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Abstract

In standard multi-armed bandit problems, the act of choosing one arm over another en-
tails only an implicit opportunity cost. I study a three-armed exponential bandit problem in
which unused risky arms have explicit maintenance costs and can be irreversibly discarded.
If all projects are maintained, the optimal experimentation policy has a Gittins index repre-
sentation and furthermore has the stay-with-the-winner property. I characterise the optimal
experimentation policy when arms can be discarded, which does not have an index represen-
tation, and show that either (i) maintenance costs are sufficiently high that the losing arm
is always discarded immediately, or (ii) the stay-with-the-winner property fails. Maintenance
costs alter the optimal experimentation by providing incentives to bring losing arms’ option
values forward.

1 Introduction

When experimentation is costly, decision-makers face choices about which alternatives to investi-
gate. For example, firms that develop new technologies focus on a few projects at a time and do
not fund all competing ideas equally. Investing in multiple technologies simultaneously is costly,
so that firms choose a limited set of technologies to develop initially and then decide whether
to transfer their resources to other projects when experimentation results are not sufficiently
good. Professional sports teams can be thought of as managing their rosters in a similar way.
Since the rules of the sport specify that a single player can play at a given position at a time,
coaches/managers can infer information about players’ abilities only by allowing them to enter
the game and replace a teammate.

In standard models of experimentation, the choice of gathering information about one alter-
native as opposed to another entails only an implicit opportunity cost, the foregone opportunity
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of learning about the inactive alternative. However, retaining the option to investigate a cur-
rently shelved alternative often involves explicit maintenance costs. For example, a research and
development firm must maintain specialised stocks of knowledge simply to keep open the option
of developing the technology that is not currently a priority. This consists of skilled workers or
scientists that can be lost to other firms or the upkeep of specialised equipment. In professional
sports, the option to develop players of unknown quality is kept open by filling roster spots
with ‘bench’ players, who may seldom get the opportunity to play but command non-negligible
salaries.

In this paper, I present a standard model of experimentation, but allow alternatives that
are not being investigated to have explicit maintenance costs and to be irreversibly discarded
if deemed unpromising. Two risky alternatives can be good or bad and only good alternatives
eventually succeed if investigated. An experimenter searches for a success among the alternatives
by choosing both which one to investigate now and whether or not to maintain the inactive one for
(potential) future research. An alternative’s current state is characterised by the experimenter’s
belief that it is good, and repeated failures make the experimenter more pessimistic about the
alternative.

Without the option to discard alternatives, the optimal experimentation policy has a ‘stay-
with-the-winner’ property: the alternative that is more likely to be good is investigated first.
I fully characterise the optimal experimentation policy with maintenance costs and show that
these lead to significant departures from this standard result. In particular, alternatives that
are less likely to succeed are sometimes investigated first. In such cases, ‘losing’ alternatives are
granted a ‘last chance’ to succeed, after which they are permanently discarded in favour of more
promising alternatives.

Maintenance costs alter the optimal order in which alternatives are investigated by providing
incentives to bring the option value of less promising alternatives forward. To do so, the ex-
perimenter needs to investigate the losing alternative first while paying to maintain the winning
alternative. The benefit is that the decision to discard the losing alternative following repeated
failures is better informed, and the experimenter can then investigate the winning alternative
without having to maintain the losing one.

I model experimentation as a multi-armed bandit problem.1 This is a well-known class of
models in statistical decision theory in which an experimenter (e.g. a firm) learns about the
distributions generating the payouts of various arms (e.g. technologies) by ‘pulling’ (e.g. devel-
oping) them sequentially over time. In general, these are complex multi-dimensional dynamic
optimisation problems, but in the standard discounted multi-armed bandit problem with inde-
pendent arms the optimal experimentation policy can be represented by a well-known (Gittins)
index policy. To each arm is assigned a number (index) that depends only on the ex ante charac-

1See Berry and Fristedt (1985). Bergemann and Välimäki (2006) survey the bandits literature with an eye to
applications in economics.
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teristics and accumulated observations of that arm. The optimal experimentation policy consists
of always selecting an arm among those with maximal indices.

The index representation of the optimal experimentation policy is not robust to perturba-
tions in standard assumptions such as geometric discounting and independent arms. Closer to
my paper, Banks and Sundaram (1994) have shown that index policies are not optimal in the
presence of switching costs between arms. Intuitively, the reason is that switching costs link
the experimenter’s decision to move away from an active arm, that is, to incur a switching cost,
with the characteristics of outside arms in a way that cannot be captured by a single index
that depends only on the characteristics of the active arm. General characterisations of optimal
experimentation policies with switching costs have proven difficult to obtain.2

Although my results are obtained in a special framework, maintenance costs appear to be
more tractable than switching costs. Maintenance costs differ from switching costs in that the
latter are attributed to an inactive arm only when experimentation transitions to it and are always
accompanied by an observation from that arm. Maintenance costs need to be paid whenever an
inactive arm is not pulled and never generate observations from that arm. It is not clear how to
even define an index policy in the presence of maintenance costs since experimentation policies
need to specify both which arm is pulled and which arms are maintained. Nevertheless, even
if this difficulty could be surmounted the bandit problem with maintenance costs would fail to
admit a Gittins index representation for the same reason Banks and Sundaram (1994) identified
for bandit models with switching costs: the index of a given maintained arm would have to
be a function of the maintenance cost, and this relationship would depend nontrivially on the
characteristics of outside arms.

The bandit model I consider is a continuous-time exponential bandit due to Keller et al.
(2005). The exponential bandit model has proved useful in applications due to its tractability. In
particular, the experimenter’s optimal payoff functions of the two-armed bandit (optimal stop-
ping) problem are simple to compute, which is not the case for bandits with different probability
structures. Keller et al. (2005), following Bolton and Harris (1999), study strategic experimen-
tation and the free-riding incentives of multiple agents facing a single risky arm. Keller and
Rady (2009) generalise the model to ‘poisson’ bandits that allow for arms of the bad type to also
generate successes. Klein and Rady (2008) allow for each of two experimenters to have perfectly
negatively correlated versions of the same risky arm, and hence the state can still be described
by a single-dimensional belief. Strulovici (2009) applies the model in a voting framework. Berge-
mann and Hege (1998) have introduced a discrete-time version of the model to study the moral
hazard problem arising between bankers (principal) and venture capitalists (experimenters). In
this vein, recent papers by Bonatti and Hörner (2009) and Hörner and Samuelson (2009) focus
on the provision of incentives to experimenting agents.

2For details, see Jun (2004). An exception is Bergemann and Välimäki (2001), who exploit results of Banks and
Sundaram (1992b) on bandits with a countable numbers of ex ante identical arms to show that an experimenter
never switches back to an arm it switched away from earlier.
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I present the model in Secton 2. I address how to define strategies (which depend on time
in the absence of a success) and Markov strategies (which depend on the state, the belief of the
experimenter that each arm is good) and clarify the relationships between them. While Markov
strategies along with dynamic programming methods and allow for simple expressions for optimal
payoffs, many of the arguments regarding when and why maintained arms should be discarded are
naturally established by considering time paths of play. In Section 3, I use the simple structure
of the continuous-time exponential bandit problem to derive expressions for the experimenter’s
optimal payoffs. In Section 4, I characterise optimal experimentation in the benchmark model
in which inactive arms have maintenance costs but the experimenter cannot discard risky arms.
This is equivalent to a standard three-armed bandit with two risky arms, and hence the solution
is known by the Gittins index theorem. I show that the optimal experimentation policy involves
the stay-with-the-winner rule. In Section 5, I present the main results of the paper for the model
in which inactive arms have maintenance costs and the experimenter can discard arms. First, I
show that if the optimal policy ever ‘goes-with-the-loser’, it will do so in a very specific way. The
losing arm will be chosen continuously for a short period, after which, in the absence of a success,
it will be discarded. Losing arms are used before winning arms only if they are being granted a
‘last chance’ to succeed, else they are maintained and not used or simply discarded. Second, I
give a complete characterisation of the optimal policy and show that whenever it is not the case
that maintenance costs are high enough that the ‘losing’ arm is always discarded immediately,
there exist regions of initial beliefs for which the experimenter starts with the losing arm.

