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Abstract

The impact of stochastic convenience yield on long-term forestry investment de-

cisions

This paper investigates whether convenience yield is an important factor in determining

optimal decisions for a forestry investment. The Kalman filter method is used to estimate

three different models of lumber prices: a mean reverting model, a simple geometric Brow-

nian motion and the two-factor price model due to Schwartz (1997). In the latter model

there are two correlated stochastic factors: spot price and convenience yield. The two-factor

model is shown to provide a reasonable fit of the term structure of lumber futures prices.

The impact of convenience yield on a forestry investment decision is examined using the

Schwartz (1997) long-term model which transforms the two-factor price model into a sin-

gle factor model with a composite price. Using the long-term model an optimal harvesting

problem is analyzed, which requires the numerical solution of an impulse control problem

formulated as a Hamilton-Jacobi-Bellman Variational Inequality. We compare the results

for the long-term model to those from single-factor mean reverting and geometric Brownian

motion models. The inclusion of convenience yield through the long-term model is found to

have a significant impact on land value and optimal harvesting decisions.



1 Introduction

The optimal management of natural resource investments typically depends on the ability of

resource owners to interpret and react to volatile commodity prices. Owners of commercial

forest land are no exception to this. Landowners are faced with decisions about when to

harvest a stand of trees in an environment of highly uncertain timber prices which respond to

news about the health of the economy, tariffs and trade barriers, as well as supply side factors

such as fire and pests. A long strand of economics literature addresses the dual issues how

best to model commodity prices and the determination of optimal resource management

decisions under different representations of price. The literature has evolved significantly

over the past few decades moving from deterministic models based on versions of Hotelling’s

rule to stochastic models that draw on finance theory and contingent claims arguments. In

addition to stochastic prices, the natural resources literature has investigated the impact

of other key uncertain parameters, such as costs, interest rates, and convenience yield, on

optimal natural resource management.

The focus of this paper is on lumber prices and optimal decisions in forestry. A number

of specifications have been proposed in the literature for modeling stochastic lumber prices,

including geometric Brownian motion (GBM), mean reverting processes, jump processes

and regime-switching models. For example, Clarke and Reed (1989) and Yin and Newman

(1997) solve optimal tree harvesting problems analytically by assuming lumber prices follow

GBM. Some researchers including Brazee et al. (1999) have found that mean reversion rather

than GBM provides a better characterization of lumber prices. Saphores et al. (2002) find

evidence of jumps in Pacific North West stumpage prices in the U.S. and demonstrate at

the stand level that ignoring jumps can lead to significantly suboptimal harvesting decisions

for old growth timber. A recent insight in the literature suggests that instead of modeling

jumps in commodity prices, we may consider regime-switching models, initially proposed

by Hamilton (1989), to better capture the main characteristics of lumber prices. Chen and

Insley (2008) compare and contrast a two-state regime-switching mean reverting model and
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a traditional mean reverting model. They find that the regime-switching model outperforms

the traditional one-factor mean reverting model in terms of fitting prices of market lumber

derivatives.

For storable commodities and those that serve as inputs to production, such as lumber

and oil, convenience yield1 plays an important role in price formation. Convenience yield

refers to the benefit that producers obtain from holding physical inventories, a benefit not

available to individuals holding a futures or forward contract. Convenience yield is expected

to be negatively correlated with inventories levels.2 The seasonal harvesting of trees, as well

as the importance of wood products as inputs to other industries, suggest that convenience

yield may be important to understanding the dynamics of timber prices.

From a modelling perspective, convenience yield may be viewed as analogous to the

dividend obtained from holding a company’s stock. Convenience yield helps to explain the

relationship between spot prices and futures prices - i.e. the term structure of commodity

futures prices. The term structure conveys useful information for hedging or investment

decisions, because it synthesizes the information available in the market and reflects the

investors’ expectations concerning the future. A futures price can be greater or less than

the commodity spot price, depending on the relationship between the (net) convenience

yield3 and risk-free interest rate. This is explained by the cost of carry pricing model which

expresses forward/futures price as a function of the spot price and the cost of carry.4 The

modelling of convenience yield is important for any analysis of futures prices.

Multi-factor models have been proposed in the literature to describe commodity price

dynamics by including stochastic convenience yield to help explain the term structure of com-

modity futures prices. For example, Gibson and Schwartz (1990) first introduced a two-factor

1See Working (1948)
2See Brennan (1958) and Litzenberger and Rabinowitz (1995).
3Net convenience yield is defined as the benefit of holding inventory minus physical storage costs. It is

negative if the storage expense is higher. For simplicity, convenience yield mentioned in the rest of this paper

refers to net convenience yield.
4Cost of carry is defined as the physical storage cost plus the forgone interest. See Pindyck (2001).
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model, where spot prices are assumed to evolve according to GBM and the convenience yield

follows a mean reverting stochastic process. Schwartz (1997) further explores this two-factor

model in the context of a term structure model of commodity prices. This model provides a

reasonable fit of the term structure of long-term forward prices which are essential for valuing

long-term commodity linked investments. The Schwartz (1997) two-factor model has been

successfully applied in the modelling of several key commercial commodities, including crude

oil and copper. However, to the best of our knowledge no previous work has examined the

impact of modeling stochastic convenience yield in an optimal harvesting problem applied

to a renewable natural resource such as timber.

The objective of this paper is to further our understanding of the valuation and opti-

mal harvesting of commercial forest land by investigating whether convenience yield is an

important factor to be included in the modelling of lumber price dynamics. We examine

two aspects of this issue. First we examine whether the two-factor model due to Schwartz

(1997) with two correlated stochastic factors - the spot lumber price and the convenience

yield - is better able to match the term structure of lumber futures prices compared with

two other simpler price models. These simpler models are GBM and mean reverting price

processes with an assumed constant convenience yield. Second we investigate the impact of

a transformed version of the two-factor model (Schwartz, 1998) gives significantly different

results for land values and the optimal harvesting decision for a prototype tree harvesting

problem, again compared with the results of the two simpler price models.

In the first part of the paper (Sections 3 through 6), we use the Kalman filter on lumber

futures price data to estimate the three price models (two-factor, GBM, and mean reverting)

and compare their ability to match the term structure of lumber futures prices. In the second

part of the paper (Section 7) we use the estimated price models to determine land value and

the optimal harvesting rule in a multi-rotational tree harvesting problem. The tree harvesting

problem represents an impulse control problem since the payout from harvesting depends on

the stand age and lumber price, as opposed to a simple American option problem in which

the payout is known prior to the exercise time. For each of the cases considered the impulse
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control problem is specified as a Hamilton-Jacobi-Bellman (HJB) variational inequality which

is solved numerically using semi-Lagrangian time stepping. To simplify the solution of the

harvesting problem, instead of solving the two-factor model price model directly, we solve

a one-factor transformation of that model, introduced in Schwartz (1998). This one-factor

model, which we call the “long-term model”, retains most of the main characteristics of

his two-factor model, especially its ability to fit long-term commodity futures prices. The

land values and optimal harvesting decisions are computed and compared for the three

price models: the long-term model, the GBM model and the mean reverting model. This

comparison allows us to examine the impact of including stochastic convenience yield on

optimal actions and land value.

Our main conclusion is that modelling stochastic convenience yield improves our ability

to match lumber futures prices and that the long run model provides reasonable estimates of

land value and optimal harvesting decisions. The long-run model gives significantly different

results than the other simpler models that are used for comparison.

The remainder of the paper is organized as follows. In Section 2 we give a brief description

of lumber spot and futures prices. Section 3 describes the two-factor price model as well as

the GBM and mean reverting models used for comparison. Section 4 describes the estimation

of the price models using the Kalman filter. Section 5 presents the long-term model which is

used as an approximation of the two-factor model. Section 6 describes the empirical results

of the price model estimation and compares the ability to the different models to match the

term structure of futures prices. Section 7 presents the real options model and an analysis

of an optimal tree harvesting problem. Section 8 concludes.

2 Lumber spot prices and futures prices

Forest products are traded worldwide and Canada is a major player in this market, account-

ing for 14% of the value of world forest product exports in 2006. There is no single spot

market in which a uniform lumber product is traded, and therefore there is no unique lumber
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Item Max Min Mean Std. Dev. Skewness Kurtosis

$ Cdn/MBF 718.1 164.8 423.7 107.6 -0.09 2.50

Table 1: Descriptive statistics for the lumber price time series (as shown in Figure 1),

from January 6th, 1995 to April 25th, 2008.

spot price. However, there is a single North American market for standard lumber futures

contracts. Following the literature5, the price of the futures contract which is closest to

maturity is treated as the lumber spot price.

