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Abstract

We study auctions with outside options that are determined through actions taken

in the external market. Such endogenous outside options have important consequences

for auction design. In contrast to the case of exogenous outside options, auctions

with less information revelation may yield higher revenues. Effects that favor non-

transparent auctions include a small payoff difference between different states, a great

value of information in the continuation problem, and imprecise signals of the bid-

ders. The timing of information revelation is important: it is never optimal to reveal

information after the auction, while it may be optimal before the auction.
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1 Introduction

In many situations information learned in an auction may be valuable in subsequent mar-

ket interaction. We study such auctions to obtain new insights into auction design. In

particular, we consider a situation where the losing bidders have common outside options

provided by an external market, and study whether transparent or opaque auctions yield

higher revenues. We introduce a stylized model to highlight the main trade-offs that shape

the optimal information policy of the auctioneer. There are two risk neutral bidders who

participate in a second price auction with a post-auction market. Both bidders have the

same known valuation  for the good that is sold in the auction. After one of two possible

states of the market is realized, bidders receive private signals that are correlated with the

true state, and submit their bids. The winner obtains the object, while the losing bidder

makes a take it or leave it offer  to a seller he is randomly matched with. The distribution

of the cost of the seller is determined by the state realized, so the state determines the

probability with which the offer of the buyer is accepted. Therefore, the expected payoffs

of the buyer depend both on the state of the world, and the offer he made. A more precise

belief about market conditions allows the losing bidder to make a price offer reflecting those

conditions better, and increases the value of his outside option.

We obtain a new explanation for the prevalence of opaque auctions: Auctioneers may

decrease the information flow to losing bidders to reduce the value of their outside options.

A transparent auction provides a losing bidder with precise information about market

conditions, which improves his outside option. Consequently, the bidders bid less in a

transparent auction, an outcome we refer to as the continuation value effect. Building on

this insight, we show that the auctioneer prefers auctions that reveal as little information

as possible to losing bidders after the auction. Moreover, the auctioneer prefers not to

reveal any information before the auction, and prefers a second-price auction over the more

transparent ascending auction, if and only if the optimal price charged is not very sensitive

to market conditions.

To discuss these results, and understand when opaque auctions may enhance revenues,

it is instructive to compare our model with standard models of common value auctions, and

review a basic design principle for such auctions. The fact that common outside options

introduce common value elements into bidding has been noted before1. Our model has two

1See for example Milgrom and Weber (1982) who discuss why common outside options in the form of

resale introduce common value elements.
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features that resemble common value auctions. First, the bidders have a common outside

option and a common valuation in the original auction. Second, the value of each bidder’s

outside option depends on the likelihood of each state, so each bidder’s utility depends

on the others’ signal. In fact, if the optimal price in the two states are equal, that is

information has no value in the pricing problem, then the auction corresponds to a pure

common value auction as studied in Milgrom and Weber (1982). However, we show that

the common value auction model does not capture the case where the optimal action in

the aftermarket depends on one’s belief about market conditions.

The main insight into auction design for common value auctions is the optimality of

"transparent" auctions as implied by the linkage principle. The intuition for the linkage

principle is that revealing extra information alleviates worries that a bidder only won be-

cause all other bidders had low signals and thus winning may not actually be profitable

(the well known winner’s curse phenomenon). The linkage principle implies that the auc-

tioneer should reveal his information about the object, and also reveal the bids placed. As

a corollary, an ascending auction is preferable to a second price auction.

Our results show that the insight of the linkage principle may be overturned by the

continuation value effect when the value of the outside option depends on the action taken

by the losing bidder. If a piece of information is revealed after the auction (like the winning

bid), then the linkage principle effect is absent since the bidders cannot incorporate such

information into their bids. On the other hand, such information revelation improves

outside options, and thus lowers revenues. If information is revealed before or during

(like in an English auction) the auction, then revenue comparisons are ambiguous. We

provide three conditions under which the revenue consequences of information revelation

are negative: if maximal profits in the two states are similar, if bidders have imprecise

signals, or if the optimal price is very sensitive to market conditions. The intuition is the

following: in the first two cases the linkage principle effect is weak, since bidders are not

subject to winner’s curse, while in the third case the continuation value effect is strong,

and overcomes the linkage principle effect.

Our result that opaque auctions may be revenue-enhancing has further implications.

First, it provides an explanation why intransparent auctions may arise in markets like

e-Bay,2 where the auction designer can make the market more attractive for sellers by

2On e-Bay, it is difficult to gather information about aggregate market conditions, such as information

about past ending prices of close substitutes. In fact, in Germany, it was for a long time impossible to

search for past auctions on e-Bay, see Sailer (2008).
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restricting availability of information about market conditions. Second, it has implications

for the information percolation literature initiated by Duffie et. al. (2007). Our results

highlight the incentives of sellers to employ non-transparent mechanisms, and thus markets

may operate in a much less transparent way than predicted.

We conclude the Introduction with a brief literature review. Our paper provides an

alternative framework to the literature on competing mechanisms3 to study auction design

when the auctioneer competes with other sellers on the market. The literatures on auctions

with resale4 and multi unit auctions5 are also related, because they take post auction

market interaction between bidders seriously. Our companion paper (Lauermann, Merzyn

and Virag (2010)) study an infinite horizon general equilibrium model where each losing

bidder continues to participate in auctions indefinitely. We analyze the bidding pattern

over time, and price and belief dispersion across agents.

2 Model and preliminary analysis

2.1 Setup

The interaction unfolds in three stages. First, the auctioneer and the  bidders receive sig-

nals about the state of the world. Second, the auctioneer runs an auction for an indivisible

object. Third, each losing bidder chooses a price offer in a bilateral bargaining problem.

Information. There are two possible states of the world,  ∈ {}, and the realization
is not observed by the bidders. The probability of the high state is 0. The unknown state

of the world is interpreted as the unknown aggregate market condition. Assume for sim-

plicity that the auctioneer observes the state. The bidders receive private signals that are

correlated with the state, these signals are denoted by 1 2   . In state  the bidders’

signals are distributed independently according to, so, the bidders’ signals are condition-

ally i.i.d.. We assume that  admits a continuous density function . With a signal , the

Bayesian posterior probability of the high state  is 0 ()  ((1− 0)  () + 0 ()).

Without loss of generality assume that the posterior is a strictly increasing function of .

