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Abstract

The optimal management of a non-renewable resource extraction project is studied when
input and output prices follow correlated stochastic processes. The decision problem is
specified by two Bellman equations describing the project when it is currently operating
or mothballed. Solutions are determined numerically using the Least Squares Monte Carlo
methodology. The analysis is applied to an oil sands project which uses natural gas during
extracting and upgrading. The paper takes into account the co-movement between crude
oil and natural gas prices and proposes two price models: one incorporates a long-run link
between the two while the other has no such link. Incorporating a long-run relationship
between oil and natural gas prices has a significant effect on the value of the project and its
optimal operation and reduces the sensitivity of the project to the natural gas price process.

Keywords: non-renewable resource extraction, oil sands, stochastic input cost, least
squares Monte Carlo, Kalman filter, futures prices, real options, co-integration of natural
gas and oil prices



1 Introduction

The real options approach is now standard in the literature for valuing assets contingent

on uncertain commodity prices. It is particularly well suited to examining optimal decisions

related to energy investments such as drilling for oil [Conrad and Kotani, 2005], management

of nuclear waste [Louberge et al., 2002], optimal abandonment of coal generating power

plants [Abadie et al., 2011], optimal management of natural gas storage [Chen and Forsyth,

2010], and power grid interconnection [Saphores et al., 2004], to give just a few examples.

These investments typically involve several stages of irreversible expenditures and various

embedded options which affect optimal decisions in resource management. Well developed

futures markets for many commodities allow for the estimation of the parameters of stochastic

price models.

In one of the earlier papers to apply the real options approach, Brennan and Schwartz

[1985] demonstrated the use of contingent claims analysis for valuing an exhaustible natural

resource when the decision-maker has flexibility to choose from multiple modes of operation.

The uncertainty in their model came from only one source, the output price. They assumed a

fixed extraction cost and that the output price follows Geometric Brownian Motion (GBM)1.

Many papers account for more realistic assumptions about the sources of the uncertainty

faced by an exhaustible resource. Cortazar et al. [2008] and Tsekrekos et al. [2010] extended

the Brennan and Schwartz valuation problem under different output price model dynamics.

Cortazar et al. [2001] studied the valuation of natural resource exploration investments when

there is joint price and geological-technical uncertainty. Armstrong et al. [2004] accounts for

uncertainty in reserves.

However, one aspect that is not well explored in this literature is the possibility that both

1Brownian motion is a continuous-time stochastic process that has independent increments of normal
distribution with mean of zero and variance of the time difference, i.e. if z(t) is a Brownian motion then
dz(t) ∼ N(0, dt). For more details see Klebaner [2005]
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output price and production cost are stochastic and volatile. An exception is Slade [2001]

who used yearly panel data for 21 copper mines in Canada from the 1980 to 1993 period and

found average costs to be highly variable. She studied the impact of copper price, average

cost and resource reserve uncertainties under different assumptions about the stationarity

of the stochastic processes. The lack of studies that account for stochastic cost is likely

attributable to the difficulty of obtaining adequate data on cost variables.

The significance of volatile input prices to resource extraction decisions will be case

specific. One example where it is likely to be important is the extraction and upgrading

of bitumen from the Alberta oil sands, which is known to require significantly more energy

than conventional oil reserves. Around 80 percent of Alberta’s vast bitumen reserves are

found too deep below the surface for feasible mining operations. Bitumen in such deep

deposits (typically 400 meters below the surface) needs to be recovered from the in situ

position by injecting a high temperature steam into the bitumen deposit through horizontal

or vertical wells. This reduces its viscosity and makes it easier to pump the bitumen to the

surface. The steam generators use natural gas as a fuel source. According to the Canadian

Energy Research Institute (CERI), a rule-of-thumb commonly used in the industry is that

1 Mcf (thousand cubic feet) of natural gas is required to produce a barrel of bitumen. It is

estimated that natural gas usage amounts to about 40 percent of total per-barrel operating

cost.2. In this paper we examine the impact of stochastic extraction costs on the optimal

extraction of a non-renewable resource, using the Alberta oil sands as an example.

Natural gas prices are characterized by high volatility and high correlation with other

energy prices, especially oil prices (see Pindyck [2004], Geman [2005] and Brown and Yucel

[2007]). Figure 1 shows the price of natural gas at Henry Hub, a major trading point located

in the south of the US on the Gulf of Mexico, along with the price of WTI crude oil from

1997 until 2010. A casual inspection of the graph indicates that the price of natural gas

2See McColl and Slagorsky [2008], Table 2.6
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tends to move with the price of oil, but not always. Thus, in considering optimal decisions

in oil sands investments, modeling the nature of their co-movement is likely to be important.

