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This paper develops an efficient method for estimating the discrete mix-
tures of normal family based on the continuous empirical characteristic func-
tion (CECF). An iterated estimation procedure based on the closed form
objective distance function is proposed to improve the estimation efficiency.
The results from the Monte Carlo simulation reveal that the CECF estima-
tor produces good finite sample properties. In particular, it outperforms the
discrete type of methods when the maximum likelihood estimation fails to
converge. An empirical example is provided for illustrative purposes.
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1 Introduction

Finite mixture models, in particular, discrete mixture of normal (MN) family,
have been of considerable interest in recent years across different areas such
as biology, engineering, economics, finance, medicine, genetics etc. Excellent
examples are documented in Everitt and Hand (1981), Titterington, Smith
and Makov (1985) and McLachlan and Peel (2000). One attractive property
for mixture models compared to the stationary Gaussian models is that they
can capture the leptokurtic, skewed and multimodal characteristics of the
empirical data. Furthermore, as a note, any continuous distribution can be
approximated arbitrarily well by an appropriate finite MN.

In a general set up of discrete MN, we define an independently and iden-
tically distributed (iid) random variable r drawn from K different normal
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distributions with probability αk , i.e.

pdf(rj) =
K∑

k=1

αkN(µk, σ
2
k) (1)

where j = 1, 2, ..., n. Defining θ = (α′, µ′, σ′)′ , where α, µ, σ are each K × 1
vectors, we have (3K-1) unknown parameters.

Various methods have been proposed and used for estimating unknown
parameters in the MN models. Maximum Likelihood (ML) estimation is one
of the most popular methods because of its attractive asymptotic statisti-
cal properties. To implement the ML estimation, one of the conditions is
that the likelihood function should be bounded in its parameter space. It is
well-known that this condition is not always satisfied in the MN case1 and
thus ML estimation may break down in practice. The difficulties in the ML
approach have sparked considerable interest in searching for alternative esti-
mation methods such as Method of Moments (MOM) in Cohen (1967) and
Day (1969), method of Moment Generating Function (MGF) in Quant and
Ramsey (1978) and Schmidt (1982), method of Discrete Empirical Charac-
teristic Function (DECF) in Tran (1998). This class of estimation methods,
in essence, minimize the distance between the theoretical components (Mo-
ment, MGF or CF) from the model and their empirical counterparts from
the data over a set of fixed grid points. However, two major problems arise:
one is the choice of the size of the grid points; the other is the ”optimal” (if
it exists) distance among those grid points2. As Tran (1998) and Knight and
Yu (2002) documented, these two problems are difficult to handle in practice.

In this paper, we use an iterated procedure based on the continuous ECF
(CECF) to efficiently estimate the parameters in the MN models. The pro-
posed estimation method does not suffer from the two problems associated
with the grid points since the theoretical CF is continuously matched with
its empirical component. We show that with a particular class of weighting
functions, a general closed form solution for the objective distance function
is available. The existence of the closed form objective function simplifies the
parameter estimation and reduces the computational cost. Furthermore, the
iterated procedure improves the efficiency of the estimation. Monte Carlo
evidence shows that the CECF estimator produces good finite sample prop-
erties and works reasonable well even in the cases where the ML method
fails.

1Please refer to Chapter 2 of Quant (1998) for more discussion on the likelihood function
in the MN models .

2In the Generalized Method of Moments (GMM), these two problems correspond to:
how many moments should be chosen and which moments should be chosen?
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The paper is organized as follows. Section 2 presents the CECF estimator
in the MN context and outlines the iterated procedure based on the closed
form objective distance function. In Section 3, some Monte Carlo experi-
ments are conducted to compare the finite sample performance of the CECF
estimator against other alternatives. Section 4 discusses some empirical ap-
plications with stock market data. Section 5 concludes the paper.

2 CECF Estimator and Its Asymptotic Prop-

erties

2.1 Closed Form Objective Distance Measure Based
on the CECF

There are several advantages of using the CF-based estimator. The CF is
always uniformly bounded and has a one-to-one correspondence with the dis-
tribution function. Hence, inference based on the CF should be theoretically
equivalent to that based on the distribution function. As mentioned, the
likelihood function is not well behaved in the MN models. In this section,
we present an estimator based on the CECF.

Given the MN model defined in (1), the corresponding CF is of the fol-
lowing form,

C(t, θ) = E(eitr) =
K∑

k=1

αk exp(iµkt− 1

2
σ2

kt
2) (2)

where i =
√−1.

Noting that exp(itx) = cos(tx) + i sin(tx), (2) can be rewritten as:

C(t, θ) =
K∑

k=1

αk cos(µkt) exp(−1

2
σ2

kt
2) + i

K∑

k=1

αk sin(µkt) exp(−1

2
σ2

kt
2) (3)

Defining the empirical counterpart (ECF) by the following:

Cn(t) =
1

n

n∑
j=1

exp(itrj) (4)

where rj, j = 1, 2, ..., n, constitutes a random sample from the distribution
in (1).
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It can also be written as,

Cn(t) =
1

n

n∑
j=1

cos(trj) + i[
1

n

n∑
j=1

sin(trj)] (5)

By the Law of Large Numbers (LLN), Cn(t)
P→ C(t, θ). We define the

CECF estimator as the minimizer of the following objective distance measure,

D(θ; r) =

∫ +∞

−∞
|Cn(t)− C(t, θ)|2w(t)dt (6)

where w(t) is some weighting function ensuring the convergence of the
integral in (6). In this paper, we use the exponential weighting function,
w(t) = exp(−bt2), where b is a non-negative real number. This weighting
function retains certain computational properties of the Gaussian kernels,
which enable us to achieve a general closed form for (6).

Proposition 1 If a random sample is generated from the process (1) and
the distance measure is defined as in (6), then the integral can be solved
analytically and is given by:

D(θ; r) =
1

n2

√
π

b

n∑
i=1

n∑
j=1

exp(− 1

4b
(ri − rj)

2)

+
K∑

k=1

α2
k

√
π

b + σ2
k

+ 2
K∑

k=1

K∑

h6=k

αkαh

√
π

b + 0.5(σ2
k + σ2

h)
exp(− (µk − µh)

2

4b + 2(σ2
k + σ2

h)
) (7)

− 2

n

K∑

k=1

[αk

√
π

0.5σ2
k + b

n∑
j=1

exp(−(rj − µk)
2

4b + 2σ2
k

)]

Proof : See the Appendix.