Auction. All bidders participate in the seller’s auction where a single indivisible good

is for sale. We analyze bidding in standard auction formats, including the first-price,

the second-price, and the ascending (English) auction. It is worthwhile to point out that

3See for example McAfee (1993) and Peters (1997) among other papers.
4See for example Hafalir and Krishna (2008), Cheng and Tan (2009) and Garrat and Troger (2007).
5See for example Mezzetti et.al. (2008).
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although the valuations do not depend on the signals, but the bids may, because the signals

influence the beliefs about the state, which influences the option value from losing as it

is described below. Moreover, since bidders generally have different beliefs about their

outside option, they submit different bids in the auction.

Preferences and payoffs. The winning bidder receives the object and pays price , while

the losing bidders do not make any payments in the auctions studied. The valuation for

the object, , is the same for all bidders and publicly known. The utility of the winner is

equal to  −  while that of the losers’ is equal to their continuation payoffs (as defined

below). Note, that the state affects the value of the outside option (as described below),

but not the value of winning.

Outside Option After the auction each losing bidder proceeds to a market where he

makes a take-it-or-leave-it offer  to a seller he is randomly matched with. More precisely, in

state  a losing bidder meets a seller with probability   whose cost  is distributed

according to distribution functions   that are continuous and twice differentiable,

and have a common support [ ]. The offer  belongs to  a closed subset of [ ].6 A

seller with cost  accepts an offer  if  ≤  holds. Therefore, the expected utility of a

buyer who holds belief  and makes an offer  can be written as

( ) = ( − ) [() + (1− )()]

Let () denote the optimal action correspondence,7 and denote the maximized payoff,

the value function by  () = ( − )[() + (1− )()] for some  ∈ (). It

follows from standard arguments from the economics of information that the value function

 is convex, and the maximum theorem implies that  is a continuous function.

Discussion of the continuation utility function

While the matching and production cost parameters (   and   ) have similar

effects on continuation values, they have different implications for our analysis. First,

when only the matching frictions differ (that is  6= , but for all  it holds that

() = () =  ()), then the optimal action does not depend on the beliefs, because

( ) = ( + (1− )) ( − ) (). In this case the outside option is exogenous in

the sense that it is only influenced by the beliefs directly, but there is no adjustment in the

6The requirement that  ⊂ [ ] is without loss of generality, since any offer  ≤  yields zero utility,

while offering more than  is strictly dominated by offering exactly .
7Existence of an optimal decision follows from Weierstrass’s theorem.

5



action when the beliefs change. In this case  is linear, and (as we will see later) our model

becomes a special case of the canonical model of interdependent actions that was introduced

by Milgrom and Weber (1982). For this case they have shown that the auctioneer reveals

all his information to maximize revenues. The main thrust of our analysis is that when

this is not the case (that is when the outside option is endogenous), the auctioneer may

want to conceal his information.

Further notation for the continuation problem

It is convenient to use the notation () () that denotes the utility of a losing

bidder in states  if he takes action , that is () = ( − )() and () =

(−)(). With this notation in hand, one can write ( ) = ()+(1−)(),

and  () = () + (1− )() for some  ∈  (). Let () = max
∈()

() and let

() = min
∈()

(), denote the value from following an action that is optimal at belief

, and it is the action among such optimal actions that yields the best outcome in the

high state, and the worst outcome in the low state.8 As we show it later, the functions

  are well behaved (monotone) functions, and also contain all the payoff relevant

information for the continuation value problem (together with the value function  ), which

makes them very useful for our analysis below.

3 Second Price Auction

To start our analysis of the effects of the information policy on revenues we consider an

auction format that lends itself to a very tractable analysis, the sealed-bid second price

auction. We characterize equilibrium bidding behavior and compare revenues for three

different information policies. First, we consider the case where no information (other

than who won) is released, second we consider the case where the auctioneer reveals his

(perfect) information about the state, and finally we study the policy which reveals the

winning bid instead.

8 If  ∈ () is such that () = (), then it must also hold that () = (), that is the

optimal action that yields the highest utility in state , is also one with the lowest utility in state . If this

was not the case then action  would payoff dominate some action  ∈ () in both states, which would

contradict the fact that  ∈ ().
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3.1 Equilibrium without information revelation

To make the analysis tractable, we first concentrate on the case where bidders who attach

higher probability to the high state (that is bidders with higher ) have a lower continuation

value. Formally, this assumption states that  is decreasing in . Under this assumption,

we show below that there exists a monotone equilibrium. Intuitively, if  is monotone

decreasing, then the higher belief () one holds, the lower the value of his outside option,

and the higher bid he should place in the auction.

To start the analysis, note that since the seller does not reveal either his signal or

the bids after the auction, a losing bidder does not learn anything beyond the mere

fact of having lost. We introduce further notation for our analysis. Let () denote

an agent’s belief conditional on being tied at the top, 1 = 2 =    for all   2.

One can calculate this value as () =
0

2
()

−2


()

0
2

()−2


()+(1−0)2()−2


()
. Let () denote

the probability of the high state conditional on losing with a signal , that is () =
0()(1−−1


())

0()(1−−1


())+(1−0)()(1−−1


())


We analyze an equilibrium in monotone and symmetric strategies that is described by

a strictly increasing function . Since both bidders’ (continuation) values are affected by

the signal of the other bidder, therefore the bidders are in a second price auction with

interdependent valuations. Moreover, it is easy to see that signals are affiliated, and thus

our model is a special case of the Milgrom and Weber (1982) setup, except for the fact that

beliefs affect optimal actions and thus payoffs in the two states. Formally, this difference

is captured in our model by having the payoffs in the two states,  and , depend

on the belief . In the standard Milgrom and Weber setup (the case where  and 

are constant functions of ), it is well known that in the symmetric equilibrium of the

second price auction, each bidder bids his valuations assuming that he ties at the top spot.

We build on this insight, but need to make an adjustment reflecting the new feature of

our model that allows beliefs to play a role in determining continuation values through

the actions they induce in the future. We can capture this new term, by noting that the

relevant continuation value is the one that is assessed conditional on tieing (that is ), but

assuming that the action taken is an optimal action induced by the belief upon losing ().

