is that there is a significantly
positive ”leverage effect” under both the contemporaneous and lagged inter-temporal de-
pendence structures for the IBM and Boeing duration data.

Keywords: Stochastic Conditional Duration model; Leverage Effect; Discrete Mix-
tures of Normal; Empirical Characteristic Function

1 Introduction

In this paper, we focus on a class of dynamic models for durations between consecu-
tive financial events. In particular, we propose an extension to the existing stochastic
conditional duration (SCD) models by incorporating a flexible structure of the ”leverage
effect” for the durations between stock market trades.1 In addition, we propose an empir-
ical characteristic function (ECF) approach as an estimation method for our SCD model.

In contrast to the the autoregressive conditional duration (ACD) model first studied
by Engle and Russell (1998), the SCD model, proposed by Bauwens and Veredas (2004),
specifies the conditional mean of durations as a stochastic latent process, with the con-
ditional distribution of durations defined on a positive support. A useful analogy can be
readily drawn between the differences of the two specifications with the differences of the
generalized autoregressive conditional heteroscedasticity (GARCH) and stochastic volatil-
ity (SV) frameworks for capturing the conditional volatility of financial asset returns. In
addition, the SCD model relates to the logarithmic ACD model in the same way as the
stochastic volatility model relates to the exponential GARCH model of Nelson (1991).

To the best of our knowledge, there are only a few studies that focus on the SCD model.
As the SCD model consists of two unobservable stochastic components for the duration,
one of the stochastic terms must be integrated over the whole sample in the computation
of the model’s likelihood function. However, as the variables to be integrated enter the
model nonlinearly, an evaluation of the high-dimensional integral in the likelihood func-
tion must be done by simulation as in the case of the SV model. Bauwens and Veredas
(2004) propose a solution which circumvents the evaluation of this high-dimensional in-
tegral. In particular they employ a quasi-maximum likelihood (QML) estimation based
on an approximation of the model by a linear state-space representation, rendering it
possible to utilize the Kalman filter technique to approximate the likelihood function.
This method has the advantage of being simple and fast in terms of numerical compu-
tation and of providing consistent and asymptotically normal estimators under suitable
regularity conditions. However it is likely to be suboptimal in finite samples. To avoid
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approximations, Knight and Ning (2008) propose to estimate the SCD models via an
ECF and generalized method of moments (GMM). Feng, Jiang, and Song (2004) adopt
maximum likelihood estimation based on an MCMC integration of the latent variables,
proposed by Durbin and Koopman (2004), to estimate the SCD model in the form origi-
nally proposed by Bauwens and Veredas (2004) as well as an extended model that allows
for ”leverage effect”. MCMC is used also by Strickland, Forbes and Martin (2003) to
estimate the SCD model in the Bayesian framework.

Another econometric challenge faced by the SCD model lies in the construction of the
dependence structure between the innovations driving the observation and latent equa-
tion of the duration process. Appropriately modelling this dependence structure in the
context of the SCD model is critical to capturing the leverage effect known to characterize
the equity returns. In the standard SCD model set-up of Bauwens and Veredas (2004),
an i.i.d. Weibull or Gamma distribution is imposed on the duration innovation and an
i.i.d. Gaussian on the latent equation error. To capture the leverage effect, Feng, Jiang
and Song (2004) include an intertemporal disturbance term from the duration process in
the latent equation. In contrast, we model the dependence between the two processes via
a bivariate distribution, in which the correlation coefficient can be used for the interpre-
tation of the leverage effect.

Specifically in this paper, we introduce a family of flexible discrete mixtures of bi-
variate normal distributions into the SCD model. The genesis of this idea can be traced
back to Xu (2007), who obtains general closed form expressions of the objective distance
measures for discrete mixture of normals (MN) model with the exponential weighting
functional form. An iterated estimation procedure is proposed in Xu (2007) to improve
the efficiency of the continuous empirical characteristic function (CECF) estimator for the
MN model. The CECF estimator is shown to produce good finite sample properties and
is comparable to estimators derived from maximum likelihood estimator (MLE), moment
generating function (MGF) method and discrete empirical characteristic function (DECF)
approaches. The last two approaches are used in cases when the MLE fails to converge.
Based on the above results, a discrete MN specification is then incorporated into the SV
model, rendering the model’s structure more flexible not only in capturing many of the
stylized facts of asset returns, but also in accommodating a richer dependence structure
between the innovations from the observation and latent equations of the duration pro-
cess. Due to the difficulties involved in the likelihood-based methods, an estimator is
presented in Xu (2007) as the minimizer of the integrated mean-square distance between
the joint characteristic function and its empirical counterpart, and general closed form
moment conditions are also derived.

In parallel to the extension of the SV model in Xu (2007), our SCD model imposes
mixtures of bivariate normal distributions on the innovations of the observation and latent
equation of the duration process. This extension allows the model not only to capture
the asymmetric behavior of the expected duration but also to conveniently accommodate
a richer dependence structure between the two innovations driving the observation and
latent equations of the duration process. A set of Monte Carlo studies are conducted
to assess the performance of the proposed model and estimation method, and empirical
illustrations of the model and estimation method are provided with the IBM and Boeing
transaction data.
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The remaining parts of this paper are organized as follows. Section 2 discusses the SCD
model under the MN specification and presents the CECF estimation procedure. Section
3 conducts several Monte Carlo experiments in three groups. Section 4 considers empirical
applications of the proposed SCD framework to the IBM and Boeing transaction data.
Section 5 concludes. All the proofs of the propositions are collected in the Appendix.

2 SCD Model under the Bivariate MN Specification

2.1 Model Specification

We begin this section by first presenting the SCD model proposed by Bauwens and Veredas
(2004). Let 0 =< τ0 < τ1 < ... < τT denote the arrival times, and d1, d2, ..., dT denote the
corresponding durations, i.e., dt = τt − τt−1. Then the SCD model can be written as

dt = exp(ht)et (1)

ht = λ + αht−1 + vt (2)

where vt is i.i.d. N (0, σv), et denotes the innovation with a distribution on the positive
real line. In Bauwens and Veredas (2004), the distribution of et is chosen to be either
Weibull or Gamma with a shape parameter given by m. Assuming that the distribution
of et is parameterized, so that E(et) = 1, then ht is the logarithm of the unobserved mean
of dt and is assumed to be generated by a Gaussian autoregressive process of order one, or
AR(1) process, with |α| < 1 to ensure the stationarity of the process. It is also assumed
that {et} and {vt} are mutually independent sequences. The parameters to be estimated
are θ = (λ, α, σv,m)′. The parameter space is R× (−1, 1)×R+ ×R+.

The similarity between the SCD model and SV model in its cannonical form is striking,
except that the distribution of et in the SCD model is assumed to be non-normal since this
is by definition a positive random variable. However this assumption makes it possible to
identify the parameter m. This similarity also suggests that the estimation of the SCD
model faces the same impediment as that faced by the estimation of the SV model. In
particular, given a sequence d of T realizations of the duration process, the density of d
given θ can be written as

f(d|θ) =

∫
f(d|h, θ)f(h|θ)dh (3)

where f(d|h, θ) is the density of d indexed by θ, conditional on a vector h of the same di-
mension as d, and f(h|θ) is the density of h indexed by θ. Equation (3) makes it clear that
given the functional form assumed for the distribution of et (such as Weibull or Gamma),
its multiple integral, which has a dimension equal to the sample size (T ), cannot be solved
analytically and must be computed numerically by simulation.