This paper examines the nature of the co-movement of crude oil and natural gas markets

in order to more accurately capture the dynamics of stochastic costs. As will be discussed

in Section 2, it is empirically difficult to detect a long run relationship between oil and

natural gas prices. We therefore propose two extensions of the Schwartz and Smith [2000]

model to specify the stochastic dynamics of oil and natural gas prices - one in which there

exists a long run equilibrium relationship between the two prices and one in which there

is no such relationship. The parameters of these two pricing models are estimated through

quasi-maximum likelihood with the Kalman filter using futures prices for oil and natural

gas. With the two different price specifications, we analyze a resource extraction problem

similar to the one in Brennan and Schwartz [1985]. An analytical solution is not available,

and hence we use the Least Square Monte Carlo (LSMC) method developed by Longstaff

and Schwartz [2001].

To preview our results, the analysis shows that the value of our prototype investment is

significantly affected when stochastic natural gas costs are incorporated, compared to using

a simple rule of thumb common in the industry that sets natural gas prices at a fixed ratio to

oil prices. Critical prices at which it is optimal to mothball, reactivate or abandon production

are sensitive to volatility of natural gas prices. We find that higher volatility reduces the

value of the project, particularly when oil and gas prices are highly correlated. This contrasts

with the usual finding that higher volatility increases the value of an investment option. We

observe that the results are highly dependent on which specification of natural gas prices

is chosen - i.e. whether or not there is a long run relationship between oil and natural gas

prices. The results are also sensitive to whether the estimated parameters for the chosen

model of natural gas prices imply a term structure of futures prices which is contango or in

backwardation.
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This paper is organized as follows. Section 2 reviews the empirical literature on the co-

movement of natural gas and crude oil markets with some recent results. Sections 3 and 4

specify the modeling procedures of the state variables and the oil sands project to be used

in estimation and simulation. Data description and results are given in sections 5 and 6

respectively. The last section is for concluding remarks.

2 Co-movement of Crude Oil and Natural Gas Prices

Casassus et al. [2010] identify two sources of co-movement among commodities. The first one

is a short-term effect associated with the correlation of commodity prices resulting from their

dependence on common factors such as macroeconomic conditions. The second source arises

from a long-term effect due to an economic relationship in production and/or consumption.

For example, one commodity may be produced from another, or two commodities may

be substitutes or compliments in consumption. We observed in Figure 1 that the oil and

natural gas prices tend to move together. The correlation coefficient is 0.26 between their

(log) differences and 0.75 between their levels.

Villar and Joutz [2006] identify several economic factors that link natural gas and crude

oil prices, on both the supply and demand sides. One of the main links is the competition

between natural gas and petroleum products which occurs principally in the industrial and

electric generation sectors. Industry and electric power generators switch back and forth

between natural gas and residual fuel oil, using whichever energy source is least expensive.

Consistent with this observation, some empirical studies find a long-run relationship

between the two commodity price series. These include Villar and Joutz [2006], Brown

and Yucel [2007], and Hartley et al. [2008]. Given the fact that oil prices are determined

internationally, a relationship such as found in these studies led to the use of rules of thumb

that relate natural gas prices to those for crude oil. For example, CERI in its 2009 report
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Figure 1: WTI Crude Oil and HH Natural Gas Prices

about Canadian oil sands supply costs3 assumed that there is a 10:1 ratio between the price

of oil in $/barrel and the price of natural gas in mmBtu4. Other rule of thumbs have also

been used as shown in Brown and Yucel [2007]. However, some empirical studies find a weak

or no long-run relationship between the two prices. These include Serletis and Rangel-Ruiz

[2004], Bachmeier and Griffin [2006], and Mohammadi [2009] all of which fail to reject the

null hypothesis of no co-integration.

Figure 2 shows the correlation coefficient between the daily returns of the two commodi-

ties’ prices in each month. In the late 90’s, the correlation was relatively low, around 0.1.

From 2003 to 2008, one can identify a cycle of a high co-movement when the correlation

coefficient was around 0.4 on average. This cycle has been attributed to two sources5: (1) to

3See McColl et al. [2009]
4 mmBtu stands for million British thermal units. Natural gas can also be measured in gigajoule(GJ)

and thousand cubic feet (Mcf). NYMEX Henry Hub natural gas prices are quoted in mmBtu. The relation
between these three measures are: 1 mmBTU = 1.027 Mcf =1.05 GJs.