2 Model

Consider a continuous time three-armed bandit problem with two risky arms, A and B, and a
safe arm S. An experiment consists of pulling a risky arm for some time interval [t, t+ dt]. The
probabilistic structure of the risky arms is as in Keller et al. (2005). Experiments yield either
successes or failures. The type of a risky arm is θ ∈ {G,B}. A risky arm of type θ that is pulled
continuously in time interval [t, t + dt] succeeds with probability Gdt if θ = G and fails for sure
if θ = B. The types of risky arms A and B are drawn independently. Let pJ(0) be the ex ante
probability that arm J is of type G. A safe arm S yields a flow payoff of 0. A success on either
risky arm yields a lump-sum payment of 1 and ends the experimentation process.

Pulling risky arm J continuously in time interval [t, t+ dt] entails experimentation costs kdt.
As my only departure from standard multi-armed bandit problems, I introduce explicit costs to
maintaining inactive risky arms. That is, a risky arm that is maintained but not pulled in time
interval [t, t + dt] entails a cost of kdt. The experimenter can irreversibly discard risky arms
without cost. That is, it can avoid paying for the maintenance of inactive arms but only at the
cost permanently abandoning some of its options. There are no costs to the safe arm, which can
be interpreted as an option to quit the experimentation process. The experimenter discounts
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future payoffs at rate r.
Since experimentation ends after the first success, the only histories after which the exper-

imenter selects an arm to pull are intervals of time in which only failures have been observed.
Strategies should properly be defined on histories, however, any such strategy can be redefined to
depend solely on time in the absence of a success. A strategy is a collection (α, φA, φB) for some
function α : R+ → [0, 1] ∪ {S} and decreasing functions φJ : R+ → {0, 1} for J ∈ {A,B}. The
function α is an assignment rule and

∫ t+dt
t α(t) specifies the fraction of time devoted to pulling

arms A in time interval [t, t+ dt] if the experimenter pulls only risky arms in that interval, while
α(t) = S if the experimenter pulls the safe arm at time t. The principal is allowed to share
the responsibility for the project between the agents in any interval of time. The assumption
that the experimenter cannot share the assignment between all three arms and must decide first
whether or not to pull risky arms and then in what ratio is made to simplify the exposition
and is in fact without loss of generality for optimal experimentation. Functions φA and φB

specify maintenance rules, with φJ(t) = 1 if and only if J is maintained at time t. Strategy
(α, φA, φB) is admissible if each component is right-continuous and piecewise Lipschitz continu-
ous. Let tJ ∈ [0,∞) = sup{t : φJ(t) = 1}. Given any initial conditions (pA(0), pB(0)) ∈ [0, 1]2,
admissible strategy (α, φA, φB) induces uniquely defined and continuously differentiable laws of
motion for the beliefs (pA(t), pB(t)) that arms A and B are of type G at time t.3 These laws of
motion are given by

ṗA(t) =

−α(t)HpA(t)(1− pA(t)) for t ∈ [0, tA),

0 for t ≥ tA.

ṗB(t) =

−(1− α(t))HpB(t)(1− pB(t)) for t ∈ [0, tB),

0 for t ≥ tB.

These laws of motion are derived in a straightforward way by requiring that the evolution of
beliefs be consistent with α and Bayes’ rule, and follows Keller et al. (2005).

For much of the paper, it will be more convenient to work with Markov strategies. These are
strategies that are conditioned on the state variable, which is the current belief along with the
set of maintained arms. More formally, a state consists of (pA, pB, IA, IB) ∈ [0, 1]2 × {0, 1}2. A
Markov assignment is a function β : [0, 1]2×{0, 1}2 → [0, 1]∪{S}. Markov maintenance rules are
functions ϕJ : [0, 1]2×{0, 1}2 → {0, 1} for J ∈ {A,B} such that ϕJ(pA, pB, IA, IB) = 0 whenever
IJ = 0.

Imposing admissibility requirements directly on Markov strategies can be cumbersome.4 A
further source of difficulty in this framework is to determine how the monotonicity (irreversibility)
requirements on maintenance rules carry over to restrictions on Markov maintenance rules. To

3In turn, this ensures that the optimal control problem of finding a payoff-maximising strategy is well-defined.
4See Fleming and Rishel (1975), Theorem 6.1.
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get around these issues, I rely on the admissibility requirement already stated for strategies.
Markov strategy (β, ϕA, ϕB) will be said to be admissible if given any state (pA, pB, IA, IB) and
initial beliefs (pA(0), pB(0)) = (pA, pB), there exists an admissible strategy (α, φA, φB) such that
for all t

α(t) = β(pA(t), pB(t), φA(t), φB(t)),

φA(t) = ϕA(pA(t), pB(t), φA(t), φB(t)),

φB(t) = ϕB(pA(t), pB(t), φA(t), φB(t)).

Henceforth I will not explicitly restrict the experimenter to using admissible Markov strategies,
or rather I will assume that the Markov strategies evoked yield well-defined solutions to the
differential equations for the evolution of beliefs. However, I will verify that the optimal Markov
strategies I derive, as well as the deviating strategies that support various proofs, are admissible.

A Markov strategy (β, ϕ) is symmetric if

β(pB, pA, IB, IA) =

1− β(pA, pB, IA, IB) if β(pA, pB, IA, IB) 6= S,

S if β(pA, pB, IA, IB) = S,

ϕJ(pB, pA, IB, IA) = ϕJ(pB, pA, IB, IA) for J ∈ {A,B}.

To any optimal strategy (β∗, ϕ∗) will correspond (at least) an optimal symmetric strategy, and
hence restricting to symmetric strategies is without loss of generality for the experimenter’s
payoffs. Given the restriction to symmetric strategies, it is without loss of generality to assume
that pA ≥ pB. Henceforth, arm A will always be the ‘winning’ arm, with arm B the ‘losing’ arm.

Let W (α, φ; t) be the experimenter’s payoff at time t to strategy (α, φ). If a success arrives
at time τ < min{tA, tB}

W (α, φ; t) = e−rτ −
∫ τ

t
e−rs(k + k)ds,

while if a success arrives at τ ∈ [min{tA, tB},max{tA, tB}]

W (α, φ; t) = e−rτ −
∫ min{tA,tB}

t
e−rs(k + k)ds−

∫ τ

min{tA,tB}
e−rskds,

and finally if a success never arrives

W (α, φ; t) = −
∫ min{tA,tB}

t
e−rs(k + k)ds−

∫ max{tA,tB}

min{tA,tB}
e−rskds.

The expected payoff to strategy (α, φ) given belief (pA(0), pB(0)) is

V (α, φ; t) ≡ EW (α, φ; t),
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where the expectation is taken over the distribution of stopping times τ determined by (α, φ)
and (pA(s), pB(s))t. Consider an admissible Markov strategy (β, ϕ), a state (p, I) and the corre-
sponding strategy (α, φ). The expected payoff to (β, ϕ) in state (p, I) is given by

v(β, ϕ; p, I) ≡ V (α, φ; 0)

The objective of the experimenter is to find a payoff-maximising strategy. To this end, let
U(t) = max(α,φ) V (α, φ; t). Similarly, let u(p, I) = max(β,ϕ) v(β, ϕ; p, I).