Also notably in (1), the duration time series, dt, follows a nonlinear product process.
To reduce the complexity involved in a product of two random error processes, Bauwens
and Veradas (2004) propose to transform it into the following linear state space form,

yt = log(dt) = ht + εt (4)
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where the transformed disturbance is given by εt = log(et), and the latent variable ht

follows an AR(1) process given by (2).2

Bauwens and Veredas (2004) proposed a Weibull(m,1) or Gamma(m,1) distribution
on et and the Gaussian distribution for the innovation vt. In addition, the two innova-
tions, et and vt, are assumed to be uncorrelated. Through a logarithmic transformation,
εt will have a Log-Weibull(m, 1) distribution or Log-Gamma(m, 1) distribution. The two
resulting density functions are given by:

Log-Weibull(m, 1)

f(x) = m exp(mx− emx) (5)

Log-Gamma(m, 1)

f(x) =
1

Γ(m)
exp(mx− ex) (6)

As pointed out earlier, there is no closed form expression available for the likelihood
function of the SCD model. However, as shown by Knight and Ning (2008), there is a
closed form expression for the characteristic function (CF) of yt. Since the CF carries the
same amount of information as the distribution function itself, the SCD model can be
uniquely and fully parameterized by the CF. This suggests that it is possible to estimate
the model by minimizing the distance between the joint CF and ECF. This idea is imple-
mented in Knight and Ning (2008) where they derive the moment conditions and joint CF
expressions based on the i.i.d error distributional assumptions. However, to examine the
appropriateness of the“leverage effect” captured by the SCD model, we need to specify
certain dependence structure between the two innovations. As alluded to earlier, it is not
straightforward to accommodate correlations between the Weibull or Gamma distribution
and the Gaussian distribution. An obvious approach to model the dependence would be
to use copulas with the specified marginals. Unfortunately, the estimation of such models
would not be straightforward either; instead it requires simulation based estimators.

In this paper, we impose a bivariate MN distributional assumptions directly on the
transformed errors, εt, and vt. In the current literature, there are two popular specifica-
tions to model the correlations of the innovations:3

(a) Contemporaneous dependence structure

(
εt

vt

)
∼ pl N

((
µl

0

)(
σ2

l ρlσlσv

ρlσlσv σ2
v

))
(7)

(b) Lagged intertemporal dependence structure

(
εt−1

vt

)
∼ pl N

((
µl

0

)(
σ2

l ρlσlσv

ρlσlσv σ2
v

))
(8)

where l = (1, 2, ... , L), L is number of mixture components, pl is the mixing proportion

parameter, and
L∑

l=1

pl = 1.
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In the above specifications, the parameter ρ captures the correlation between the
transformed errors εt and vt. However we are interested in examining the relationships
between et and vt, which are the innovations from the original specification. So by way of
transformation (i.e., et = exp(εt)), we need to back out the implied correlation expression
from the above assumptions. This is given in the following proposition.

Proposition 1: If εt (where εt = log (et)) and vt are specified via the processes in (2)
and (4), then under assumption (a) or (b), we have:

(i) cov(et, vt) =
L∑

l=1

plρlσvσl exp(µl +
1

2
σ2

l ) (9)

or

(ii) cov(et−1, vt) =
L∑

l=1

plρlσvσl exp(µl +
1

2
σ2

l ) (10)

Proof: See the Appendix.

We also derive the general closed form moment expressions to examine the statistical
properties of the model under these two dependence structures.

Proposition 2 [Contemporaneous Dependence]: If dt is specified under the processes
(2) and (4), and εt and vt satisfy assumption (a), for m, n, k≥ 0, the closed form expression
for cross-moments between dt and dt+k is given by:4

E(dm
t dn

t+k) = exp(nλ

k∑

j=1

αj−1)

× exp(
λ(m + nαk)

(1− α)
+

α2σ2
v(m + nαk)2

2(1− α2)
)

× exp(
n2σ2

v

2

k−1∑

j=1

α2(k−1−j))

×
L∑

l=1

pl exp(mµl +
m2σ2

l

2
+

(m + nαk)2σ2
v

2
+ m(m + nαk)ρlσlσv)

×
L∑

l=1

pl exp(nµl +
n2σ2

l

2
+

n2σ2
v

2
+ n2ρlσlσv) (11)

Proof: See the Appendix.

Proposition 3 [Lagged Intertemporal Dependence]: If dt is specified under the pro-
cesses in (2) and (4), and εt and vt satisfy assumption (b), for m, n, k ≥ 0, the closed
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form expression for cross moments between dt and dt+k is given by:

E(dm
t dn

t+k) = exp(nλ

k∑

j=1

αj−1)

× exp(
λ(m + nαk)

(1− α)
+

σ2
v(m + nαk)2

2(1− α2)
)

× exp(
n2σ2

v

2

k∑

j=2

α2(k−j))

×
L∑

l=1

pl exp(mµl +
m2σ2

l

2
+

n2α2k−2σ2
v

2
+ mnαk−1ρlσlσv)

×
L∑

l=1

pl exp(nµl +
n2σ2

l

2
) (12)

Proof: See the Appendix.

2.2 Estimation via CECF Procedure

Xu (2007) applies the CECF procedure for estimation of SV models under the MN speci-
fications. In this section, we extend Xu’s (2007) results to the SCD model structure. The
main idea underlying the ECF-based methods is to match the theoretical CF with its
empirical counterpart (ECF) under a certain weighting function. Specifically we define
the overlapping blocks of y1, y2, ..., yT as, zj = (yj, ...yj+q), j = 1, 2, ..T − q, where the
block size is q + 1. Then the joint CF for the moving blocks can be expressed as:

c(r, θ) = E(exp(ir′zj)) (13)

where r = (r1, r2, ..., rq+1), is a q + 1 dimensional vector and θ is the unknown parameter
vector from the parametric distributional assumption. The empirical counterpart of (13)
is defined as:

cn(r) =
1

n

n∑
j=1

exp(ir′zj) where n = T − q (14)

The CECF procedure involves the minimization of distance measure over (13) and
(14). To see this, let the the distance measure in L2 space be written as:

D(r, θ) =

∫
...

∫
|c(r, θ)− cn(r)|2w(r)dr1...drq+1 (15)

where w(r) is a general weighting function. In this paper, we take w(r) = exp(−r2
1− r2

2−
...− r2

q+1). Each moving block has q periods overlapping with its adjacent block.

The asymptotic covariance matrix of CECF estimators under an exponential weighting
function can be expressed as, 1

n
Σ−1ΩΣ−1, with Σ =

∫
...