2.2 Asymptotic Properties

The asymptotic properties of the CF based estimator have been established
in Heathcote(1977) and Knight and Yu (2002). In this section, we provide
the calculation of the asymptotic covariance matrix of the CECF estimator
in the MN model, which will be used in the iterated procedure later.
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Proposition 2 Let θ̂ = argmin[D(θ; r)], where D(θ; r) is defined in (7),
then,

√
n(θ̂ − θ)

d→ N(0, Λ−1ΩΛ−1) (8)

where Λ and Ω are (3K − 1)× (3K − 1) matrices with the ijth element3,

Λij = E

(
∂D2(θ; r)

∂θi∂θj

)
(9)

and

Ωij = E

(
∂D(θ; r)

∂θi

∂D(θ; r)

∂θj

)
(10)

Proof is available in Heathcote (1977).
From the closed form of the objective function we are sometimes able

to solve explicitly the expectations 4 in (9) and (10). Lemma 1 presents an
example where the number of mixture components is 2.

Lemma 1 If a random sample is generated from the process (1) when
K=2, and the distance measure via the CECF is defined as in (7), then the
closed form expressions for Λ and Ω are given by:

Λij = Uij + Vij × exp

(
− (µ1 − µ2)

2

4b + 2σ2
1 + 2σ2

2

)

Ωij = I ′iWijIj

where the expressions for I, W, U and V are given in the proof.
Proof : See the Appendix.

2.3 Iterated Procedure

In the exponential weighting function, the parameter b plays an important
role with the efficiency of the estimator. In most of the literature b is set to be
1, resulting in w(t) = exp(−t2). But this may lead to poor efficiency. To see
this, we present a simple example where the number of mixture components
is 1, i.e., r ∼ N(µ, σ2). To estimate the two unknowns, µ and σ2 using the

3θi and θj corresponds to the ith or jth element in the vector θ.
4The expectations in (9) and (10) can be also simply approximated by using some

numerical methods. The results should be asymptotically equivalent to the results of the
closed form solutions.
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CECF estimator we apply Proposition 1 with K = 1. Then the closed form
distance measure is given by,

D(θ; r) =
1

n2

√
π

b

n∑
i=1

n∑
j=1

exp(− 1

4b
(ri − rj)

2)

+

√
π

b + σ2
− 2

n

√
π

1
2
σ2 + b

n∑
j=1

exp(−(rj − µ)2

4b + 2σ2
) (11)

With Proposition 2, it is straightforward to derive the analytical form of the
asymptotic covariance for the CECF estimator in the above case 5.

var(µ̂) =
σ2

n

(
b2 + 2bσ2 + σ4

b2 + 2bσ2 + 3
4
σ4

) 3
2

(12)

var(σ̂2) =
16(b + σ2)2

9n

(
16(b + σ2)3(2b2 + 4bσ2 + 3σ4)

(4b2 + 8bσ2 + 3σ4)
5
2

− 1

)
(13)

The Asymptotic Relative Efficiency (ARE)6 is generally less than 1. As
Heathcote (1977) and Yu (2004) mentioned, the larger the true variance, the
less efficient the CECF estimator using weighting function exp(−t2) . For
instance, when σ2 = 10, the ARE is about 61.54%. But instead of fixing
b = 1, if we adjust the b value, for instance, we increase b value to 20,
the ARE is improved significantly to 94.36%. Therefore, with our general
exponential weighting function, we may be able to improve the efficiency of
the CECF estimator by changing the b value.

In practice, how can we choose b efficiently? We propose the following
iterated procedure:

1. Start with an initial value of b, say b0 ;
2. Given b = b0, perform the CECF procedure to estimate θ0 , i.e.

θ̂0 = argmin[D(θ; r)];
3. Use θ̂0 to calculate the covariance matrix S, say S0, defined in Propo-

sition 2, each element of which is a function of b;
4. Update b through the minimization of a certain measure (MS), such

as the trace or the determinant, of the estimated covariance matrix in step
3 , i.e. b1 ∈ argmin[MS(S0)] ;

5. Given the updated value of b in 4, repeat the steps from 2 to 4 until
|bj − bj−1| is small enough.

5(12) and (13) are identical as in Yu (1998). Please refer to Yu (1998) for more deriva-
tion details.

6Here, the ARE is defined as the trace of the inverse of the information matrix (MLE)
over the trace of the asymptotic covariance matrix for the CECF estimator.

6



3 Monte Carlo Simulation

In this section, we conduct several Monte Carlo experiments to compare
the finite sample performance of the CECF procedure against that of the
alternatives, including the MLE, MGF and DECF methods. For simplicity,
the number of mixture components is set to be 2 7. We examined 8 cases
(in 4 groups) and each case was replicated 1000 times. Most of the cases
have previously been studied by Quandt (1972), Quandt and Ramsey (1978),
Schmidt (1982) and Tran (1998). The experimental designs are shown in
Table 1 and the corresponding density plots are shown in Figure 1. All the
experiments were performed using Matlab version 7.0 on a Pentium IV PC
(CPU: 2.40 G HZ; 512 MB of RAM).

In the Monte Carlo environment, the true parameter values are known.
Hence we minimize the trace (or the determinant) measure of the asymptotic
covariance matrix to determine the optimal b value in each estimation8. We
report the optimal b values and the corresponding variances of the CECF
estimators in Table 2 (Table 2a uses the trace measure and Table 2b uses
the determinant measure). Figure 2 correspondingly plots the trace and the
determinant over a certain range of b values in each simulation case. We find
that the optimal b values are very similar for both the trace and determinant
measures.

The CECF estimation procedure is also compared to the methods of
MGF, DECF and MLE. The comparison results are shown in the Table 3.1
(Bias) and Table 3.2 (Root of Mean Square Error (RMSE))9.

Table 3.1 and 3.2 show that, in general, the CECF estimator performs as
efficiently as the MLE compared to the MGF and DECF when the MLE does
not suffer from the unboundedness problem (see group A, B and C). However,
conducting a direct comparison of the RMSEs between the CECF and MLE
in group A, B and C, we found that RMSEs of MLE are slightly smaller than
those of the CECF estimator. The reason is obvious in that theoretically
the MLE is the most efficient method under the regularity conditions and
the ARE (MLE/CECF) is generally less than 1. But, we also expect the
difference would decrease as the number of the replications and the sample

7Since the general expression for the objective distance for any K is available, the
extension (for cases K > 2) is straightforward. In the empirical application, we increase
the mixture components up to 4.