3 Preliminaries: Optimal Payoff Functions

The principal advantage of the continuous-time exponential bandit framework is its tractability,
and the fact that simple expressions for optimal value functions exist for the standard two-
armed bandit (optimal stopping) problem. In this section, I derive the expressions satisfied by
the optimal payoff u that will support the characterisations of Sections 4 and 5. To simplify
notation, let the number of beliefs listed in a state implicitly denote the set of maintained arms.
Hence (pA, pB) can stand for state (pA, pB, 1, 1), (pA) for state (pA, pB, 1, 0) given any pB, and so
on.

In any open region of the state space in which both arms are maintained, u must satisfy the
following Bellman equation

u(pA, pB) = max

{
e−rdtu(pA, pB), uA(pA), uB(pB), max

β∈[0,1]

{
[βpAG+ (1− β)pBG

− (k + k)]dt+ e−rdtE[u(pA + dpA, pB + dpB)|pA, pB]
}}

. (1)

The first term in the brackets of (1) corresponds to the option of employing the safe arm in a time
interval of length dt. The second and third terms correspond to the options of discarding arms A
and B respectively, where uJ corresponds to the optimal payoff to the two-armed bandit problem
with risky arm J and the safe arm. The final term corresponds to the payoffs from maintaining
both arms and allocating the experimentation effort optimally. When a risky arm has been
discarded, the experimenter faces a standard optimal stopping problem with the remaining risky
arm, and payoff uJ solves

uJ(pJ) = max

{
e−rdtuJ(pJ), [pJG− k]dt+ e−rdtE[uJ(pJ + dpJ)|pJ ]

}
.

The probability of a success in an interval of length dt is pJGdt, and the payoff to a success is
1. The probability of failure is 1 − pJGdt. In case of failure, the payoff to the experimenter is
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uJ(pJ) +u′J(pJ)dpJ , which is equal to u(pJ)−u′J(pJ)pJ(1− pJ)Gdt. By rewriting and cancelling
dominated terms

ruJ(pJ) = max

{
0, pJG− k − u′J(pJ)pJ(1− pJ)G− uJ(pJ)GpJ

}
.

Hence, in an open region of beliefs in which arm J is used, uJ satisfies the differential equation

uJ(pJ)(r +GpJ) = pJG− k − u′J(pJ)GpJ(1− pJ), (2)

which can be solved to yield

uJ(pJ) = C̃J

(
1− pJ
pJ

) r
G

(1− pJ) + pJ
G− k
r +G

− (1− pJ)
k

r
, (3)

with the constant of integration C̃J =
(

k
G−k

) r
G Gk
r(r+G) and the stopping belief p∗J = k

G determined
by value-matching and smooth-pasting conditions

uJ(p∗J) = 0, and

u′J(p∗J) = 0.

The setup here is slightly different than in Keller et al. (2005), but the expression (3) admits
the same interpretation. The term pJ

G−k
r+G − (1− pJ)kr is the payoff to risky arm J in the absence

of the ability to quit experimentation, while the term C̃J

(
1−pJ
pJ

) r
G (1 − pJ) captures the option

value of the safe arm S, the quitting option.
Note that the part of value function (1) in which both arms are maintained is linear in β.

Hence, in an open region in which both arms are maintained, the optimal value is attained for
β ∈ {0, 1}, and (1) can be rewritten as

ru(pA, pB) = max

{
pAG− (k + k)− ∂u(pA, pB)

∂pA
GpA(1− pA)− u(pA, pB)GpA,

pBG− (k + k)− ∂u(pA, pB)
∂pB

GpB(1− pB)− u(pA, pB)GpB

}
. (4)

Contrary to (2), partial differential equation (4) does not have a simple solution, since such a
solution to must include an optimal allocation rule.

I approach the solution to (4) by abstracting from allocations in order to reduce the two-
dimensional problem (4) to suitably defined single-dimensional problems. First consider an open
region of the state space in which arm A is used but both arms are maintained. Then since the
optimal Markov strategy is admissible there exists t′ > 0 and a parametrized path (pA(t), pB)
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such that U(t) = u(pA(t), pB) for t ∈ (0, t′). An argument similar to that establishing (2) shows
that U(t) satisfies

U(t)[r + pA(t)G]− U ′(t) = pA(t)G− (k + k). (5)

For path (pA(t), pB), define uA(pA(t); pB) ≡ U(t). Then U ′(t) = −u′A(pA(t); pB)GpA(t)(1 −
pA(t)), and condition (5) can be rewritten, eliminating the dependence on time, as

uA(pA; pB)[r + pAG] + u′A(pA; pB)GpA(1− pA) = pAG− (k + k). (6)

As for (2), (6) can be solved to yield

uA(pA; pB) = CA(pB)
(

1− pA
pA

) r
G

(1− pA) + pA
G− (k + k)

r +G
− (1− pA)

k + k

r
. (7)

In (7), the constant of integration will in general depend on pB, since pB may affect the payoffs
when exiting the A-region. If the parametrised path (pA(t), pB) exits the A-region in state
(p∗A, pB), then p∗A and CA(pB) satisfy the value-matching and smooth-pasting properties

uA(p∗A;CA(pB)) = u(p∗A, pB), and
∂

∂pA
uA(p∗A;CA(pB)) =

∂

∂pA
u(p∗A, pB).

In general, u(p∗A, pB) is endogenous and depends on the experimentation policy once exit from
the A-region occurs. If, for example, experimentation exits the A-region into the quitting region
at p∗A, then u(p∗A, pB) = 0 and ∂

∂pA
u(p∗A, pB) = 0, which yields that p∗A = k+k

G .
Equation (7) shows that when arm A is used in the optimal solution, payoffs evolve essentially

as though the experimenter was facing a two-armed bandit problem with cost k+ k for the risky
arm. However, the effect of pB on u(pA, pB) is captured by the constant of integration CA(pB),
which pins down the option value of arm B. It will be useful in the sequel to distinguish a payoff
of the form (7) from the optimal payoff u(pA, pB) in an A-assignment region. Given (pA, pB) and
some function CA(pB), define the righthand side of (7) as vA(pA;CA(pB)).

4 Optimal Experimentation Without Discarding Arms

In this section, I present the optimal experimentation policy for the benchmark case in which
risky arms cannot be discarded individually. That is, the experimenter is restricted to Markov
strategies with ϕ(p, I) = (1, 1) for all states (p, I) such that β(p, I) 6= S. The experimenter can
quit the experimentation by moving to the safe arm and discarding both risky arms. This problem
is equivalent to the standard three-armed bandit problem with direct costs to experimentation
(k + k).

9



4.1 Stay-with-the-Winner

The next lemma, which is also useful in later sections, deals with the allocation of trials between
risky arms conditional on continuing the experimentation. It states that the experimenter should
always use the arm with the highest belief, that is, ‘stay-with-the-winner’. When beliefs (pA, pB)
are such that pA > pB, this means using arm A. When beliefs are such that pA = pB, then both
arms have the highest belief. In the discrete time version of the model, beliefs would jump down
following a failure and this would (generically) ensure that there would always exist a ‘best’ arm,
allowing the application of the ‘stay-with-the-winner’ rule. In continuous time, staying with the
winner means sharing experimentation effort equally between both arms when beliefs are on the
45-degree line.5

Lemma 1. Consider (pA(0), pB(0)) and the belief path (pA(t), pB(t))t under optimal experimen-
tation. If pA(0) > pB(0), then β∗(pA(t), pB(t)) ∈ {1, S} for almost all t ∈ [0, t̂), where t̂ is such
that t̂ = min{inf{t : pA(t) = pB(t)},∞}. If instead pA(0) = pB(0), then β∗(pA(t), pB(t)) ∈ {1

2 , S}
for almost all t.