∫
(∂Rec(r,θ)

∂θ
∂Rec(r,θ)

∂θ′ +∂Imc(r,θ)
∂θ

∂Imc(r,θ)
∂θ′ )

w(r)dr1...drq+1, where Re c(r, θ) and Im c(r, θ) stand for the real and imaginary part of
the CF respectively. The expression of Ω is given in the Appendix. We also provide the
derivation of the above asymptotic covariance matrix in the Appendix.
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The implementation of the CECF procedure requires the minimization of (15) with
respect to the unknown parameter θ. For our SCD model, the CF can be derived in closed
form, as stated in the following propositions.

Proposition 4 [Contemporaneous Dependence]: If a transformed time series yt is
defined under the processes in (2) and (4) and under assumption (a), the closed form
expression of joint CF for yt...yt+q is given by:

c(r1, ...rk, θ) = exp(
iλ

1− α

k∑
j=1

rj − α2σ2
v

2(1− α2)
(

k∑
j=1

αk−jrj)
2)

×
k∏

j=1

[
L∑

l=1

pl exp(iµlrj − (1/2)σ2
l r

2
j ) (16)

× exp(−σ2
v

2
(

j∑
m=1

αj−mrm)2 − ρlσlσvrj

j∑
m=1

αj−mrm)]

Proof: See the Appendix.

Proposition 5 [Lagged Intertemporal Dependence]: If a transformed time series yt

is defined under the processes in (2) and (4) and under assumption (b), the closed form
expression of joint CF for yt...yt+q is given by:

c(r1, ...rk, θ) = exp(
iλ

1− α

k∑
j=1

rj − σ2
v

2(1− α2)
(

k∑
j=1

αk−jrj)
2)

×
k∏

j=1

[
L∑

l=1

pl exp(iµlrj − (1/2)σ2
l r

2
j ) (17)

× exp(−σ2
v

2
(

j∑
m=2

αj−mrm−1)
2 − ρlσlσvrj

j∑
m=2

αj−mrm−1)]

Proof: See the Appendix.5

As the joint CF is in a closed form for each dependence structure, the autocorrelation
function (ACF) of yt can be derived through the cumulant generating function (CGF),
which is defined as the logarithm of the CF. Define the CGF as, φ(r, θ) = log(c(r, θ)),
where c(r, θ) is the CF either from (16) or (17). Then the ACF can be calculated as
follows,

ACFk =

(
∂2φ(r1, ..., rk, θ)

∂r1∂rk

/
∂2φ(r1, ..., rk, θ)

∂r2
1

) ∣∣∣∣
(r1=...=rk=0)

(18)

3 Monte Carlo Study

To demonstrate the performance of our model structures along with the CECF estimation
procedure, we conduct several groups of Monte Carlo simulations with a sample size of
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10,000 and a replications number of 100 in each experiment.6

In the first group of the simulation experiments, the duration data, dt, is generated
from the processes specified in (1) and (2), which assume no dependence between the
two processes. The innovation in the duration process, et, follows a Gamma or Weibull
distribution, while the innovation in the latent equation, vt, follows a Gaussian distri-
bution. Two different groups of parameter set-ups are used in the simulation. The first
set of benchmark parameter values are set to be θ = (λ, α, σv,m) = (0.003, 0.9, 0.1, 1),
following the study by Strickland, Forbes and Martin (2003). Note that when the de-
grees of freedom parameter is set to m = 1, the Weibull (1,1) distribution reduces to
the Gamma (1,1) distribution. The second set of benchmark parameter values are set to
be θ = (λ, α, σv,m) = (0.003, 0.9, 0.1, 1.15) for the Weibull distributed innovation case,
and θ = (λ, α, σv,m) = (0.003, 0.9, 0.1, 1.23) for the Gamma distributed innovation case,
following the study by Bauwens and Veredas (2004). Since in our proposed SCD model
under the MN specification, we do not assume any specific distribution directly on the
innovation et, the estimation does not provide the parameter estimates for the degrees
of freedom parameter, m. Instead, a discrete MN distribution is used to capture the
underlying behavior of et. As a result, we obtain more estimates than those specified in
the above parameter vector, θ. For instance, under the MN specification with two compo-
nents of mixtures (MN(2)), the parameters of interests are θ∗ = (λ, α, σv, p, µ1, µ2, σ1, σ2).
However, once we have obtained the estimates of θ∗, we can easily back out the implied
error distribution based on the transformation between the et and εt.

Tables 1a and 1b report the results of this experiment. Only common parameters of
interests are reported with the measures of BIAS, Standard Deviation (STD) and Root of
Mean Squared Error (RMSE). To make the error density comparisons, we provide Figures
1a and 1b, which plot the densities of εt generated from the estimates against the densities
under the true parameter set-up. Table 1a (with m=1) and Table 1b (with m=1.15 for
the Weibull case and m=1.23 for the Gamma case) reveal that the CECF estimates of the
parameters in our model exhibit small bias and RMSE when et follows the Gamma and
Weibull distributions. The MN distribution with two components is flexible enough to
capture the shape of the true density. This conclusion is reinforced by Figures 1a (m=1),
1b (m=1.5) and 1c (m=1.23).

In the second group of simulations, the data generating process (DGP) are given by
the processes specified in (2) and (4) allowing for either the contemporaneous dependence
structure in (a), or the lagged intertemporal dependence structure in (b). In the liter-
ature, there is no clear-cut evidence to suggest either a positive or negative correlation
between the innovations of the duration process and the latent process. Therefore in this
experiment, we examine how our proposed model behaves with either sign of the corre-
lation coefficient. Specifically, both the positive and negative correlations are considered
in each of the simulated cases.

Tables 2a presents the results from the contemporaneous dependence structure case
with the positive and negative correlation coefficients (+0.1454 and -0.1454) respectively,
while Tables 2c and 2d consider the corresponding cases for the lagged intertemporal
dependence structure. From all four tables, it is evident that the bias associated with
the CECF parameter estimates of the model is quite small. In order to assess the overall
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performance of our proposed estimator, we also plot the empirical densities generated
from our estimates against the densities generated under the true parameters in Figures
2a and 2b for the case of the contemporaneous dependence structure and Figures 2c and
2b for the case of lagged intertemporal dependence structure. These figures reaffirm the
previous findings reported in Tables 2a-2d.

We conduct the last group of experiments to see the performance of our proposed
model under two DGPs that have been studied in the literature. First we consider a DGP
generated from the ACD model structure, proposed by Engle and Russell (1998); that is,
the data is generated by the following mechanism,

dt = Ψtet

Ψt = β0 + β1dt−1 + β2Ψt−1

where et is assumed to follow a Weibull distribution, namely, et ∼ Weibull(1, 1). Specifi-
cally, following Engle and Russell (1998), we set the benchmark values for the parameters
as θ = (β0, β1, β2, m) = (0.0057, 0.0631, 0.9332, 1).

