
The Applications of Mixtures of Normal Distributions in
Empirical Finance: A Selected Survey

Tony S. Wirjanto∗ and Dinghai Xu †

Abstract

This paper provides a selected review of the recent developments and applications of mixtures
of normal (MN) distribution models in empirical finance. One attractive property of the MN
model is that it is flexible enough to accommodate various shapes of continuous distributions,
and able to capture leptokurtic, skewed and multimodal characteristics of financial time series
data. In addition, the MN-based analysis fits well with the related regime-switching literature.
The survey is conducted under two broad themes: (1) minimum-distance estimation methods,
and (2) financial modeling and its applications.

Keywords: Mixtures of Normal, Maximum Likelihood, Moment Generating Function,
Characteristic Function, Switching Regression Model, (G)ARCH Model, Stochastic Volatility
Model, Autoregressive Conditional Duration Model, Stochastic Duration Model, Value at Risk.

JEL classification: C01, C13.

We would like to thank the participants in the Chinese Economists Society (CES) 2009 China
conference for helpful comments. Especially, we wish to thank Li Gan, Yongmiao Hong, John Knight
and Hongyi Li for valuable discussions and suggestions.

∗School of Accounting & Finance and Department of Statistics & Actuarial Science, University of Waterloo,
Waterloo, Ontario, N2L 3G1; Tel: 001-519-888-4567 ext. 35210; Email: twirjant@uwaterloo.ca

†Department of Economics, University of Waterloo, Waterloo, Ontario, N2L 3G1; Tel: 001-519-888-4567 ext.
32047; Email: dhxu@uwaterloo.ca

1



1 Introduction

A distributional assumption of returns on financial assets is known to play an important role in

both financial modeling and its applications. The most convenient assumption, until recently,

has been that asset returns follow a stationary Gaussian/normal process. This is partly moti-

vated by the view that in the long run, asset returns are approximately normally distributed.

However, the distribution of returns on financial asset has been found to exhibit substantial lep-

tokurtosis (fat tails) and, in many cases, also skewness (asymmetry around the mean) relative

to those of a Gaussian distribution. One way to accommodate this stylized fact is to introduce

a more flexible distribution model. In recent years, increasing attention has been focused on

the Gaussian mixture family since any continuous distribution can be approximated arbitrar-

ily well by an appropriate finite Gaussian mixtures. Related applications of this mixtures of

normal (MN) family can be found across various disciplines that include astronomy, biology,

economics, engineering, and finance.

The earliest recorded application of the MN family was undertaken by Simon Newcomb

in his study in Astronomy in 1886. This is followed by Karl Pearson in his classic work on

Method of Moments in 1894. The most intuitive underlying assumption of the MN family is

that the data is sampled from different sub-groups. In finance applications, for example, the

stock returns can be profitably viewed as one that arises from a multiple source of information,

such as a firm-specific information component, a market-wide information component, and a

non-information component, see Kon (1984). Applications of the MN models in other fields are

documented in Everitt and Hand (1981), Titterington, Smith and Makov (1985) and Mclachlan

and Peel (2000).

In this paper, we focus on the recent developments and applications of the MN models used

in empirical finance. The survey is conducted under two themes: (1) minimum-distance estima-

tion methodologies for the mixture parameters and (2) financial modeling with the MN models.

An MN model allows for great flexibility in capturing various density shapes; however, this

same flexibility also turns out to lead to some estimation problems in practice. Attempts have

been made to solve this problem. In particular, various methods have been proposed to estimate

the parameters in the mixture models. Maximum Likelihood (ML) estimation, by far, is the

most popular methods because of its optimal statistical properties. However, one of the pre-

requisite for implementing the ML approach is that the likelihood function must be bounded

over its parameter space. In the discrete MN set-up, this condition is not always satisfied; as

a result, the ML method simply breaks down. Observing this difficulty, Quandt and Ramsey
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(1978) proposed an estimation method based on a Moment Generating Function (MGF). This

approach minimizes the sum of squares of the distance between the theoretical MGF and its

empirical counterpart. Schmidt (1982) extended the MGF to a generalized least squares (GLS)

version, which is referred as the Modified MGF (MMGF). Rather than minimizing the ordi-

nary sum of squares, the MMGF is implemented through a minimization over a generalized

sum of squares involving its variance-covariance matrix. Schmidt (1982) demonstrated that the

MMGF is asymptotically more efficient in general. However, the unboundedness of the MGF,

as pointed out by Quandt and Ramsey (1978), can lead to a numerical instability (i.e., a fail-

ure in convergence). Alternatively, Tran (1994) introduced a Discrete Empirical Characteristic

Function (DECF) method.1 One advantage of this approach over the MGF-based methods is

that the Characteristic Function (CF) is always uniformly bounded due to the Fourier trans-

formation. The estimators based on the CF, in general, are numerically stable. In addition,

the ECF contains all the information in the data because of its one-to-one correspondence with

the distribution function. However, two major problems remain in the DECF method. One is

the choice of the size of the grid points, and the other is the ”optimal” distance among those

grid points. Feuerverger and McDunnough (1981) suggested that given a fixed number of grid

points, an equal space could be taken to reduce the parameter dimension in the estimation.

But the first problem has been shown to be difficult to address. Schmidt (1982) and Tran

(1994) suggested that for practical purposes, a 10-grid-point set should be sufficient. However,

Schmidt (1982) conjectured that as the number of grid points approaches infinity, the asymp-

totic variance of the estimates would be close the Cramer-Rao lower bound. Hence, more grid

points are always preferred to less. On the other hand, increasing the number of the grid points

may yield singularity in the variance-covariance matrix, rendering the numerical estimation

difficult to carry out. Xu and Knight (2009) extend the DECF method by using an iterated

procedure based on the continuous ECF (CECF) to efficiently estimate the parameters in the

MN models. The proposed estimation method does not suffer from the two aforementioned

problems associated with the grid points since in this new method, the theoretical CF is con-

tinuously matched with its empirical component. Another important class of the estimation

approaches for the mixture models is tooted in the Bayesian methodology. However, for reason

of space,this review only focuses on classical estimation methods. For a survey on the Bayesian

approaches to estimate the MN models, see e.g. McLanchlan and Peel (2000).

The second part of the paper discusses recent development in financial modeling which uses

the MN models. As mentioned earlier, the discrete MN model is an appealing candidate for

financial modeling due to its flexibility in accommodating any shape of continuous distribu-

1The ECF estimating procedure was formally proposed by Feuerverger and Mureika (1977) and Heathcote
(1977).
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tion. Notably, Kon (1984) discusses its applications to 30 stocks in the Dow-Jones Industrial

Average and shows that the MN model has a substantially more descriptive validity than a

student-t model. Venkataraman (1997) applies the MN model with two mixture components

to construct the Value at Risk (VaR) measures. His empirical results show that the MN model

provides a reasonable fit for the data. Subsequently, Chin, Weigend and Zimmermann (1999)

combine Gaussian mixtures with Independent Component Analysis (ICA) to construct large

portfolios of risk measures. More recently, empirical research has indicated that financial asset

returns display not only excess skewness and leptokurtosis, but also time-varying volatility and

volatility clustering over time. The MN model is not designed to capture thus type of dynamic

characteristics. Consequently, in recent years, time-dependent models have gained much atten-

tion in the empirical finance literature. A benchmark model of this was developed by Engle

(1982) and known as the Autoregressive Conditional Heteroscedasticity (ARCH) model. In

a standard ARCH model, the conditional variance is a linear deterministic function of past

squared errors. Bollerslev (1986) proposed a Generalized ARCH (GARCH) specification by

allowing the conditional variance to be a linear deterministic function of both the past squared

errors and past conditional variances. This is done to avoid estimation of the ARCH mod-

els with long lags. Stochastic Volatility (SV) models popularized by Taylor (1986) provide

an alternative specification of the dynamics of the financial asset returns. In essence, the SV

structure allows for additional randomness in the volatility process. The ARCH/GARCH and

SV models are currently the most popular non-linear financial models. One important lesson

that one can draw from this literature is that while the Gaussian GARCH and SV can usually

generate a heavy tail feature, they cannot produce a sufficient amount of leptokurtosis relative

to that observed in the data - see Bai, Russell and Tiao (2003) and the reference therein. Since

there is no reason a priori to assume that the innovations’ distribution of financial returns must

be normal, the normality assumption for the innovations of these models can in principle be

relaxed by replacing it with a flexible MN family. To this end, Wong and Li (2001), Haas, Mit-

tnik and Paolella (2004), Alexander and Lazar (2006), and Xu and Wirjanto (2008) combine

the MN model and the ARCH/GARCH model, giving rise to a so-called GARCH-MN model.