Lemma 1 mimics the Gittins index representation of the optimal experimentation policy,
in which an arm’s belief is taken to be the index. In fact, its proof is essentially a simplified
version of the original ‘interchange argument’ in Gittins and Jones (1974) and Gittins (1979)
that establishes the optimality of the Gittins’ index for standard bandit problems.6 By starting
with an assignment in which an arm with a non-maximal Gittins index is chosen before the arm
with the maximal index, the argument shows that interchanging the order in which both arms
are pulled, keeping continuations following these periods of experimentation fixed, increases the
experimenter’s payoffs. A special feature of the exponential bandit problems is that the arm
with the highest Gittins index is also the arm with the highest belief. Hence, the myopically
optimal allocation is also dynamically optimal. Exponential bandits are continuous time versions
of Bernoulli bandits in discrete time, for which a result that myopic play is optimal is shown
by Berry and Fristedt (1985), who coined the term ‘stay-with-the-winner’. Their result was
generalised in Banks and Sundaram (1992a), who show that dynamically optimal play is myopic
for a class of two-type symmetric bandits.

4.2 Shared Experimentation

Before completing the characterisation of optimal experimentation without discarding arms, I
describe the experimenter’s payoffs when pA = pB. According to Lemma 1, if there is no transition
to the safe arm, then experimentation is shared and beliefs move down the 45-degree line. The
key to obtaining an expression for optimal payoffs is that the partial differential equation (4)

5All proofs are in the Appendix.
6For a concise presentation of the original proof, see Frostig and Weiss (1999).
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can be represented as a differential equation under the assumption that pA = pB = p and that
β(p, p) = 1

2 for all beliefs p greater than some quiting belief p∗. In that case, the payoff u must
satisfy ∂

∂pA
u = ∂

∂pB
u. Define uAB(p) ≡ u(p, p), then it follows that u′AB(p) = 2 ∂

∂pA
u(p, p) and

uAB solves

uAB(r + pG) = pG− (k + k)− 1
2
Gp(1− p)u′AB.

The differential equation (8) has solution

uAB(p) = C̃AB

(
1− p
p

) 2r
G

(1−p)2 +p2G− (k + k)
r +G

+2p(1−p)
G
2 − (k + k)
r + G

2

−(1−p)2k + k

r
. (8)

If optimal experimentation leads from shared experimentation to the safe arm at belief p∗, the
constant of integration C̃AB and cutoff belief p∗ = k+k

G are determined by value-matching and
smooth-pasting conditions.

uAB(p∗) = 0, and

u′AB(p∗) = 0.

(8) has the same interpretation as (3), where p2G−(k+k)
r+G + 2p(1 − p)

G
2
−(k+k)

r+G
2

− (1 − p)2 k+kr is

the payoff to shared experimentation with belief p for both arms in the absence of the ability

to quit experimentation, while C̃AB
(

1−p
p

) 2r
G (1 − p)2 is the option value of the safe arm. Note

also that since p∗ = k+k
G , the optimal quitting value is the same in the single-arm problem with

experimentation cost k + k as in the two-arm problem with equal beliefs.

4.3 Optimal Policy

Lemma 1 and the previous discussion characterise the optimal experimentation policy without
discarding arms. Lemma 1 ensures that off the 45-degree line, the ‘best’ arm is used, while if
on the 45-degree line, shared experimentation must continue until all experimentation ceases.
Hence, when off the 45-degree line, two alternatives are available: experiment with arm A until
some quitting belief, or experiment with arm A until 45-degree line is reached and then share
experimentation. The discussion around (7) and (8) establishes the boundaries between the
quitting and experimentation regions.

Proposition 1. When arms cannot be discarded, the following admissible Markov strategy is
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optimal

β∗(pA, pB) =


1 if pA > pB and pA >

k+k
G ,

1
2 if pA = pB > k+k

G ,

S if pA ≤ k+k
G .

φ∗(pA, pB) =

(1, 1) if pA >
k+k
G .

(0, 0) if pA ≤ k+k
G .

Figure 1 illustrates belief paths consistent with the optimal experimentation policy when arms
cannot be discarded. From belief (pA, pB) with pA > pB > k+k

G , the use of arm A followed by

shared experimentation until belief (k+kG , k+kG ) is optimal. From belief (p′A, p
′
B) with p′A >

k+k
G >

p′B, only arm A will ever be used, until belief (k+kG , pB).

6
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�
�
��	

�
�

��

(p′A, p
′
B)r
?

b

Figure 1: Optimal Experimentation Without Discarding of Arms.

5 Optimal Experimentation with Discarding of Arms

This section returns to the problem in which risky arms can be discarded and characterises
optimal experimentation. When arms can be discarded, the experimenter can avoid accumulating
maintenance costs on inactive arms, yet may hesitate to irreversibly abandon the option of

12



exploiting them. The experimenter has an incentive to bring the option value of inactive arms
forward. How this incentive is resolved in the optimal experimentation policy is the subject of
the following sections.

5.1 When to ‘Go-with-the-Loser’

I first provide necessary conditions which deal with which arms can be discarded, and when.
These establish that the patterns of optimal experimentation when arms can be discarded are
very simple. The first result is quite natural and states that if an arm is ever discarded it is the
losing arm B, and it is discarded as soon as the experimenter no longer intends to use it. That
is, there is no value in ‘stringing’ B along without pulling it, only to discard is later.

Lemma 2. Consider (pA(0), pB(0)) and the belief path (pA(t), pB(t))t under optimal experimen-
tation.

i. Suppose there exist t̂ and ε > 0 such that ϕ∗(pA(t), pB(t)) 6= (1, 1) for all t ∈ [t̂, t̂ + ε)
and β∗(pA(t), pB(t)) 6= S for almost all t ∈ [t̂, t̂ + ε). Then, without loss of generality,
ϕ∗(pA(t), pB(t)) = (1, 0) for all t ∈ [t̂, t̂+ ε).

ii. Suppose there exists t̂ such that β∗(pA(t), pB(t)) = 1 for all t ∈ [0, t̂) and that there exists
t′ < t̂ such that ϕ∗(pA(t), pB(t)) = (1, 1) for almost all t ∈ [0, t′). Then ϕ∗(pA(t), pB(t)) =
(1, 1) for all t ∈ [t′, t̂).

The proof of Lemma 2 is simple. If the better arm A were discarded before B, and B was
used after having discarded A, then inverting the roles of arms A and B would increase the
experimenter’s payoff. If, on the other hand, arm B were maintained but never used again,
were arm B to be discarded immediately, discoveries would occur with the same probability and
maintenance costs would be avoided for a random time of positive expected length.

The next result derives the precise conditions under which the losing arm B can be used
under optimal experimentation. It shows that whenever arm A is strictly better than arm B but
is not used, then it must be that arm B is used exclusively for some time and then discarded.

Lemma 3. Suppose that pA(0) > pB(0) and consider the belief path (pA(t), pB(t))t under optimal
experimentation. Suppose that there exists t̂ > 0 such that β∗(pA(t), pB(t)) 6= 1 for almost all
t ∈ [0, t̂) and ϕ∗(pA(t), pB(t)) = (1, 1) for all t ∈ [0, t̂). Then there exists t∗ such that t̂ ≤ t∗,
β∗(pA(t), pB(t)) = 0 for almost all t ∈ [0, t∗), ϕ∗(pA(t), pB(t)) = (1, 1) for all t ∈ [0, t∗) and
ϕ∗(pA(t∗), pB(t∗)) = (1, 0).