Second, we follow Feng, Jiang and Song (2004) and generate the sample from the SCD
structure by including an intertemporal disturbance term in the latent AR(1) process. In
particular, the DGP is specified as follows,

yt = log(dt) = µ + ht + εt

ht = βht−1 + γεt−1 + ηt

where εt and ηt are mutually independently distributed. Here, εt is assumed to follow a
log-Weibull (m, 1) distribution and ηt is assumed to follow Gaussian N(0, σ2). We use
their empirical parameter estimates as our Monte Carlo parameters’ values, i.e, we set
θ = (µ, β, γ,m, σ) = (−0.7488, 0.9716, 0.0125, 0.9404, 0.1100).

For this last group of experiments, we apply the two types of dependence structures of
the innovations in the estimation. To evaluate the simulation results, we provide moment
comparisons in the Tables 3a and 3b since the parameters in the correctly specified model
and the parameters in our misspecified SCD-MN models are not directly comparable. In
addition, we also present the densities across different model specifications against the
density under the true DGP, see Figures 3a and 3b. Consider Table 3a and Figure 3a first
where the DGP is given by the ACD-Weibull case with parameter estimates reported in
Engle and Russell (1998). In a sense, this is the worst case scenario in which our misspeci-
fied model relative to the specified DGP is estimated. Evidently the first four moments of
the the correctly specified ACD-Weibull model are extremely well matched by the corre-
sponding moments produced by the CECF estimates of the incorrectly specified SCD-MN
model under both the contemporaneous and lagged intertemporal correlation structures.
Figure 3a illustrates this conclusion by showing a very close match of the model den-
sity to the true density. In Table 3b, the first two moments of the correctly specified
SCD-Weibull model with leverage effect are also very well matched by the corresponding
first two moments of the CECF estimates of the parameters of the misspecified SCD-MN
models with the contemporaneous correlation structure and the lagged intertemporal cor-
relation structure relative to the given DGP. It is clear from Table 3b that the third and
fourth moments are also reasonably well matched by our model estimated with the CECF
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procedure. A quick look ar the plotted densities of yt in Figure 3b further reinforces this
conclusion.

To summarize our Monte Carlo results in this section, we conclude that the MN spec-
ifications of the SCD models perform remarkably well even with only two components of
mixtures. Clearly increasing the number of mixtures will further enhance the performance
of the models but at a rising computational cost due to the rapidly increasing number
of parameters to be estimated. But based on the Monte Carlo evidence in this section,
we are guardedly confident that the SCD-MN models with two components of mixtures
will be sufficient for most practical purposes. To further illustrate this point, we turn to
empirical examples in the next section.

4 Empirical Applications

In this section, we apply our SCD model to the IBM and Boeing transaction data.7 The
data sets have been used in several previous studies, such as Engle and Russell (1998),
Feng, Jiang and Song (2004), Ning (2006), Knight and Ning (2008) and others. The IBM
duration data covers the periods from November 1, 1990 to January 31, 1990. After the
seasonal adjustments, the sample size of the data is 24,765. The Boeing duration data
covers the periods from September 1, 2000 to October 31, 2000. The sample size is 90136
after the seasonal adjustments.

We estimate the model using the CECF procedure under both dependence structures.
To evaluate the overall goodness of fit across the different model specifications, for the IBM
data, we take some empirical results reported in Feng, Jiang and Song (2004) and Ning
(2006). The parameter estimates are collectively reported in Table 4. For the Boeing data,
we take the empirical results from Knight and Ning (2008), which are reported in Table 6.

It is clear from Tables 4 and 6 that we obtain comparable estimated parameter values
from our model relative to models estimated and reported in Feng, Jiang and Song (2004),
Ning (2006) and Knight and Ning (2008). In the tables, SCD-MN(2)-C and SCD-MN(2)-I
stand for the SCD model with MN(2) under the contemporaneous and lagged intertempo-
ral dependence structures, respectively. For the IBM data, we take the empirical estimates
of the SCD model under the i.i.d. Weibull distribution (SCD-W) from Ning (2006). We
also use the estimates of the SCD model under the Weibull distribution (SCD-W-L) and
Gamma distribution (SCD-G-L) with a linear lagged intertemporal term in the latent
equation from Feng, Jiang and Song (2004). For the Boeing data, we use the estimates
of the SCD model under the i.i.d. Weibull (SCD-W) and Gamma (SCD-G) distribution
from Knight and Ning (2008). Here, m is the parameter of the Weibull or Gamma distri-
bution. ρ∗ is the parameter of ”leverage effect”.8 With both data sets, for all the models,
the value of the persistent parameter, α, is high, which is consistent with the “high per-
sistency of the duration process.” From the estimates ρ∗ of our CECF procedures, we find
some positive correlation between e and v. In particular, Feng, Jiang and Song (2004)
utilize the same IBM data set in modelling the SCD with “leverage effect”. However, the
specification of the correlation between the innovations in their model is different from
ours. In their paper, this intertemporal correlation parameter value is estimated to be
0.0125 with a log-Weibull specification, while in ours, the correlations are higher: 0.0467
(in the contemporaneous case) and 0.0598 (in the lagged intertemporal case). For the
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Boeing data, we also find some positive correlations: 0.1116 (in the contemporaneous
case) and 0.1195 (in the lagged intertemporal case). In fact, the estimates of both the
contemporaneous and lagged intertemporal correlations are statistically significant in our
framework for both data sets.

To give an idea of the implied empirical distribution of εt, Figure 4 (for the IBM data)
and Figure 6 (for the Boeing data) plot the implied densities of εt constructed from the
empirical estimates under different models. We observe significant differences among the
densities. This result suggests that it is not a good practice to mechanically impose a
Weibull or Gamma distribution on the duration process. This is also one of the reasons
why we introduce a more flexible distribution family (MN) into the structure of the SCD
model.

To further compare the performance of the our model against other alternative mod-
els, we also report in Table 5 (for the IBM data) and Table 7 (for the Boeing data) the
empirical moment comparisons across the models. The results indicate that our model
provides a closer match for the first four moments than the other alternatives. The rea-
sons for these results are relatively straightforward to explain: (i) the CECF procedure
theoretically matches all the moments continuously; (ii) the MN is very flexible in captur-
ing various shapes of continuous distributions; and (iii) the dependence structure are built
into the SCD model as a generalization from the i.i.d. modelling framework.To visually
assess the overall goodness of fit across different models, we plot the empirical density
of yt = log(dt) and the implied densities generated from the empirical estimates under
each model in Figure 5 (for the IBM case) and Figure 7 (for the Boeing case). Clearly,
our SCD model under the MN specification provide a better measure of the goodness of
fit relative to other methods. In particular, the graphs show that our models provide a
reasonable fit in a steady state distribution sense.