Similarly, Mahieu and Schotman(1998), Kim, Shephard and Chib (1998) Xu and Knight (2009)

and Omori, Chib, Shephard and Nakajima (2007) accommodate different numbers of the MN

components in the SV specifications. In addition, De Luca nd Gallo (2004, 2009) and Hujer

and Vuletic (2004), respectively, combine a mixture of exponential and Burr distributions with

an autoregressive conditional duration (ACD) model proposed by Engle and Russell (1998) and

Xu, Knight and Wirjanto (2008) combine MN with a stochastic conditional duration (SCD)

model originally proposed by Bauwens and Veredas (2004). To be sure, there are other inter-

esting applications of the MN models in finance as well, which, for reason of space, we do not

cover in this review, including the valuation of option pricing - see e.g. Ritchey (1990) and

4



Melick and Thomas (1997), the local volatility models - see e.g. Brigo and Mercurio (2001),

Brigo, Mercurio and Sartorelli (2002), Brigo and Mercurio (2002), and Alexander (2004), and

the portfolio theory - see e.g. Buckley, Comeza-Na, Djerroud and Seco (2002), etc.

The rest of the paper is organized as follows. Section 2 reviews a number of methods used to

estimate the parameters of the MN models. In section 3, we review some recent developments

and applications of the MN family, and also mention briefly other mixture families, in the

financial modeling. Concluding remarks are provided in Section 4.

2 Minimum-Distance Estimation Methods

In this section, we review a number of minimum-distance methods for estimating the parameters

of the MN model. In a general set up of a discrete MN model, we define an independently and

identically distributed (iid) random variable X drawn from K different normal distributions

with probability pk by specifying the component’s probability density function as:

pdf(xj) =
K∑

k=1

pkN(µk, σ
2
k) (1)

where j = 1, 2, ..., n. Let θ = (p′, µ′, σ′)′ , where p, µ, σ are each K × 1 vectors. Thus we have

(3K-1) unknown parameters to estimate from (1).

For simplicity and for ease of comparison, we restrict our attention to the case where the

mixture has two components only; that is, we consider the case where K = 2 in (1). In

other words, the random variable X is assumed to be generated from a mixture of two normal

distributions. Next we recast the model as:

x ∼ N(µ1, σ
2
1) with probability p;

x ∼ N(µ2, σ
2
2) with probability 1− p;

Then the mixture density can be defined as:

f(x; p, µ1, µ2, σ
2
1, σ

2
2) =

p√
2πσ2

1

exp[−(x− µ1)
2

2σ2
1

] +
1− p√
2πσ2

2

exp[−(x− µ2)
2

2σ2
2

] (2)

2.1 Maximum Likelihood Estimation

In a classic paper, Quandt (1972) used the ML method for estimating the parameters in the

MN model. Theoretically, the ML approach is the most efficient method because of its well-
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established statistical properties under the appropriate regularity conditions. However, in prac-

tice, the ML estimation process can fail to converge in cases that include the regime-switching

model. The reason for this is that the likelihood function is not always bounded in this type of

models. For illustrative purpose we provide an example of this below.

The log-transformation of the mixture likelihood of (2) can be expressed as:

l(θ; x) =
n∑

i=1

ln

(
p√
2πσ2

1

exp[−(xi − µ1)
2

2σ2
1

] +
1− p√
2πσ2

2

exp[−(xi − µ2)
2

2σ2
2

]

)
(3)

The idea of the ML approach is to maximize the transformed likelihood function specified in

(3) with respect to the five unknown parameters, θ = (p, µ1, µ2, σ
2
1, σ

2
2), and set the resulting

score vector to a zero vector:

∂lnL(θ; r)

∂θ′
= 0 (4)

Equation (4) contains a system of five equations:

∂lnL

∂p
=

n∑

i=1

(
1
∆

(
1√
2πσ2

1

exp[− (xi − µ1)2

2σ2
1

]− 1√
2πσ2

2

exp[− (xi − µ2)2

2σ2
2

])

)
= 0

∂lnL

∂µ1
=

n∑

i=1

(
1
∆

p√
2πσ2

1

exp[− (xi − µ1)2

2σ2
1

]× (xi − µ1)
σ2

1

)
= 0

∂lnL

∂µ2
=

n∑

i=1

(
1
∆

1− p√
2πσ2

2

exp[− (xi − µ2)2

2σ2
2

]× (xi − µ2)
σ2

2

)
= 0 (5)

∂lnL

∂σ2
1

=
n∑

i=1

(
1
∆

[− p

2
√

2π
(σ2

1)−
3
2 exp[− (xi − µ1)2

2σ2
1

] +
p√
2πσ2

1

exp[− (xi − µ1)2

2σ2
1

]
(xi − µ1)2

2(σ2
1)2

]

)
= 0

∂lnL

∂σ2
2

=
n∑

i=1

(
1
∆

[− 1− p

2
√

2π
(σ2

2)−
3
2 exp[− (ri − µ2)2

2σ2
2

] +
1− α√
2πσ2

2

exp[− (xi − µ2)2

2σ2
2

]
(xi − µ2)2

2(σ2
2)2

]

)
= 0

where ∆ =

(
p√
2πσ2

1

exp[− (xi−µ1)2

2σ2
1

] + 1−p√
2πσ2

2

exp[− (xi−µ2)2

2σ2
2

]

)
.

Note that the system of equations in (5) cannot be solved explicitly and, in general, has

non-unique roots. A more serious problem encountered by the ML estimation of (5) is that the

mixture likelihood function is not always well behaved (i.e., it is unbounded from above). As a

consequence, the standard numerical optimization may converge to a local maximum instead

of the global one. To illustrate this problem, we arbitrarily set the values of µ2 and σ2
2 and

choose µ1 equal to the pth element in the random variable, x, i.e. µ1 = xp. In other words, the

pth residual vanishes from the first regime. Then for any p ∈ (0, 1) with chosen µ1 , µ2 and σ2
2,

we examine the behavior of the log-likelihood over a sequence of points as σ2
1 approaches zero.
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In (4), for i = 1, 2, ... ,n, 1−p√
2πσ2

2

exp[− (xi−µ2)2

2σ2
2

] > 0. As σ2
1 → 0, for i = 1, 2, ..., p− 1, p+1, ..., n,

p√
2πσ2

1

exp[− (xi−µ1)2

2σ2
1

] → 0. When i = p, α√
2πσ2

1

exp[− (xp−µ1)2

2σ2
1

] = p√
2πσ2

1

e0 . As σ2
1 approaches

to zero, the first part of the pth term in (5) will become arbitrarily large. A similar analysis

applies to µ2.
2 Thus, the ML estimation, working through (5), can incorrectly maximize an

unbounded likelihood and this can lead to a numerical instability problem.

2.2 Moment Generating Function

As mentioned earlier, the ML approach can sometimes fail when it is used in estimating the MN

model due to the singularity of the matrix of the second partial derivatives for the log-likelihood

function. For this reason, Quandt and Ramsey (1978) introduced a method based on the MGF

since the MGF has a one-to-one mapping to the distribution function and, therefore can solve

the estimability problem involved in the ML procedure. Based on (2), the corresponding MGF

can be expressed as:

g(t, θ) = E(etx) = p exp(µ1t +
1

2
σ2

1t
2) + (1− p) exp(µ2t +

1

2
σ2

2t
2) (6)

Next we define its empirical counterpart as:

gn(t, x) =
1

n

n∑
i=1

exp(txi) (7)

By the Law of Large Numbers (LLN), we have the following result: gn(t, x)
P→ g(t, θ).