Lemma 3 answers the question at the head of the section regarding how the experimenter
manages to bring the option value of inactive arms forward to avoid maintenance costs. Lemma
3 relies on Lemma 1, which shows that if both arms are maintained, optimal experimentation
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requires that the better arm be used. Hence, any period of experimentation in which arm B is
used and arm A is maintained must end by arm B being discarded. That is, whenever arm B

is used, it is given a ‘last chance’ before it is culled. By Lemma 1, the losing arm B ‘should’ be
the inactive arm. To avoid both maintaining arm B while using arm A and sacrificing its option
value by discarding it, the experimenter must inefficiently use arm B for a short period while
maintaining the better arm A. However, this is done with an eye to discarding arm B quickly in
the absence of success. Hence to bring the option value of arm B forward, the experimenter faces
a trade-off between inefficient assignment and the maintenance cost savings of experimenting
with the better arm A in the absence of arm B.

5.2 Discarding Boundary

Together, Lemmas 1, 2 and 3 imply that given pA(0) > pB(0), either i) arm B is discarded
immediately, ii) arm B is used until it is discarded in favour of arm A, iii) arm A is used for
some time, a switch to B occurs and B is used until it is discarded, or iv) arm A is used until
the 45-degree line is reached, followed by shared experimentation. From shared experimentation,
either one or both arms are discarded, or arm B is used exclusively until it is discarded.

This section focuses on the experimenter’s discarding decision. To this end, suppose that
pA > pB and that (pA, pB) lies in an open region of beliefs in which arm B is used. Then, by
Lemma 3, arm B will be used until it is discarded at some belief p∗B, and as was shown in Section
3, the experimenter’s payoff satisfies

u(pA, pB) = vB(pB;CB(pA)),

for some constant of integration CB(pA). The experimenter’s payoff at belief (pA, p∗B) once arm B

has been discarded is given by uA(pA) and is independent of pB. Recall that uA(pA) is the optimal
payoff to a single risky arm with cost k and belief pA. Hence value-matching and smooth-pasting
conditions at the discarding belief (pA, p∗B) yield

vB(p∗B;CB(pA)) = uA(pA), and (9)
∂

∂pB
vB(p∗B;CB(pA)) =

∂

∂pB
uA(pA)

= 0. (10)

Rearranging (10) yields

CB(pA)
(

1− p∗B
p∗B

) r
G

=
G(r + k + k)
r(r +G)

p∗BG

p∗BG+ r
. (11)

(11), along with (9), yield that p∗B solves

uA(pA) =
p∗BG− (k + k)

p∗BG+ r
(12)
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Note that the right-hand side in (12) is the payoff to an arm that is known to be of type G but
has a success rate p∗BG and associated experimentation cost k + k, since the flow payoff of such
an arm is p∗BG− (k + k), while the expected wait until a success is p∗BG and hence the effective
discount is p∗BG+r. Hence (12) states that at a cutoff belief (pA, p∗B) at which arm B is discarded,
the experimenter is indifferent between its payoff to arm A in the absence of arm B and a riskless
arm with a payoff equal to arm B’s flow payoff at the belief p∗B at which it is discarded. Note
that (12) also implies that given arm A with belief pA, there is a unique candidate cutoff state
(pA, p∗B) at which arm B is discarded.

The preceding discussion does not say whether arm B is actually ever used when pA > pB,
just when it should be discarded were it to be used. Define mapping p∗B : [0, 1] → [0, 1] such
that p∗B(pA) is the solution to (12) if it exists, and is equal to pA otherwise. Clearly, a necessary
condition for arm B to be used before arm A is that there exists belief pA such that p∗B(pA) < pA.

This occurs whenever, for fixed pA, there exits pB such that uA(pA) < p∗BG−(k+k)
p∗BG+r . To this end,

consider the mapping pB 7→ pBG−(k+k)
pBG+r . It is straightforward to verify that this mapping is

increasing and concave. Hence, for fixed pA, the inequality uA(pA) ≤ pBG−(k+k)
pBG+r is easiest to

satisfy for pB = pA. Note that

lim
pA↗1

[
uA(pA)− pAG− (k + k)

pAG+ r

]
=
G− k
G+ r

− G− (k + k)
G+ r

> 0. (13)

That is, as the probability that arm A is of type G approaches 1, the payoff to a single risky arm
with cost k approaches the payoff to an arm known to be of type G with cost k and success rate
G. This dominates the payoff to an arm known to be of type G with cost k+ k and success rate
G. Furthermore,

lim
pA↘ k+k

G

[
uA(pA)− pAG− (k + k)

pAG+ r

]
= vA(

k + k

G
; C̃A)

> 0. (14)

That is, as pA approaches the quitting belief k+k
G (for a risky arm with cost k+ k), the payoff to

an arm known to be of type G with cost k+k and success rate pAG approaches 0, while the payoff
to a risky arm with cost k is strictly positive, since its own quitting belief is k

G . This implies that
when arms can be discarded, contrary to the results of Proposition 1, the experimenter will never
reach the quitting belief k+k

G with both arms maintained. (13) and (14) show that discarding
arm B is always best either when arm A is almost sure to be good or when the belief in arm A

approaches the quitting belief for the case in which arms cannot be discarded. Thus, if arm B is
ever used, beliefs must lie ‘between’ (k+kG , k+kG ) and (1, 1).

15



The following lemma collects some of the previous discussion to give a necessary and sufficient
condition for the existence of a set of beliefs with positive Lebesgue measure in which arm B is
used before arm A.

Lemma 4. One of the two following cases must obtain. Either

i. uA(pA) > pAG−(k+k)
pAG+r > 0 for all pA, and for almost all (pA, pB), ϕ∗(pA, pB) = (1, 0), or

ii. there exist pA > p
A

such that uA(pA) ≤ pAG−(k+k)
pAG+r if and only if pA ∈ [p

A
, pA]. Then for

almost all (pA, pB) with ϕ∗(pA, pB) = (1, 1), β∗(pA, pB) = 0 only if pA ∈ [p
A
, pA] and pB ∈

[p∗B(pA), pA]. Furthermore, the set {(pA, pB) : ϕ∗(pA, pB) = (1, 1) and β∗(pA, pB) = 0} has
positive Lebesgue measure.

Figure 2 illustrates the discarding boundary when the condition of part ii of Lemma 4 obtains.
Define

PM = {(pA, pB) : pA ≥ pB, pB ≥ p∗B(pA)},

which is the set of beliefs which is inside the discarding boundary. That is, PM is the maintenance
region, the set of beliefs inside which arm B is never discarded. Further define

PD = {(pA, pB) : pA ≥ pB} \ PM ,

which is the set of beliefs outside the discarding boundary. This is the discarding region, in
which arm B can possibly be maintained but never used. It is easily verified that the boundary
separating PM from PD is concave. From state (pA, pB), if it is optimal to use arm B, then B

must be used until (pA, p∗B(pA)), after which B is discarded and A must be used until p∗A = k
G ,

the quitting belief with a single risky arm.
Part ii of Lemma 4 states that the set of beliefs for which arm B us used before arm A is

nonempty whenever armB is not always immediately discarded. The set PB in Figure 2 illustrates
the beliefs for which the argument in the proof applies, which are those beliefs close to (p

A
, p
A

)
and (pA, pA). For any beliefs (pA, pB), the payoff to using arm A (or to shared experimentation)
and maintaining B is at most the payoff to using an arm known to be of type G with success
rate pAG and experimentation cost k + k. However, near (pA, pA), discarding arm B yields a
payoff close to the payoff to an arm known to be of type G with success rate pAG but reduced
experimentation cost k. Hence near (pA, pA), discarding arm B yields strictly higher payoffs than
either using arm A (or shared experimentation). Yet, for beliefs inside PM , using arm B until
the discarding boundary yields strictly higher payoffs than discarding it. By continuity, using
arm B yields strictly higher payoffs than using arm A (or shared experimentation). The same
argument applies around (p

A
, p
A

). Intuitively, around (pA, pA) and (p
A
, p
A

), the experimenter
has already decided that it no longer wishes to maintain both arms in the long term. Yet arm B

may still be considered to be of some value, which the experimenter may want to exploit before
discarding it.
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Figure 2: Discarding Boundary.