5 Conclusion

In this paper, we investigated the SCD model under the flexible bivariate MN specifica-
tions. General moment conditions and joint CF were derived in closed form. This not
only renders statistical inference simpler, but also reduces the required computational
costs. Another important advantage of our approach is that the structure of our SCD
model could accommodate different correlation structures between the innovations from
the duration and latent autoregressive processes. In addition, significantly positive corre-
lations are found empirically under both the contemporaneous and lagged intertemporal
dependence structures for the IBM and Boeing transaction data. This opens up an avenue
for future research on the asymmetric behavior of the expected durations and the local
dynamic behavior of the observed durations. Jiang, Knight, Wang (2005) examine the
properties of the SV model under different dependence specifications, i.e. contempora-
neous and lagged inter-temporal correlations between the two innovations. Recognizing
that a SCD model posseses a similar framework as the SV model, it would be interesting
to investigate the comparisons or model selections between these dependence structures
in the context of the SCD model.
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Appendix

Proof of Proposition 1

Through transformation under contemporaneous dependence structure, we obtain: εt = log(et),
then et = exp(εt).

cov(et, vt) = (exp(εt), vt) = E[exp(εt)vt]

By definition of a joint moment generating function and under (a), we have that:

Mε,v(r1, r2) = Eexp(r1εt + r2vt)

=
L∑

l=1

[pl exp(r1µl + (1/2)r2
1σ

2
l + (1/2)r2

2σ
2
v + ρlr1r2σlσv)]

Hence,

E[exp(εt)vt] =
∂M(r1, r2)

∂r2
| r1=1,r2=0

=
L∑

l=1

[pl exp(r1µl +
1
2
r2
1σ

2
l +

1
2
r2
2σ

2
v + ρlr1r2σlσv)× (r2σ

2
v + r1ρlσlσv)]| r1=1,r2=0

=
L∑

l=1

plρlσvσl exp(µl +
1
2
σ2

l ) ¥

Note that the proof for (10) is very similar to the above. The only difference is in the time
subscripts of e.

Proof of Proposition 2

Under assumption (a), εt and vt are contemporaneously correlated. Hence, we have that:

E(dm
t dn

t+k) = E [exp(myt) exp(nyt+k)]
= E exp(mht + mεt + nht+k + nεt+k)

Since the latent variable ht follows an AR(1) process, we can write:

ht+k = αkht + λ

k∑

j=1

αj−1 +
k∑

j=1

αk−jvt+j

Hence, we have that:

E(dm
t dn

t+k) = E [exp(mht + mεt + nαkht + nλ
k∑

j=1

αj−1 + n
k∑

j=1

αk−jvt+j + nεt+k)]

= E exp(m + nαkht + nλ
k∑

j=1

αj−1 + n
k∑

j=1

αk−jvt+j + mεt + nεt+k)
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where we have substituted ht = λ
1−α +

∞∑

j=1

αjvt−j + vt into the above expression. This gives us

the follwing result:

E(dm
t dn

t+k) = E[exp
λ(m + nαk)

(1− α)
+ (m + nαk)

∞∑

j=1

αjvt−j + (m + nαk)vt + nλ

k∑

j=1

αj−1

+n
k−1∑

j=1

αk−1−jvt+j + nvt+k + mεt + nεt+k]

= exp(
λ(m + nαk)

(1− α)
)× exp(nλ

k∑

j=1

αj−1)

×E exp((m + nαk)
∞∑

j=1

αjvt−j)× E exp(n
k−1∑

j=1

αk−1−jvt+j)

×E exp(mεt + (m + nαk)vt)×E exp(nεt+k + nvt+k)

Since the marginal distribution of v is N(0, σ2
v), we have that:

E exp((m + nαk)
∞∑

j=1

αjvt−j) = exp(
α2σ2

v(m + nαk)2

2(1− α2)
)

E exp(n
k−1∑

j=1

αk−1−jvt+j) = exp(
n2σ2

v

2

k−1∑

j=1

α2(k−1−j))

By the definition of the joint moment generating function of εt and vt and under assumption
(a), we have that:

Mεt,vt(r1, r2) = E exp(r1εt + r2vt)

=
L∑

l=1

[pl exp(r1µl + (1/2)r2
1σ

2
l + (1/2)r2

2σ
2
v + ρlr1r2σlσv)]

It is straightforward to obtain the follwing results:

E exp(mεt + (m + nαk)vt) =
L∑

l=1

pl exp(mµl +
m2σ2

l

2
+

(m + nαk)2σ2
v

2
+ m(m + nαk)ρlσlσv)

E exp(nεt+k + nvt+k) =
L∑

l=1

pl exp(nµl +
n2σ2

l

2
+

n2σ2
v

2
+ n2ρlσlσv)

Combining all the above expressions, we have the general moment conditions stated in Propo-
sition 2. ¥

Proof of Proposition 3

The proof of Proposition 3 is similar to that of Proposition 2, except that, Under assumption
(b), ε and v are lagged intertemporally correlated. Hence, we can show that:
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E(dm
t dn

t+k) = E [exp(myt) exp(nyt+k)]
= E exp(mht + mεt + nht+k + nεt+k)

Since the latent variable ht follows an AR(1) process, we can write:

ht+k = αkht + λ
k∑

j=1

αj−1 +
k∑

j=2

αk−jvt+j + αk−1vt+1

Hence, we have

E(dm
t dn

t+k) = E [exp(mht + mεt + nαkht + nλ

k∑

j=0

αj−1 + n

k∑

j=2

αk−jvt+j + nαk−1vt+1 + nεt+k)]

= E exp((m + nαk)ht + nλ

k∑

j=0

αj−1 + n

k∑

j=2

αk−jvt+j + nαk−1vt+1 + mεt + nεt+k)

where we have substituted ht = λ
1−α +

∞∑

j=0

αjvt−j into the above expression. This yields the following

results:

E(dm
t dn

t+k) = E[exp
λ(m + nαk)

(1− α)
+ (m + nαk)

∞∑

j=0

αjvt−j + nλ

k∑

j=1

αj−1

+n

k∑

j=2

αk−jvt+j + nαk−1vt+1 + mεt + nεt+k]

= exp(
λ(m + nαk)

(1− α)
)× exp(nλ

k∑

j=1

αj−1)

×E exp((m + nαk)
∞∑

j=0

αjvt−j)× E exp(n
k∑

j=2

αk−jvt+j)

×E exp(mεt + nαk−1vt+1)× E exp(nεt+k)

Since the marginal distribution of v is N(0, σ2
v), we have that:

E exp((m + nαk)
∞∑

j=0

αjvt−j) = exp(
σ2

v(m + nαk)2

2(1− α2)
)

E exp(n
k∑

j=2

αk−jvt+j) = exp(
n2σ2

v

2

k∑

j=2

α2(k−j))

Next by the definition of the joint moment generating function of εt and vt+1 and under assumption
(b), we obtain:

Mεt,vt+1(r1, r2) = E exp(r1εt + r2vt+1)

=
L∑

l=1

[pl exp(r1µl + (1/2)r2
1σ

2
l + (1/2)r2

2σ
2
v + ρlr1r2σlσv)]
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It is also straightforward to obtain the following results:

E exp(mεt + nαk−1vt+1) =
L∑

l=1

pl exp(mµl +
m2σ2

l

2
+

n2α2k−2σ2
v

2
+ mnαk−1ρlσlσv)

E exp(nεt+k) =
L∑

l=1

pl exp(nµl +
n2σ2

l

2
)

Combining all the above expressions, we have the general moment conditions stated in Propo-
sition 3. ¥

Proof of Proposition 4

Without loss of generality, we first derive the joint CF under assumption (a) when k=2.