Formally, then the bid of a bidder with type  can be written as

() =  − [()(()) + (1− ())(())] (1)
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The following summarizes our findings, providing our existence and uniqueness result:

Proposition 1 If  is strictly decreasing, then there exist monotone and symmetric equi-

libria. In every such equilibrium for almost all  each bidder with signal  bids as in (1).

If  is not monotone decreasing, then a monotone equilibrium does not exist.

The proof of the Proposition in Appendix 1 formalizes the argument above. In the

course of the proof we establish that is weakly increasing, while is weakly decreasing

in  for any continuation value problem (see Lemma 2). This intuitive property states that

in the high (low) state it is better to take actions that are optimal when the high (low) state

is more likely. Monotonicity of these functions imply that   are almost everywhere

continuous. Then using the monotonicity properties of   we establish that at all

continuity points of these functions any optimal action provides the same utility in the

continuation problem, thus there is a unique optimal action in terms of payoff consequences.

(See Lemma 2 in the Appendix.) Using this last observation the first order condition (1)

is shown to be necessary for optimal bidding for almost all  (that is for all  such that

() is a continuity point of ). To check that global sufficiency conditions also hold

for the bidders’ problem we use basic properties of affiliated random variables, extending

the analysis of Milgrom and Weber (1982). The fact that  is strictly monotone under our

assumptions can be established using these same properties.9

Before we continue with our main analysis it is useful to discuss our formal approach. In

what follows we will mostly use the induced functions   and do not usually relate

it to the primitives of the model,      . This way we emphasize the generality of

our findings in the context of models with two states. Moreover, the analysis shows that

the main results only depend on the functions  , but not directly on the primitives

of the model. However, we also provide a sufficient condition for a value function  to be

generated by our model of bargaining with appropriate parameter values for      .

Lemma 1 Take any twice differentiable convex function  : [0 1] → R, and define func-

tions  as  =  −  0 and  =  + (1 − ) 0, and let  = 1 +(1). If

  0, and 

− is strictly increasing in , then there exist values ( ),  

and functions   such that the induced value function in the continuation bargaining

problem is  .

9To prove that  is a strictly increasing function if  is monotone we use two observations. First, the

tieing and the losing posterior are monotone in the signal. Second, the tieing posterior is lower than the

losing posterior, which holds if bids are monotone.
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The proof is provided in Appendix 1. The key step is to prove that a useful envelope

condition and a basic incentive condition for type  implies that   are pinned down

by  as it is stated in the Lemma. Let us provide the sketch of the argument here.

Assuming that  is differentiable at a point  let us suppose that there is a unique optimal

action in the continuation value problem and denote it by ∗(). Then standard arguments
imply that

 0() =



( ) |=∗()= (

∗())− (
∗()) (2)

and then by construction

 0() = ()− () (3)

for all such values of . Using the monotonicity properties of functions  in Appendix

1 we establish that these formulas hold for almost all . Also, by construction for almost

all  it holds that () + (1 − )() =  () must hold. Using this and (3) indeed

pins down  and  if one knows  . Then the rest of the proof shows that from

the implied functions   one can define a bargaining problem where the optimal

action of a buyer with belief  is to make an offer . We only need to make sure that

the implied functional forms and parameter values of the bargaining problem (candidates

for      ) can be interpreted as probabilities and distribution functions, which

is guaranteed by the assumptions of the Lemma. In all the examples provided later, all

chosen value functions are such that the sufficient conditions of that Lemma are satisfied,

and thus one could relate the value function (in a constructive manner) to the underlying

bargaining problem. The class of value functions generated by a bargaining problem is

thus rich enough to provide the intuition for all our results.

For our mechanism design analysis the monotonicity result of Lemma 1 is a convenient

tool, but the result that hiding information may increase revenues does not depend on

having a monotone equilibrium. In particular, when we conduct our revenue comparisons

we provide an example where  is non-monotone (Example 3), and show that a non-

monotone bidding equilibrium exists. Importantly, hiding information is in fact more likely

to be profitable when  is non-monotone as we show it in the analysis of that example.

3.2 Revenue comparison when the state may be revealed

For the rest of the paper, except when it is stated otherwise, we assume that  is monotone,

and concentrate on the monotone equilibrium in the game with no information revelation.
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For analytical simplicity we assume that  is twice differentiable,10 for which it is sufficient

if the optimal action is a smooth function of the belief. Under this assumption,  0 =
 − is continuous. Since  is increasing and  is decreasing in , therefore it

follows that functions   must be continuous. Using the envelope condition (3) and

the incentive condition of type  we establish in Appendix 1 (as Lemma 3) that if  is

twice differentiable, then for all  ∈ [0 1] it holds that

() =  −
Z 1



(1− ) 00() (4)

and

() = 1−
Z 

0

 00() (5)

Note, that if there is no significant action to be taken, and thus information has no value,

then  is linear and   are constant functions. In this case our setup reduces to the

common value setup of Milgrom and Weber (1982). Using the above formulas, the following

Corollary provides a necessary and sufficient condition for a monotone equilibrium to exist:

Corollary 1 If  is twice differentiable, then a monotone and symmetric equilibrium exists

if and only if  =(1) ≤(1).

Proof. By Proposition 1 we only need to prove that  is monotone if and only if  ≤ 1.
First, note that Lemma 2, where we establish that (3) holds almost everywhere, implies

that we only need to prove that for all  it holds that () ≤ (). Second, (4) and

(5) imply that  is increasing, while  is decreasing in . Putting these observations

together yields that for monotonicity of  we need that (1) ≤(1). Q. E. D.

To calculate the expected revenue of the second price auction without state revelation,

let (2)() denote the density function of the second largest signal of the  signals from an

ex-ante perspective. The bidder with such a type will determine the revenue in the second

price auction. Formally,

(2)() = 0()(1−())
−1
 () + (1− 0)()(1−())

−1
 ()

10This assumption could be relaxed without changing any of the results, but would complicate exposition.