Lumber futures contracts were first traded on the Chicago Mercantile Exchange (CME) in

1969. The Random Length Lumber futures traded on the CME are for on-track mill delivery

of 110,000 board feet (plus or minus 5,000 board feet) of random length 8-foot to 20-foot

nominal 2-inch × 4-inch pieces. The delivery contract months for CME Random Length

Lumber futures are as follows: January, March, May, July, September and November. The

last trading day of each contract is the business day prior to the 16th calendar day of the

contract month.

Real spot prices, as approximated by the prices of the lumber futures contract closest to

maturity, are shown in Figure 16. These are weekly data, covering the period from January

1995 to April 2008. The original data in U.S. dollars were deflated by the CPI and converted

to Canadian dollars. The transformation is made because our real options application is

a hypothetical decision problem in Canada’s boreal forest. In Figure 1 prior to 2006 there

appears to be a tendency to revert to a mean between $400 and $500 (Cdn) per MBF.

After 2006 we see a downward progression in price reflecting weak North American lumber

markets as well as the impact of a strengthening Canadian dollar. We also observe significant

volatility over the period shown. Summary statistics for the spot lumber prices are reported

in Table 1.

There are six lumber futures contracts traded each day on the CME, the first four of which

5See Gibson and Schwartz (1990).
6Data source: Chicago Mercantile Exchange.
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Lumber spot prices
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Figure 1: Real prices of lumber futures contract closest to maturity. Weekly data from

January 6th, 1995 to April 25th, 2008, $Cdn./MBF, (MBF ≡ thousand board feet). Nom-

inal prices deflated by the Consumer Price Index, base year = 2005.
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Item Number of observations Mean Std. Deviation Maturity(on average)

F1 695 423.7 107.57 1 mon

F2 695 427.5 96.24 3 mon

F3 695 429.6 89.08 5 mon

F4 695 431.5 86.15 7 mon

Table 2: Summary statistics of four chosen CME lumber futures prices, $Cdn./MBF.

Weekly data from January 6th, 1995 to April 25th, 2008.

will be used in our analysis as these have the highest trading volumes and can be expected

to provide more accurate information. Real weekly prices of the four selected lumber futures

prices, ranging from January 1995 to April 2008, are shown in Figure 2. Summary statistics

of these four time series are provided in Table 2. The mean price shown in Table 2 is lowest

for the shortest maturity contract and rises with contract maturity. Conversely, the largest

volatilities are for the prices of the short-term contracts, while the volatilities for the two

longer term contracts are fairly close. The decreasing pattern of volatilities along the prices

curve is often called “the Samuelson effect” in the literature. The term structure of lumber

futures shown in Figure 3 provides an illustration of the Samuelson effect. In this figure

monthly future prices are plotted from January 1995 to April 2008. At each observation

date there are four futures contracts, labeled 1 through 4 on the horizontal axis. Each line

on the graph represents the term structure for those four contracts on a given day. In the

diagram the spread of futures prices at 4 (F4) is smaller than at 1 (F1), indicating that

the near term prices are more volatile. From this graph, we observe different shapes of the

lumber term structure, from backwardation to contango for example.

3 Valuation models

The varying shapes of the term structure of lumber futures prices shown in Figure 3 imply

that convenience yield is not constant. A model that includes a stochastic convenience yield
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First four lumber futures prices
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Figure 2: Real prices of four CME lumber futures,$Cdn./MBF (thousand board feet).

Weekly data from January 6th, 1995 to April 25th, 2008. Nominal prices deflated by the

Consumer Price Index, base year = 2005.

8



Term structure of monthly lumber futures prices
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Figure 3: Term structure of lumber futures,$Cdn./MBF. Monthly data from January 6th,

1995 to April 25th, 2008.

may be better able to capture the main characteristics of lumber spot and futures prices.

The two-factor model analyzed in Schwartz (1997) is one of the most popular models in this

literature and it has been successfully employed to model several commodities, including

crude oil and copper. For the convenience of the reader, in the next section we summarize

the Schwartz (1997) two-factor model. We also present two one-factor models, GBM and

mean reverting, to be used as comparison with the two-factor model. These one-factor

models are also popular in the literature and are simpler to estimate and use in models of

investment decisions than the two-factor model. We would like to determine whether the

two-factor model does a substantially better job at modelling lumber prices and is therefore

worth using despite its increased complexity.
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3.1 The Schwartz (1997) two-factor model

The two-factor model analyzed in Schwartz (1997) is based on the model developed in Gibson

and Schwartz (1990). Specifically, the spot price S follows a GBM process with a stochastic

drift and the net convenience yield δ is formulated as a mean-reverting Ornstein-Uhlenbeck

process. The joint stochastic process of the two state variables in Schwartz (1997) is given

by:

dS = (µ− δ)Sdt+ σsSdzs

dδ = κ(α− δ)dt+ σδdzδ

dzsdzδ = ρdt (1)

where µ is the expected return of spot prices, κ and α represent the mean reversion rate

and the long-run equilibrium level of convenience yield respectively, σs and σδ denote the

volatilities of the two state variables, and ρ is the correlation coefficient between the two

standard Brownian increments dzs and dzδ.

We note in the above specification that µ represents the total expected return from S

and it remains constant. As the convenience yield changes the portion of total return that

derives from capital gains, (µ − δ), and the portion that derives from convenience yield

adjusts stochastically while the total return is assumed fixed and determined by the market

equilibrium return for that particular asset class.

We expect convenience yield and the commodity price to be positively correlated. In-

tuitively, when there is excess supply on the market, lumber inventories will rise and the

spot price should fall. Convenience yield should also fall since the benefit of owning the

commodity is smaller than when the commodity is scarce. A lower convenience yield implies

it is more costly to carry commodity inventories. This will tend to drive up the futures price

as it becomes more attractive to secure supply in the futures market rather than carrying

inventory.

In Equation (1) convenience yield affects S through the correlation coefficient as well as

through the drift term. With a positive ρ, a fall in S implies a fall in δ. This lower δ increases
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the drift rate for S, and hence S is pulled up again. Hence in the model specified in Equation

(1), S is characterized by some reversion to the mean, but the mean is not constant.

The specification of convenience yield as a mean reverting process also makes intuitive

sense. α represents a long run level that reflects the cost of storing the commodity and a

benefit conveyed by having immediate access to inventories. δ will vary around α depending

on commodity market conditions with δ > α when markets are buoyant and the reverse

when markets are depressed.

Under the equivalent martingale measure, the risk adjusted processes for the two state

variables, the spot price S and convenience yield δ, are expressed as:

dS = (r − δ)Sdt+ σsSdz
∗
s

dδ = [κ(α− δ)− λ]dt+ σδdz
∗
δ

dz∗sdz
∗
δ = ρdt (2)

where λ is the market price of convenience yield risk. From the no-arbitrage condition, the

risk-adjusted drift of the price process is r − δ. The market price of convenience yield risk

has to be incorporated in the risk neutral process of convenience yield, since convenience

yield is not traded.

Applying Ito’s Lemma, the log spot price X = lnS in this two-factor model can be

derived as:

dX = (µ− 1

2
σs − δ)dt+ σsdzs (3)

The partial differential equation (PDE)7 characterizing the futures price F (S, δ, t, T ) can

be derived using Ito’s Lemma and expressed as:

1

2
σ2
sS

2Fss + (r − δ)SFs +
1

2
σ2
δFδδ + (κ(α− δ)− λ)Fδ + ρσsσδSFsδ − Ft = 0 (4)

subject to boundary condition: F (S, δ, T, T ) = S, where T denotes the maturity date of the

futures contract. The analytical solution of equation (4) is derived in Jamshidian and Fein

7For detailed derivation of this PDE, see Gibson and Schwartz (1990).
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(1990) and Bjerksund (1991) and can be expressed as:

F (S, δ, 0, T ) = S exp
[
A(T )− δ1− e−κT

κ

]
(5)

where

A(T ) = (r − α̂ +
1

2

σ2
δ

κ2
− σsσδρ

κ
)T +

1

4
σ2
δ

1− e−2κT

κ3
+ (α̂κ+ σsσδρ−

σ2
δ

κ
)
1− e−κT

κ2

α̂ = α− λ

κ
(6)

The linear relationship between futures prices and spot prices can be found in the log form

of futures prices:

lnF (S, δ, 0, T ) = lnS + A(T )− δ1− e−κT

κ
(7)

Equation (7) will be used for model estimation.