Hence, for a given set of grid points, Quandt and Ramsey (1978) proposed to match the

theoretical MGF with its sampling counterpart. This is equivalent to minimizing the following

distance measure:

h1(t, θ) =
m∑

j=1

(gn(tj, x)− g(tj, θ))
2 (8)

To obtain unique solutions, Quandt and Ramsey (1978) suggested that the number of grid

points be set equal to the number of the parameters to estimate. Thus, in the mixtures of two

normal, m is suggested to be 5, i.e. t = (t1, t2, t3, t4, t5). Quandt and Ramsey (1978) provided

the asymptotic distribution for the MGF estimator; that is,

√
n(θ̂MGF − θ)

d→ N(0, Ψ1) (9)

2For a detailed discussion of this issue, see Chapter 2 in Quant (1988).
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where θ̂MGF ∈ argmin[h1(t, θ)], Ψ1 = (A′A)−1A′ΩA(A′A)−1. A is a 5 × 5 matrix with ijth

element: Aij = ∂g(ti,θ)
∂θj

, i, j = 1, 2, ..., 5 and Ω is also a 5 × 5 matrix with ijth element:

Ωij = g(ti + tj, θ)− g(ti, θ)g(tj, θ).

Noting that the minimization through (8) can be viewed equivalently as a non-linear least

square (NLS) procedure, where the residual is defined as the difference between (6) and (7),

Schmidt (1982) proposed a more efficient MGF procedure, namely a Modified MGF (MMGF).

In essence, the MMGF approach extends the NLS procedure to a GLS procedure that involves

the variance-covariance matrix of the disturbance terms. It was shown that the MMGF es-

timators are asymptotically more efficient than those from the ordinary MGF process. The

efficiency gains can be substantial in cases where the number of grid points is greater than five

(m ≥ 5). The distance measure in the MMGF procedure can be usefully defined as:

h2(t, θ) =
m∑

i=1

m∑
j=1

[
((gn(ti, r)− g(ti, θ)))× Ω−1

ij × ((gn(tj, r)− g(tj, θ)))
]

(10)

where i, j = 1, 2, ..., m. Ω is a m×m matrix with ijth element: Ωij = g(ti+tj, θ)−g(ti, θ)g(tj, θ).

Then,

√
n(θ̂MMGF − θ)

d→ N(0, Ψ2) (11)

where θ̂MMGF ∈ argmin[h2(t, θ)], Ψ2 = [A′Ω−1A]−1. Here, A is a m × m matrix with ijth

element: Aij = ∂g(ti,θ)
∂θj

, i, j = 1, 2, ..., m.

Both Quandt and Ramsey (1978) and Schmidt (1982) mentioned that there are two main

problems associated with the MGF-based estimation; one is the optimal values and the number

of the grid points, and the other relates to the numerical convergence problem. The latter

problem is a result of the unboundedness of the MGF itself.

2.3 Discrete Empirical Characteristic Function

Due to the difficulties encountered in the standard ML and the MGF-type procedures men-

tioned previously, Tran (1994) introduced an alternative estimation process, that is based on

the CF, to estimate the parameters of the MN models. This procedure is similar to the MGF-

type estimation except that in this procedure we replace the MGF with the CF. One advantage

of this replacement is that by the Fourier transformation, the CF is always uniformly bounded

in the parameter space while the MGF is not.
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The CF associated with (2) is defined as:

C(t, θ) = E(eitx) = p exp(iµ1t− 1

2
σ2

1t
2) + (1− p) exp(iµ2t− 1

2
σ2

2t
2) (12)

where i =
√−1.

Noting that exp(itx) = cos(tx) + i sin(tx), (12) can be rewritten as:

C(t, θ) = p cos(µ1t) exp(−1

2
σ2

1t
2) + (1− p) cos(µ2t) exp(−1

2
σ2

2t
2)

+ i[p sin(µ1t) exp(−1

2
σ2

1t
2) + (1− p) sin(µ2t) exp(−1

2
σ2

2t
2)] (13)

Defining its empirical counterpart (ECF) by the following expression:

Cn(t, x) =
1

n

n∑
j=1

exp(itxj) (14)

We also can decompose the ECF into two components,

Cn(t, x) =
1

n

n∑
j=1

cos(txj) + i[
1

n

n∑
j=1

sin(trj)] (15)

Cn(t, x)
P→ C(t, θ) by the LLN.

Then, for a given set of discrete grid points, Tran (1994) proposed a method based on the

DECF, which matches (13) with (15) and estimates θ by minimizing:

ω1(t, θ) =
m∑

j=1

(Cn(tj, r)− C(tj, θ))
2 (16)

In terms of Schmidt (1982)’s improved NL-GLS version, we minimize:

ω2(t, θ) =
m∑

i=1

m∑
j=1

[
((Cn(ti, x)− C(ti, θ)))× Ω−1

ij × ((Cn(tj, r)− C(tj, θ)))
]

(17)

where the expression for Ω is readily found in Tran (1994) and Yu (1998).

The asymptotic distribution of the DECF estimator is shown by Feuerverger and McDun-
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nough (1981) to be given by:

√
n(θ̂DECF − θ)

d→ N(0, Ψ3) (18)

where θ̂DECF ∈ argmin[ω2(t, θ)], Ψ3 = [A′Ω−1A]−1. Here, A is an m × m matrix with ijth

element: Aij = ∂C(ti,θ)
∂θj

, i, j = 1, 2, ...,m.

Unfortunately the DECF procedure still suffers from the problems associated with using

a discrete set of grid points. In addition, it is also difficult to obtain a closed form solution

in (17). Thus, as we increase the size of t in order to improve the estimation efficiency, the

numerical estimation could become computationally quite intensive.

2.4 Continuous Empirical Characteristic Function

Due to the difficulties associated with the DECF procedure, in this subsection, we present

an estimator based on the CECF - for earlier development of this estimator, see for example

Heathcote (1977), Besbeas and Morgan (2002) and Xu and Knight (2008). The CECF ap-

proach is essentially a generalized version for the DECF approach. In this approach, rather

than evaluating the distance between the theoretical CF and the ECF over a discrete fixed-

grid-point set, it matches all of the moments continuously with a continuous weighting function.

Specifically, define the CECF estimator as the minimizer of the following objective distance

measure,

D(θ; x) =

∫ +∞

−∞
|Cn(t)− C(t, θ)|2w(t)dt (19)

where w(t) is some weighting function designed to ensure a convergence of the integral in (19).

In this paper, we use the exponential weighting function, w(t) = exp(−bt2), where b is a non-

negative real number. This kernel form has been used extensively in the literature, see Paulson

et al. (1975), Heathcote (1977), Knight and Yu (2002), Besbeas and Morgan (2002) and Xu

and Knight (2008). There are several advantages to using this particular weighting kernel.

In general, the exponential function tends to assign more weight around the origin, which is

consistent with the underlying CF theory that the CF contains most information around the

origin. In the MN settings, we find that under this Gaussian kernel, both the distance function

in (19) and the asymptotic covariance structure of the estimator can be derived in closed form.

This means that we could reduce the computational burden in the practical implementation

substantially. In addition, this weighting function also continuously evaluates the distance

between the theoretical CF and the ECF. By doing so, it avoids the two major problems asso-

ciated with the discrete type of methods mentioned earlier, namely the choice of the size of the
10



evaluating grids and the choice of the distance among the grids, see Schmidt (1982). However,

as Paulson et al. (1975) and Yu (2004) point out, with a special weighting form exp(−t2), the

estimation may lead to low efficiency. One way of improving the efficiency is to use the cross-

validation method for the selection of the bandwidth, see Besbeas and Morgan (2002). Xu and

Knight (2008) develop an efficient iterated procedure to continuously update the bandwidth

via minimizing a certain precision measure of the asymptotic variance-covariance matrix of the

parameter estimates.