8The iterated procedure in 2.3 was also applied in each case. The b values are very
close to the optimal ones.

9The Bias measure captures the average distance from the true parameter value and
RMSE is often considered as a good statistical measure of efficiency. In our working paper
version, other measures were constructed for more detailed comparisons, such as range,
mean, standard deviation and coverage rate. To save space, those results are not reported.
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size increase. In the cases of group D where the MLE fails, the CECF
estimator still performs very well and dominates the other two methods in
terms of the bias and RMSE measure.

Table 3.1 and 3.2 also indicate similar results as shown in Quandt and
Ramsey (1978), Schmidt (1982) and Tran (1998). (i) Group A: Case A1
and A2 only differ in the sample size in each replication. We found that
the bias and RMSE of the five estimates in case A2 (with larger sample
size) are, in general, smaller than those in case A1 (with smaller sample
size). In other words, increasing sample size will improve the quality of the
estimates. As expected, the differences of RMSE between the MLE and
CECF decreased. (ii) Group B: Case B1 and B2 only differ in the mixture
weights. We found that the bias and RMSE of the five estimates in case B1
(with low asymmetry) are, in general, higher than those in case B2 (with
high asymmetry). That is, the quality of estimates gets worse as α increases.
(iii) Group C: Case C1 and C2 only differ in the mean of the second mixture
component. We found that the bias and RMSE of five estimates in case
C1 (with low separability) are, in general, higher than those in case C2
(with high separability). That is, the quality of estimates is improved as
the mixture components become separable. As Schmidt (1982) mentioned,
it is hard to estimate accurately when two distributions are similar (Case
B2, C1 and D1). There is also a severe problem of nonconvergence for the
MGF, DECF and MLE in those cases. For instance, in Case D1, the failure
rate for the MGF is about 64%; the failure rate for DECF is about 53%;
the failure rate for the MLE is about 90% . For this reason, the results are
not presented for the MLE. (iv) Group D: Case D1 and D2 only differ in
the variance of the second mixture component. In this group, the MLE fails
to converge due to the unboundedness of the likelihood. For instance, the
failure rate in case D2 is about 86%. Furthermore, we found that the bias and
RMSE of the five estimates in case D2 (with low variance) are, in general,
slightly lower than those in case D3 (with high variance). In other words,
we expect increasing one component’s variance will deteriorate the quality of
the estimates. Comparison of the results from group D also reveals that the
CECF procedure outperforms the alternative discrete-type methods when
the MLE fails to converge.

Several reliability experiments were carried out further to examine the
asymptotic properties of the CECF estimator. One standard evaluation is
to examine the asymptotic distributions of the CECF estimates. Table 4
summarizes the results from the Kolmogorov - Smirnov (KS) normality test.
The KS test statistic shows that 25 out of 40 cases normality is not rejected
at either 5% or 1% significance level. We expect more robust results if we
increase the sample sizes. A direct comparison between case A1 and A2
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in Table 4 confirms this expectation. At 5% (or 1%) significant level, the
normality is not rejected in 3 out of 5 cases in case A1 (with smaller samples)
while the normality is not rejected in 4 out of 5 cases in case A2 (with larger
samples).

4 Empirical Application

The data contains 18.5-years (July 2, 1962 to December 31, 1980) of daily
returns for 4 stocks10 in the Dow-Jones Industrial Average and the Standard
and Poor’s 500 (S& P 500) Composite stock market index11. We also update
the data set to December 31, 2004 for further empirical illustration. All
the data sets are available at the Wharton Research Data Services (WRDS)
website.

4.1 Empirical Estimation via the Iterated CECF Pro-
cedure

The first sample data set (1962 to 1980) was previously examined by Kon
(1984). The estimation technique adopted in Kon (1984) was mainly the
likelihood-based procedure. As mentioned, the regularity conditions for the
ML estimation procedure do not always hold for the MN models. Instability
of the estimates is one of the serious drawbacks. The estimation results from
Kon (1984) also confirmed this point. He noted that given a three mixture
normal model, only 15 out of 30 stocks in the data were successful in reach-
ing an interior optimum and with mixtures of four only 10 out of 30 stocks
reached an interior optimum. The poor performance of the ML estimation
procedure indicates that alternative procedures should be adopted. We es-
timate the MN models (with two up to four mixture components) based
on the CECF iterated procedure. Kon (1984) also conducted some model
specification experiments for the data set. Results showed that four-mixture
components should be flexible enough to capture the empirical characteris-
tics. However, in practice, given any mixture component in the model, our
closed form distance measure based on the CECF should be able to generate
stable estimates. A discussion on specifications of the number of mixture

10The 4 stocks include: Allied Chemical Corp (ACD); Eastman Kodak Co. (EK);
General Electric Co. (GE) and Union Carbide Corp. (UK).

11In the working paper version, the data set consists of daily returns on 30 stocks and
3 market indices. To save space, we do not report all estimation results in this paper.
Please refer to our working paper for more empirical results.
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components is provided in the next section. In our estimation procedure, we
assume the number of mixture components is given.

To simplify the computational program, we redefine the distance measure

in Proposition 1. Realizing that the first part in (7), 1
n2

√
π
b

n∑
i=1

n∑
j=1

exp(− 1

4b
(ri−

rj)
2), does not contain any unknown parameter, ignoring this term will not

affect the optimization results and will speed up the computation by avoiding
an n by n loop. Therefore, the distance measure is redefined as,

D(θ; r)∗ =
K∑

k=1

α2
k

√
π

b + σ2
k

+ 2
K∑

k=1

K∑

h6=k

αkαh

√
π

b + 0.5(σ2
k + σ2

h)
exp(− (µk − µh)2

4b + 2(σ2
k + σ2

h)
) (14)

− 2
n

K∑

k=1

[αk

√
π

0.5σ2
k + b

n∑

j=1

exp(−(rj − µk)2

4b + 2σ2
k

)]