3.2 Single factor models

In order to analyze the impact of incorporating stochastic convenience yield on long-term

forestry investment decisions, two single factor models are also estimated and compared in

this paper. These one-factor models are the log price mean reverting model analyzed in

Schwartz (1997) and a GBM model with a constant convenience yield. Since the two-factor

model analyzed in this paper features mean reversion in the commodity’s price, it seems

reasonable to compare it with a single factor mean reverting model. We also use the GBM

model for comparison since it is so widely used and the spot price in two-factor model follows

an adjusted GBM process with stochastic convenience yield on the drift term. In this section,

these one-factor models are briefly summarized.

3.2.1 The one-factor mean reverting model

This model is the same single factor model as analyzed in Schwartz (1997). The spot prices

S are modeled as:

dS

S
= κMR[µMR − lnS]dt+ σMRdz (8)
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Applying Ito’s Lemma, the log spot price X = lnS follows an Ornstein-Uhlenbeck process:

dX = κMR

[
(µMR −

σ2
MR

2κMR

)−X
]
dt+ σMRdz (9)

where the mean reverting rate is κMR and the long-run equilibrium log price level is µMR −
σ2
MR

2κMR
. The risk-adjusted version of this model can be expressed as:

dX = κMR[α∗ −X]dt+ σMRdz
∗ (10)

where α∗ = µMR −
σ2
MR

2κMR
− λMR and λMR represents the market price of risk.

The corresponding futures price in log form, lnF (S, 0, T ), can be expressed as8:

lnF (S, 0, T ) = e−κMRT lnS + (1− e−κMRT )α∗ +
σ2
MR

4κMR

(1− e−2κMRT ) (11)

This linear relationship between log futures prices and the state variable log spot prices will

be used for model estimation.

3.2.2 The GBM model

The GBM model can be expressed as:

dS = [µGBM − δGBM ]Sdt+ σGBMSdz (12)

where δGBM refers to the constant convenience yield. Similarly, the log price X = lnS follows

normal distribution which can be expressed as:

dX =
[
µGBM − δGBM −

σ2
GBM

2

]
dt+ σGBMdz (13)

The risk-neutral version of this model is:

dX =
[
r − δGBM −

σ2
GBM

2

]
dt+ σGBMdz

∗ (14)

The conditional mean of X under the equivalent martingale measure is E0[X(T )] = (r −

δGBM −
σ2
GBM1

2
)T +X0. Its conditional variance is V ar0[X(T )] = σ2

GBMT .

8See Schwartz (1997).
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Based on the properties of the log normal distribution, the futures price F (S, 0, T ) in this

model can be expressed as:

F (S, 0, T ) = elnS+(r−δGBM )T (15)

The log futures price can be derived as:

lnF = lnS + (r − δGBM)T (16)

4 Model estimation: Kalman filter

When state variables are not observable, a practical method for estimating this type of

model is by stating the problem in state space form and by using the Kalman filter based

on an error prediction decomposition of the log-likelihood function. The Kalman filter is

a recursive procedure for estimating unobserved state variables based on observations that

depend on these variables (Kalman (1960)). Prediction errors, a by-product of the Kalman

filter, can then be used to evaluate the likelihood function and the model parameters are

estimated by maximizing this likelihood function.

The state space form consists of a transition equation and a measurement equation. The

transition equation describes the dynamics of an unobserved set of state variables. The

measurement equation relates the unobserved variables to a vector of observables. In the

two-factor model analyzed in this paper, both the lumber spot price and convenience yield

are assumed to be unobserved state variables.9 The lumber spot prices in the single-factor

models are also assumed to be unobserved. Futures prices with different maturities observed

at different dates serve as observed variables and the measurement equation will specify the

relationship between futures prices and the two state variables.

Specifically, the linear Gaussian state space model can be expressed as the following

9In the commodity literature, since the exact meaning of commodity spot prices like electricity is difficult

to pin down, when using Kalman filter to estimate parameters of the model containing spot price dynamics,

researchers treat spot prices as unobserved state variable. See Schwartz (1997) for example.
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system of equations:

xt+1 = dt + Ttxt + ηt (17)

yt = Ct + Ztxt + εt (18)

where x denotes the vector of unobserved state variables and y = lnF denotes the observed

log futures prices for all the models analyzed in this paper.10 Equation (17) represents the

transition equation of the model, which describes the evolution of the non-observed state

vector xt over time. Equation (18) is the measurement equation describing the vector of

observations yt in terms of the state vector.

Two types of variables used recursively in the Kalman filter algorithm are called priori

variables and posteriori variables. Define the observed data set at time t as Yt = (y1, ..., yt).

Priori variables refer to the conditional mean, defined as xt|t−1 = E[xt|Yt−1], and conditional

variance, defined as Pt|t−1 = var[xt|Yt−1], of the state vector xt based on information available

at time t − 1. Posteriori variables are the estimates for the mean and variance of the state

vector conditional on the information available at time t, denoted as xt|t = E[xt|Yt] and

Pt|t = var[xt|Yt] respectively.

The first step of the Kalman filter is to compute one time step ahead priori variables xt|t−1

and Pt|t−1 using the values of posteriori variables at time t− 1 via the prediction equations:

xt|t−1 = dt−1 + Tt−1xt−1|t−1 (19)

Pt|t−1 = Tt−1Pt−1|t−1T
′
t−1 + V ar(η) (20)

Next, with the new observation yt, the posteriori variables at time t can be updated using

updating equations:

xt|t = xt|t−1 +Ktvt (21)

Pt|t = Pt|t−1 − Pt|t−1Z
′
tK
′
t (22)

10dt, Tt, Ct, Zt are terms containing corresponding model parameters which will be specified later in this

paper. ηt and εt denote the disturbances of the two equations.
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where

vt = yt − Ct − Ztx′t|t−1 (23)

Ft = ZtPt|t−1Z
′
t + var(ε) (24)

Kt = Pt|t−1Z
′
tF
−1
t (25)

where vt is the residual of the measurement equation (18) or prediction error. Ft is the

variance of this prediction error, Ft = var(vt). Kt is the Kalman gain. This process is then

repeated until the whole set of observations YN has been observed and used in this recursive

process. The resulting estimates of posteriori variables xt|t will be the filtered estimates of

the state vector for each observation date t. The smoothed estimates of the state vector can

be obtained by using all the information in the observation set YN .

Unknown parameters of the state space model can be estimated by maximizing the

prediction error decomposition of the log-likelihood function, which is a by-product of the

Kalman filter. The sample log-likelihood function is

lnL =
N∑
t+1

ln f(vt) = c− 1

2

N∑
t+1

(ln |Ft|+ v′tF
−1
t vt) (26)

c is a constant and f(vt) denotes the probability density function of prediction error vt.

The two-factor model and single-factor models analyzed in this paper are all written

in the state space form and the corresponding model parameters are estimated using the

Kalman Filter method. The state space form of each model is provided in this section.

4.1 Two-factor model

For the two-factor model, both the stochastic spot price and convenience yield serve as the

unobserved state variables x = [X, δ]′, where X = lnS denotes the log of the spot price.

Based on equations (1) and (3), the terms of the transition equation (17) in the state space
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form can be expressed as:

dt = [(µ− 1

2
σ2
s)∆t, κα∆t]′

Tt =

 1 −δt

0 1− κδt


ηt in equation (17) denotes serially uncorrelated disturbances with mean zero, and its variance

is expressed as:

V ar(ηt) =

 σ2
s∆t ρσsσδ∆t

ρσsσδ∆t σ2
δ∆t


Based on equation (7), the terms of the measurement equation (18) are given as:

Ct = [A(Ti)]

Zt =

[
1,−1− e−κTi

κ

]
i = 1, ..., N , where N is the number of futures contracts at each date t. εt in equation

(18) represents a vector of serially uncorrelated disturbances with zero mean and identity

variance-covariance matrix. The innovations in the transition equation ηt and those in the

measurement equation εt are assumed to be independent in all the analyzed models in this

paper, which means E[ηtεt] = 0.