In general, if a random sample is generated from the process (1) and the distance measure

between the theoretical and empirical CF is defined as in (19), then the integral can be solved

analytically and is given by:

D(θ; x) =
1

n2

√
π

b

n∑
i=1

n∑
j=1

exp(− 1

4b
(xi − xj)

2) +
K∑

k=1

p2
k

√
π

b + σ2
k

+ 2
K∑

k=1

K∑

h6=k

pkph

√
π

b + 1
2
(σ2

k + σ2
h)

exp(− (µk − µh)
2

4b + 2(σ2
k + σ2

h)
)

− 2

n

K∑

k=1

[pk

√
π

1
2
σ2

k + b

n∑
j=1

exp(−(xj − µk)
2

4b + 2σ2
k

)] (20)

The asymptotic properties of the CF based estimator are established in Heathcote (1977)

and Knight and Yu (2002). Let θ̂ = argmin[D(θ; x)], where D(θ; x) is defined in (20), then,

√
n(θ̂ − θ)

d→ N(0, Λ−1ΩΛ−1) (21)

where Λ and Ω are (3K − 1)× (3K − 1) matrices with the ijth element:

Λij = E

(
∂D2(θ; x)

∂θi∂θj

)
and Ωij = E

(
∂D(θ; x)

∂θi

∂D(θ; x)

∂θj

)
(22)

The expressions for Λ and Ω can be readily found in Xu (2007) and Xu and Knight (2009).

Based on the closed form distance measure in (20) and the asymptotic variance-covariance

matrix of the parameter estimates in (22), the iterative estimation procedure can be imple-

mented in the following steps:

Step 1. Set the initial bandwidth value of b, say b0 ;

Step 2. Plug in b = b0 and the data of x and minimize the closed form distance function

in (20) and get θ0 , i.e. θ̂0 = argmin[D(y; θ, x)];
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Step 3. Plug θ̂0 into the asymptotic covariance matrix M and get M0. Construct a precision

measure, such as the trace or determinant of M , which is a function of b. Update the bandwidth

b via b1 = argmin[trace(M0)] or b1 = argmin[det(M0)];

Step 4. Iterate the step 2 to 3 until a stopping criterion is met,3 for example, |bt− bt−1| < ε

and ε = 10−3.

Xu and Knight (2009) show that the above iterated procedure can improve the efficiency of

the CECF estimator based on the Asymptotic Relative Efficiency (ARE) measure between the

CECF and MLE estimators.

3 Incorporating the MN Family into Financial Models

3.1 Gaussian Mixtures with Time Varying Means–Switching Re-

gression and Mixture of AR Process

Quandt and Ramsey (1978) proposed a generalized set up based on the Gaussian mixture

distribution in the form of a switching regression (SWR) model. In essence, the SWR generalizes

(1) by allowing the means to be changing across observations and resulting in the following set

up, for i = 1, 2, ..., n,

f(yi) =
K∑

k=1

pkφk(yi; µki, σ
2
k) (23)

where µki = x′iβk. Equivalently it can be expressed as:

yi = x′iβ1 + u1i with probability p1

yi = x′iβ2 + u2i with probability p2 (24)

...

yi = x′iβK + uKi with probability pK

with uki ∼ N(0, σ2
k). In general, x′i is n×m and the corresponding coefficient βk is m×1. Then,

we have (K×m+2K−1) unknown parameters, which is specified as θ = (p1, ..., pK−1; β1, ..., βK ;

σ2
1, ..., σ

2
K)′.4

3Provided that the influence function of θ̂(b) is bounded, the optimal b is theoretically guaranteed to exist.
This is shown in Besbeas (1999).

4Xu (2009) develops an efficient estimation for the SWR parameters based on the iterative procedure. See
the discussion in subsection 2.4.
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As an interesting observation, the SWR assumes very similar characteristics as the threshold

regression(THR). In the SWR, the regime switching is characterized by the mixing proportion

parameter (or a probability measure), p, while in the THR system, the regime is switching

through a set of threshold variable. Both models have been successfully applied to various

economic models, such as the disequilibrium market model (Fair and Jaffee, 1972, and Quandt

and Ramsey, 1978), the labor-supply model (Heckman, 1974), the housing-demand model (Lee

and Trost, 1978), and the union-nonunion wage model (Lee, 1978).

In a financial application, Wong and Li (2000) extend (24) to a time series model to give rise

to a mixture autoregressive (MAR) model. Essentially, if x′i in (24) is a set of different order

of lagged values of yi, the individual regression in each regime becomes an AR process with

certain probability. There are several characteristics of their model that we note below. First, by

mixing several linear AR processes, the MAR model produces a nonlinear time series structure.

In addition, both stationary and non-stationary AR components can be accommodated in the

MAR model. Furthermore, the conditional distribution at each time spot is modeled as a flexible

MN, which means that the MAR models are capable of modeling the multimodal conditional

distributions and with heteroscedastic characteristics. Their empirical results based on the

Canadian Lynx data show some successes in capturing the features of the data. However, as

Wong and Li (2001) mentioned, one main shortcoming for the MAR models stems from its

simple autocorrelation structure, which is similar to that of the AR process. Furthermore, the

MAR model assumes a constant conditional variance in each regime, which can not explain

the time varying volatility dynamics of most financial time series data. Therefore, in the next

sub-section, we discuss time varying volatility models with a discrete MN family.

3.2 Gaussian Mixtures with Time Varying Volatility

3.2.1 GARCH under the Gaussian Mixtures

So far we have seen that to the extent that financial asset returns have been found to be char-

acterized by excess kurtosis, and, some time, also skewness (as in the case of equity returns),

the MN distribution lends itself to be an attractive modeling candidate. However, financial

asset returns have also been found to be characterized by time varying volatility and volatility

clustering over time. The MN distribution, like any other fat tailed distributions, is not specif-

ically designed to deal with this particular characteristic of asset returns. Instead, conditional

volatility models have been proposed to capture this feature of asset returns. The first type

of this is so-called deterministic volatility models which include Engle’s (1982) ARCH model

and Bollerslev’s (1986) GARCH model. Briefly, an ARCH model specifies the conditional vari-

ance (or volatility) of asset returns to be a linear function of past squared innovations of the

13



conditional mean process of asset returns, while a GARCH specification allows the conditional

variance to be a linear function of both past squared mean return innovations and past condi-

tional variances.

Importantly, evidence obtained to this date seems to suggest that the GARCH models, such

as those with normally distributed innovations (GARCH-N) and even those with fat tailed dis-

tributions, including the GARCH model with Student’s t distributed innovations (GARCH-t),

have not been able to capture the extent of skewness and, in particular, leptokurtosis typically

found in the return data. This represents an important shortcoming of the GARCH models as

volatility models, in particular when these volatility models are used to construct risk measures,

such Value at Risk (VaR) measures. To amend this, we suggest that the traditional GARCH

model be combined with the MN model to give rise to a so-called GARCH-MN model and

propose a novel estimation approach for this model.

There are several advantages to using the GARCH-MN model as a volatility model: (i)

unlike the ad-hoc GARCH-t model and any other GARCH models with heavy tailed distribu-

tions, the GARCH-MN model is founded upon a normally distributed assumption and, thus,

allows for a component-wise application of the Central Limit Theorem; (ii) The GARCH-MN

structure allows for conditional variance in each of the components as well as dynamic feed-

back between the components; (iii) It has tractable stationarity conditions which reduce to

the usual condition for the GARCH-N model; (iv) the GARCH-MN model gives rise naturally

to time-varying skewness and kurtosis, which, as some have argued, are the stylized facts of

financial asset returns; (v) the GARCH-MN model captures the correlation structure of the

data far better than the standard GARCH model (with or without a fat-tailed density, such as

the GARCH-t model); and (vi) the GARCH-MN model can be shown to perform more superior

in out-of-sample VaR forecasts than most other competing GARCH models. See, e.g. Xu and

Wirjanto (2008) for evidence on this.