Moreover, we know that  is convex and thus twice differentiable almost everywhere, so this assumption is

just to avoid kinks at countably many points.
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holds. Then using (4) and (5), the ex-ante expected revenue of the seller can be written as

 =

Z 1

0

(2)()() =

=  − 1 + (1− )

Z 1

0

(2)+

Z 1

0

(2)[

Z 1



(1− ) 00() + (1− )

Z 

0

 00()]

Define

 =

Z 1

0

(2)()[()

Z 1

()

(1− ) 00() + (1− ())

Z ()

0

 00()]

With this notation in hand, one can rewrite the expected revenues from not revealing the

state as

 =  − 1 + (1− )

Z 1

0

(2)()()+  (6)

The variable  has a simple interpretation: it measures the loss in revenue if the state is

revealed after the auction compared to the case where it is not revealed ever. To see this,

imagine that the state is revealed after the auction is run. In this case the optimal action

is taken in both states yielding utilities (1) and (0). Therefore, the continuation

value conditional on tieing at the top is given as

()(1) + (1− ())(0) = () + (1− ())

and thus the equilibrium bid is − (() + (1− ())) = −1+() (1− ). This implies

that the expected revenue in the auction where the state is revealed after the auction can

be written as  − 1 + (1 − )
R 1
0
(2)()(). Comparing this revenue formula with (6)

implies that  is indeed equal to the revenue loss that accrues from revealing the state

after the auction. The variable  can be naturally linked to the importance of the post

auction decision as well. Suppose that the decision problem is trivial, which corresponds

to the case where  00() = 0 for all . In this case there is no significant action to be taken,
and indeed  = 0 holds. In general, the higher  00 is, the more the post auction decisions
matter (the higher the value of information is), and the higher  becomes.

If the seller reveals his signal before the auction is run, the symmetric equilibrium is

simple. Given that the seller’s signal is perfectly informative, the bidders now know the

state. Thus, all bidders bid −  (1) in the high state, and all bidders bid −  (0) in the
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low state. The ex-ante expected revenue can be simply written as

 =  − (1− 0) (0)− 0 (1) =  − 1 + 0 (1− ) . (7)

Using the revenue formulas from above, we are ready to analyze how revealing information

in a second price auction affects revenues. Recall that  measures the importance of the

post auction decisions, and  measures the difference in expected payoffs in the two states

as defined above. The revenue comparison is as follows:

Proposition 2 The sellers’ revenue is higher without revealing his informative signal, if

and only if the parameters of the decision problem are such that

  (1− )[0 −
Z 1

0

(2)()()] (8)

Proof. The result is immediate after comparing formulas (6) and (7). QED

To interpret the result, let  = (1 − )[0 −
R 1
0
(2)()()]  0. Then  is equal to

the revenue gain from revealing the state before the auction compared to revealing it after

the auction.11 The Proposition can now be understood as a decomposition of the revenue

effect of revealing the state (before the auction) into two parts. The right hand side variable

 measures the revenue enhancing effect of revealing the state before the auction and is

reminiscent of the linkage principle reasoning by Milgrom and Weber (1982). When the

two states provide very different utilities, that is  is low, then the standard winner’s curse

phenomenon arises and  is high. In this case it is very important for the bidders not to

overpay when winning in the low state, and thus bidders reduce their bids to overcome

the winner’s curse. This in turn implies that revealing any extra information helps the

auctioneer, by the well known linkage principle effect. The left hand side variable  is

new compared to Milgrom and Weber (1982). By revealing the state after the auction,

the auctioneer allows the losing bidders to take better actions in the continuation value

problem and thus increases their outside options. This depresses the bids in the original

auction, a revenue decreasing effect we call the continuation value effect. To summarize:

the linkage principle effect (favoring information revelation) is strongest when the two

states are fundamentally very different in terms of payoffs, that is when  is much lower

11Revealing the state before the auction yields , while revealing it after yields  − 1 + (1 −
)
 1
0
(2)()() as we argued above. The fact that   0 follows from the law of iterated expecta-

tion that implies that
 1
0
(2)()() = 0 and the fact that for all  it holds that ()  ().
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than 1, and the continuation value effect (favoring hiding information) is strongest when

future actions are important, that is when  is high. Therefore, the seller should reveal

his information about the state if the resulting improvement in decision quality is not too

high compared to the resulting gain from alleviating the winner’s curse.

The precision of the bidder signals also plays an important determinant of the optimal

information policy. If signals are always completely uninformative for all bidders, then

0 −
R 1
0
(2)()() = 0, and thus hiding information is profitable for any   1. In this

case both with and without revealing the state all the bidders share the same beliefs (0 is

the common belief when the state is not revealed, and all bidders know the actual state when

the state is revealed). Therefore, they engage in Bertrand-competition to compete away all

their rents relative to their continuation values. However, the continuation values are higher

in the case with state revelation, and thus bids are lower if the state is revealed. In more

technical terms, the linkage principle effect is absent in this case, while the continuation

value effect is present to favor hiding information.

It is interesting to revisit our bargaining model that we provided in the Setup section.

Assume first, that   , but () = () for all . In this case, there is less chance

in the high state to continue, but the optimal price is independent of the state. Therefore,

the optimal action is the same regardless of the beliefs about the state, and thus function

 00 is identically zero, and thus  = 0 holds. On the other hand, it is more profitable to
be in the high state than in the low state, and thus   1. Therefore, the condition of

Proposition 2 fails, and revealing information is revenue enhancing. This result can be

interpreted as follows: the continuation value effect is absent, since the optimal decision

does not depend on the information learnt, but the linkage principle effect is present and

thus, following Milgrom and Weber, revealing information is beneficial for the seller. On

the other hand, suppose that () 6= () for all . In this case the optimal action

depends on the belief and thus the continuation value effect becomes important too, and

the revenue comparison depends on the exact functional form assumptions.

We are ready to discuss the strength of the condition in the Proposition above, that

is how likely it is in general that the continuation value effect dominates. A monotone

equilibrium exists if the two states provide different continuation utilities (see Corollary

1), which is exactly the case when the linkage principle effect is strong. Therefore, it may

happen that whenever a monotone equilibrium exists the linkage principle effect always

dominates the continuation value effect, and thus revealing information is always beneficial.

To study this issue, the following Corollary describes under what conditions on the signal
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distribution and utility functions can one find values of  such that revealing the state may

decrease expected revenues:

Corollary 2 If   (0 −
R 1
0
(2)()())

R 1
0
 00(), then there exists a high enough

value of  such that revealing information decreases the expected revenues. If this condition

does not hold, then for all values of  such that there exists a monotone equilibrium in the

game without state revelation, the expected revenue from revealing the state is higher than

the expected revenue from hiding it.