4.2 One-factor mean reverting model

The spot price in this one-factor mean reverting model is the unobserved state variable,

x = [X]. Based on equation (9), the terms of the transition equation (17) in the state space

form can be expressed as:

dt = [κMR(µMR −
σ2
MR

2κMR

)4t]

Tt = [1− κMR4t]

ηt in equation (17) denotes serially uncorrelated disturbances with mean zero, and its variance

is σ2
MR4t.
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Based on equation (11), the terms of the measurement equation (18) are given as:

Ct = [(1− e−κMRTi)α∗ +
σ2
MR

4κMR

(1− e−2κMRTi)]

Zt = [e−κMRTi ]

i = 1, ..., N . εt in equation (18) represents a vector of serially uncorrelated disturbances with

zero mean and identity variance-covariance matrix.

4.3 The GBM model

In this one-factor model, the spot price is the unobserved state variable, x = [X]. Based

on equation (13), the terms of the transition equation (17) in the state space form can be

expressed as:

dt =
[
(µGBM − δGBM −

σ2
GBM

2
)4t

]
Tt = [1]

ηt in equation (17) denotes serially uncorrelated disturbances with mean zero, and its variance

is σ2
GBM4t.

Based on equation (16), the terms of the measurement equation (18) are given as:

Ct = [(r − δGBM)Ti]

Zt = [1]

i = 1, ..., N . εt in equation (18) represents a vector of serially uncorrelated disturbances with

zero mean and identity variance-covariance matrix.

5 The Schwartz (1998) one-factor long-term model

Schwartz (1998) develops a one-factor model which is simpler than the two-factor model an-

alyzed in Schwartz (1997) in terms of valuing long-term commodity-related investments, but
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it closely matches the performance of the two-factor model in terms of fitting the term struc-

ture of long term futures prices and the volatilities of all futures contracts. Schwartz (1998)

calls it the long-term model. In this section, the one-factor long-term model is summarized.11

All the parameters in this long-term model are derived from the parameter estimates in the

Schwartz (1997) two-factor model.

The motivation for this one-factor long-term model is to match as closely as possible

the risk-neutral distribution of the spot prices in the Schwartz (1997) two-factor model. In

the risk-neutral world, the spot prices in the two-factor model are lognormally distributed

with mean equal to the futures price and variance depending on the volatility of futures

returns.12 Schwartz (1998) applied his one-factor long-term model to oil and was able to

fairly accurately generate long-term futures prices and the term structure of the futures

volatilities.

The long-term model uses a composite price, denoted Z, as the single stochastic state

variable.13 Z depends on the two stochastic factors, spot price S and convenience yield δ,

as follows:14

Z(S, δ) = Se[
c−δ
κ
− σ2

δ
4κ3 ] (27)

c is defined as the constant convenience yield used to match the long-term rate of change in

the futures prices and is expressed as

c = α− λ

κ
− σ2

δ

2κ2
+
ρσsσδ
κ

(28)

Given S, δ, and the model parameters, Z can be calculated based on Equation (27). Z

is defined in such a way that the futures prices of this one-factor model F (Z, T ) match the

long-term futures prices of two-factor model F (S, δ, T ), given the constant convenience yield

expressed in Equation (28). It may be noted from Equation (27) that Z is increasing in S

and decreasing in δ.

11For the convenience of readers, the derivation of this long-term model is provided in Appendix A.
12See Schwartz (1998).
13In Schwartz (1998), Z is referred to as the shadow price.
14This expression is slightly different than the corresponding Equation 17 in Schwartz (1998).
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In order to match the volatility of futures returns between the one-factor long term model

and the two-factor model, the stochastic differential equation followed by Z is given as:

dZ

Z
= (r − c)dt+ σF (t)dz (29)

where σF (t) represents the volatility of the futures returns based on the Schwartz (1997)

two-factor model and is derived as

σ2
F (t) = σ2

s + σ2
δ

(1− e−κt)2

κ2
− 2ρσsσδ

(1− e−κt)
κ

(30)

Therefore, the futures price, F , with maturity T and the composite spot price Z, in this

one-factor long-term model can be expressed as:

F (Z, T ) = Ze(r−c)T (31)

This long-term model devised by Schwartz (1998) is much easier to use in valuing in-

vestment opportunities because there is only one stochastic variable, the composite price

Z. Schwartz (1997) found that for oil prices the performance of this one-factor model in

terms of fitting the long-term futures prices and the term structure of futures volatilities is

comparable with that of the two-factor model. We investigate whether the long term model

also works for lumber prices.

6 Estimation results

The prices of four lumber futures contracts are used for model estimation and their main

characteristics are detailed in Section 2. In this section, the estimation results of one-factor

and two-factor models analyzed in this paper are presented and the corresponding model

performance is examined. In addition the futures prices implied by the long-term model and

the two-factor model are compared to determine whether the former provides a reasonable

approximation of the latter.
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µ κ α σs σδ ρ λ

Estimates -0.124 2.089 -0.142 0.397 0.824 0.934 -0.212

Std. Error (0.107) (0.136) (0.107) (0.014) (0.049) (0.008) (0.227)

LL 6471.7

Table 3: Parameter estimates of Schwartz (1997) two-factor model using Kalman filter.

LL refers to the value of log-likelihood function. Weekly futures prices, from January 6th,

1995 to April 25th, 2008.

6.1 The two-factor model

The parameter estimates of the two-factor model, Equation (1), using weekly futures prices

are reported in Table 3. The estimate of the correlation coefficient, ρ, is above 0.9 and is

statistically different from zero. This result implies that convenience yield is an important

factor affecting lumber price dynamics. The positive estimate of ρ is consistent with the

theory of storage and helps to explain the mean reverting feature of lumber prices observed

in Figure 1. The estimate of the mean reversion rate, κ, for the convenience yield process is

high and significant as well. −ln(0.5)/κ can be interpreted as the half-life of the time it takes

for δ to return to its long run value. With κ = 2.089 we expect the deviation δ from the long

run value will halve in 0.33 years. The estimate of the equilibrium convenience yield level

α is not significantly different from zero, which implies that on average, the net convenience

yield of lumber is about zero. This result is consistent with the theoretical prediction that

in equilibrium, the benefit of holding the physical commodity should be equal to the cost

of storage, which leads to the zero net convenience yield. The estimate of market price of

convenience yield risk, λ, is found to be not significant as well.

Model implied spot prices, S, and market lumber prices proxied by the futures contract

closest to maturity, F1, are plotted in Figure 4. From a visual inspection of this graph it

appears that the model implied prices move very closely with the market spot prices.

Figure 5 plots the two model implied state variables, spot prices and convenience yield.
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Model implied spot prices and market lumber prices
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Figure 4: Plots of model implied (two-factor model) and market spot prices. Blue line:

model implied prices. Red line: market prices.

Item Max Min Mean Std. Dev.

Net convenience yield 1.00 -0.94 -0.14 0.35

Table 4: Descriptive statistics for model implied net convenience yield.

The solid line in this figure denotes the adjusted spot prices and dashed line represents the

convenience yield. This figure shows that spot prices and convenience yield tend to move

together, confirming the estimation result of a high and positive correlation coefficient ρ.

From this figure, we also notice that the net convenience yield can be negative or positive

and fluctuates around zero in the range of [−1, 1]. Whenever convenience yield exceeds

higher than storage cost, net convenience yield is positive. Conversely, if storage cost exceeds

convenience yield, net convenience yield will be negative. In the long-run, convenience yield

should be approximately equal to storage cost. Summary statistics of net convenience yield

are provided in Table 4.

Model estimation errors of both futures prices and log futures prices including Root Mean
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Figure 5: Solid line: model implied spot prices. Dashed line: model implied convenience

yield.
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Schwartz (1997) two-factor model

F1 F2 F3 F4 All

Calibration errors of futures prices

RMSE 13.664 1.764 4.719 3.600 7.501

MAE 9.701 1.327 3.547 2.711 4.322

Calibration errors of log futures prices

RMSE 0.031 0.004 0.011 0.009 0.017

MAE 0.023 0.003 0.008 0.006 0.010

Table 5: Average estimation errors of both futures prices and log futures prices of Schwartz

(1997) two-factor model expressed as RMSE and MAE of 4 futures contracts, Cdn$/MBF.