The iterated procedure was implemented to generate the CECF estimates for
each discrete MN model. All the stocks and market indices were successful
reaching an optimum within the parameter space with 2 to 4 mixture com-
ponents. A few experiments on sensitivity of initial guesses were conducted.
The results revealed that the CECF estimator was insensitive for a reason-
able range of initial values 12. The initial guess for b value is 1 for all the
CECF experiments. All the empirical parameter estimates and the associ-
ated optimal b values are reported in Table 5 (MN2), 6 (MN3) and 7 (MN4)
13. As mentioned, an updated data set is also used for further empirical il-
lustration. To save space, we only report the empirical results for the MN2
in Table 8. There are several possible interesting interpretations from these
empirical estimates. One finding is consistent with Kon (1984) in that there
is, in most of the cases, at least one statistically negative mean parameter

12For instance, we started with two different groups of initial values for the ACD data
with an MN3 model, where the unknown θ = (α1, α2, µ1, µ2, µ3, σ

2
1 , σ2

2 , σ2
3) . The CECF

estimates were θ̂1 = (0.5206, 0.0872, 0.0629, 0.4591, -0.0955, 2.8605, 12.6226, 0.7746) and
θ̂2 = (0.0860, 0.4165, 0.4413, -0.0945, 0.0727, 12.6940, 0.8198, 2.9377). These two sets of
estimates can be viewed as the same optimums except the order of the MN components
is different. In Kon (1982), the MLE failed to converge in this case.

13Compared to Kon ’s ML estimates, the CECF did converge to a similar set of optimum
when we make comparison for mixtures of two normal model. However, the MLE suffered
from some convergence problems when the mixture components are beyond 2, which makes
it very difficult for comparisons between these two procedures. The results of ML estimates
are only available in the working paper version (Table 6 - 10), see Kon (1982).
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estimate. This could be explained by the so-called Monday Effect 14 that
there might be one Monday information component in the stock returns. We
also find another interesting point similar to Kon (1984) and Tran (1998)
that in general, a large proportion of returns are drawn from one or more
small-variance distributions, while a relative small proportion of returns are
drawn from high-variance distributions. The two findings are also carried
through to the updated data set (1962 - 2004). Via a direct comparison of
Table 5 and 8 in the case of MN2, we find that the means, in general, are
shifted to the left slightly. This might be because of the inclusion of 1987’s
data (stock market crush) in the updated sample.

4.2 Model Specification - Assessing the Number of
Mixture Components

In the CECF estimation procedure, we assume that the number of mixture
components, K, is known. In fact, with empirical data, we never know the
true data generating process. The information of mixture components must
be inferred from the real data. Unfortunately, according to many authors, the
determination of the number of clusters remains an unsolved issue. See for
example, McLanchan (1987), Thode, Finch and Mendell (1988), Bozdogan
(1992), Feng and McCulloch (1996), Polymedis and Titterington (1998) etc
and reference therein.

Kon (1984) used an inappropriate Likelihood Ratio (LR) test in the model
specification since, with the discrete MN models, the regularity conditions
do not hold for - 2log(λ) 15 to have the usual asymptotic Chi-squared distri-
bution. As Bozdogan (1994) claimed, ” ... To insist to use the LR test in
determining the number of component clusters is fruitless, and moreover, it
seems to be wrong, since the null hypothesis tested corresponds to the bound-
ary rather than interior of the parameter space...” A number of alternative
procedures have been proposed. One group of procedures are bootstrapping
or simulating the LR statistics, for example Mclanchan (1987), Thode, Finch
and Mendell (1988), Bozdogan (1992), Feng and McCulloch (1996). Another
type of measure is based on the Information Criteria (IC), attempting to bal-
ance the increase of fitting property against the increase of unknown param-
eters with more mixture components. For example, Akaike (1974), Basford
and McLachlan (1988). Our purpose in this paper is not focused on testing
the model misspecification. We do not present any model selection decision.

14French (1980) found that the stock returns on Monday have significant different be-
havior compared to those on other days during the week.

15λ is the likelihood ratio statistics from the two candidate model specifications.
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However, we provide some useful information both from empirical data and
theoretical model and let readers of interest investigate the model selection
procedure.

We present in Table 9 the measures on Akaike Information Criterion
(AIC), which is defined as,

AIC = −2Log(L) + 2K (15)

where L is the likelihood function and K is the number of mixture compo-
nents.

Kass and Raftery (1995) suggested that the Bayesian Information Crite-
rion (BIC) provides a more reasonable indicator of the number of mixture
components, and mentioned that the comparison between two competing
models is not significant with a BIC difference less than 2. A BIC differ-
ence between 2 and 6 implies a positive significance, while a BIC difference
between 6 and 10 (or greater than 10) provides strong evidence in model
selections. Table 9 also displays the BIC measures, which is defined as,

BIC = −2Log(L) + KLog(N) (16)

where L is the likelihood function, K is the number of mixture components
and N is the sample size.

Furthermore, Table 9 provides the moment comparisons of the real data
(1962 - 1980) across different number of mixture-component specifications.
In the mixtures of K normal distribution, it is straightforward to calculate
the first four moments: mean, variance, skewness and kurtosis. The formulas
are given as follows:

µ =
K∑

k=1

αkµk (17)

σ2 =
K∑

k=1

αk(µ
2
k + σ2

k)− µ2 (18)

Skewness =
1

σ3

K∑

k=1

αk(µk − µ)[3σ3
k + (µk − µ)2] (19)

Kurtosis =
1

σ4

K∑

k=1

αk[3σ
4
k + 6(µk − µ)2σ2

k + (µk − µ)4] (20)

Table 9 indicates that the MN model is very flexible to capture various shapes
of the return distributions, especially the heavy tail characteristics. The
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estimated moments values are close to the corresponding empirical ones.
However, the choices of the mixture-component number are not consistent
from the moment comparisons, the AIC and BIC measures. We will leave
this for further investigation.

5 Conclusion

This paper proposed an iterated CECF procedure for the estimation of the
discrete MN models. As there is a general closed-form expression for the
objective distance measure, the estimation procedure is relatively easily im-
plemented. The results of the Monte Carlo experiment reveal that the CECF
estimator produces good finite sample properties and is a comparable estima-
tor to the standard MLE. In particular, the CECF procedure performs very
well against discrete-type methods when the MLE fails to converge. This is
also consistent with the findings from the empirical study.