Focusing on the volatility modeling, we specify a return process as an mth- order autore-

gressive, or AR(m), process

rt = a0 +
m∑

j=1

airt−j + et (25)

where t = 1, 2, .., T , rt = 100(log Pt − log Pt−1) with Pt being the closing price of a financial

asset (such as an individual stock, a stock index, or a foreign currency) on the tth trading day.

For convenience, we define Xt , in general, as the adjusted returns obtained as the residuals

from the AR(m) process in (25), i.e. Xt ≡ êt, Next, we assume that Xt is generated by a K
14



component GARCH-MN process as follows. First, the distribution of Xt conditional on the

information set up to time t-1, It−1, is specified as a K component MN

Xt|It−1 ∼ N(pk, µk, σ
2
k,t) (26)

for k = 1, 2, ..., K, or more compactly

Xt|It−1 ∼ N(p, µ, σ2
t ) (27)

where p = (p1, p2, ..., pK), µ = (µ1, µ2, ..., µK) and σ2
t = (σ2

1t, σ
2
2t, ..., σ

2
Kt). A zero mean process

can be ensured in (26) or (27) by requiring that µj =
K−1∑

k=1

(pk/pj)µk. The conditional variance

of each mixture component is specified as

σ2
k,t = λk +

q∑
i=1

αkiX
2
t−i +

K∑

l=1

s∑
j=1

βkljσ
2
k,t−j (28)

It can be expressed more compactly as

σ2
t = λ +

q∑
i=1

αiX
2
t−i +

s∑
j=1

βjσ
2
k,t−j (29)

where αi = (αi1, αi2, ..., αiK)′ is a (K × 1) vector, and βj is a (K ×K) matrix.

A considerable simplification of the GARCH-MN model can be achieved if we can assume

that the past values of the lth variance component have a trivially small effect on the current

values of variance component and work with

σ2
k,t = λk +

q∑
i=1

αkiX
2
t−i +

s∑
j=1

βkjσ
2
k,t−j (30)

where the (K × K) matrix βj in (29) is a diagonal matrix. Unless otherwise stated, we will

work with this version of the GARCH-MN model from now on.

The GARCH-MN model nests several previous models used in Empirical Finance: [i] the

unconditional MN model with no volatility dynamics (MN); [ii] Bollerslev’s (1986) GARCH-N

model is obtained by setting k=1; [iii] Vlaar and Palm (1993) and Palm and Vlaar (1997) con-

sider a GARCH model with an MN(2) error distribution and the restrictions that σ2
2t = σ2

1t+δ2;

and [iv] Bauwens, Bos and van Dijk (1999) also propose an MN(2)-GARCH(1,1) model, but the

component variances are assumed to be proportional to each other; that is, for all t, σ2
2t = θσ2

1t.15



More recently, Haas, Mittnik and Paolella (2004) and Alexander and Lazar (2006) propose

more general specifications of the GARCH-MN models. In particular, Haas, Mittnik and

Paolella (2004) allow for interdependence between the variance components in each regime,

while Alexander and Lazar (2006) extend the model to include asymmetric GARCH processes.

Below we briefly discuss the statistical properties of the GARCH-MN model. As before, we

set q = s = 1 in (30) and focus on the conditional variance of each mixture component as given

by a GARCH(1,1) process

σ2
k,t = λk + αkX

2
t−1 + βkσ

2
k,t−1 (31)

where, as before, we obtain the GARCH-N model for k = 1. First, from (31), it is evident

that for a nonnegative conditional variance of each mixture component, we need the following

restrictions: λk > 0, αk ≥ 0, and βk ≥ 0.

In the GARCH-MN model in (30), a necessary and sufficient condition for the unconditional

variance of the process {Xt} to exist is given by Det(I−β(1)) = α(1)p′) > 0. This is equivalent

to say that the the process {Xt} is weakly stationary, if the characteristic equation Det(I −
α(z)p′ − β(z)) = 0 lies outside the unit circle. This result allows us to obtain the following

condition: [
K∑

k=1

pk

1− βk

(1− αk − βk)

]
K∏

k=1

(1− βk) = 0 (32)

It implies that, unlike the GARCH-N model, the restriction of αk + βk < 1 needs not hold for

each k. Instead, the necessary and sufficient conditions for the existence of the unconditional

variance in the GARCH-MN model is given by

K∑

k=1

pk

1− βk

αk < 1 (33)

Equation (32) also implies that the model possesses finite variance even when some of the

components may not be covariance stationary, as long as the corresponding components’ weights

are sufficiently small. In particular, the overall unconditional variance of the model is (See

Appendix A in Xu and Wirjanto, 2008)

E(X2
t ) =

K∑

k=1

pkµ
2
k +

K∑

k=1

pk

1− βk

λk

K∑

k=1

pk

1− βk

(1− αk − βk)

(34)
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where E(X2
t ) ≡ E(σ2

t ), and the unconditional variance of each individual mixture component

of the model is

E(σ2
k,t) =

λk + αkE(X2
t )

1− βk

(35)

Given these last two results, the conditional and unconditional third and fourth moments

of the adjusted returns, E(X3
t |It−1), E(X3

t ), E(X4
t |It−1), and E(X4

t ), can be derived. See

Appendix A in Xu and Wirjanto (2008). These results, in turn, can be used to calculate the

conditional and unconditional skewness coefficients as
E(X3

t |It−1)

(σ2
t )3/2 and

E(X3
t |It−1)

[E(X2
t )]3/2 , as well as the

conditional and unconditional kurtosis coefficients as
E(X4

t |It−1)

(σ2
t )2

and
E(X3

t |It−1)

[E(X2
t )]2

3.2.2 SV under the Gaussian Mixtures

As an alternative to the GARCH model with a deterministic volatility function, the SV model

proposed by Taylor (1986) allows volatility to evolve according to a stochastic process. The

estimation for the SV parameters is proved to be more challenging. To illustrate the problem,

we present a SV model in its standard from as,

xt = exp(ht/2)et (36)

ht = λ + αht−1 + vt (37)

where et and vt are assumed to be i.i.d5 random disturbances as normal, i.e, et ∼ i.i.d N(0, 1)

and vt ∼ i.i.d N(0, σ2
v) . The latent variable, ht, is the log volatility at time t, and is assumed

to follow a stationary AR(1) process (|α| < 1). We call the model in (36)-(37) a SV-N model

in which (λ, α, σ2
v) are the unknown parameters.

From the statistical view point, the nonlinearity characterized by two random error product

processes presents difficulties in the estimation. In addition, since the volatility series is latent,

ht needs to be integrated out from the likelihood function. However, the likelihood function

involves a sequence of integrals with a dimension equal to the sample size. As a result, it is

difficult to evaluate the integrals analytically. For this reason, alternative estimation methods

have been devised and used for estimating the SV parameters.6. Taking the advantages of the

flexibility property from the MN distribution, Kim and Shephard (1994), Kim, Shephard and

Chib (1998) and Omori, Chib, Shephard and Nakajima (2007) propose an approach based on

the following linearized transformation,

yt = log(x2
t ) = ht + εt (38)

5The assumption on zero correlation between the two innovations is a feature of the standard SV model;
however we can relax this assumption by allowing for so-called ”leverage effects”.

6For a survey of various estimation methods for the SV-N model, see Broto and Ruiz (2003)
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where εt = log(e2
t ). Under the standard normality assumption, the transformed error, εt,

follows a logarithmic chi-squared distribution with 1 degrees of freedom. In (38), the dynamic

characteristics of the transformed data yt are still captured by the latent AR(1) process ht,

but through a linear specification. The new specification, defined in (37) and (38), contains

all of the parameters of interest. One straightforward method to estimate the parameters of

the model is the Quasi maximum likelihood (QML) method. In the QML approach, a normal

density is used to approximate the logχ2
1 distribution. As is well known, the approximated

normal distribution is characterized by a mean of -1.2704, and a variance of π2/2. Under a

Gaussian state space, Kalman filter techniques can be applied to the quasi-likelihood function

based on (37) and (38). In essence, the quasi-likelihood function in the QML procedure is the

first-order Edgeworth expansion of the exact likelihood function. But an approximation by

truncating the series expansion may yield inefficient estimates of the parameters of the model.