Proof. By Corollary 1, a monotone equilibrium exists if and only if (1) ≤ (1)

given that  is twice differentiable and thus   are continuous. This condition can

be rewritten as

1−  

Z 1

0

 00().

So for (8) and this last condition to hold simultaneously it must be that   (0 −R 1
0
(2)()())

R 1
0
 00(). Conversely, if this condition holds, then an appropriate

 can be found such that both a monotone equilibrium exists, and the revenue is higher

without state revelation. Q.E.D.

Let us consider an example for each of the two possibilities.

Example 1: Let 0 = 12  = 2  = 2(1 − ) and  = 2, and () = 2,

() = 2− 2, and  () = ++ with  = 11  = 1,  = 1  = −1. Then,
using (16) and (17):

() = −1 + (1− )

and

() = (1− ) +

One can show that the conditions for monotonicity hold. Moreover, after making the

necessary substitutions we obtain that hiding the state is profitable for the seller with

 = 001878 and  = 001515.

Example 2: Let 0 = 12  = 2  = 2(1 − ) and  = 2, and () = 2,

() = 2− 2, and

() =  − (1− )2

and

() = 1− 2
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for some   ≥ 0. We assume that  ≤ 1 − , ensuring that (1) ≤ (1) and thus

 is decreasing. The conditions of Lemma 1 hold if   12 is satisfied. The condition of

Proposition 2 for hiding the state to be revenue enhancing becomes 
1−   ≈ 12, and the

monotonicity condition for  is simply 
1− ≤ 1. The two conditions are not compatible,

and thus if one chooses  such that a monotone equilibrium exists then it always holds

that   . In other words the linkage principle effect dominates the continuation

value effect whenever a monotone equilibrium exists.

If one considers the case where a monotone equilibrium does not exist in Example 2,

then it can be shown that the continuation value effect can dominate the linkage principle

effect. This is pursued in the example below.

Example 3:

Let us reconsider Example 2 with  = 1. There is no monotone equilibrium if   0.

Since the two states are symmetric, so it is natural to concentrate on a signal symmetric

equilibrium where () = (1 − ) for all . In this case one can recalculate the relevant

tieing posterior as

e() = Pr( | 1 =  2 =  or 2 = 1− ) = 

The relevant losing probability is

e() = Pr( | 1 =  2 ∈ ( 1− )) = .

Then in the case of not revealing the state the equilibrium bid function can be written as

() =  − [(1− (1− )2) + (1− )1− 2] =  − 1 + (1− )   − 1

The bid with information revelation is  =  − 1 in both states, and thus the revenue
comparison favors not revealing the state. This example shows that when the two states

are similar (that is  (0) =  (1)), then the linkage principle loses its bite, and although

a monotone equilibrium does not exist, it follows immediately that revealing the state

decreases revenues. This result generalizes to arbitrary density functions and continuation

value functions, as long as the two states are similar.
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3.3 Revenue when the winning bid can be revealed

The other important question studied for the optimal information policy in auction design

is whether any bid information should be revealed by the seller. To study this question

in our context, let  denote the expected revenue when the winning bid is revealed,

assuming that  is decreasing (that is the conditions of Corollary (1) hold). The following

result is established below:

Proposition 3 Revealing the bids ex post decreases revenue relative to not revealing any-

thing,   .

Proof. Suppose the seller reveals only the winning bid. In this case the bid function

becomes

() =  − [()(()) + (1− ())(())]

Comparing it with the case of no such bid revelation yields

() =  − [()(()) + (1− ())(())]

  − [()(()) + (1− ())(())] = ()

where the inequality follows from the fact that  = argmax
∈[01]

 ()+(1− ) (). That

is the bid of a type  if the winning bid is revealed is lower than in the benchmark case of

no information revelation. Therefore,

 =

Z 1

0

(2)()() 

Z 1

0

(2)()() = 

So revealing the bids after the auction decreases revenues. Q. E. D.

A similar argument implies that revealing any information after the auction is harmful

for the auctioneer. The intuition for this result is simple: by revealing information after the

auction, the linkage principle effect is absent, since the bidders cannot use the information

when bidding, and thus they continue to depress their bids to avoid the winner’s curse. On

the other hand, in the continuation problem they can take advantage of the information

they learnt, hence the continuation value effect is present.
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4 Format comparisons: first-price, second-price and English-

auctions

In the literature initiated by Milgrom and Weber (1982), another interpretation of the

linkage principle is that the more an auction format links the payments to the types of the

other agents, the higher the expected revenue is. For example, in a first price auction the

payment of a type conditional on winning, is just the submitted bid, which does not depend

on the types of the other bidders. In contrast, in a second price auction the winner pays

the second highest bid, and thus the expected payment (conditional on winning) depends

positively on the types of the other bidders. Therefore, the linkage principle implies that

(in the standard case without endogenous outside options, that is when  = 0) the second

price auction yields a higher expected revenue than the first price auction. Similarly, an

English-auction links payments to others’ bids (types) even more, since now all the types

except for the two highest are revealed by the bid at which those bidders are dropping

out. Therefore, the English-auction links the payment to bids even more, and thus yields

a higher expected revenue than even the second-price auction.

We saw in the previous Section that in our model with endogenous outside options the

linkage principle effect is counteracted by our continuation value effect, when we analyze

whether the auctioneer should reveal his exogenous information about the state of the

world. It is natural to ask whether the same is true when one compares the three stan-

dard auction formats fixing the information policy. To conduct such a comparison, assume

that the auctioneer does not reveal any information and runs a first-price, second-price or

ascending auction. First, one can show that the revenue ranking is unchanged between

the first two formats, that is the second price auction revenue dominates the first price

auction. This can be done by modifying the analysis of Krishna (2008), Section 7, pages

105-108. This result follows, because upon losing the same information is learned in the

two auction formats: in both auctions the losers only learn that there was a bidder with

a higher signal than theirs. This implies that they take the same actions in the continua-

tion decision problems, and therefore the presence of endogenous outside options does not

change the comparison between the two formats as compared to the standard case. The

formal argument is provided in Appendix 2.