The CF based approaches have been widely used in financial modelling
in recent years, see for examples Knight and Satchell (1996), Jiang and
Knight (2002), Knight and Yu (2002) etc. One other possible application
of the CECF procedure in financial econometrics is to identify daily re-
turns data with different information components. For instance, Kon (1984)
stated that stock returns might be drawing from three mixture regimes -
a non-information distribution, a firm-specific information distribution and
a market-wide information distribution. With our CECF procedure pro-
posed in this paper, we can efficiently estimate any finite mixture-component
normal distributions and thus provide a better explanation of the financial
mechanism from the empirical side.

Appendix

Proof of Proposition 1 With (3) and (5), we can write,

|Cn(t)− C(t, θ)|2 = A2 + B2

where A = 1
n

n∑

j=1

cos(trj) −
K∑

k=1

αk cos(µkt) exp(−1
2
σ2

kt
2) and B = 1

n

n∑

j=1

sin(trj) −

K∑

k=1

αk sin(µkt) exp(−1
2
σ2

kt
2).
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Then, we decompose A2 + B2 into the following four parts,

A2 + B2 =
1
n2

[
n∑

j=1

cos(trj)]2 + [
n∑

j=1

sin(trj)]2

+
K∑

k=1

α2
k exp(−σ2

kt
2)

+ 2
K∑

k=1

K∑

h6=k

αkαh exp(−1
2
t2(σ2

k + σ2
h)) cos(t(µk − µh))

− 2
n

K∑

k=1

αk exp(−1
2
σ2

kt
2)[cos(µkt)

n∑

j=1

cos(trj) + sin(µkt)
n∑

j=1

sin(trj)]

We evaluate each part in the integral with the exponential weighting function.

part 1 =
∫

1
n2


[

n∑

j=1

cos(trj)]2 + [
n∑

j=1

sin(trj)]2


 exp(−bt2)dt

=
1
n2

∫ 


n∑

j=1

cos(trj)2 + 2
∑

i 6=j

cos(tri) cos(trj) +
n∑

j=1

sin(trj)2 + 2
∑

i 6=j

sin(tri) sin(trj)


 dt

=
1
n2

√
π

b

n∑

i=1

n∑

j=1

exp(− 1
4b

(ri − rj)2)

part 2 =
∫ K∑

k=1

α2
k exp(−σ2

kt
2) exp(−bt2)dt =

K∑

k=1

∫
α2

k exp(−(σ2
k + b)t2)dt

=
K∑

k=1

α2
k

√
π

b + σ2
k

part 3 =
∫

2
K∑

k=1

K∑

h6=k

αkαh exp(−1
2
t2(σ2

k + σ2
h)) cos(t(µk − µh)) exp(−bt2)

= 2
K∑

k=1

K∑

h6=k

∫
αkαh exp(−1

2
t2(σ2

k + σ2
h))

exp[it(µk − µh) + exp[−it(µk − µh)]
2

exp(−bt2)dt

= 2
K∑

k=1

K∑

h6=k

αkαh

√
π

b + 0.5(σ2
k + σ2

h)
exp(− (µk − µh)2

4b + 2(σ2
k + σ2

h)
)

14



part 4 = − 2
n

∫ K∑

k=1

αk exp(−1
2
σ2

kt
2)[cos(µkt)

n∑

j=1

cos(trj) + sin(µkt)
n∑

j=1

sin(trj)] exp(−bt2)dt

= − 2
n

K∑

k=1

∫
αk exp(−1

2
σ2

kt
2)

n∑

j=1

cos(t(rj − µk)) exp(−bt2)dt

= − 2
n

K∑

k=1

[αk

√
π

0.5σ2
k + b

n∑

j=1

exp(−(rj − µk)2

4b + 2σ2
k

)]

Combining the results will yield the solution in Proposition 1.
Proof of Lemma 1 When K=2, the closed form objective in (7) (by ignoring

the constant term) is:

D(θ; r) = α2
√

π

b + σ2
1

+ (1− α2)
√

π

b + σ2
2

+ 2α(1− α)
√

π

b + 0.5(σ2
1 + σ2

2)
exp(− (µ1 − µ2)2

4b + 2(σ2
1 + σ2

2)
)

− 2
n

[α
√

π

0.5σ2
1 + b

n∑

j=1

exp(−(rj − µ1)2

4b + 2σ2
1

)]

− 2
n

[(1− α)
√

π

0.5σ2
2 + b

n∑

j=1

exp(−(rj − µ2)2

4b + 2σ2
2

)]

where θ = (α, µ1, µ2, σ
2
1, σ

2
2). Referring to Heathcote (1977),

Λ =
∫ (

∂Re[C(t, θ)]
∂θ

∂Re[C(t, θ)]
∂θ′

+
∂Im[C(t, θ)]

∂θ

∂Im[C(t, θ)]
∂θ′

)
exp(−bt2)dt

Re[.] and Im[.] stand for the real and imaginary part of the function [.]. In the
case where K=2,

Re[C(t, θ)] = α cos(µ1t) exp(−1
2
σ2

1t
2) + (1− α) cos(µ2t) exp(−1

2
σ2

2t
2)

Im[C(t, θ)] = α sin(µ1t) exp(−1
2
σ2

1t
2) + (1− α) sin(µ2t) exp(−1

2
σ2

2t
2)

It is straightforward to solve the one-dimensional integral in the Λ expression. To
display the result compactly, we define the following two symmetric matrices.

U =




√
π√

b+σ2
1

+
√

π√
b+σ2

1

0 0 − α
√

π

4(b+σ2
1)

3
2

(1−α)
√

π

4(b+σ2
1)

3
2

α2√π

2(b+σ2
1)

3
2

0 0 0

(1−α)2
√

π

2(b+σ2
2)

3
2

0 0

3α2√π

16(b+σ2
1)

5
2

0

3(1−α)2
√

π

16(b+σ2
2)

5
2



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V =




V 11 V 12 V 13 V 14 V 15
V 22 V 23 V 24 V 25

V 33 V 34 V 35
V 44 V 45

V 55




With

V 11 =
2
√

π√
b + 0.5σ2

1 + 0.5σ2
2

; V 12 =
α
√

π(µ1 − µ2)

2(b + 0.5σ2
1 + 0.5σ2

2)
3
2

; V 13 =
(1− α)

√
π(µ1 − µ2)

2(b + 0.5σ2
1 + 0.5σ2

2)
3
2

V 14 =
α
√

π(1− (µ1−µ2)2

2b+σ2
1+σ2

2
)