By definition,

c(r1, r2; θ) = E [exp(ir1yt + ir2yt−1)] = E [exp(ir1ht + ir1εt + ir2ht−1 + ir2εt−1)]

From the AR(1) expression in (2), we have that:

ht−1 = λ
1−α +

∞∑

j=1

αjvt−1−j + vt−1

Hence,

c(r1, r2; θ) = E [exp(ir1λ + i(r1α + r2)
λ

1− α
+ i(r1α + r2)

∞∑

j=1

αjvt−1−j +

i(r1α + r2)vt−1 + ir1vt + ir1εt + ir2εt−1)]

= exp(i(r1 + r2)
λ

1− α
)×

∞∏

j=1

exp[−σ2
vα

2j

2
(r1α + r2)2]×

E exp(i(r1α + r2)vt−1 + ir2εt−1)× E exp(ir1vt + ir1εt)

= exp(i(r1 + r2)
λ

1− α
)× exp[− σ2

vα
2

2(1− α2)
(r1α + r2)2]×

E exp(i(r1α + r2)vt−1 + ir2εt−1)× E exp(ir1vt + ir1εt)

Notice that, to work out the above expression, we only need to solve the last two expectations
which are of similar forms, i.e E exp(iAv + iBε), and,
E exp(iAv + iBε) =

∫
v

∫
ε exp(iAv + iBε)f(ε, v)dεdv

Under (a), we have that:

f(ε, v) =
L∑

l=1

pl

2πσvσl

√
1− ρ2

l

exp
(
− 1

2(1− ρ2
l )

[(
ε− µl

σl
)2 − 2ρl(

ε− µl

σl
)(

v

σv
) + (

v

σv
)2]

)

So, if let ε∗ = ε−µl
σl

and v∗ = v
σv

. Then dε∗ = 1
σl

dε and dv∗ = 1
σv

dv. Therefore, we obtain:
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E exp(iAv + iBε) =
L∑

l=1

plσlσv

2πσvσl

√
1− ρ2

l

∫

ε∗

∫

v∗
exp[− 1

2(1− ρ2
l )

ε ∗2 +(
ρl

1− ρ2
l

ε ∗+iAσv)v ∗ −

1
2(1− ρ2

l )
v ∗2 +iBσlε ∗+iBµl]dv ∗ dε ∗

=
L∑

l=1

pl exp(iBµl)× exp(−A2σ2
v

2
− B2σ2

l

2
− ρlABσlσv)

Next substituting back the expressions of A and B, we have that:

c(r1, r2; θ) = exp(i(r1 + r2)
λ

1− α
)× exp[− σ2

vα
2

2(1− α2)
(r1α + r2)2]

×
2∏

j=1

[
L∑

l=1

pl exp(iµlrj − (1/2)σ2
l r

2
j )×

exp(−σ2
v

2
(

j∑

m=1

αj−mrm)2 − ρlσlσvrj

j∑

m=1

αj−mrm)

Tedious but similar steps (for k = 3, 4, ..., K ) will yield the general closed form expression
stated in Proposition 4. ¥

Proof of Proposition 5

The proof is similar to that of Proposition 4. The only difference is in the time subscripts of
the two innovations. Without loss of generality, we also derive the joint CF under assumption
(b) when k=2.

By definition,

c(r1, r2; θ) = E [exp(ir1yt + ir2yt−1)] = E [exp(ir1ht + ir1εt + ir2ht−1 + ir2εt−1)]

From the AR(1) expression in (2), we have, ht = λ + αht−1 + vt

Hence, we can write:

c(r1, r2; θ) = E [exp(ir1λ + i(r1α + r2)ht−1 + ir1εt + ir2εt−1 + ir1vt)]
= exp(ir1λ)×E exp(i(αr1 + r2)ht−1)×E exp(ir1εt)×E exp(ir2εt−1 + ir1vt)

It is straightforward to solve for each expectation in the above expression. They are
given by:

E exp[i(αr1 + r2)ht−1] = exp[i(αr1 + r2)
λ

1− α
− σ2

v

2(1− α2)
(r1α + r2)

2]

E exp(ir1εt) =
L∑

l=1

pl exp(iµlr1 − (1/2)σ2
l r

2
1)
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and, by using the joint moment generating function of εt−1 and vt in the same manner as
that used in the proof of Proposition 4, we obtain:

E exp(ir2εt−1 + ir1vt) =
L∑

l=1

exp(ir2µl − r2
1σ

2
v

2
− r2

2σ
2
l

2
− ρlr1r2σlσv)

Collecting all the above expressions, (defining that if b < a,
b∑

j=a

fj = 0, where fj is the

functional form indexed by m.), it yields,

c(r1, r2, θ) = exp(
iλ

1− α

2∑
j=1

rj − σ2
v

2(1− α2)
(

2∑
j=1

α2−jrj)
2)

×
2∏

j=1

[
L∑

l=1

pl exp(iµlrj − (1/2)σ2
l r

2
j )

× exp(−σ2
v

2
(

j∑
m=2

αj−mrm−1)
2 − ρlσlσvrj

j∑
m=2

αj−mrm−1)]

similar steps (for k = 3, 4, ..., K ) will yield the general closed form expression stated
in Proposition 5. ♣
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Derivation of the Asymptotic Covariance Matrix of CECF Estimator

Without loss of generality, we derive the asymptotic covariance structure when q=1.
Referring to Xu (2007), we have the following general expression for Ω:

Ω =

∫
..

∫
[
∂Rec(r, θ)

∂θ

∂Rec(s, θ)

∂θ′
1

n2

n∑
j=1

n∑

k=1

Cov(cos(r′xj), cos(s′xk))

+
∂Rec(r, θ)

∂θ

∂Imc(s, θ)

∂θ′
2

n2

n∑
j=1

n∑

k=1

Cov(cos(r′xj), sin(s′xk))

+
∂Imc(r, θ)

∂θ

∂Imc(s, θ)

∂θ′
1

n2

n∑
j=1

n∑

k=1

Cov(sin(r′xj), sin(s′xk))]w(r′)w(s′)dr′ds′

The double summation covariance expressions are readily found in Knight and Satchell
(1997) and Yu (1998). These are given by:

1

n2

n∑
j=1

n∑

k=1

Cov(cos(r′xj), cos(s′xk))

=
1

2n
[Re c(r + s, θ) + Re c(r − s, θ)]−Re c(r)Re c(s) +

1

2n2

n−1∑

k=1

[(n− k)

(Re Ψk(r, s) + Re Ψk(r,−s) + Re Ψk(s, r) + Re Ψk(s,−r))]

2

n2

n∑
j=1

n∑

k=1

Cov(cos(r′xj), sin(s′xk))

=
1

n
[Im c(r + s, θ)− Im c(r − s, θ)]− 2Re c(r)Im c(s) +

1

n2

n−1∑

k=1

[(n− k)

(Im Ψk(r, s)− Im Ψk(r,−s) + Im Ψk(s, r) + Im Ψk(s,−r))]

1

n2

n∑
j=1

n∑

k=1

Cov(sin(r′xj), sin(s′xk))

=
1

2n
[Re c(r − s, θ)−Re c(r + s, θ)]− Im c(r)Im c(s) +

1

2n2

n−1∑

k=1

[(n− k)

(Re Ψk(r,−s)−Re Ψk(r, s) + Re Ψk(s,−r)−Re Ψk(s, r))]

In order to calculate the Ω, we also need to derive Ψk(r, s). It is worth noting that the
expressions for Ψk(r, s) are different under Contemporaneous and Lagged Inter-Temporal
dependence structure in our model. Below we consider each case separately.