Square Error (RMSE) and Mean Absolute Error (MAE) expressed in dollars per thousand

board feet for four futures contracts are reported in Table 5. The overall average error of

model implied futures prices from the last column is less than $8/MBF which is about 1.8%

of the mean lumber spot price. The overall average errors of log futures prices expressed in

both ways are less than two cents per thousand board feet. It appears that the two-factor

model provides a good tracking of the lumber futures time series. Plots of market futures

prices and the model implied futures prices for the four futures contracts are shown in Figure

6. Again, the graphs display a reasonably close fit of the model prices versus actual prices.

6.2 One-factor mean reverting model

Parameter estimates for the single-factor model are reported in Table 6. From this table we

find that all the model parameters are statistically significant except for the market price

of risk λMR. The long-run equilibrium log price level µMR −
σ2
MR

2κMR
= 6.206 which implies a

value for S of $496 per MBF. The mean reverting rate κMR is moderate at 0.229. Model

implied and market lumber spot prices are plotted in Figure 7. The average error (RMSE)

for all four futures maturities is $17.8 per MBF which is larger than for the two-factor model.
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Figure 6: Plots of model implied and market futures prices for the two-factor model and

the four chosen futures contracts. Weekly data from January 6th, 1995 to April 25th, 2008.

Units are $Cdn per MBF. Blue line: model implied futures prices. Red line: market futures

prices.
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µMR κMR σMR λMR

Estimates 6.323 0.229 0.231 0.007

Std. Error (0.297) (0.031) (0.009) (0.284)

LL 5343.2

Table 6: Parameter estimates of Schwartz (1997) one-factor model using Kalman filter.

LL refers to the value of log-likelihood function. Weekly futures prices, from January 6th,

1995 to April 25th, 2008.

µGBM σMR δGBM

Estimates -0.065 0.215 -0.027

Std. Error (0.058) (0.006) (0.004)

LL 5145.2

Table 7: Parameter estimates of GBM model with convenience yield using Kalman filter.

LL refers to the value of log-likelihood function. Weekly futures prices, from January 6th,

1995 to April 25th, 2008.

More details are provided in Appendix B.

6.3 The GBM model

Parameter estimates for the GBM model with constant convenience yield are reported in

Table 7. The drift term µGBM is negative, but not statistically significant. The constant

convenience yield δGBM is small in magnitude. Model implied and market lumber spot prices

are plotted in Figure 8. The average RMSE for all maturities is $19.3 per MBF. Details are

provided in Appendix B.

6.4 The one-factor long-term model

Since the single factor long-term model proposed in Schwartz (1998) is a mathematical

transformation of the two-factor model, the model parameters are the same for the two
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Model implied spot prices and market lumber prices - One-factor mean reverting model
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Figure 7: Plots of model implied and market spot prices: one-factor mean reverting model.

Blue line: model implied prices. Red line: market prices.

Model implied spot prices and market lumber prices - GBM with constant convenience yield
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Figure 8: Plots of model implied and market spot prices: one-factor GBM model with

constant convenience yield. Blue line: model implied prices. Red line: market prices.
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Max Min Mean Std. Dev. Skewness Kurtosis

Cdn (2005) $/MBF 558.6 239.2 428.1 77.73 -0.48 2.37

Table 8: Descriptive statistics for the composite spot prices Z of one-factor long-term

model.

Composite spot prices and model implied spot pirces

S
po

t p
ric

es
 (C

dn
$/

M
B

F)

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

20
0

30
0

40
0

50
0

60
0

70
0

Figure 9: Plots of composite spot prices and model implied spot prices. Solid line: com-

posite spot prices; dotted line: model implied spot prices.

models. Specifically, the constant convenience yield, c, based on Equation (28) is 0.028.

Table 8 shows descriptive statistics for the composite spot price Z of this long-term model.

Comparing this table with Table 1, we find that the range of the true spot price is wider

than the composite spot price and the composite prices is less volatile than the market spot

price. A plot of composite spot prices and model implied spot prices is provided in Figure 9.

The composite price shown in this graph is less volatile than the model implied spot price.

For a given maturity T , model implied futures prices of both the two-factor model and

the long-term model can be derived based on Equations (5) and (31) respectively. We are

interested in the performance of the long-term model in terms of fitting long-term commodity
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Differences in model implied futures prices ($/MBF)

between the two-factor model and the long-term model

F1 F2 F3 F4 F1-F4 average

RMSE 58.83 41.69 29.73 21.52 40.45

MAE 48.43 34.26 24.27 17.35 31.08

F5 F6 F7 F8 F5-F8 average

RMSE 11.47 8.71 8.75 8.72 9.49

MAE 8.99 8.45 8.59 8.57 8.65

F9 F10 F11 F12 F9-F12 average

RMSE 8.68 8.63 8.59 8.55 8.61

MAE 8.53 8.49 8.45 8.40 8.47

Table 9: Differences of model implied futures prices with different maturities for two

models.

derivatives prices compared to that of the two-factor model. To this end, model implied

futures prices with the maturities up to 8 years are calculated for both models. Note that

beyond one year there are no actual futures prices that can be used for comparison. The

differences expressed in RMSE and MAE of the model implied futures prices with different

maturities between the two-factor model and the long-term model are reported in Table 9.

The average difference for long term futures contracts (with maturities from 5 years to 8

years) is less than $9, which is about 2% of the mean futures prices. This result further

confirms the close match of these two models in terms of generating long maturity futures

prices. Plots of the model implied futures prices with different maturities for these two

models are provided and compared in Appendix C.
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7 Analysis of a forestry investment

In this section we model the optimal decision of the owner of a stand of trees who seeks to

maximize the value of the stand (or land value) by optimally choosing the harvest time. It is

assumed that forestry is the best use for this land, so that once the stand is harvested it will

be allowed to grow again for future harvesting. This multi-rotational harvesting problem can

be classified as an impulse control problem since the payout from harvesting is unknown prior

to harvesting (Phan, 2005). Determining the value of the stand and the optimal harvesting

decision requires the numerical solution of a Hamilton-Jacobi-Bellman (HJB) variational

inequality.

Some of the details of this timber harvesting problem such as costs and the growth curve

for wood volume have been used in other papers including Chen and Insley (2008), Insley and

Rollins (2005) and Insley and Wirjanto (2010). The latter two papers use a simple one factor

mean reverting process for price, while Chen and Insley (2008) examine a regime-switching

model.

7.1 Cost, wood volume and price data

We consider a harvesting problem for a hypothetical stand of Jack Pine trees in Ontario’s

boreal forest assuming that the stand is used for commercial forestry. Values are calculated

prior to any stumpage payments or taxes.

Timber volumes and harvesting costs are adopted from Insley and Lei (2007) and are

repeated here for the convenience of the reader. Volume and silviculture cost data were kindly

provided by Tembec Inc. The estimated volumes reflect ‘basic’ levels of forestry management

which involves $1040 per hectare spent within the first five years on site preparation, planting

and tending. These costs are detailed in Table 10. Note that in the Canadian context these

basic silviculture expenses are mandated by government regulation for certain stands. We

assume that harvesting is not permitted before age 35 once all silvicultural expenditures

have been made.

30



Item Cost, $/ha Age cost incurred

Site preparation $200 1

Nursery stock $360 1

Planting $360 2

First tending $120 5

Monitoring $10 35

Table 10: Silviculture costs under a basic regime

Volumes, estimated by product, are shown in Figure 10 for the basic silvicultural regime.15

SPF1 and SPF2 are defined as being greater than 12 centimeters at the small end, SPF3 is

less than 12 centimeters, and ‘other’ refers to other less valuable species (poplar and birch).

Data used to plot this graph is provided in ?.

Assumptions for harvesting costs and current log prices at the millgate are given in Table

11. These prices are considered representative for 2003 prices at the millgate in Ontario’s

boreal forest. Average cost to deliver logs to the lumber mill in 2003 are reported as $55 per

cubic meter in a recent Ontario government report (Ontario Ministry of Natural Resources,

2005). From this is subtracted $8 per cubic meter as an average stumpage charge in 2003

giving $47 per cubic meter.16 It will be noted the lower valued items (SPF3 and poplar/birch)

are harvested at a loss. These items must be harvested according to Ontario government

regulation. The price for poplar/birch is at roadside, so there is no transportation cost to

the mill.