5There is a large amount of research work on 2004-2008 increase in energy prices: whether it was caused
by fundamentals (supply and demand factors) or by a bubble resulting from the large inflow of index
investments. Refer to Irwin and Sanders [2011] for an excellent survey of the subject.
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Figure 2: Monthly Correlation of Daily Returns of WTI Crude
Oil and HH Natural Gas.

the large demand for energy products from emerging economies, such as China and India,

which experienced very rapid economic growth during the period, and (2) to the demand in

financial markets for commodities index investments which are designed to provide exposure

to commodity prices for diversification purposes and/or better risk-return opportunities. A

cycle of low correlation is seen recently, which has been attributed to strong growth in shale

gas production 6. This is also clear from the divergence in the two prices series seen since

the end of 2008 as shown in Figure 1.

Using data from 1995 to 2010 we found empirical support for the result that there is

no long-term relationship between oil and natural gas prices. We conducted Johansen’s

maximum-likelihood tests of co-integration which failed to reject the null hypothesis of no

co-integration. The results of this test along with other evidence indicating a lack of long

run relationship are contained in Appendix A

6 For more details see The 2011 Annual Energy Outlook prepared by the U.S. Energy Information Ad-
ministration available at http://www.eia.gov.
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In summary, the economic links between two markets suggest the existence of a long-

relationship between the two prices but the empirical evidence is weak especially if one

incorporates the recent divergence in the two price series. Accordingly, in modeling the

dynamics of the two prices, two models are proposed, one incorporates a long-run link

between the two markets while the other has no such link.

3 Stochastic Price Processes for Natural Gas and Oil

The models presented in this section can be seen as an extension of the Schwartz and Smith

[2000] model. Denote S1,t and S2,t to be the time t spot price of one unit of crude oil and

natural gas respectively. Assume that the spot price of both commodities is decomposed

into three components as follows7:

Log(Si,t) = Xi,t + xi,t + gi(t), i = 1, 2, (1)

where:

Xi,t is a non-stationary stochastic process corresponding to the long-run move-

ment in the price of commodity i,

xi,t is a mean-reverting stochastic process. It accounts for the short-term

variations in the price of commodity i around its long-run component,

and

gi(t) is a deterministic function corresponding to the seasonal movement in the

price of commodity i. It will be specified later.

In specifying the stochastic behavior of the long-run and the short-run components, two

7 Given this choice of modeling, the oil price behavior is assumed to be exogenous to the oil sand industry.
This is not unreasonable because production from the oil sands makes up only a small percentage of world
oil production. In 2011 crude bitumen production from Alberta averaged 1.7 million barrels per day.
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specifications are considered. We will denote them as Model I and Model II respectively.

Model I

In this model, the behavior of the long-run and the short-run stochastic components,

Xi,t and xi,t respectively, is given by the following stochastic differential equations under the

physical measure:

Log(Si,t) = Xi,t + xi,t + gi(t), i=1,2,



dX1,t = µ1dt+ σ1dW1,t

dX2,t = µ2dt+ σ2dW2,t

dx1,t = −κ1x1,tdt+ γ1dZ1,t

dx2,t = −κ2x2,tdt+ γ2dZ2,t.

(2)

where µi denotes the rate of growth of the long-run component of commodity i, σi denotes

the volatility of the long-run component of the price of commodity i, κi denotes the speed

of mean reversion in the short-run component of the price of commodity i, γi denotes the

volatility of the short-run component of the price of commodity i, and dWi,t and dZi,t are

four possibly correlated increments of Brownian motions.

The system can be written in the following matrix form:

dYt = (M + ΨYt)dt+ ΣdBt, (3)

where:
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Yt =



X1

X2

x1

x2


, M =



µ1

µ2

0

0


, Ψ =



0 0 0 0

0 0 0 0

0 0 −κ1 0

0 0 0 −κ2


, Σ =



σ1 0 0 0

0 σ2 0 0

0 0 γ1 0

0 0 0 γ2


and

Bt =



W1,t

W2,t

Z1,t

Z2,t


.

In this model, the co-movement between the two commodity prices is only captured through

the correlation structure of the Brownian motions increments.