4(b + 0.5σ2
1 + 0.5σ2

2)
3
2

; V 15 = −
(1− α)

√
π(1− (µ1−µ2)2

2b+σ2
1+σ2

2
)

4(b + 0.5σ2
1 + 0.5σ2

2)
3
2

; V 22 = 0

V 23 =
α(1− α)

√
π(1− (µ1−µ2)2

2b+σ2
1+σ2

2
)

(2b + 0.5σ2
1 + 0.5σ2

2)
3
2

; V 24 = 0; V 25 =
α(1− α)

√
π(µ1 − µ2)(1− (µ1−µ2)2

6b+3σ2
1+3σ2

2
)

8(b + 0.5σ2
1 + 0.5σ2

2)
5
2

V 33 = 0; V 34 =
α(1− α)

√
π(µ1 − µ2)(1− (µ1−µ2)2

6b+3σ2
1+3σ2

2
)

8(b + 0.5σ2
1 + 0.5σ2

2)
5
2

; V 35 = 0

V 44 = 0; V 45 =
3α(1− α)

√
π((µ1 − µ2)(1− (µ1−µ2)2

b+0.5σ2
1+0.5σ2

2
+ (µ1−µ2)4

12(b+0.5σ2
1+0.5σ2

2)2
)

8(b + 0.5σ2
1 + 0.5σ2

2)
5
2

; V 55 = 0

Hence, we can express Λ as,

Λij = Uij + Vij × exp
(
− (µ1 − µ2)2

4b + 2σ2
1 + 2σ2

2

)

Similarly, it is straightforward to derive the first order derivative with respect to
the unknown parameters respectively. Recall that, Ωij =

∫ (
∂D(θ;r)

∂θi

∂D(θ;r)
∂θj

)
exp(−bt2)dt.

Through a tedious derivation, the integrals can be solved explicitly. We express
the formula in the matrix form, i.e., Ωij = I ′iWijIj . To save space, we do not
provide the expressions for I and W . But in our working paper version, we have
all the detailed calculations and analytical forms.
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Figure 1. Densities of all the Simulation Cases
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Table 1 Monte Carlo Simulation Design

Case α µ1 µ2 σ2
1 σ2

2 n

1 (A1) 0.5 -3 3 1 3 100
2 (A2) 0.5 -3 3 1 3 200

3 (B1) 0.5 0 4 1 1 100
4 (B2) 0.75 0 4 1 1 100

5 (C1) 0.5 0 6 1 1 100
6 (C2) 0.5 0 10 1 1 100

7 (D1) 0.5 0 0 1 5 100
8 (D2) 0.5 0 0 1 10 100

Table 2a Asymptotic Variances of the CECF estimator under
Optimal b values (by Trace Minimization)

Case var(α) var(µ1) var(µ2) var(σ2
1) var(σ2

2) b∗
1 (A1) 0.0030 0.0284 0.0942 0.0764 0.7205 2.4075
2 (A2) 0.0015 0.0142 0.0471 0.0382 0.3603 2.4075

3 (B1) 0.0033 0.0338 0.0338 0.0821 0.0821 1.2581
4 (B2) 0.0027 0.0206 0.0846 0.0501 0.2053 1.2520

5 (C1) 0.0025 0.0219 0.0219 0.0502 0.0502 1.9609
6 (C2) 0.0025 0.0203 0.0203 0.0417 0.0417 4.6289

7 (D1) 0.0806 0.0572 0.1444 0.4604 3.9221 1.7577
8 (D2) 0.0259 0.0494 0.2505 0.3388 9.9057 2.2387

Table 2b Asymptotic Variances of the CECF estimator under
Optimal b values (by Determinant Minimization)

Case var(α) var(µ1) var(µ2) var(σ2
1) var(σ2

2) b∗
1 (A1) 0.0030 0.0279 0.0933 0.0753 0.7240 2.1492
2 (A2) 0.0015 0.0140 0.0467 0.0377 0.3620 2.1492

3 (B1) 0.0033 0.0343 0.0343 0.0820 0.0820 1.5173
4 (B2) 0.0027 0.0208 0.0867 0.0502 0.2044 1.5247

5 (C1) 0.0025 0.0219 0.0219 0.0503 0.0503 2.1992
6 (C2) 0.0025 0.0203 0.0203 0.0417 0.0417 4.9260

7 (D1) 0.0799 0.0570 0.1458 0.4527 3.9362 1.6229
8 (D2) 0.0232 0.0460 0.2726 0.2627 10.5002 1.2223
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Figure 2 Optimal b Values
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Table 3.1 Bias Comparison of CECF, DECF, MGF and MLE Estimates
(”-” means that MLE fails in the case.)

α µ1 µ2 σ2
1 σ2

2

1(A1)
CECF 0.0028 -0.0036 -0.0114 -0.0121 -0.0004
DECF -0.0084 -0.0279 0.0472 0.0620 0.6814
MGF 0.0219 0.0793 0.0860 0.2332 0.2180
MLE 0.0034 -0.0025 -0.0083 -0.0237 -0.0408
2(A2)
CECF -0.0030 0.0022 0.0082 -0.0235 0.0450
DECF -0.0149 -0.0244 0.0633 0.0356 0.7910
MGF 0.0165 0.0708 0.1044 0.2228 0.1836
MLE -0.0020 0.0058 0.0122 -0.0269 -0.0137
3(B1)
CECF -0.0016 0.0049 0.0098 -0.0003 -0.0086
DECF -0.0027 -0.0564 0.0919 0.4644 0.4865
MGF 0.0195 0.0676 0.0833 0.2590 0.2585
MLE -0.0016 0.0063 0.0096 -0.0122 -0.0186
4(B2)
CECF -0.0029 -0.0118 -0.0286 -0.0124 0.0514
DECF -0.0322 -0.0654 -0.1115 0.1704 1.1304
MGF 0.0469 0.1708 0.2685 0.3950 1.4732
MLE -0.0023 -0.0096 -0.0252 -0.0185 0.0181
5(C1)
CECF 0.0006 -0.0070 0.0063 0.0025 -0.0103
DECF -0.0043 -0.0383 0.0552 0.2162 0.2022
MGF -0.0012 -0.0115 -0.0082 0.0904 0.1087
MLE 0.0005 -0.0067 0.0061 -0.0076 -0.0134
6(C2)
CECF -0.0022 0.0014 0.0069 0.0005 -0.0189
DECF -0.0094 0.0362 -0.0936 0.2562 0.2653
MGF -0.0074 -0.0207 -0.0764 0.0719 0.1387
MLE -0.0022 0.0007 0.0060 -0.0030 -0.0220
7(D1)
CECF 0.0605 0.0001 0.0173 0.2585 0.0105
DECF 0.0630 0.0004 0.0335 0.0291 2.1875
MGF 0.0769 0.0067 0.0241 0.2287 0.7363
MLE - - - - -
8(D2)
CECF 0.0442 0.0128 -0.0014 0.2788 0.1941
DECF -0.0087 0.0095 -0.0679 -0.0104 2.0466
MGF 0.0573 0.0098 0.0098 0.3782 0.5114
MLE - - - - -
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Table 3.2 RMSE Comparison of CECF, DECF, MGF and MLE Estimates