5.3 Optimal Policy

The previous sections derived the possible patterns of optimal experimentation when arms can
be discarded. In this final section, I complete the characterisation of optimal experimentation by
showing when it entails these various patterns. A useful starting point is to focus on beliefs on
the 45-degree line. Lemma 3 states that if pA = pB, then either there is shared experimentation
or arm B is used until it is discarded. By Lemma 4, shared experimentation always ends with
the selection of arm B (in order to discard it). The next lemma addresses the question of how
many exit points from shared experimentation to arm B there can be on the 45-degree line, and
shows that only a single belief (p, p) can satisfy both the value-matching and smooth-pasting
conditions associated to such an exit.

Lemma 5. Suppose there exists p′ < p′′ such that β∗(p, p) = 1
2 for almost all p ∈ [p′, p′′]. Then

there exists p and p such that p ≤ p′, p′′ ≤ p and β∗(p, p) = 1
2 for almost all p ∈ P if and only if

P ⊂ [p, p].

Lemma 5 implies that if the belief p, derived explicitely in the Appendix is such that p ∈
(p
A
, pA) and if vAB(p;CAB(p)) > vB(p;CB(p)) for a set of beliefs (p, p) such that p ∈ (p, p + ε]

for some ε > 0, then there exists p ∈ (p, pA) such that β(p, p) = 1
2 for almost all p ∈ (p, p) and

β(p, p) = 0 for almost all p ∈ [p
A
, p] ∪ [p, pA]. That is, optimal experimentation calls for shared

experimentation only for those beliefs (p, p) with p ∈ (p, p).
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To complete the characterisation of the optimal experimentation policy, I will define two sets
of beliefs, PB ⊂ PM and PA via a backwards induction argument. Intuitively, these sets will
correspond the the regions of the state space in which arms A and B are used under optimal
experimentation. In the following, assume that the conditions of Lemma 5 are met and that
there exists a (unique) portion of the 45-degree line (p, p) for which shared experimentation is
optimal. The arguments that follow apply in a straightforward way when this is not the case.

First, let

P1
B =

{
(pA, pB) ∈ PM : pA ∈ [p

A
, p] ∪ [p, pA]

}
.

By Lemma 3, it must be that given p ∈ [p
A
, p]∪[p, pA], β∗(p, pB) = 0 for almost all pB ∈ (p, p∗B(p)).

That is, if arm B is used from the 45-degree line, it cannot be that a transition to arm A occurs
before arm B is discarded.

Second, consider

PM \ P1
B =

{
(pA, pB) ∈ PM : pA ∈ [p, p], pB ∈ [p∗B(p), p]

}
,

the set of beliefs in the maintenance region that have not been attributed to P1
B. By Lemma

3, from such beliefs, an optimal policy will either use arm B immediately until it is discarded,
or use arm A either until beliefs reach the 45-degree or until a switch to arm B occurs. Define
vA(pA;CA(pB; p′A)) to be the payoff to the experimenter in state (pA, pB) ∈ PM \ P1

B were it
to pull arm A until belief p′A ∈ [max{pB, p}, pA), and then switch to arm B until discarding
belief p∗B(p′A). Hence the constant of integration CA(pB; p′A) depends on the belief pB and on
the switching belief p′A, but not on pA. Similarly, if pB > p, define vA(pA;C45

A (pB)) to be
the payoff to the experimenter in state (pA, pB) were it to pull arm A until it reaches the 45-
degree line, after which it shares experimentation until joint belief p. If pB ≤ p, then define
vA(pA;C45

A (pB)) = vA(pA;CA(pB; p)). Note that vA(pA;CA(pB; p′A)) ≥ vA(pA;CA(pB; p′′A)) if
and only if CA(pB; p′A) ≥ CA(pB; p′′A) and vA(pA;CA(pB; p′A)) ≥ vA(pA;C45

A (pB)) if and only
if CA(pB; p′A) ≥ C45

A (pB). Hence if CA(pB; pA) = max{p′A∈[max{pB ,p},pA]}CA(pB; p′A), then the
experimenter has no incentive to use arm A. If, on the other hand, there exists a p′A such that
CA(pB; p′A) > CA(pB; pA), then the experimenter gains by staying with arm A until belief p′A.
Let

P2
B =

{
(pA, pB) ∈ PM \ P1

B : max
{

max
p′∈[max{pB ,p},pA]

CA(pB; p′), C45
A (pB))

}
≤ CA(pB; pA)

}
,

and let PB = P1
B ∪ P2

B. Finally, let P1
A = PM \ PB. Hence, all the beliefs in PM have been

attributed either to PB or to P1
A.

Third, consider the beliefs in PD, those outside the discarding boundary. By Lemma 2,
it must be that ϕ∗(pA, pB) = (1, 0) for all (pA, pB) ∈ PD that are not in the set {(pA, pB) :
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β∗(pA, pB(pA)) = 1}. That is, if arm B is maintained, it must be that it will not be discarded
once beliefs reach the discarding boundary. Let

Q =
{

(pA, pB) ∈ PD : (pA, p∗B(pA)) ∈ P1
A

}
.

That is, Q is the set of beliefs in the discarding region such that were A to be used and B

maintained until the discarding bound, B would also be maintained when beliefs cross into PM .
For any (pA, pB) ∈ Q, define p∗∗A (pB) = sup{pA : (pA, pB) ∈ P1

A}. Furthermore, define

P2
A =

{
(pA, pB) ∈ Q : vA(pA;CA(pB; p∗∗A (pB)) > vA(pA; C̃A)

}
.

Finally, let PA = P1
A ∪ P2

A. The next proposition collects these various results into an optimal
Markov assignment.

Proposition 2. When arms can be discarded, the following admissible Markov strategy is optimal.

β∗(pA, pB) =


0 if (pA, pB) ∈ PB,

1 if (pA, pB) ∈ PA,
1
2 if pA = pB = p and p ∈ (p, p),

S otherwise.

β∗(pA) =

1 if pA ≥ k
G

S otherwise.
β∗(pB) =

0 if pB ≥ k
G

S otherwise.

ϕ∗(pA, pB) =

(1, 1) if (pA, pB) ∈ PA ∪ PB,

(1, 0) otherwise.

ϕ∗(pA)) =

1 if pA ≥ k
G ,

0 otherwise.
ϕ∗(pB) =

1 if pB ≥ k
G ,

0 otherwise.

Figure 3 provided an illustration of the sets PA and PB. The figure as drawn assumes that
PA is convex, which need not necessarily be the case. However, note that the boundary between
sets PA and PB must always be downward-sloping, else this would violate Lemma 3.

When shared experimentation occurs on the 45-degree line, which by continuity implies that
PA is nonempty, the reversal of the ‘go-with-the-winner’ property exhibits a noteworthy non-
monotonicity. For fixed pB, arm B is used first in state (pA, pB) only for intermediate values of
pA. Suppose that arm A is believed to be of type G with very high probability, and hence to
succeed quickly. In that case, it is best for the experimenter to discard project B immediately and
exploit project A. Suppose now that pA is substantially higher than pB, yet arm B is still believed
to be of type G with relatively high probability. The optimal experimentation rule in the absence
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Figure 3: Optimal Experimentation Policy.

of maintenance costs would use arm A until its belief dropped to pB, after which experimentation
would be shared. However, since arm A is thought fairly likely to succeed, maintaining the option
value of arm B is very costly, since this value can be realised only after arm A has failed for a long
time. In this case, the optimal policy with maintenance costs starts by using arm B, discards it
after a short period of failure, and moves to the clearly more promising arm A. If instead beliefs
pA and pB are close to each other, it may still be optimal to develop projects as in the optimal
policy without maintenance costs. In this case, discarding arm B immediately or giving it its
‘last chance’ is more costly, since the realisation of its option value is not so far away and arm A

is not the clear-cut superior arm.