Figure 1: log(χ2
1) Density and Its Corresponding Approximation
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Figure 1(a) illustrates that the approximation to the density of ε by a normal density, instead

of using the logχ2
1 density, could be inappropriate (left-skewed and tail differenced). Kim and

Shephard (1994), Kim, Shephard and Chib (1998) and Omori, Chib, Shephard and Nakajima

(2007) propose using the MN to approximate the logχ2
1 density. There are several advantages

to this approximation. First, the flexibility MN structure provides a closer fit distribution-wise

and, second, the conditional state space model with (37) and (38) is Gaussian, based on which

an efficient multimove Gibbs sampling technique can be directly applied for the estimation. For

comparison, a mixture of ten normal density is plotted against the logχ2
1 density in Figure 1(b).

The following ten mixture components’ parameters are taken from Omori, Chib, Shephard

and Nakajima (2007), which is presented in Table 1. As shown in Figure 1(b), the MN pro-

vides a close fit to the logχ2
1 distribution. However, the density approximation is based on the

normality assumption for the original innovation term. A relaxation from the Normality will
18



Table 1. Mixtures of Ten Normal Parameters

l pl µl σ2
l

1 0.00609 1.92677 0.11265
2 0.04775 1.34744 0.17788
3 0.13057 0.73504 0.26768
4 0.20674 0.02266 0.40611
5 0.22715 0.85173 0.62699
6 0.18842 1.97278 0.98583
7 0.12047 3.46788 1.57469
8 0.05591 5.55246 2.54498
9 0.01575 8.68384 4.16591
10 0.00115 14.65000 7.33342

bias the approximation further. In addition, from the empirical perspective, as Bai, Russell

and Tiao (2003) pointed out, the amount of kurtosis generated from the SV-N model is far less

than that from the empirical asset returns data. Subsequently, Mahieu and Schotman (1998)

and Xu and Knight (2009) propose using a flexible mixture to accommodate a wider range

of the distributions for the disturbance, giving rise to a linearized SV-MN (LSV-MN) model.

Essentially, the SV and MN parameters are estimated simultaneously. In their methods, no

prior distributional assumption for et is required; instead a flexible MN is used for capturing the

distribution for εt. In addition, Xu and Knight (2009) derive the general closed-form cross mo-

ment conditions generated from the linearized LSV-MN model. With the model representation

of (37) and (38), if εt ∼ plN(µl, σ
2
l ) and vt ∼ N(0, σ2

v), then,

E(|xt|m|xt+k|n) = exp(
nλ

2

k∑
j=1

αj−1)× exp(
n2σ2

v

8

k∑
j=1

α2k−2j)

× exp(
λ(m + nαk)

2(1− α)
+

σ2
v(m + nαk)2

8(1− α2)
)

×
L∑

l=1

pl exp(
mµl

2
+

m2σ2
l

8
)

×
L∑

l=1

pl exp(
nµl

2
+

n2σ2
l

8
) (39)

With the closed-form formula in (39), it is easy to show that the LSV-MN model exhibits more

flexible tail behavior than the SV-N model, see Xu and Knight (2009). From Harvey (1998),

the fourth moment of xt is:

E(x4
t ) = 3 exp(

2λ

(1− α)
+

2σ2
v

(1− α2)
) (40)

19



Plugging m = 4 and n = 0 into (39), it yields,

E(x4
t ) = [

L∑

l=1

pl exp(2µl + 2σ2
l )]× exp(

2λ

(1− α)
+

2σ2
v

(1− α2)
) (41)

It can be seen from the comparison between (40) and (41) that one part of the tail function

comes from the MN distribution, while under the SV-N model, the corresponding part is only

a fixed constant of 3.

The aforementioned papers utilize the flexibility of the MN family to approximate the

transformed error density in the linearized SV model structure. The purpose of this is to

simplify the parameter estimation involved in the SV specification. However, in the log-squared

transformation, the sign information is lost in the original return time series. In addition,

the conditional Normal distributional assumption of return is considered to be too restrictive

in most applications. Consequently, Asai (2009), Abanto-Valle, Bandyopadhyay, Lachos and

Enriquez (2009) and among others, propose imposing the MN family on et to capture the

heavy tail characteristics of the conditional return distribution (SV-MN). And Xu (2007) derive

closed-form moment conditions under a certain dependence structure. When

(
et

vt

)
∼ i.i.d. pl N

((
0

0

)(
σ2

l ρlσlσv

ρlσlσv σ2
v

))
(42)

then, the general cross moment conditions for xt and xt+k is given as:

E(xm
t xn

t+k) = exp(
α2σ2

v(m + nαk)2

8(1− α2)
)

× exp(
n2σ2

v

8

k−1∑
j=1

α2k−2j)

× ∂M (m)(r1, r2)

∂r
(m)
1

|
r1=0,r2=m+nαk

2

× ∂M (n)(r1, r2)

∂r
(n)
1

| r1=0,r2=n
2

(43)

where M(r1, r2) is defined as the joint MGF of et and vt.

Selected moments are provided in the Appendix in Xu (2007), which demonstrates the

flexibility of the SV-MN compared to the SV-N model. Empirical evidence from Asai (2009) and

Abanto-Valle, Bandyopadhyay, Lachos and Enriquez (2009) also show the better performance

of the SV with the MN than other competing models including SV-t, SV-GED, GARCH-N,
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GARCH-t and GARCH-MN specifications.

3.3 Other Applications and Extensions

3.3.1 Mixture-ACD and Mixture-SCD

Given an increased accessibility to ultra high frequency (UHF) data by researchers working in

Finance, the modeling of financial data at the transaction level has become an active research

area, beginning with the work by Hasbrouck (1991) and Engle and Russell (1998). Resent

research has focused on features of financial transaction data, in particular on on the irregular

spacing of data in time with the aim of gaining the full amount of information involved in fi-

nancial transaction data. This irregular occurrence of transaction data is typically modeled as

a financial point (or duration) process. The most common types are trade durations and quote

durations as defined by the time between two consecutive trade or quote arrivals, respectively.

Price durations correspond to the time between absolute cumulative price changes of given size

and can be used as an alternative volatility measure.7 A salient feature of transaction data

is that market events tend to be clustered over time, rendering financial durations to be pos-

itively serially correlated over time with a strong persistence. In fact the dynamic properties

of financial durations are quite similar to those of daily asset return volatilities. Accounting

these features of the data leads to different types of dynamic models on the basis of a duration

representation, an intensity representation or a counting representation of a point process.

Engle and Russell (1998) are the first to characterize a point process in discrete time by

means of a dynamic duration model. They introduce an autoregressive conditional duration

(ACD) model, in which the conditional mean of the durations is modeled as a conditionally

deterministic function of past information. In contrast to the ACD models, the stochastic

conditional duration (SCD) model proposed by Bauwens and Veredas (2004), specifies the con-

ditional mean of durations as a stochastic latent process, with the conditional distribution of

durations defined on a positive support. A useful analogy can be readily drawn between the

differences of the two specifications with the differences of the GARCH and SV frameworks

for capturing the conditional volatility of financial asset returns. In particular, the SCD model

relates to the logarithmic ACD model in the same way as the stochastic volatility model relates

to the exponential GARCH model of Nelson (1991).

As with the GARCH models which involve multiplicative disturbances, an interesting ques-

tion relates to the choice of the process for the innovation term. This question is particularly

7Similarly, a volume duration is defined as the time until a cumulative order volume of given size is traded
and captures an important dimension of market liquidity.
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relevant since resent studies have shown that although the ACD-type models perform well in

capturing the persistence in the process, the fit of the distributions tends to be poor. This

suggests that a further study should be conducted on the distributional assumptions of the

innovation process to the durations. Now it has been argued that informed and uninformed

traders tend to interact with each other in the market through information revealing price

formation processes; that is, the informed traders will act to buy an asset if the market price

of the asset is lower than the intrinsic value (based on their information) and, conversely sell

the asset if its price is higher than the intrinsic value. To the extent that information is costly,

the actions of these two groups of traders are governed by two different innovation processes.