Contemporaneous Dependence Structure

Ψk(r, s) = E (exp(ir1yt + ir2yt−1 + is1yt+k + is2yt+k−1))
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Since the latent variable ht follows an AR(1) process, we can write:

ht+k = αkht + λ

k∑

j=1

αj−1 +
k∑

j=1

αk−jvt+j

Hence, we have,

Ψk(r, s) = E[ exp(ir1λ)× exp(i(r1α + r2 + s1α
k+1 + s2α

k)ht−1)
× exp(ir1vt + ir1εt + is1α

kvt + is2α
k−1vt)

× exp(ir2εt−1 + i(r1α + r2)vt−1)

× exp(is1λ

k+1∑

j=1

αj−1 + is2λ

k∑

j=1

αj−1)

× exp(is1

k−2∑

j=1

αk−jvt+j + is2

k−2∑

j=1

αk−j−1vt+j)

× exp(is1vt+k + is1εt+k)× exp(is2vt+k−1 + is2εt+k−1 + is1αvt+k−1)]

To work out the above expectation, we need to use the assumption (a). Tedious but straight-
forward steps yield the following results:

Ψk(r, s) = exp(ir1λ +
iλ(r1α + r2 + s1α

k+1 + s2α
k)

1− α
− σ2

v(r1α + r2 + s1α
k+1 + s2α

k)2

2− 2α2
)

×
L∑

l=1

exp(ir1µl − 1
2
r2
1σ

2
l −

σ2
v

2
(r1 + s1α

k + s2α
k−1)− ρlr1(r1 + s1α

k + s2α
k−1)σlσv)

×
L∑

l=1

exp(ir2µl − 1
2
r2
2σ

2
l −

σ2
v

2
(r1α + r2)2 − ρlr2(r1α + r2)σlσv)

× exp(is1λ

k+1∑

j=1

αj−1 + is2λ

k∑

j=1

αj−1)

× exp(−σ2
v

2
(s1

k−2∑

j=1

αk−j + s2

k−2∑

j=1

αk−j−1)2)

×
L∑

l=1

pl exp(is1µl − 1
2
s2
1σ

2
l −

1
2
s2
1σ

2
v − ρls

2
1σlσv)

×
L∑

l=1

pl exp(is2µl − 1
2
s2
2σ

2
l −

1
2
(s1α + s2)2σ2

v − ρls2(s1α + s2)σlσv)

With the similar steps as before, we can derive Ψk(r, s) under assumption (b).
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Lagged Intertemporal Dependence Structure

Ψk(r, s) = exp(ir1λ +
iλ(r1α + r2 + s1α

k+1 + s2α
k)

1− α
− σ2

v(r1α + r2 + s1α
k+1 + s2α

k)2

2− 2α2
)

×
L∑

l=1

exp(ir2µl − 1
2
r2
2σ

2
l −

σ2
v

2
(r1 + s1α

k + s2α
k−1)− ρlr2(r1 + s1α

k + s2α
k−1)σlσv)

× exp(−1
2
(r1α + r2)2σ2

v)

×
L∑

l=1

exp(ir1µl − 1
2
r2
1σ

2
l −

σ2
v

2
(s1α

k−1 + s2α
k−2)− ρlr1(s1α

k−1 + s2α
k−1)σlσv)

× exp(is1λ

k+1∑

j=1

αj−1 + is2λ

k∑

j=1

αj−1)

× exp(−σ2
v

2
(s1

k−1∑

j=2

αk−j + s2

k−1∑

j=2

αk−j−1)2)

×
L∑

l=1

pl exp(is2µl − 1
2
s2
2σ

2
l −

1
2
s2
1σ

2
v − ρls1s2σlσv)

×
L∑

l=1

pl exp(is1µl − 1
2
s2
1σ

2
l )

Lastly, based on the above results for Ω, the asymptotic covariance matrix can be calculated
as:

1
n

[
∫ ∫

(
∂Rec(r, θ)

∂θ

∂Rec(r, θ)
∂θ′

+
∂Imc(r, θ)

∂θ

∂Imc(r, θ)
∂θ′

)w(r)dr1dr2]−1 ×

Ω× [
∫ ∫

(
∂Rec(r, θ)

∂θ

∂Rec(r, θ)
∂θ′

+
∂Imc(r, θ)

∂θ

∂Imc(r, θ)
∂θ′

)w(r)dr1dr2]−1 ¥
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Table 1a. Standard SCD Model
True values of parameters: λ = 0.0030, α = 0.9000, σv = 0.1000, m = 1

Number of Replications: 100; Sample Size: 10,000

Variables MEAN BIAS STD RMSE
λ 0.0053 0.0023 0.0039 0.0045
α 0.8926 -0.0074 0.0079 0.0108
σv 0.1018 0.0018 0.0132 0.0133

Figure 1a. Densities of εt
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Table 1b. Standard Weibull/Gamma SCD Model
True values of parameters:

Weibull: λ = 0.0030, α = 0.9000, σv = 0.1000, m = 1.15
Gamma: λ = 0.0030, α = 0.9000, σv = 0.1000, m = 1.23

Number of Replications: 100; Sample Size: 10,000

Weibull MEAN BIAS STD RMSE Gamma MEAN BIAS STD RMSE
λ 0.0061 0.0031 0.0032 0.0045 λ -0.0002 -0.0032 0.0037 0.0049
α 0.8943 -0.0057 0.0113 0.0126 α 0.8971 -0.0029 0.0063 0.0069
σv 0.1012 0.0012 0.0113 0.0114 σv 0.0993 -0.0007 0.0112 0.0112

Figure 1b. and 1c. Densities of εt
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Table 2a. Contemporaneous Dependence (+)
True values of parameters: λ = 0.0000, α = 0.9000, σv = 0.1500, ρ∗ = 0.1454

Number of Replications: 100; Sample Size: 10,000

Variables MEAN BIAS STD RMSE
λ -0.0022 -0.0022 0.0087 0.0090
α 0.9302 0.0302 0.0411 0.0510
σv 0.1165 -0.0335 0.0461 0.0570
ρ∗ 0.1695 0.0241 0.0731 0.0770

Table 2b. Contemporaneous Dependence (-)
True values of parameters: λ = 0.0000, α = 0.9000, σv = 0.1500, ρ∗ = −0.1454

Number of Replications: 100; Sample Size: 10,000

Variables MEAN BIAS STD RMSE
λ -0.0038 -0.0038 0.0073 0.0082
α 0.9270 0.0270 0.0424 0.0503
σv 0.1166 -0.0334 0.0425 0.0541
ρ∗ -0.1753 -0.0299 0.0766 0.0822