The important novelty when one compares second-price and English auctions is that

the English-auction reveals more information than a second-price auction and thus the

optimal decision after the two auctions are different. In particular, the English auction
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allows the losers to take better decisions, and thus the continuation value effect favors the

second price auction over the English auction. Since the continuation value and the linkage

principle effects work in opposite directions, one needs to assess whether the second-price

or the English-auction raises higher revenues. To present our result, we concentrate on

a three player version of Example 1 above, where a monotone equilibrium exists and the

sellers’ revenue is higher in the second price auction than in the ascending auction.12

Example 4:

We assume that 0 = 12  = 3  = 2(1− ) and  = 2, and

() = −1 + (1− )

and

() = (1− ) +

with  = 1  = 11,  = 1.

In this example the continuation value effect is stronger than the linkage principle

effect, and revealing information via holding a more open auction decreases revenues. If

one considers variations in the parameter values, then the revenue comparison has the same

qualitative features as in the case of state revelation: if the two states provide very different

utility values (that is  is high), then the linkage principle effect dominates. On the other

hand, if  is high and thus the actions are important, then the continuation value effect is

more likely to be stronger.

5 Discussion

In this Section we consider two extensions to inspect the robustness of our results. First,

we show that the assumption of two states can be relaxed without changing the results.

We focus on comparing the revenues from the second price auction with and without the

revelation of the winning bid, the question addressed in Section 3.3 for the case of two

states. Let  ∈ [0 1] denote the state of the world, and let () denote the continuation

value when action  is taken in state . Let  denote the conditional distribution of signals

in state , and let  the density function for the state of the world. Assuming that for all

() is decreasing in  implies that there is an equilibrium with monotone bidding. Let

12The calculations related to this exmple are in Appendix 3.
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() be the density of state  if one ties at the top with signal  that is

() =
()2 ()

−2
 ()R 1

0
()2()

−2
 ()



Let () be the density of state  if one lost with signal  that is

() =
()()(1−−1

 ())R 1
0
()()(1−−1

 ())


Then the optimal action after losing with signal  satisfies

() = argmax
∈

Z 1

0

()()

Without bid revelation the equilibrium bid is

() =  −
Z 1

0

()(())

With bid revelation the tieing loser learns that he in fact tied with the winner and takes

an action

∗() = argmax
∈

Z 1

0

()() (9)

Therefore, the equilibrium bid becomes

() =  −
Z 1

0

()(
∗())

By (9) it follows that ()  (), so the revenue comparison result follows the same way

as in the two-state model.

Second, suppose that the winning bidder takes an action too, and his continuation

utility functions are 
  


 , which have similar properties to   , the continuation

utility of the losers. We keep the assumption that the winner obtains a utility  from the

object and that there are two states. Let us now concentrate on the question whether in the

second-price format state revelation enhances or reduces revenues; the other questions can

be studied similarly. Following similar argument as in the benchmark case, the equilibrium
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bid function without state revelation is

 + [()(
(())−(())) + (1− ())(

 (()− (())]

From the bid function, one can calculate the equilibrium expected revenue when no infor-

mation is revealed by the auctioneer.13 When the state is revealed, in the high state all

bidders bid  +  (1)−  (1), and in the low state all bid  +  (0)−  (0). From these

observations it is obvious that if the winner’s continuation values are not very sensitive to

the state of the world (that is 
 −

 is uniformly close to zero and thus   is close to

being a constant function), then the revenue comparison is similar to the benchmark case

where the winner’s continuation problem was omitted. Therefore, our results are robust as

long as the winner’s continuation problem is not too sensitive to the state as compared to

the losers’. It is worth pointing out that if the winner’s continuation problem is more im-

portant than the loser’s, then the continuation value effect favors information revelation,

and thus transparent auctions are revenue enhancing. The reason is that if more infor-

mation is available after the auction, then the winner can make a better decision, which

then makes bidders more aggressive since the winning prize has become more valuable. In

more technical terms, both the linkage principle and the continuation value effects favor

information revelation in this case.

6 Conclusion

We study auctions with endogenous outside options determined through actions taken in

the aftermarket. We show that endogenous outside options have important consequences

for auction design. In contrast to the case of exogenous outside options, auctions with less

information revelation may yield higher revenues. Opaque auctions decrease the informa-

tion available to losing bidders, which leads to worse decisions in the aftermarket. This

leads to worse outside options, and thus more aggressive bidding in the original auction.

Effects that favor non-transparent auctions include a small payoff difference between the

two states, a great value of information in the continuation problem, and imprecise signals

of the bidders. The timing of information revelation is important: it is never optimal to re-

veal information after the auction, while it may be to optimal to reveal information before

the auction. We also show that a less transparent auction format, the second price auction

13The main steps are similar to the benchmark case and are omitted.
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can yield higher revenues than an English auction, as it fosters less learning and provides

lower continuation values for the bidders. The model is robust to introducing several states,

and with respect to the winner’s having state dependent continuation functions.

7 Appendix

7.1 Appendix 1

In this Appendix we prove Proposition 1, and several useful results about the continuation

problem. We start by establishing a monotonicity result:

Lemma 2 For all 0   and (
0) − (

0)  () − () it holds that if type 

weakly prefers 0 over , then type 0 strictly prefers 0 over . Therefore, for all 0 ∈ (0)
and  ∈ () it holds that (

0) − (
0) ≥ () − (). If for some 

0   it holds

that  ∈ (0) and  ∈ (), then () ≥ () and () ≤ (); and for almost all

 ∈ [0 1] if   ∈ () then () = () and () = (). Function  is monotone

increasing, while  is monotone decreasing.

Proof of Lemma 2:

Proof. Suppose that 0   and (
0)−(

0)  ()−(), and type  weakly

prefers 0 over , that is

(
0) + (1− )(

0) ≥ () + (1− )() (10)

Then (
0)− (

0) ≥ ()− () implies that¡
0 − 

¢ ¡
(

0)− (
0)
¢

¡
0 − 

¢
(()− ()) 

Adding the last inequality to (10) implies that

0(
0) + (1− 0)(

0)  0() + (1− 0)()

which establishes the first claim. To prove the second statement, suppose that () −
()  (

0) − (
0). Then the first statement implies that type 0 strictly prefers

 over 0, which contradicts with the assumption that 0 ∈ (0). The second statement
implies that ()− () ≥ ()− (). Then ()  () =⇒ ()  (),
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which implies that  is worse than  for any beliefs, and thus  ∈ (0) could not hold. This
contradiction establishes the third claim. To prove the last claim let () = max

∈()
()−

(). The second statement implies that  is weakly increasing, and thus it is almost

everywhere continuous. Moreover, at every continuity point  of  it holds that for all

  ∈ () ()−() = ()−().
14 Then suppose that ()  (). In this

case, it would follow that ()  (), implying that  dominates  and contradicting

 ∈ (). This contradiction establishes the last result about functions   . The

monotonicity claim about   then follows by construction. Q.E.D.