This difference in behavior motivates the introduction of a mixture of two distributions, since

the instantaneous rate of transaction can be viewed as being different across categories, and

this gives rise to an observed flow of transaction in which the two types of traders are virtually

indistinguishable. From a statistical point of view, the mixture of (exponential) distribution is

able to deliver a variance of the innovation process which is larger than the mean. This is in

line with the stylized facts derivable from the estimated residuals of the ACD model (similar

to the fat tails of innovations in the GARCH model).

In particular, De Luca and Gallo (2004) assume that the innovations to the duration follow

a mixture of two exponential probability density functions in which the two categories of traders

are combined, while Hujer and Vuletic (2004) propose a mixture of two Burr probability density

functions. Within this framework, the weights of the mixture, p and 1 - p, are interpreted as

the probabilities of observing a transaction carried out by the informed and uninformed traders

respectively. Although this interpretation is intuitively appealing, it seems rather restrictive

to think of a constant proportion of informed and uninformed traders in a given time interval.

A more interesting formulation would involve time-varying weights where the weight, p, can

be assumed to follow a logistic function, similar to the formulation of the Markov Switching

models with time-varying probabilities. This is presented recently in De Luca and Gallo (2009).

While several modifications of the original ACD specification have been put forward in the

literature,8 the study that focusses on the SCD model is much less forthcoming even to this

day. Bauwens and Veradas (2004) were the first to propose an SCD model. In their study,

they compare the empirical performance of an SCD model with an ACD model, and conclude

that the former is preferable on statistical ground. The leverage term in the latent equation

of the duration process is added by Feng, Jiang and Song (2004) to allow for an intertemporal

correlation between the observable duration and the conditional duration, and the correlation

is found to be positive.

8See Pacurar (2008) for an excellent survey on the use of the ACD model in Empirical Finance.
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One econometric challenge with the SCD model lies in the construction of the dependence

structure between the innovations driving the observation and latent equations of the duration

process. Bauwens and Veredas (2004) and others deal with this issue by imposing a Weibull

or Gamma distributional assumption on the observation equation innovation and a Gaussian

distributional assumption on the latent equation innovation. Xu, Knight and Wirjanto (2008)

introduce flexible discrete mixtures of bivariate normal distribution family into the SCD model

giving rise to a mixtures of normal SCD (SCD-MN) model. The SCD-MN model imposes mix-

tures of bivariate normal distribution family on the innovations of the observation and latent

equations of the duration process. This extension allows the model not only to capture the

asymmetric behavior of the expected duration but also to easily accommodate a rich set of de-

pendence structures between the two innovations driving the observation and latent equations

of the duration process.

We begin the discussion of the SCD-MN model by first introducing the SCD model as

presented in Bauwens and Veredas (2004). Let 0 =< τ0 < τ1 < ... < τT denote the arrival

times, and d1, d2, ..., dT denote the corresponding durations, i.e., dt = τt − τt−1. Then the SCD

model can be written as

dt = exp(ht)et (44)

ht = λ + αht−1 + σvvt (45)

where vt is i.i.dN(0, 1), et denotes a distribution on the positive real line, possibly a function of

some parameter γ. In Bauwen and Veredas (2004), the distribution of et is chosen to be either

Weibull or Gamma with a shape parameter given by γ. Assuming that the distribution of et

is parameterized, so that E(et) = 1, then ht is the logarithm of the unobserved mean of dt and

is assumed to be generated by a Gaussian autoregressive process of order one, with |α| < 1

is to ensure the stationarity of the process. It is also assume that {et} and vt are mutually

independent sequences. The parameters to be estimated are θ = (λ, α, σV , γ)′. The parameter

space is Re× (−1, 1)×Re+ ×Re+.

Notice the similarity between the SCD and SV models in their cannonical form is striking,

except that the distribution of et in the SCD model is assumed to be non-normal since this

is by definition is a positive random variable. However this assumption makes it possible to

identify the parameter γ. This similarity also suggests that the estimation of the SCD model

faces the same impediment as that faced by the estimation of the SV model. In particular,

given a sequence d of T realizations of the duration process, the density of d given θ can be
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written as

f(d|θ) =

∫
f(d, h|θ)dh (46)

where f(d, h|θ) is the joint density of d and h, indexed by θ, or as

f(d|θ) =

∫
f(d|h, θ)f(h|θ)dh (47)

where f(d|h, θ) is the density of d indexed by θ, conditional on a vector h of the same dimension

as d, and f(h|θ) is the density of h indexed by θ. Equation (47) makes it clear, as in the case

of the SV model, that given the functional form assumed for the distribution of (et) (such as

Weibull or Gamma), its multiple integral, which has a dimension equal to the sample size (T),

cannot be solved analytically and must be computed numerically by simulation.

In (44), the duration time series, dt, follow a nonlinear product process. To reduce the

complexity involved in a product of two random error processes, Bauwens and Veradas (2004)

propose to transform it into the following linear state space form,

yt = log(dt) = ht + εt (48)

where the transformed disturbance is given by εt = log(et), and the latent variable ht follows

an AR(1) process given by (45).9

Bauwens and Veredas (2004) proposed a Weibull(v,1) or Gamma(v,1) distribution on et

and the Gaussian distribution for the innovation vt. In addition, the two innovations, et and

vt, are assumed to be uncorrelated. Through a logarithmic transformation, εt will have a Log-

Weibull(v, 1) distribution or Log-Gamma(v, 1)distribution. The two resulting density functions

are given by:

Log-Weibull(v, 1)

f(x) = v exp(vx− evx) (49)

Log-Gamma(v, 1)

f(x) =
1

Γ(v)
exp(vx− ex) (50)

9The distribution of εt can in principle be approximated by Gaussian and then Kalman filter can be applied
to calculate the approximate likelihood as in Bauwens and Veredas (2004).
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Like the SV model, there is no closed form expression available for the likelihood function

of the SCD model. However, as shown by Knight and Ning (2008), there is a closed form

expression for the characteristic function (CF) of yt. Since the CF carries the same amount

of information as the distribution function itself, the SCD model can be uniquely and fully

parameterized by the CF. This suggests that it is possible to estimate the model by matching

the theoretical CF of the model to the ECF from the sampling observations, by minimizing the

distance between the joint CF and ECF. This idea is implemented in Knight and Ning (2008)

where they derive the moment conditions and joint CF expressions based on the i.i.d error

distributional assumptions. However, to examine the appropriateness of the“leverage effect”

captured by the SCD model, we need to specify certain dependence structure between the two

innovations. As alluded to earlier, it is not straightforward to accommodate correlations be-

tween the Weibull or Gamma distribution and the Gaussian distribution. An obvious approach

to model the dependence would be to use copulas with the specified marginals. Unfortunately,

the estimation of such models would not be straightforward either; instead it requires simu-

lation based estimators. Xu, Knight and Wirjanto (2008) impose distributional assumptions

directly on the transformed errors, εt, and vt. In the current literature, there are two popular

specifications to model the correlations of the innovations:10

(a) Contemporaneous dependence structure

(
εt

vt

)
∼ pl N

((
µl

0

)(
σ2

l ρlσlσv

ρlσlσv σ2
v

))
(51)

(b) Lagged inter-temporal dependence structure

(
εt−1

vt

)
∼ pl N

((
µl

0

)(
σ2

l ρlσlσv

ρlσlσv σ2
v

))
(52)

where l = (1, 2, ... , L), L is number of mixture components, pl is the mixing proportion

parameter, and
L∑

l=1

pl = 1.