6 Conclusion

The standard approach to experimentation has been to assume that when currently occupied by
other projects, keeping the option of researching various alternatives at later dates is costless.
That keeping options open can involve maintenance costs is natural in many settings. This
paper shows that such costs generate new trade-offs for experimenters by giving them incentives
to manage the timing of the realisation of inactive alternatives’ option values and have important
implications for optimal experimentation policies.

While I have focused on the simple and tractable exponential bandit problem, it is not unrea-
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sonable to expect that my main arguments extend to more general bandit settings. If they do,
this would show that maintenance costs are indeed much more tractable than switching costs.
Note that more generally, the arguments used in the paper are based on finite backwards induc-
tion, where the recursion is on the set of maintained arms. At each step of the recursion, the
arguments rely on maintained arms’ Gittins indices. This is made clear by the common structure
of Lemmas 1 and 3 and the original ‘interchange argument’ of Gittins (1979) that establishes the
optimality of index policies in standard bandit problems.
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A Appendix

Proof of Lemma 1. Suppose that pA(0) > pB(0), and consider the belief path under optimal
experimentation (pA(t), pB(t))t. The first step is to show that if there exists t̂ > 0 and T̂ ⊂
[0, t̂) such that T̂ has positive Lebesgue measure and β∗(pA(t), pB(t)) 6= 1 for all t ∈ T̂ , then
β∗(pA(t), pB(t)) = 0 for almost all t ∈ T̂ . Suppose instead that β∗(pA(t), pB(t)) = α(t) ∈ (0, 1)
for all t ∈ T̂ . Let TA =

∫ t̂
0 α(t)dt. By assumption, TA ∈ (0, t̂).

Given allocation α(t) for t ∈ [0, t̂), and initial beliefs (pA(0), pB(0)), solving the differential
equation for the evolution of beliefs yields that

pA(t) =
1

1 + 1−pA(0)
pA(0) eH

∫ t
0 α(s)ds

, and

pB(t) =
1

1 + 1−pB(0)
pB(0) eH

∫ t
0 (1−α(s))ds

.

Belief pA(t) depends only on the cumulative experimentation on arm A up to time t,
∫ t
0 α(s)ds,

and not on when this experimentation occurred within the interval [0, t].
Consider an alternative admissible Markov assignment β̂ such that

β̂(pA(t), pB(t)) =

1 for all t ∈ (0, t̂− TA],

0 for all t ∈ (t̂− TA, t̂),

with β̂ = β∗ otherwise. Then (p̂A(t̂), p̂B(t̂)) = (pA(t̂), pB(t̂)), where (p̂A(t), p̂B(t))t is the belief
path associated with β̂. Hence, the payoffs following t̂ are the same under both assignments.
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That is, v(β̂, ϕ∗; pA(t̂), pB(t̂)) = u(pA(t̂), pB(t̂)). Furthermore, conditional on (pA(0), pB(0)), the
probability that no success occurs until t̂ is the same under β and β̂.

Let τβ∗ (respectively τβ̂) be the random arrival time of a success under assignment β∗ (re-

spectively β̂) in time interval [0, t̂]. Then Pr[τβ̂ ≤ t|pA(0), pB(0)] > Pr[τβ∗ ≤ t|pA(0), pB(0)] for
all t ∈ (0, t̂), that is, τβ̂ is higher than τβ∗ in the sense of first order stochastic dominance. By

discounting, the experimenter’s payoff is decreasing in the arrival time of a success, and hence β̂
yields a strictly higher expected payoff than β∗ in [0, t̂], or∫ t̂

0
[1− (k + k)]e−rτβ̂ µ̂(dτβ̂) >

∫ t̂

0
[1− (k + k)]e−rτβ∗µ∗(dτβ∗),

where µ̂ and µ∗ are the distributions of τβ̂ and τβ∗ , respectively. Hence,

v(β̂; pA(t̂), pB(t̂)) =
∫ t̂

0
[1− (k + k)]e−rτβ̂ µ̂(dτβ̂) + Pr[τβ̂ > t̂|pA(0), pB(0))u(pA(t̂), pB(t̂)]

>

∫ t̂

0
[1− (k + k)]e−rτβ∗µ∗(dτβ∗) + Pr[τβ∗ > t̂|pA(0), pB(0))u(pA(t̂), pB(t̂)]

= u(pA(0), pB(0)),

a contradiction. Hence it must be that α(t) = 0 for almost all t ∈ [0, t̂].
That is, the previous argument shows that if arm A is not used, it must be that arm B is

used exclusively. Since in that case pA(t) > pB(t) for all t > 0, the previous argument also
ensures that arm B is used until experimentation ceases, which must occur at time t∗ such that
pB(t∗) = k+k

G . By mimicking this strategy with arm A instead of B, that is, using arm A until

belief p∗A = k+k
G and then moving permanently to S, the experimenter’s payoff at time 0 would

be higher. That is, consider alternative strategy β̂ such that

β̂(pA, pB) =

1 if pA >
k+k
G

0 otherwise.

Then

v(β; pA(0), pB(0)) = vA(pA(0);CA)

≥ vB(pB(0, CA))

= u(pA(0), pB(0)),

a contradiction. CA is the constant of integration for the optimal stopping problem with a single
risky arm and direct cost k+k. Hence, it must be that α(t) = 1 for all t such that pA(t) > pB(t).

The same argument can be applied if pA(0) = pB(0) to show that experimentation is shared
until it ceases, i.e., β∗(pA(t), pB(t)) = 1

2 for all t such that ϕ(pA(t), pB(t)).
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Proof of Proposition 1. Most of the result was proved in the text. All that remains is to show
that the assignment β∗ is admissible. Clearly, given any t∗, t∗∗ and t′ such that 0 ≤ t∗ ≤ t∗∗ and
t′ ≥ 0, any strategy (α, φ) of the form

α(t) =


1 if t < t∗,
1
2 if t ∈ [t∗, t∗∗),

S if t ≥ t∗∗,

φ(t) =

(1, 1) if t < t′,

(0, 0) if t ≥ t′,
(15)

is admissible. Furthermore, given any (pA, pB), there exist t∗, t∗∗ and t′ such that 0 ≤ t∗ ≤ t∗∗

and t′ ≥ 0 such that a strategy (α, φ) defined as in (15) is such that

α(t) = β∗(pA(t), pB(t), φA(t), φB(t)),

φA(t) = ϕ∗A(pA(t), pB(t), φA(t), φB(t)),

φB(t) = ϕ∗B(pA(t), pB(t), φA(t), φB(t)),

and hence Markov strategy (β∗, ϕ∗) is admissible.