Next we prove that the useful envelope conditions from the main text hold for almost

all . In particular they hold at every continuity point of  . Let us formally state

our claim first:

For almost every  it holds that

 ∈ () =⇒  0() = ()− () (11)

and

 0() =()−() (12)

Proof. Take any  and let  ∈ argmax
∈()

()  ∈ argmin
∈()

(). Note, that by

definition of () it must hold that  ∈ argmin
∈()

()  ∈ argmax
∈()

() and thus for all

 ∈ ()

()− () ≥ ()− () ≥ ()− ()

Next, note that for all 0   it holds that  (0) ≥ (0 ). Therefore,

 (0)−  () ≥ (0 − )(()− ())

Also, the right hand derivative of a convex function exists everywhere, therefore the right

hand derivative at  satisfies

 0+() ≥ ()− ().

14Suppose that   ∈ () and () − ()  () − (). Then for all 
0   it holds by the

second claim that for any 0 ∈ (0), (0) − (
0) ≥ () − (), and thus (

0) ≥ () − ().

Similarly, for any 00 and 0 ∈ (00), (0)− (
0) ≤ ()− (), and thus (

00) ≤ ()− ().

Therefore, the function  must have a jump at such a .
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A similar argument yields that the left hand derivative satisfies

 0−() ≤ ()− ().

Since  0() exists almost everywhere, therefore for almost every  it must hold that

()− () = ()− (). Therefore, wherever a derivative exists (which is almost

everywhere) it holds that  0() = ()−() for all  ∈ () , which establishes that (2)

for almost all . To establish that ((12) holds for all continuity points of  (which is

almost everywhere) note that the argument of Lemma 2 implies that for any such continuity

point  it holds that if   ∈ () then () = () and () = (). Therefore, the

argument establishing (11) applies to show that  0() = ()−() =()−(),

concluding the proof. Q.E.D.

We are ready to prove the existence of a monotone equilibrium stated in Proposition 1.

Proof of Proposition 1:

Proof: From Lemma 2, we know that for almost all  all the optimal actions induce

the same utilities in both states. We first concentrate on such values of  and then by

construction the induced utilities by the optimal action(s) are equal to ()(). We

discuss what happens at other values of  at the end of the proof.

First, we show that the above defined bid function constitutes an ex-post equilibrium.

Symmetry of  is immediate, while monotonicity follows from the facts that   are in-

creasing,    and that the monotonicity of  implies (via Lemma 1) that () ≤ ()

for all  ∈ . To see this, note that




[()(()) + (1− ())(())] =

0()((())−(())) + 0() 00()((1− )− (1− ))  0

follows from the observations above. But this is equivalent to 0()  0.
Next, we show that if it is known that 1 = 2 = , then winning with () yields the

same utility as losing and acting in the future as if the probability of the high state was ().

Losing yields a continuation utility that is equal to ()(()) + (1 − ())(())

by construction, while winning with bid () yields a utility − (), which is equal to the

continuation utility upon losing.
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It also has to be established that if  =  then winning against a type    with bid

() is unprofitable, while if    then winning against type  with bid () is profitable.15

Let us just inspect the    case, the other one is similar. In this case winning, upon

tieing, yields a utility of

 − () = ()(()) + (1− ())(())

To calculate the utility from losing, upon tieing, let us introduce the relevant tieing posterior

when one bids () and has type  as follows:

( ) =
0()()

−2
 ()

0()()
−2
 () + (1− 0) ()()

−2
 ()



By the fact that  and  satisfy the MLRP, it follows that ()  ( ) One can

similarly define the relevant losing posterior as

( ) =
0()(1−−1

 ())

0()(1−−1
 ()) + (1− 0) ()(1−−1

 ())


Again, the MLRP condition implies that ()  ( ). Then the utility upon losing (and

tieing) can be written as

( )(( )) + (1− ( ))(( ))

First, we show that

( )(( )) + (1− ( ))(( )) ≥

≥ ( )(())) + (1− ( ))(()) (13)

To see this, note that by construction

( )(( )) + (1− ( ))(( )) ≥

≥ ( )(())) + (1− ( ))(()) (14)

15Again, we need to use the relevant tieing belief Pr( | 1 =  2 = ) and the relevant action inducing

belief upon losing Pr( | 1 =  2 ≥ ).
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Also, it holds that ()  ( )  ( ) and Lemma 1 and the monotonicity of 

implies that (( ))−(( ) ≤ (())−(()). Thus it follows that

(− ) ((( ))−(( ))) ≥ (− ) ((())−(()))  (15)

Adding up (14) and (15) implies (13). Then using (13), the utility difference between losing

and winning satisfies

4 = ( )(( ))+(1−( ))(( ))−(()(()) + (1− ())(())) =

≥ (()) + (1− )(())− ((()) + (1− )(())) =

= (− )((())−(())) ≥ 0

where the last inequality follows, because    and (()) ≤(()) by monotonic-

ity of  (via Lemma 1). Therefore, it is indeed more profitable to lose against a type 

than to win if one’s type is   . This concludes the proof of global optimality for the

bidders’ problem.

Uniqueness of  as in (1) follows from the above argument as well, since upon tieing

indifference has to hold in an ex-post equilibrium which yields exactly (1) after taking it

into account that the equilibrium is symmetric and monotone. The only caveat is that the

bid function is not determined at the (at most countably many) discontinuity points of

 . At such a belief , the optimal action in the continuation problem is not unique

which introduces multiple optimal bids when the belief is . However, there are at most

countably many such jump points, so this multiplicity arises only for a small set of types,

and for all other beliefs the equilibrium bid is pinned down by formula (1).16

Finally, if  is not monotone, then one can show that the candidate bid function (1) is

not increasing, which completes our proof. Q.E.D.

Proof of Lemma 1:

Proof: Since  is a twice differentiable value function, therefore  0 =  − for

all . This implies that for all 

 =  ( −) + =  0 +.