Model II

In this model, motivated by the rule of thumb used in the natural gas market, we let

the long-run component of the natural gas price depend on its deviation from the long-run

component of the crude oil price as follows:

Log(Si,t) = Xi,t + xi,t + gi(t), i = 1, 2,



dX1,t = µ1dt+ σ1dW1,t

dX2,t = α(X1,t −X2,t − χ)dt+ σ2dW2,t

dx1,t = −κ1x1,tdt+ γ1dZ1,t

dx2,t = −κ2x2,tdt+ γ2dZ2,t

(4)

In this specification, the long-run component of natural gas reverts to a level of e−χ
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from the long-run component of crude oil price. The parameter χ dictates the equilibrium

ratio between the two long-run prices. That is, in equilibrium, S2,t = e−χ · S1,t. Temporary

deviation from this long-run ratio (because of demand and supply imbalances caused by

macro-economic factors, inventory shocks, etc.) will be eliminated over the long-run. Note

that the long-run component of oil price, X1,t, is assumed not to depend on the price of

natural gas. This reflects the empirical result that crude oil prices are determined interna-

tionally while natural gas prices are determined regionally (see Villar and Joutz [2006] and

Mohammadi [2009]).

The matrix form for this model is the same as equation (3) except that the vector M

and the matrix Ψ are defined as follows:

M =



µ1

−α · χ

0

0


and Ψ =



0 0 0 0

α −α 0 0

0 0 −κ1 0

0 0 0 −κ2



3.1 Seasonality

The third component, gi(t) corresponds to the seasonal movement in the price of commodity

i. Following Harvey [1989], gi(t) is modeled by trigonometric functions of the form:

gi(t) = Aisin(2πft) +Bicos(2πft) (5)

where Ai and Bi are constants correspond to the size of the seasonality effect and f is the

frequency of the seasonality per year8

8Trigonometric functions for seasonality are well known in natural gas derivatives pricing. Examples are:
Xu [2004], Casassus et al. [2010] and Chen and Forsyth [2010].
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3.2 Futures Pricing

Denote the futures price at time t for one unit of commodity i delivered in τ periods by

Fi,t(τ,Yt), where Yt is the vector of the risk factors that affect the price of commodity i

as specified above. For derivative pricing, one should specify the stochastic processes in the

risk neutral measure denoted as Q measure9. To achieve that, we assume constant market

prices of risk and the change of measure is thus of the following form:

dBt
Q = dBt + ΛΣ−1dt (6)

where Λ is 4 by 1 vector of constant market prices of risk. That is, Λ = [λX1 λX2 λx1 λx2 ]
>,

where λj is the market price of risk associated with the process j.

Therefore, the dynamics of the state vector under the risk-neutral measure would be:

dYt = (MQ + ΨYt)dt+ ΣdBQ
t (7)

where

MQ = M−Λ =



µ1 − λX1

µ2 − λX2

−λx1

−λx2


=



µQ1

µQ2

−λx1

−λx2


9 The risk neutral measure, as opposed to the physical measure, is the measure implied by the market

prices of the derivative contracts. This measure adjusts for the risk as market participants adjust for risk
when they set the derivative prices. Details on deriving the risk neutral process for the purpose of derivative
pricing can be found in Björk [2003].
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for Model I, and

MQ = M−Λ =



µ1 − λX1

α · χ− λX2

−λx1

−λx2


=



µQ1

−α · χQ

−λx1

−λx2


for Model II

From Björk and Landen [2000], the futures price of commodity i at time t for delivery in

τ periods, Fi,t(τ), should satisfy the following partial differential equation (PDE):

− ∂Fi,t(τ)

∂τ
+
∂Fi,t(τ)>

∂Yt

(MQ + Ψ)Yt +
1

2
Tr

(
∂2Fi,t(τ)

∂Y2
t

Ω

)
= 0 (8)

where Tr(·) is the matrix trace and Ω is the covariance matrix of ΣdB which is then given by:

Ω = dt ·



σ2
1 ρw1w2σ1σ2 ρw1z1σ1γ1 ρw1z2σ1γ2

ρw1w2σ1σ2 σ2
2 ρw2z1σ2γ1 ρw2z2σ2γ2

ρw1z1σ1γ1 ρw2z1σ2γ1 γ2
1 ρz1z2γ1γ2

ρw1z2σ1γ2 ρw2z2σ2γ2 ρz1z2γ1γ2 γ2
2


,

where ρi,j denote to the instantaneous correlation between Brownian motions i and j.