Figure 2. Densities of yt = log(dt)
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Table 2c. Lagged Intertemporal Dependence (+)
True values of parameters: λ = 0.0000, α = 0.9000, σv = 0.1500, ρ∗ = 0.1454

Number of Replications: 100; Sample Size: 10,000

Variables MEAN BIAS STD RMSE
λ -0.0027 -0.0027 0.0078 0.0082
α 0.9255 0.0255 0.0430 0.0500
σv 0.1219 -0.0281 0.0466 0.0544
ρ∗ 0.1889 0.0435 0.0872 0.0974

Table 2d. Lagged Intertemporal Dependence (-)
True values of parameters: λ = 0.0000, α = 0.9000, σv = 0.1500, ρ∗ = −0.1454

Number of Replications: 100; Sample Size: 10,000

Variables MEAN BIAS STD RMSE
λ -0.0027 -0.0027 0.0074 0.0079
α 0.9367 0.0367 0.0453 0.0583
σv 0.1052 -0.0448 0.0495 0.0668
ρ∗ -0.1915 -0.0461 0.0929 0.1037

Figure 2. Densities of yt = log(dt)
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Table 3a. ACD Weibull (1,1)
Number of Replications: 100; Sample Size: 10,000

Mean y Var y Skewness y Kurtosis y
ACD-W -0.3008 2.1321 -0.6726 4.1521

SCD-MN-C -0.3651 1.9307 -0.6185 3.6744
SCD-MN-I -0.3855 1.9891 -0.6392 3.8196

Figure 3a Densities of yt = log(dt)
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Table 3b. SCD Weibull (0.9404,1)[With Leverage Effect]
Number of Replications: 100; Sample Size: 10,000

Mean y Var y Skewness y Kurtosis y
SCD-W -1.6062 2.0043 -0.9079 4.4626

SCD-MN-C -1.6201 2.0033 -0.6919 3.6408
SCD-MN-I -1.6054 2.0340 -0.7091 3.6596

Figure 3b. Densities of yt = log(dt)
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Table 4. Empirical Estimates [IBM]

Parameter SCD-MN(2)-C SCD-MN(2)-I SCD-W SCD-W-L SCD-G-L
λ -0.0074 -0.0078 -0.0046 -0.7488 -0.7166

(0.0089) (0.0070)
α 0.9619 0.9490 0.9751 0.9716 0.9649

(0.0346) (0.0283)
σv 0.1371 0.1580 0.1157 0.1100 0.1293

(0.0595) (0.0399)
m n.a n.a 1.0445 0.9404 0.9551
ρ∗ 0.0467 0.0598 n.a 0.0125 0.0024

(0.0223) (0.0265)
Note: SCD-MN(2)-C and SCD-MN(2)-I stand for the SCD
model with MN(2) under the contemporaneous and Lagged inter-
temporal dependence structures, respectively. We take the esti-
mates of the SCD model under i.i.d. Weibull distribution (SCD-
W) from Ning (2006). We take the estimates of the SCD model
under Weibull distribution (SCD-W-L) and Gamma distribution
(SCD-G-L) with a linear lagged intertemporal term in the latent
equation from Feng, Jiang and Song (2004). m is the parame-
ter of the Weibull or Gamma distribution. ρ∗ is the parameter of
”leverage effect” . The standard error is reported in the bracket.

Table 5. Empirical Moments Comparison of yt [IBM]

Moments Data SCD-MN(2)-C SCD-MN(2)-I SCD-W SCD-W-L SCD-G-L
Mean -0.7120 -0.6975 -0.6413 -0.6892 -0.8548 -0.6870
Var 1.6991 1.6799 1.7078 1.7283 2.0989 1.8191

Skewness -0.2741 -0.3153 -0.2781 -0.8045 -0.9421 -0.9730
Kurtosis 2.3533 2.5128 2.5261 4.2383 4.7219 4.8296
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Figure 4. Implied Densities of εt [IBM]
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Figure 5. Densities of yt = log(dt) [IBM]
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Table 6. Empirical Estimates [Boeing]

Parameter SCD-MN(2)-C SCD-MN(2)-I SCD-W SCD-G
λ -0.0437 -0.0263 -0.0046 -0.0042

(0.0062) (0.0026)
α 0.9360 0.9428 0.9751 0.9902

(0.0102) (0.0375)
σv 0.1426 0.1338 0.1279 0.05870

(0.0192) (0.0189)
m n.a n.a 1.3259 1.3701
ρ∗ 0.1116 0.1195 n.a n.a

(0.0395) (0.0481)
Note: SCD-MN(2)-C and SCD-MN(2)-I stand for the SCD
model with MN(2) under the contemporaneous and Lagged inter-
temporal dependence structures, respectively. We take the esti-
mates of the SCD model under i.i.d. Weibull distribution (SCD-W)
and Gamma distribution (SCD-G) from Knight and Ning (2008).
The standard error is reported in the bracket.

Table 7. Empirical Moments Comparison of yt [Boeing]

Moments Data SCD-MN(2)-C SCD-MN(2)-I SCD-W SCD-G
Mean -0.5062 -0.5087 -0.4938 -0.6892 -0.6730
Var 1.0784 1.1010 1.1000 1.7283 1.8540

Skewness -0.0366 -0.0509 -0.0094 -0.8045 -1.0496
Kurtosis 2.2989 2.4228 2.4460 4.1418 5.2931
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Figure 6. Implied Densities of εt [Boeing]
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Figure 7 Densities of yt = log(dt) [Boeing]
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Notes

1The leverage effect in the financial markets was originally introduced by Black (1976), to capture the

correlation between the innovation in the asset return process and the conditional volatility process. We

borrow this terminology for use in the context of the SCD model.

2The distribution of εt can in principle be approximated by Gaussian and then Kalman filter can be

applied to calculate the approximate likelihood as in Bauwens and Veredas (2004).

3See Jiang, Knight and Wang (2005), Yu (2005) and Xu (2007) for details of the SV modelling under

these two dependence structures.

4 In Proposition 2 and Proposition 3, we define that if b < a,
b∑

j=a

fj = 0, where fj is the functional

form indexed by j.

5We define that if b < a,
b∑

j=a

fj = 0, where fj is the functional form indexed by j.

6The experiment in this section was done by using Fortran 90 on a Pentium IV PC. All the computa-

tions have been done in double precision. To eliminate the initial effect on the simulated data generator,

10500 data points are generated and the first 500 data points are discarded.

7We would like to thank Qiao Ning for supplying the cleaned dataset to be used in this section. Two

seasonal effects are considered: one is the day-of-week effects and the other is the time-of-day effects. For

details on adjustment of the data, see Ning (2006) and Knight and Ning (2008).

8ρ∗, in our model, is the correlation coefficient, which can be easily calculated from Proposition 1

under the both dependence structures. ρ∗, in Feng, Jiang and Song (2004), is the coefficient of the lagged

intertemporal term in the latent AR equation.
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