In the above specifications, the parameter ρ captures the correlation between the trans-

formed errors εt and vt. However we are interested in examining the relationships between et

and vt, which are the innovations from the original specification. So by way of transformation

(i.e., et = exp(εt)), we need to back out the implied correlation expression from the above

assumptions. This is given in the Proposition 1 in Xu, Knight and Wirjanto (2008); that is,

10See Jiang, Knight and Wang (2005), Yu (2005) and Xu (2007) for details of SV modeling under these two
dependence structures.
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under assumption (a) or (b), we have:

(i) cov(et, vt) =
L∑

l=1

plρlσvσl exp(µl +
1

2
σ2

l ) (53)

or

(ii) cov(et−1, vt) =
L∑

l=1

plρlσvσl exp(µl +
1

2
σ2

l ) (54)

Xu, Knight and Wirjanto (2008) also provide a general closed form moment expressions to
examine the statistical properties of the model under these two dependence structures. In the
case of contemporaneous dependence, then if εt and vt satisfy assumption (a), for m, n, k ≥ 0,
the closed form expression for cross-moments between dt and dt+k is given by:

E(dm
t dn

t+k) = exp(nλ

k∑

j=1

αj−1)

× exp(
λ(m + nαk)

(1− α)
+

α2σ2
v(m + nαk)2

2(1− α2)
)

× exp(
n2σ2

v

2

k−1∑

j=1

α2(k−1−j))

×
L∑

l=1

pl exp(mµl +
m2σ2

l

2
+

(m + nαk)2σ2
v

2
+ m(m + nαk)ρlσlσv)

×
L∑

l=1

pl exp(nµl +
n2σ2

l

2
+

n2σ2
v

2
+ n2ρlσlσv) (55)

In the case of lagged intertemporal dependence, if εt and vt satisfy assumption (b), for m, n, k
≥ 0, the closed form expression for cross moments between dt and dt+k is given by:

E(dm
t dn

t+k) = exp(nλ

k∑

j=1

αj−1)

× exp(
λ(m + nαk)

(1− α)
+

σ2
v(m + nαk)2

2(1− α2)
)

× exp(
n2σ2

v

2

k∑

j=2

α2(k−j))

×
L∑

l=1

pl exp(mµl +
m2σ2

l

2
+

n2α2k−2σ2
v

2
+ mnαk−1ρlσlσv)

×
L∑

l=1

pl exp(nµl +
n2σ2

l

2
) (56)

Since the estimation of the SCD-MN model is closely parallel to that of the MN-SV model,
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we refer the readers to that sub-section for a discussion on issues related to the estimation of

the model. It suffices to say that the closed form solution for general moment conditions and

joint CF derived in Xu, Knight and Wirjanto (2008) for the SCD-MN model not only renders

the resulting statistical inference simpler and but also reduces the required computational costs.

Another important advantage of the approach proposed in Xu, Knight and Wirjanto (2008) is

that the structure of the SCD-MN model could accommodate different correlation structures

between the innovations from the duration and latent autoregressive processes. This opens up

an avenue for conducting an analysis on the asymmetric behavior of the expected durations and

the local dynamic behavior of the observed durations. Jiang, Knight, Wang (2005) examine

the properties of the SV model under different dependence specifications, i.e. contemporaneous

and lagged inter-temporal correlations between the two innovations. Recognizing that a SCD

model possesses a similar framework as the SV model, it would be interesting to investigate

these dependence structures in the context of the SCD model.

3.3.2 MN Applications in Risk Analysis

In this subsection, we briefly mention the MN applications in the risk analysis. In recent

years, risk management analysis has become increasingly important to financial institutions

due to the rapid globalization and increased trading volumes with the associated potential

risks. Regulators are beginning to design new regulations around it, such as bank capital stan-

dards for market risk and the reporting requirements for the risks associated with derivatives

used by corporations. One of the fundamental issues in the financial risk management is to

fully characterize the distribution of the returns. In other words, a good approximation for the

unconditional distribution of the returns is very important for a further risk construction.

Finding suitable models for asset returns is the first step in the financial risk management.

As mentioned, once the evolution of the returns are successfully modeled, the associated risk

measures can be constructed accordingly. One benchmark risk-measure is the so-called Value

at Risk (VaR), which is defined as the minimum expected loss at a specified probability level

over a certain period. The VaR measurement is very attractive to many practitioners since

VaR quantifies the potential risk exposure into a single number. In particular, statistically

speaking, the VaR value corresponds to the lower quantile of the return distribution. However,

in applications the VaR calculation is often based on the normality assumption. Consequently,

the VaR implied from a Normal distribution can be expressed as follow,

VaR = Φ−1(ς) (57)

where ς is a given probability (e.g., 0.05 or 0.01), and Φ−1(.) stands for the inverse of the normal
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cumulative probability function.

As argued earlier, the stock returns are not well approximated by the normal distribution,

particularly in the short run; as a result the normality based VaR tends to underestimate the

risk. Venkataraman (1997) incorporated the MN into the construction of the VaR measures

for the stock and portfolio returns. The MN-based VaR was shown to perform significantly

better than that from the conventional Normal approach. Similar findings have been estab-

lished in Zangari (1996), Hull and White (1998), Zhang and Cheng (2005) and etc. To further

capture the time-varying volatility dynamics, Ausin and Galeano (2007) and Xu and Wirjanto

(2008) used an GARCH-MN structure for the construction of the VaR measurement. By using

backtesting methods, Xu and Wirjanto (2008) showed that the VaR measures obtained from

the GARCH-MN model outperform those obtained from other competing models, including

normal, MN and GARCH-N and GARCH-t models.

As an extension, the VaR can be constructed in the multivariate environment. It is well

known that one of the main issues in the multivariate model is the dimension of its parameters.

This problem becomes more acute when the MN is introduced into the multivariate structure.

For this reason, several dimension reduction techniques have been introduced to solve this issue.

One of the toold used for such a dimension reduction is the so-called Independent Component

Analysis (ICA). Its origin can be traced back to he signal processing analysis - see Hyvarinen,

Karhunen and Oja (2001) for more details. The main advantage of this technique lies in the

transformation from a multivariate setting into several individual independent components, for

which the univariate analysis can be easily applied. Chin, Weigend and Zimmermann (1999)

combined the MN and ICA technique in computing ”large” portfolio VaRs. The results showed

that the MN with the ICA provides a good VaR performance in both the in-sample and out-of-

sample tests. Recently, Xu and Wirjanto (2009) combine the GARCH-MN model with the ICA

technique for calculating several large portfolio VaR measures. Based on the empirical results

from the stock and FX market, the proposed method was shown to produce more reliable

and superior VaR estimates to other competing methods, while maintaining the computational

feasibility.

4 Conclusion Remarks

This paper provides a selected survey of the recent applications of the mixture models in the

empirical finance. The review was carried out under two broad themes: statistical estimation

methodologies via minimum-distance measures and financial applications. We showed that the

incorporation of the MN distributional family allowed for great flexibility in capturing many of
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the stylized facts or empirical properties of the financial asset returns. From the financial appli-

cation perspective, we noted improved results from adopting the MN in the models. However,

there are still many unresolved issues. Here We list a few of them as avenues for future research.

First, throughout the paper, the number of the mixture components (or regimes) was taken as

given. In practice, the determination of the number of the clusters remains a difficult task - see

McLanchan (1987), Thode, Finch and Mendell (1988), Bozdogan (1992), Feng and McCulloch

(1996), Polymedis and Titterington (1998) etc and reference therein. Second, as mentioned

earlier, the unknown parameters in the MN-type models tend to increase rapidly as the num-

ber of the mixture components increases. This can lead to numerical convergence problems in

practice and sometimes result in a prohibitively computational cost, especially when we work

with a large sample size. This has been a major impediment to the attempts to extend the

model a multivariate setting. Third, there is the identification issue; specifically, as two clusters

among the mixtures become more and more similar, the identification process becomes more

and more difficult to make, and so does the estimation of the model. Finally, we think the most

challenging task with the MN-type models used in finance is the interpretation of each mixture

component or regime. Unlike in exact or natural science, in finance, it is difficult to know

exactly the compositions and the sources of the observed data. In engineering, for example,

the mixed signals can be traced back to the original sources. In biology, the mixed data can be

identified via the physical species or others. Although we can interpret the observed financial

data as a mixture of different information components, this, to a certain level, remains to this

date at best an educated guess only.
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