15The yield curves were estimated by Margaret Penner of Forest Analysis Ltd., Huntsville, Ontario for

Tembec Inc. The raw data are provided in Insley and Wirjanto (2010).
16This consists of $35 per cubic meter for harvesting and $12 per cubic meter for transportation. Average

stumpage charges are available from the Ontario Ministry of Natural Resources.
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Figure 10: Volumes by product for hypothetical Jack Pine stands in Ontario’s boreal forest

under basic management

Harvest and transportation cost $47

Price of SPF1 $60

Price of SPF2 $55

Price of SPF3 $30

Price of poplar/birch $20

Table 11: Assumed values for log prices and cost of delivering logs to the mill in $ per

cubic meter
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7.2 Optimal harvesting with different price models

Ideally we would solve the optimal harvesting problem using the two-factor model with

stochastic price and convenience yield. However this requires the numerical solution of a

complex HJB variational inequality with three state variables (price, volume and convenience

yield). We have shown that the performance of the long-term model introduced in Schwartz

(1998) is comparable to that of the two-factor model in terms of matching long run futures

prices. We therefore analyze the forest investment problem using the long-term model with

the composite price as the single stochastic variable. The results from the long-term model

will be compared with those from the single factor mean reverting and GBM models. In

the following sections, the HJB variational inequality is specified for the three different price

models.

7.2.1 The long-term model

In the single-factor long-term model, based on the stochastic process describing the composite

price Z in Equation (27), the value of the stand of trees is denoted as V (Z, ϕ, t). At each

period the stand owner makes the choice either to harvest the stand immediately or let

the trees grow for another period and then reconsider whether or not harvesting should be

undertaken. If the stand is harvested the stand owner receives revenue from selling the timber

equal to [(S − Ch)Q(ϕ) + V (Z, 0, t)]. This it the price of timber, S, less per unit harvesting

costs, Ch, times the quantity of timber, Q(ϕ), which is a function of age, Q = g(ϕ). In

addition the stand owner receives an asset equal to V (Z, 0, t) which refers to the value of the

bare land when the stand is of age zero. If the stand owner chooses to delay harvesting for

another period, he receives the value of the land, V (Z, ϕ, t). Using standard no-arbitrage

arguments, when it is optimal to delay harvesting (in the continuation region) the value of

the stand satisfies the following PDE:

Vt + (r − c)ZVZ +
1

2
(σF (t)Z)2VZZ + Vϕ − rV = 0 (32)
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where the variance of the futures returns σF (t) is time dependent and is given in Equation

(30). Rewrite the PDE Equation (32) as:

HV ≡ rV − (Vt + (r − c)ZVZ +
1

2
(σF (t)Z)2VZZ + Vϕ) (33)

Then the HJB variational inequality characterizing the full optimal harvesting problem can

be expressed as:

(i) HV ≥ 0 (34)

(ii) V (Z, ϕ, t)− [(S − Ch)Q(ϕ) + V (S, 0, t)] ≥ 0

(iii) HV

[
V (Z, ϕ, t)− [(S − Ch)Q(ϕ) + V (S, 0, t)]

]
= 0

Equation (34) implies if the stand of trees is managed optimally either HV , V (Z, ϕ, t) −

[(S −Ch)Q(ϕ) + V (S, 0, t)], or both will be equal to zero. If HV = 0 and V (Z, ϕ, t)− [(S −

Ch)Q(ϕ) + V (S, 0, t)] > 0, it is optimal for the investor to continue holding the option by

delaying the decision to harvest. In this case growing stand of trees is earning the risk free

return and the value of the stand is greater than the payout the owner would receive from

harvesting. On the other hand, if HV < 0 and V (Z, ϕ, t)− [(S −Ch)Q(ϕ) + V (S, 0, t)] = 0,

then the value of the stand of trees just equals the value of immediate harvest. The owner

is not earning the risk free return from maintaining the standing timber and should harvest

the trees. If both parts (i) and (ii) in Equation (34) are equal to zero, either strategy is

optimal. Equation (34) may be written more compactly as:

min

{
HV ;

[
V (Z, ϕ, t)− [(S − Ch)Q(ϕ) + V (S, 0, t)]

]}
= 0 (35)

No analytical solution exists for Equation (35). We solve it numerically, using a fully implicit

finite difference method with semi-Lagrangian time stepping.17 Like an American option the

holder of the option to harvest the stand of trees can exercise the option at any time. It

17Details of semi-Lagrangian time stepping are found in Insley and Rollins (2005) and d’Halluin et al.

(2005). In Insley and Rollins (2005) semi-Lagrangian time stepping is referred to as the method of charac-

teristics.
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is always optimal to exercise the option if its value falls below the payoff. This is the so-

called American constraint, which is implemented in the numerical solution using the penalty

method.18

7.2.2 Single-factor models

For the one-factor mean reverting model, the value of the stand of trees, V (S, ϕ, t), satisfies

the following PDE in the continuation region:

Vt + κMR(µMR − λMR − lnS)SVS +
1

2
(σMRS)2VSS + Vϕ − rV = 0 (36)

The HJB equation can be expressed as in Equation (35), except that the HV is defined as:

HV ≡ rV − (Vt + κMR(µMR − λMR − lnS)SVS +
1

2
(σMRS)2VSS + Vϕ)

For the GBM model, the value of the stand of trees, V (S, ϕ, t), satisfies the following

PDE in the continuation region:

Vt + (r − δGBM)SVS +
1

2
(σGBMS)2VSS + Vϕ − rV = 0 (37)

HV in this case is defined as:

HV ≡ rV − (Vt + (r − δGBM)SVS +
1

2
(σGBMS)2VSS + Vϕ)

As with the long term model, the HJB equations for these single-factor models are solved

numerically.

7.3 Results for land value and critical harvesting prices

In this section we present results for each of the lumber price models in terms of the value

of the stand of trees (land value) and the critical prices at which it is optimal to harvest. As

discussed earlier, the spot price data used to parameterize the models is approximated by the

18Details on the penalty method approach are provided in Insley and Rollins (2005) and Forsyth and

Vetzal (2002)
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CME random lengths futures price for the nearest maturity date. To value a hypothetical

stand of trees in Ontario, the long run equilibrium price (µMR in Equation (9)) needs to

be scaled to reflect Ontario prices at the millgate. Our estimate of price at the millgate in

2003 for SPF1 logs is Cdn.$60 per cubic meter. In 2003 the average spot price proxied by

the price of futures contract closest to maturity was Cdn. $375 per MBF. We used the ratio

of 375/60 as a rough adjustment factor to scale the equilibrium price levels. This rescaling

accounts for transportation costs and milling costs (as well as the conversion from MBF to

m3).

For the one-factor long-term model, the middle curve in Figure 11 shows how the bare

land value (a stand age of zero) changes with the composite lumber price, Z. We observe

that land value increases with Z. For example, when the composite price is $50/m3, the land

is worth $1147 per hectare. This rises to $1559/ha when the composite price is $60. This

makes sense since Z is defined to be increasing in S and decreasing in δ (recall Equation

(27)). In line with finance theory, the value of a call option increases with spot price and

decreases with the dividend. In our forestry investment problem, the bare land value is like

a call option and the convenience yield is like the dividend. Land values for different stand

ages are plotted in Figure 12. The land becomes more valuable as the trees mature and as

Z increases.

We are more interested in the relationship of land value with spot price S rather than

with our constructed composite price. One of the disadvantages of using the long term model

is that this relationship is obscured. However we note from Table 4, that net convenience

yield fluctuates in the range of [−1, 1]. Given the land value estimate for each Z, we can

back out what the implied spot price would be when convenience yield is at either +1 or -1.

This gives us a range for land values versus spot price which are shown as the dashed and

dotted curves in Figure 11. For example, when Z = $50, land value is $1150. If δ = −1,

the spot price consistent with that Z and land value is $31. If instead δ = 1, the implied

spot price must be higher at $81. The logic here is that a higher convenience yield implies

that it is more beneficial to hold the harvested lumber rather than trees “on the stump”,
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Figure 11: Land values v.s. composite price (Z) or spot price for stand age 0. For land

values versus the spot price, δ is set at upper and lower limits of +1 and -1

so the option to harvest is actually worth less. Hence a higher spot price is required to be

consistent with a land value of $1150. Figure 11 also implies that given a certain level of

convenience yield, land value increases with lumber prices. Moreover, this graph indicates

that the combination of high convenience yield and low spot price will lead to low land value

and the combination of low convenience yield and high price will generate high land value.