16When the value function is smooth such discontinuty of   cannot occur and the equilibrium bid

is unique for all . Moreover, the function  is continuous in this case.
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Using these two formulas, one obtains that

 =  −  0 (16)

and

 =  + (1− ) 0. (17)

Let us take any convex value function  , and let us define  and  as in (16) and

(17). We already know from Section 2.2 that there is a unique optimal action for all beliefs

when  is twice differentiable. To construct our sufficient condition, assume that when the

belief is  the unique optimal action is also equal to .17. Then by construction () =

()( − ) and () = ()( − ). Given that        −  ≥ 0,

therefore it must hold that the functions  as induced by (16) and (17), satisfy

 ≥ 0. Moreover, since  and  are distribution functions it must hold that

()( − ) and ()( − ) are increasing in . As we argued above,  0
() =

(1 − ) 00() and  0
() = − 00(). The assumption that  is convex then implies

that  is increasing in , and thus ()( − ) is increasing too. Let us inspect

() ( − ). It holds that µ


 − 

¶0
=

µ
 −  0

 − 

¶0
=

=
1

( − )2
[ −  0 −  ( − ) 00]

Therefore, we only need to establish that for all  it holds that  − 0− ( − ) 00 ≥ 0.
It is clear that the lower value of  is, the easier this inequality is to satisfy. Let us

denote the lowest possible value as , where  is set such that for all  it holds that

() =
()
− ≤ 1. Since  is increasing, this boils down to (1) ≤ 1. Therefore,

 must satisfy  − 1 ≥(1). If  is set at any level higher than  = 1+(1), then one

can satisfy the inequality that () ≤ 1, and thus the variables  and () may be

interpreted as probabilities. Q.E.D.

17This assumption implies that there are some sellers with negative costs, an assumption just made for

expositional simplicity playing no role in the analysis.
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Lemma 3 If  is twice differentiable, then for all  ∈ [0 1] it holds that

() =  −
Z 1



(1− ) 00() (18)

and

() = 1−
Z 

0

 00() (19)

Proof. Since and are monotone, they are almost everywhere differentiable and

thus (from (3)) for almost all 

 00 = 0
 − 0

. (20)

A necessary condition for optimality can be written as  ∈ argmax
∈[01]

 ()+(1− ) (),

since an agent with belief  can always pretend to be type . Since and are almost

everywhere differentiable, the appropriate first order condition (that holds for almost all

) becomes

 0
() + (1− ) 0

() = 0 (21)

Given (20) and (21) for almost all  it holds that  0
() = (1 − ) 00() and  0

() =

− 00(). Normalizing, (0) = 1 (1) = , and using the continuity of   this

implies that for all 

() =  −
Z 1



(1− ) 00() (22)

and

() = 1−
Z 

0

 00() (23)

indeed hold. Q.E.D.

7.2 Appendix 2

Comparison of first and second price auctions:

To formalize the argument in the main text, let us introduce the notation ( ) =

Pr( | 1 =  2 = ) and ( ) = Pr( | 1 =   2  ) and

( ) =  − [( )(( )) + (1− ( ))(( ))]

The interpretation is that a bidder with type  values winning at ( ) if the he bid as if
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he had type . Again, the bidder conditions his posterior upon tieing, but knows that he

will make the decision in the continuation problem as if he lost in the auction. Note, that

it holds that () = ( ) () = ( ) and thus ( ) is equal to the equilibrium bid

in the second price auction.

Following the notation of Krishna (2008), let ( ) the expected price paid by a

bidder if he is winning when he receives a signal , but he bids as if his signal was . Let

 ( ) denote this expected price for the first-price, and  ( ) for the second-price

auction. Denoting the equilibrium bid functions in the two formats as  and  , one can

write  ( ) = () and

 ( ) = [() | 1 =  2  ].

In the monotone equilibrium of auction  =   each bidder maximizesZ 

0

( )[() + (1− )()] − [() + (1− )()]
( )

Therefore, the first order condition becomes

[() + (1− )()](( )−( )]− [() + (1− )()]

1 ( ) = 0

where 
1 denotes the partial derivative of  with respect to its first argument. This

can be rearranged so that


1 ( ) =

() + (1− )()

() + (1− )()
( )− () + (1− )()

() + (1− )()
( )

Therefore,

 
1 ( )− 

1 ( ) = −
() + (1− )()

() + (1− )()
( ( )− ( ))

Now define

∆() = ( )− ( )

so

∆0() = 
1 ( )− 

1 ( ) + 
2 ( )− 

2 ( )
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Combining these results yields

∆0() = − () + (1− )()

() + (1− )()
∆() + 

2 ( )− 
2 ( )

Now, by construction  
2 ( )  0 =  

2 ( ). Thus if ∆() ≤ 0, then ∆0() ≥ 0.

Furthermore by assumption  (0 0) = (0) =  − (1) = (0) =  ( ), so

∆(0) = 0. This then implies that for all  ≥ 0, it indeed holds that ∆() ≥ 0, which shows
that the second price auction yields a higher expected revenue than the first price auction.

7.3 Appendix 3

Proof of the revenue comparison result for Example 4:

Proof. In the second price auction the middle bidder’s bid is the revenue, and the bid

function can be written as

 =  − [b()(b()) + (1− b())(b())]
where ee are the relevant tieing and losing posteriors. These beliefs can be written as

b() = Pr( | 1 = 2 =   3) =
2

2 + (2− 2)(1− )


and b() = Pr( | 1  2 =   3) =
2

2 + (2− 2)(1− )


Let us now calculate the revenue in the English auction. Let  be lowest of the three

types, and  be the medium one. Then the revenue is equal to

( ) =  − [b( )(b( )) + (1− b( ))(b( ))]
where b( ) = Pr( | 1 = 2 =   3 = ) =



 + (1− )(1− )


and b( ) = Pr( | 1  2 =   3 = ) =


 + (1− )(1− )

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To calculate the expected revenues let

() = 12− 422 + 603 − 304

denote the density of the medium type, and let

( | ) = 2() + 2(1− ())(1− )

()2 + (1− ())(2− 2)

be the density of the low type given the medium types. Then the expected revenues from

the two auctions can be written as

 =

Z 1

0

()
()

and

 =

Z 1

0

()

Z 

0

( | )( )

After substituting in the relevant functional form assumptions about   and the

parameter values from Example 4, we can use the above bid functions to show that

  

indeed holds. Q.E.D.
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