α µ1 µ2 σ2
1 σ2

2

1(A1)
CECF 0.1739 0.5506 0.9932 0.9386 2.9606
DECF 0.1901 0.5896 1.0716 1.1702 4.7028
MGF 0.2019 0.6969 1.0677 1.6131 3.2438
MLE 0.1651 0.5143 0.9045 0.8061 2.5867
2(A2)
CECF 0.1727 0.5446 1.0081 0.8734 2.8875
DECF 0.1917 0.5759 1.0946 1.0565 4.8631
MGF 0.1905 0.6613 1.0931 1.4920 2.8478
MLE 0.1660 0.5036 0.9267 0.7875 2.4525
3(B1)
CECF 0.1880 0.6371 0.6033 0.9406 0.9228
DECF 0.2482 0.9678 1.1277 2.6268 2.7071
MGF 0.2928 1.0993 1.0832 4.2026 5.6895
MLE 0.1869 0.6258 0.5922 0.8892 0.9040
4(B2)
CECF 0.1757 0.4654 1.0733 0.7189 1.8494
DECF 0.3395 0.6183 2.3995 1.4892 6.4183
MGF 0.2877 1.0308 2.4973 2.1365 15.8561
MLE 0.1716 0.4497 1.0544 0.7136 1.6518
5(C1)
CECF 0.1587 0.4807 0.4588 0.7441 0.7223
DECF 0.1729 0.5639 0.5684 1.3674 1.3159
MGF 0.1510 0.4995 0.5409 2.2495 1.3553
MLE 0.1577 0.4673 0.4404 0.6932 0.6629
6(C2)
CECF 0.1596 0.4527 0.4649 0.6433 0.6565
DECF 0.1817 0.5602 0.4805 1.4895 1.5112
MGF 0.1581 0.5138 0.5042 1.3494 1.4460
MLE 0.1597 0.4509 0.4594 0.6302 0.6379
7(D1)
CECF 0.2575 0.6143 0.9268 1.4060 1.1538
DECF 0.7049 0.8092 4.8173 1.9240 12.7466
MGF 0.4171 0.6984 2.0667 1.7885 8.6132
MLE - - - - -
8(D2)
CECF 0.2095 0.7094 1.4376 1.5437 1.8368
DECF 0.4922 0.8462 4.5140 1.8310 13.9995
MGF 0.3184 0.8357 2.1330 2.8875 6.2428
MLE - - - - -
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Table 4 Kolmogorov-Smirnov Normality Test
P-values are given in parentheses. * Normality is not rejected at 5% significant level

(cut-off value is 0.0428); ** Normality is not rejected at 1% significant level (cut-off value
is 0.0513).

Case α µ1 µ2 σ2
1 σ2

2

1 (A1) 0.0154* 0.0221* 0.0271* 0.0552 0.0699
(0.9710) (0.7081) (0.4497) (0.0043) (1.0454e-004)

2 (A2) 0.0158* 0.0316* 0.0276* 0.0403* 0.0810
(0.9627) (0.2662) (0.4261) (0.0755) (3.6570e-006)

3 (B1) 0.0184* 0.0251* 0.0384* 0.0647 0.0618
(0.8860) (0.5505) (0.1029) (4.2789e-004) (9.1855e-004)

4 (B2) 0.0212* 0.0187* 0.0839 0.0629 0.1258
(0.7571) (0.8714) (1.3654e-006) (6.9300e-004) (2.8219e-014)

5 (C1) 0.0217* 0.0216* 0.0174* 0.0597 0.0461**
(0.7290) (0.7347) (0.9204) (0.0015) (0.0276)

6 (C2) 0.0360* 0.0203* 0.0179* 0.0314* 0.0313*
(0.1465) (0.7985) (0.9030) (0.2723) (0.2765)

7 (D1) 0.0595 0.0143* 0.0323* 0.1390 0.1124
(0.0016) (0.9862) (0.2450) (2.4779e-017) (1.7499e-011)

8 (D2) 0.0709 0.0278* 0.0352* 0.1307 0.0739
(7.9795e-005) (0.4181) (0.1643) (2.2266e-015) (3.2983e-005)

Table 5 Empirical Parameter Estimates for MN(2)
(The statistics in the parentheses are t-values).

Stock Codes 1.ACD 2.EK 3.GE 4.UK 5.S&P 500
α̂ 0.7683 0.7200 0.7776 0.6675 0.4726

(27.4893) (18.9803) (26.2464) (18.1050) (11.9926)
µ̂1 -0.0451 -0.0549 0.0029 -0.0617 0.0656

(-1.7600) (-2.1300) (0.1341) (-2.6204) (4.3890)
µ̂2 0.2950 0.2764 0.1400 0.2002 -0.0452

(2.8070) (0.1341) (1.5979) (3.1016) (-1.9483)
σ̂2

1 1.3653 1.0875 0.9753 0.8047 0.1640
(18.5977) (-2.8072) (18.5655) (14.2838) (9.7373)

σ̂2
2 7.6156 5.0037 5.0334 3.9785 0.8835

(11.4942) (11.3784) (13.1297) (11.6148) (17.6586)
b̂ 2.7768 2.0430 2.0860 1.4458 0.2294
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Table 6 Empirical Parameter Estimates for MN(3)

Stock Codes 1.ACD 2.EK 3.GE 4.UK 5.S&P 500
α̂1 0.5206 0.0598 0.1461 0.1454 0.3270