Figures 13 and 14 show land value versus the lumber spot price for the mean reverting

and GBM models. We observe that for the MR process at a stand age of zero, land value is

insensitive to spot price. This follows from the fact that the estimated long run equilibrium

price is constant and the speed of mean reversion is a moderate 0.229 (implying a half life to

return to this value of three years.) At a stand age of zero, the trees will not be harvested for

at least 35 years, so that with this price model we expect to be back at the long run mean

by the harvest date.19 As the stand age increases, land value becomes positively related to

19This result is consistent with the findings in Insley and Rollins (2005) in which a slightly different mean
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Figure 12: Land values v.s. composite prices for different stand ages.

spot price, since the stand may be harvested within a few years.

The GBM results are very different from the MR and long run models. At a lumber

price of $50, the GBM model gives a land value of $199 million per hectare compared to

around $5900 for the MR model. The GBM land values are also much greater than the

range given for the long-term model. At a $50 spot price land value in the long run model

ranges from around $500 for δ = −1 to around $2500 for δ = 1. The large land value for

GBM is consistent with the estimated parameter values. The risk adjusted drift rate for S

in the GBM model is r − δ which works out to [0.023− (−0.027)] = .05 from the estimates

reported in Table 7. This exceeds the assumed riskfree discount rate of 2.3%.

In addition to land value, we are also concerned with critical harvesting prices which

indicate when it is optimal to harvest. The middle curve in Figure 15 shows the critical

composite price versus stand age for the long-term model. We see the critical Z value is

reverting process was used.
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stands of various ages.
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about $120 per m3 at age 70 and declines to reach a steady state of around $90 per m3.

Based on the relationship amongst the spot price, convenience yield, δ, and composite price

Z shown in Equation (27), we can calculate a range for the corresponding critical spot prices

by substituting in the range of convenience yield. The upper and lower lines in Figure 15

show the corresponding upper and lower bounds of the critical spot prices for the long-term

model. The upper line reflects critical S if δ = 1 and the lower line reflects the critical S if

δ = −1.

Our long term model is an approximation of the results that would be produced by the

two-factor model. For intuition about the upper and lower bounds in Figure 15, we consider

the relationship between the convenience yield and the spot price in the two-factor model.

Referring to Equation (2), when δ is at its lower bound of -1, this implies the current drift

rate of S is relatively high, but it is known that δ will be pulled up quickly in the future to

its long run value. In this circumstance the critical prices are relatively low since the future

reward for holding harvested lumber will increase while the reward for holding standing trees

will decrease. With the high drift rate of S, given this lower bound of convenience yield δ, the

land owner should also take advantage of the high future spot prices to harvest at a relatively

low critical price. When δ = 1 this implies the expected growth rate in S is relatively low,

but it is expected that δ will revert back to its long run mean fairly quickly. This implies

that the growth rate of S will increase in the future. Therefore, unless the current spot price

is quite high, it is not optimal to harvest. By delaying the harvest the owner of the stand

puts off paying harvesting costs and can take advantage of expected future growth in lumber

prices.20

Figure 16 shows the critical harvesting prices for the MR single-factor model as well as

the range of critical prices for the long-term model. Critical prices generated by the mean

reverting and long-run models decrease with the stand age. When the trees are young and

growing fairly rapidly it makes sense to delay harvesting, so that the critical prices that

trigger harvesting are higher. Once tree growth declines we reach an approximate steady

20We assume people are rational and forward looking in this economy.
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state for the critical harvest price.

The critical harvest prices for the MR case lie between the upper and lower bounds for

the long run model case. For the MR model there are critical prices defined from age 35

and onward, whereas for the long run model critical prices are defined from age 70 onward.

This implies that for the MR model if the spot price hits a very high value it is worthwhile

harvesting even though the trees are still very young and growing rapidly. This follows

from the assumption of a fixed equilibrium price in this model which make it beneficial

to take advantage of any short term price surges. For the long run model, on the other

hand, it would never be optimal to harvest before the trees are 70 years of age. In terms of

the stochastic process followed by Z, Equation (29), the drift is a small negative number:

r − c = 0.023 − 0.028 = −0.005. The expected return from holding the trees therefore

comes from volume growth rather than any expected upward drift in Z. Hence with the long

run model it is not optimal to harvest before age 70 while the volume growth rate is still

strongly positive, no matter what the price. Referring to Figure 10 it may observed that

volume growth is highest in the years before age 70.

There are no critical prices for the GBM case, implying it would never be optimal to

harvest the stand. This is a result of the negative convenience yield which implies a drift

rate in the risk neutral world that exceeds the riskless interest rate. (Note that after age 255

it is assumed that wood volume in the stand of trees remains constant.)

In reviewing the results we note some significant differences between the three models.

Bare land values (i.e. a stand age of zero) for the long run model increase with the current

lumber price whereas for the MR model bare land value is insensitive to the current price.

It is interesting that for the GBM model, the parameter values that result from the Kalman

filter estimation produce land values that are so different from the other two models. The cost

and mill gate price for this hypothetical Ontario stand of trees is based on 2003 information.

Through personal communication with Tembec staff we obtained some actual land sale data

for 2003 in the Ontario region which the timber volume curves apply. The land was marginal

agricultural land which was being purchased for reforestation. The average land sale price
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was around $1100 per hectare. We therefore feel confident in concluding that the GBM

results are not reasonable. The land values given by the MR and long-term model are at

least the right order of magnitude.

It is significant that the MR model recommends harvesting at much younger stand ages

than the long-term model. The composite price in the long-term model is summarizing

the long run relationship between convenience yield and spot price. We saw previously

that the two-factor model provided a better match of market futures prices than the single

factor mean reverting model. The performance of long-term model and two-factor model in

terms of fitting long-term market data are comparable. In addition economic theory tells us

convenience yield is an important consideration for pricing in commodity markets such as

lumber. Hence it seems reasonable to have more confidence in the results of the long-run

model, than in the simple MR model in which the implied convenience yield is constant.

8 Concluding remarks

This paper investigates the importance of modeling the stochastic convenience yield of lumber

in the context of an optimal tree harvesting problem. Schwartz (1997) proposed a stochastic

model of commodity prices with both spot price and convenience yield as stochastic factors.

In the first part of the paper, we examine the performance of this two-factor model in terms

of its ability to characterize the price of lumber derivatives . The estimation result shows that

there is a positive and significant correlation between lumber prices and convenience yield.

This two-factor model also provides a good model fit in terms of explaining the dynamics of

lumber derivatives relative to two other models which impose a constant convenience yield.

In the second part of the paper, we examine the impact of stochastic convenience yield on

a multi-rotational optimal harvesting problem. This impulse control problem is characterized

as an HJB variational inequality in which the payout from harvesting depends on three state

variables: lumber price, convenience yield and stand age. To simplify the solution of the

harvesting problem, we use the result of Schwartz (1998) who proposes a one-factor model
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(called the long-term model) which retains most of the characteristics of his two-factor model,

especially its ability to fit long-term futures prices. The HJB equation derived using this

one-factor model is solved numerically using the fully implicit finite difference method with

semi-Lagrangian time stepping. We compare the results of the long term model with two

single factor models are common in the literature: a mean reverting model and geometric

Brownian motion.

The result shows that including the effect of convenience yield through the long-term

model has an important impact on long-term forestry investment decisions. Land values

and critical harvesting prices were significantly different across the three models. The GBM

model gave excessive land values. The single factor mean reverting model gave land values

of a reasonable order of magnitude, but under MR model harvesting would potentially occur

at much earlier stand ages than with the long-term model.

The results for the long-term model also showed that the critical harvesting prices varied

significantly depending on the assumed value of the convenience yield. The higher the con-

venience yield, the higher the spot price that land owner requires to harvest the trees. This

follows from the interaction of the convenience yield and the spot price. A high convenience

yield today implies a lower convenience yield in the future and also a higher expected growth

rate for the spot lumber price. Hence with a high convenience yield, the critical price that

induces harvesting is relatively high, and we expect that the stand will be harvested at a

later date than for a lower convenience yield.

A natural extension of this research is to solve the HJB variational inequality for the full

two-factor problem and compare with the long-run model results. This will be left for future

research.

A criticism of both the two-factor model and the long-run model is that the forest owner is

required to know what the convenience yield is to formulate his optimal harvesting strategy.