Proof of Lemma 2. For part i, suppose there exists t̂ and ε > 0 such that ϕ∗(pA(t), pB(t)) 6= (1, 1)
and β∗(pA(t), pB(t)) 6= S for almost all t ∈ [t̂, t̂+ε). Then one arm is discarded on the equilibrium
path. Let t∗ = inf{t < t̂ : ϕ∗(pA(t), pB(t)) 6= (1, 1)}. If ϕ∗(pA(t∗), pB(t∗)) = (0, 1), then since
β∗(pA(t∗), pB(t∗)) 6= S for almost all t ∈ [t̂, t̂ + ε), it must be that β∗(pA(t∗), pB(t∗)) = 0 for
almost all t ∈ [t̂, t̂+ ε). Consider a Markov strategy (β′, ϕ′) such that

ϕ′(pA, pB) = (1, 0) for all (pA, pB) such that ϕ∗(pA, pB) = (0, 1),

β′(pA(t), pB(t)) = 1 for all t > t∗ for which β∗(pA(t), pB(t)) = 0,

with (β′, ϕ′) = (β∗, ϕ∗) otherwise. Under (β′, ϕ′), p′A(t) ≥ pB(t) for all t > t∗ by the assumption
of symmetric strategies, and hence for all t > t∗ such that β∗(pA(t), pB(t)) = 0,

v(β′, ϕ′; pA(t), pB(t)) = vA(pA(t); C̃A)

≥ vB(pB(t); C̃A)

= vB(pB(t); C̃B)

= u(pA(t), pB(t)).

If the inequality is strict, this yields the required contradiction, while if it holds with equality, it
is without loss of generality to discard arm B instead of arm A.
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For part ii, suppose that there exists t̂ such that β∗(pA(t), pB(t)) = 1 for almost all t ∈ [0, t̂)
and that there exists t′ < t̂ such that ϕ∗(pA(t), pB(t)) = (1, 1) for almost all t ∈ [0, t′), but that
ϕ∗(pA(t′′), pB(t′′)) 6= (1, 1) for some t′′ ∈ (t′, t̂). By part i, ϕ∗(pA(t′′), pB(t′′)) = (1, 0). Consider
Markov strategy (β′, ϕ′) such that ϕ′(pA(0), pB(0)) = (1, 0), with (β′, ϕ′) = (β∗, ϕ∗) otherwise.
Then we can write

v(β′, ϕ′; pA(0), pB(0)) = vA(pA(0);C ′A) + pA(0)
k

r +G
+ (1− pA(0))

k

r
,

and

u(pA(t), pB(t)) = vA(pA(0);CA),

where the constants of integration CA and C ′A are determined at beliefs (pA(t′′), pB(t′′)) at which

vA(pA(t′′);CA) = vA(pA(t′′);C ′A) = u(pA(t′′), pB(t′′)).

Hence

C ′A = CA −
pA(t′′) k

r+G + (1− pA(t′′))kr(
1−pA(t′′)
pA(t′′)

) r
G (1− pA(t′′))

,

and

v(β′, ϕ′; pA(0), pB(0)) = vA(pA(0);CA)

−

(
1−pA(0)
pA(0)

) r
G (1− pA(0))(

1−pA(t′′)
pA(t′′)

) r
G (1− pA(t′′))

[
pA(t′′)

k

r +G
+ (1− pA(t′′))

k

r

]

+ pA(0)
k

r +G
+ (1− pA(0))

k

r

> vA(pA(0);CA).

The inequality follows since pA(t′′) < pA(0).

Proof of Lemma 3. Lemma 1 and part i of Lemma 2 imply that if there exists t̂ > 0 such that
β∗(pA(t), pB(t)) 6= 1 for almost all t ∈ [0, t̂) and ϕ∗(pA(t), pB(t)) = (1, 1) for all t ∈ [0, t̂), then
it must be that β∗(pA(t), pB(t)) = 0 for almost all t ∈ [0, t̂) and that if there exists t∗ ≥ t̂ such
that β∗(pA(t∗), pB(t∗)) > 0, then by part i of Lemma 2 it must be that ϕ∗(pA(t∗), pB(t∗)) ∈
{(1, 0), (0, 0)}. That is, if arm A is not pulled it must be that arm B is, and the experimenter
cannot go back to arm A without discarding arm B. Since the experimenter must eventually
discard B if pB gets close to 0, it only remains to be shown that ϕ∗(pA(t∗), pB(t∗)) = (1, 0), that
is, that the experimenter will discard B in favour of A at t∗. This follows by part ii of Lemma 2.
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Proof of Lemma 4. First, uA(pA) is increasing and convex in pA. Also, since the mapping pA 7→
pAG−(k+k)
pAG+r is increasing and concave, then by (13) and (14) either uA(pA) > pAG−(k+k)

pAG+r > 0 for

all pA or there exist pA > p
A

such that uA(pA) ≤ pAG−(k+k)
pAG+r if and only if pA ∈ [p

A
, pA], where

p
A

and pA are the only two solutions to uA(pA) = pAG−(k+k)
pAG+r .

Now suppose that the conditions of part ii obtain. A first claim is that at (pA, pA), discarding
arm B is strictly preferred to shared experimentation. By Lemma 3, if B is not discarded then
β∗(pA, pA) = 1

2 and the beliefs go down the 45-degree line until some belief (p∗, p∗), and hence
the experimenter’s payoffs satisfy u(pA, pB) = vAB(pA;CAB(p∗)). vAB itself satisfies

vAB(pA;CAB(p∗)) =
pAG− (k + k)

(r + pAG)
− GpA(1− pA)

2(r + pAG)
v′AB(pA;CAB(p∗))

<
pAG− (k + k)

(r + pAG)

= vA(pA; C̃A).

Hence, by continuity, for states (p, p) with p < pA sufficiently close to pA, discarding B is strictly
preferred to shared experimentation. A very similar argument shows that discarding B is strictly
preferred to using arm A for an open set of states of positive Lebesgue measure (pA, pB) with
pA > pB sufficiently close to (pA, pA). However, within the discarding boundary using arm B

(until the boundary) is preferred to discarding it and hence there exists an open region of positive
Lebesgue measure around (pA, pA) in which using arm B is optimal. A very similar argument
demonstrates the same result for a region around (p

A
, p
A

).

Proof of Lemma 5. By Lemma 3, once the experimenter quits shared experimentation, arm B is
used, then discarded and replaced with arm A. Also, by Lemma 4, there exists a belief p̂ > p

A
such

that β∗(p, p) = 0 for almost all p ∈ [p
A
, p̂]. Suppose there exists p′ > p′′ such that β∗(p, p) = 1

2

for almost all p ∈ [p′, p′′], and that the experimenter switches from shared experimentation to
arm B at belief p∗ < p′′. Hence the smooth-pasting condition at belief p∗ is

∂

∂pB
u(p∗, p∗) =

1
2
· ∂
∂p
vAB(p∗;CAB(p∗))

=
∂

∂pB
vB(p∗, CB(p∗)),
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which, with manipulations, yields that

CAB =
CB(p)(

1−p
p

) r
G (1− p)

+
p

[
G−(k+k)
r+G −

G
2
−(k+k)

r+G
2

]
+ (1− p)

[
G
2
−(k+k)

r+G
2

− k+k
r

]
− G(r+k+k)

r(r+G)(
1−p
p

) 2r
G

+1
Gp+r
G

.

Meanwhile, the value matching condition is

vAB(p∗;CAB(p∗)) = vB(p∗;CB(p∗)),

which, with manipulations, yields that

CAB =
CB(p)(

1−p
p

) r
G (1− p)

−
G2

2 (r + k + k)(
1−p
p

) 2r
G

+1
r(r +G)(r + G

2 )
.

Together, these yield that

p∗ =
2(k + k)(r +G)(r + G

2 )

2(k + k)(r +G)(r + G
2 ) + G2

2 (k + k + r)
(16)

Clearly, p∗ ∈ [0, 1] is unique. Define p to be the unique solution to (16).

Proof of Proposition 2. Most of the result was proved in the text. All that remains is to show
that the assignment (β∗, ϕ∗) is admissible, which follows from an argument very similar to that
for Proposition 1.
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