(1.869e2) (83.5030) (2.6229) (21.5250) (3.3363e7)
α̂2 0.0872 0.5755 0.6946 0.6250 0.0285

(2.3614) (3.8032) (4.7433) (8.3025) (2.8938)
µ̂1 0.0629 0.9542 0.2449 0.4269 -0.1466

(1.1446) (3.0034) (1.7329) (2.3875) (-2.4569)
µ̂2 0.4591 0.0314 -0.0084 -0.0192 1.1124

(5.9096e3) (37.133) (-0.2549) (-7.7440) (6.5916e6)
µ̂3 -0.0955 -0.0761 0.0403 -0.0810 0.0596

(-1.9928) (0.1341) (0.5616) (-2.0968) (3.2079)
σ̂2

1 2.8605 6.0766 0.9753 5.7035 0.9882
(6.6308) (-2.8072) (5.0153) (12.7160) (10.3450)

σ̂2
2 12.6230 2.4761 1.3707 1.5743 2.2435

(4.3795) (6.5220) (3.7875) (10.9570) (5.4204)
σ̂2

3 0.7746 0.5961 0.2885 0.2901 0.2497
(11.4051) (2.2330) (0.8236) (2.5972) (16.4490)

b̂ 2.8825 1.9801 2.0860 0.6821 4.8987
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Table 7 Empirical Parameter Estimates for MN(4)

Stock Codes 1.ACD 2.EK 3.GE 4.UK 5.S&P 500
α̂1 0.5092 0.3783 0.1886 0.1497 0.5648

(1.4518e5) (1.5517e2) (3.8410) (1.2171e4) (4.2869)
α̂2 0.2511 0.0990 0.0813 0.6158 0.2120

(0.4804) (0.5580) (1.1625) (9.0737) (2.0606)
α̂3 0.1440 0.4714 0.7293 0.0012 0.2168

(0.2805) (2.3951) (19.2600) (0.9410) (2.1414)
µ̂1 0.1058 0.0601 0.1740 0.4646 0.0778

(1.0122) (0.7271) (0.9385) (2.6886) (4.7807)
µ̂2 -0.2624 -0.1085 0.0604 -0.0307 0.0274

(-0.3104) (-1.3729) (0.8684) (-0.7206) (0.2776)
µ̂3 0.0789 -0.0396 -0.0066 -5.9359 -0.1934

(8.7547e2) (-1.6413e3) (-2.2344) (-1.9232) (-5.7360e3)
µ̂4 0.3493 1.0572 6.6409 -0.0737 2.2974

(1.2429) (2.0307) (3.4665) (-1.7313) (1.9996)
σ̂2

1 2.7534 3.0016 5.1679 5.3235 0.2221
(6.69295) (5.2987) (5.5598) (8.8234) (17.7830)

σ̂2
2 0.9481 0.1552 0.1102 1.5792 1.3068

(4.2815) (0.2794) (0.5521) (10.3920) (5.5835)
σ̂2

3 0.5205 1.1759 1.1861 0.5788 0.6149
(0.6918) (3.1943) (6.5135) (0.8830) (4.0215)

σ̂2
4 12.1480 9.5961 0.5443 0.2944 2.2305

(4.9056) (3.2794) (0.3120) (3.0774) (4.3608)
b̂ 1.2767 1.4856 0.4201 0.6740 0.8082
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Table 8 Empirical Parameter Estimates for MN(2) – [1962 - 2004]
(The statistics in the parentheses are t-values).

Stock Codes 1.ACD 2.EK 3.GE 4.UK 5.S&P 500
α̂ 0.6343 0.8110 0.7682 0.7296 0.6870

(21.3312) (44.6887) (35.2605) (37.2728) (32.9421)
µ̂1 -0.1067 -0.0448 -0.0019 -0.0670 0.0388

(-4.5820) (-2.7147) (-0.1177) (-3.7294) (4.1417)
µ̂2 0.3415 0.4783 0.2837 0.3843 0.0112

(6.1790) (0.1341) (5.9146) (5.8255) (0.3995)
σ̂2

1 1.4619 1.4072 1.1843 1.2534 0.3322
(18.8673) (30.0482) (26.4908) (25.1290) (23.9436)

σ̂2
2 6.3121 7.4265 5.7382 7.3022 1.8034

(19.4443) (15.0703) (16.1080) (18.4195) (21.1692)
b̂ 2.5410 3.1241 2.3615 2.4957 0.6849
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Table 9 Empirical Comparison across Different Model
Specifications

Data MN2 MN3 MN4
ACD
Mean 0.0406 0.0337 0.4181 0.0328

Variance 2.9124 2.8341 2.9160 2.9127
Skewness 0.4181 0.7402 1.0201 0.8365
Kurtosis 6.6346 5.6490 6.6299 6.5583

AIC – 17578.34 17557.22 17564.98
BIC – 17610.09 17608.67 17634.52
EK

Mean 0.0459 0.0379 0.0474 0.0476
Variance 2.2702 2.2062 2.2565 2.2560
Skewness 0.3255 0.6160 1.3349 1.3538
Kurtosis 6.2845 4.9526 5.7889 5.7885

AIC – 16571.16 16534.18 16544.76
BIC – 16603.37 16585.72 16615.63
GE

Mean 0.0370 0.0334 0.0364 0.0382
Variance 1.8952 1.8813 1.8940 1.8890
Skewness 0.1679 0.2848 0.4684 0.3900
Kurtosis 5.6936 5.4268 5.6827 5.5894

AIC – 15719.61 15705.01 15712.36
BIC – 15751.82 15756.55 15783.22
UK
Mean 0.0305 0.0254 0.0315 0.0266

Variance 1.9369 1.8752 1.9069 1.9132
Skewness 0.3412 0.4904 0.8195 0.7383
Kurtosis 5.9529 4.9348 5.4159 5.4503

AIC – 15793.56 15759.50 15764.83
BIC – 15825.77 15811.04 15835.70

S&P 500
Mean 0.0221 0.0072 0.0221 0.0220

Variance 0.5920 0.5465 0.5919 0.5937
Skewness 0.2133 -0.1567 0.4272 0.3476
Kurtosis 5.8488 4.2935 5.8805 6.0812

AIC – 10335.87 10285.51 10281.48
BIC – 10368.08 10337.05 10352.34
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