Convenience yield is not easily observable, but it can be calculated from futures prices. More

informally, one could imagine a forest owner taking into account convenience yield in a more

intuitive fashion. If lumber inventories are very low and markets are buoyant, players in
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the market would be aware that there is a benefit to holding an inventory of logs - i.e.

convenience yield is high.

In conclusion, our results demonstrate that convenience yield has an important effect on

the optimal harvesting decision and that it is worthwhile using a richer model, such as the

long-term model used in this paper, when analyzing forest investment decisions, rather than

relying on simple single factor models.
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A Derivation of Schwartz (1998) long-term model

Schwartz (1998) derives the one-factor long-term model based on the basic one-factor GBM

model with constant convenience yield. Specifically, the spot price in the basic model follows

GBM:

dS = (r − c)Sdt+ σSdZ (38)

where c is the constant convenience yield.21 Hence the futures price of this basic one-factor

model F (S, T ) can be derived as:

F (S, T ) = Se(r−c)T (39)

Based on Ito’s Lemma, the futures return can be derived as dF
F

= σdZ. Its volatility is

V ar( dF
F

)

dt
=

E[( dF
F

)2]

dt
= σ, which is the same as the volatility of spot prices. The rate of change

of the futures price22 in this model is

∂F/∂T

F
= r − c (40)

The futures price of the two-factor model F (S, δ, T ) is given in Equation (5). The rate

of change of the futures price in this two-factor model can be derived as:

∂F/∂T

F
= r − α̂ +

σ2
δ

2κ2
− ρσSσδ

κ
+
e−2κT

2κ2
+ [α̂κ+ ρσSσδ −

σ2
δ

κ
]
e−κT

κ
− δe−κT

As time goes to infinity T →∞, this rate will converge to:

∂F/∂T

F T→∞
= r − α̂ +

σ2
δ

2κ2
− ρσSσδ

κ
(41)

21All the stochastic processes in this part are expressed in the risk-neutral world.
22See Schwartz (1997).
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Comparing Equations (40) and (41), if we define the constant convenience yield c = α̂ −
σ2
δ

2κ2 + ρσSσδ
κ

in the long-term model, the rate of change of futures prices in long-term model

will converge to that in two-factor model.

With this rate of change r − c, the composite price Z(S, δ) is constructed to match

the futures prices of two-factor model F (S, δ, T ) based on the formula for futures prices23

F (Z, T ) = Ze(r−c)T . Hence, Z can be derived as:

Z(S, δ) = lim
T→∞

e−(r−c)TF (S, δ, T )

= Se
c−δ
κ
− σ2

δ
4κ3 (42)

Given this composite price, Z, expressed in Equation (42), combined with the defined con-

stant convenience yield c, this long-term one-factor model can generate futures prices F (Z, T )

which closely match the long-term futures prices in the two-factor model F (S, δ, T ).

Applying Ito’s lemma to Equation (5), the futures return in the two-factor model can be

derived as:

dF

F
= σSdZS − σδ

1− e−κT

κ
dZδ

Hence, the volatility of the futures return for this two-factor model is:

σ2
F (T ) =

V ar(dF
F

)

dt
= σ2

S + σ2
δ

(1− e−κT )2

κ2
− 2ρσSσδ

1− e−κT

κ
(43)

Define the stochastic differential equation of composite price Z as:

dZ = (r − c)Zdt+ σF (t)Zdz (44)

Therefore, the volatility of the futures return in this long-term model is the same as that in

two-factor model.

B Model comparison

This section compares model performances of single-factor models with that of two-factor

model in terms of fitting market prices. Model estimation errors including RMSE and MAE

23In this expression, T →∞ due to the convergence of rate of change to r − c.
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Single-factor mean reverting model

F1 F2 F3 F4 All

Calibration errors of futures prices

RMSE 31.217 14.065 0.068 9.650 17.787

MAE 23.651 10.860 0.054 7.175 10.435

Calibration errors of log futures prices

RMSE 0.070 0.032 0.000 0.023 0.040

MAE 0.056 0.026 0.000 0.017 0.025

Table 12: Estimation errors of both futures prices and log futures prices of Schwartz

(1997) single-factor model expressed as RMSE and MAE of 4 futures contracts,

Cdn$/MBF.

of the three one-factor models analyzed in this paper are provided here. Plots of model

implied futures prices and market futures prices are also shown in this section.

B.1 One-factor mean reverting model

Estimation errors of the one-factor mean reverting model including the Root Mean Square

Error (RMSE) and Mean Absolute Error (MAE) are reported in Table 12. Comparing this

table with Table 5 we find that except for the third futures contract F3, the errors of the

futures contracts expressed in both ways for two-factor model are lower than those for the

one-factor mean reverting model. This indicates the better performance of the two-factor

model in terms of fitting market lumber derivative prices.

Plots of market futures prices and the model implied futures prices for the four futures

contracts are shown in Figure 17. We observe the close match between these two time series.

But comparing this figure with Figure 6 we find that except for the futures contract F3, the

differences between the two futures prices for the other three futures contracts are higher for

the one-factor mean reverting model.
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Figure 17: Plots of model implied and market futures prices for the four chosen futures

contracts. Weekly data from January 6th, 1995 to April 25th, 2008. Blue line: model

implied futures prices. Red line: market futures prices.
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Single-factor GBM model

F1 F2 F3 F4 All

Calibration errors of futures prices

RMSE 33.761 15.260 0.000 10.570 19.264

MAE 26.123 12.093 0.000 8.080 11.574

Calibration errors of log futures prices

RMSE 0.079 0.036 0.000 0.024 0.045

MAE 0.063 0.029 0.000 0.019 0.028

Table 13: Estimation errors of both futures prices and log futures prices of one-factor

GBM model with constant convenience yield expressed as RMSE and MAE of 4 futures

contracts, Cdn$/MBF.

B.2 GBM model

Estimation errors of one-factor GBM model with constant convenience yield are reported

in Table 13. We find that except for the third futures contract F3, the errors of the rest

futures contracts expressed in both ways for the two-factor model are lower than those for

the GBM model. This indicates the better performance of the two-factor model in terms of

fitting market lumber derivative prices.

Plots of market futures prices and the model implied futures prices for the four futures

contracts are shown in Figure 18. We can also find the close match between these two time

series. But comparing this figure with figure 6 we find that except for the futures contract

F3, the differences between the two futures prices for the rest three futures contracts are

higher for the GBM model.

C Long-term model performance

Figures 19, 20 and 21 show the model implied futures prices with different maturities for

the two-factor model and the long-term model. Comparing these three plots we observe
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Figure 18: Plots of model implied and market futures prices for the four chosen futures

contracts. Weekly data from January 6th, 1995 to April 25th, 2008. Blue line: model

implied futures prices. Red line: market futures prices.

55



F1: T = 1 month

0 200 400 600

20
0

30
0

40
0

50
0

60
0

70
0

F2: T = 3 months

0 200 400 600

20
0

30
0

40
0

50
0

60
0

F3: T = 5 months

0 200 400 600

30
0

40
0

50
0

60
0

F4: T = 7 months

0 200 400 600

30
0

40
0

50
0

60
0

Figure 19: Prices in $/MBF of model implied futures contracts with four short-term

maturities for Schwartz (1997) two-factor model and Schwartz (1998) long-term model.

that the differences between the two model implied futures prices are larger for contracts

with short-term maturities and smaller for contracts with long-term maturities. This result

is consistent with the construction of the long-term model introduced in Schwartz (1998)

since the purpose of the long-term model is to match the performance of the two-factor

model analyzed in Schwartz (1997) in terms of fitting the long-term futures prices. The

discrepancy between these two models in terms of generating the short-term futures prices

is not as important in the analysis of a long-term forestry investment.
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Figure 20: Prices in $/MBF of model implied futures contracts with four mid-term ma-

turities for Schwartz (1997) two-factor model and Schwartz (1998) long-term model.

57



F9: T = 5 years

0 200 400 600

25
0

35
0

45
0

55
0

F10: T = 6 years

0 200 400 600

25
0

35
0

45
0

55
0

F11: T = 7 years

0 200 400 600

25
0

35
0

45
0

55
0

F12: T = 8 years

0 200 400 600

25
0

35
0

45
0

55
0

Figure 21: Prices in $/MBF of model implied futures contracts with four long-term ma-

turities for Schwartz (1997) two-factor model and Schwartz (1998) long-term model.
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