The spot price of the commodity i at time t can be seen as the futures price at time t for

immediate delivery (i.e. τ = 0). Thus, the above PDE has the following boundary condition:

Log
(
Fi,T (0,YT)

)
= Xi,T + xi,T + g(T ). (9)

Since the two models are in the affine framework, the solution of the above PDE has the
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following form as shown by Dai and Singleton [2000] and Tian [2003]:

Log
(
Fi,t(τ,Yt

)
) = αi(t, τ) + βi(t, τ)Yt, (10)

where α(t, τ) and β(t, τ) solve the following system of ordinary differential equations:

−∂αi(t, τ)

∂τ
+ βi(t, τ)MQ +

1

2
β(t, τ)Ωβ(t, τ)> = 0 (11)

∂β(t, τ)

∂τ
− β(t, τ)Ψ = 0, (12)

with boundary conditions:

αi(T, 0) = gi(T ) (13)

βi(T, 0) = [1 0 1 0] if i = 1 (14)

= [0 1 0 1] if i = 2. (15)

Integrating (12) and then plug it into (11), one gets:

βi(t, τ) = βi(T, 0)e(Ψτ) (16)

αi(t, τ) = gi(T ) +

∫ τ

0

(
βi(t, u)MQ +

1

2
β(t, u)Ωβ(t, u)>

)
du. (17)

Thus, the futures prices for Model I are given by:

Log(Fi,t(τ)) = gi(T ) +Xi + xie
κiτ + µQi τ +

1

2
σ2
i τ

+

(
λxi
κi
− σiγiρwizi

κi

)(
e−κiτ − 1

)
− γ2

i

4κi
(e−2κiτ − 1), (18)

where i = 1, 2.

For Model II, while the expression for futures price of crude oil (i = 1) is the same as
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that of Model I, natural gas futures prices (i = 2) are given by:

Log(F2,t(τ)) = g2(T ) +X1 + χ+
1

2
σ2

1τ + µQ1 τ + (X2 −X1 − χ)e−ατ + x2e
−κ2τ

+

(
λx2
κ2

− ρw1z2σ1γ2

κ2

)(
e−κ2τ − 1

)
− γ2

2

4k2

(e−2k2τ − 1)

+

(
µQ1
α

+
σ2

1

2α
+
ρw1w2σ1σ2

α

)
(e−ατ − 1)

+

(
−σ

2
2

4α
− ρw1w2σ1σ2

2α

)
(e−2ατ − 1)

+

(
ρw1z2σ1γ2

α + κ2

− ρw2z2σ2γ2

α + k2

)
(e−(α+κ2)τ − 1). (19)

3.3 Estimation Procedure

The two models can be estimated using quasi maximum likelihood through the Kalman filter.

The state space form is the appropriate procedure to deal with situations in which the state

variables are not observable, but are known to be generated by a Markov process, as is the

case in this paper. Once a model has been cast in state space form, the Kalman filter may

be applied to estimate the parameters of the model and the time series of the unobservable

state variables. For a detailed discussion of state space models and the Kalman filter see

Chapter 3 in Harvey [1989].

To cast the models in the state space form, one needs to specify the transition equation

that governs the dynamics of the state variables and the measurement equation that relates

the observable variables to the state variables.

The transition equation can be deduced from Equations (3) to get:

Yt+∆t = (Ψ∆t+ I)Yt + M∆t+ et+∆t, et+∆t ∼ N(0,Ω∆t). (20)

At each time, a vector of (log) future prices of both commodities for different maturities
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is observed. Assuming that these prices are observed with measurement error, caused by

bid-ask spreads, the non-simultaneity of the observations, etc., [Schwartz, 1997], the mea-

surement equation will then be :



Log
(
F1,t(τ1)

)
Log

(
F1,t(τ2)

)
...

Log
(
F2,t(τ1)

)
Log

(
F2,t(τ2)

)
...


=



α1,t(τ1)

α1,t(τ2)

...

α2,t(τ1)

α2,t(τ2)

...


+



β1(τ1)

β1(τ2)

...

β2(τ1)

β2(τ2)

...


Yt + ωt, ωt ∼ N(0, υ2I) (21)

= A + BYt + ωt. (22)

where ωt represents the measurement errors in the futures prices.

4 Oil Sands Valuation Model

In this section, the resource extraction model of Brennan and Schwartz [1985] is extended

to account for a stochastic extraction cost. Consider a competitive firm that operates an oil

sands project to extract bitumen from known inventory of Q units. The project is assumed

to be currently operating which means that initial cost to build the facility is sunk.

When the project is operating, the profit flow rate generated by selling the produced

amount from t to t+ dt is given by:

Πt = qt
(
St − c1 − vt

)
− c2 − τax, (23)

where qt is the optimal rate of production in barrels per unit of time which is assumed to

be known to the management, St is the price of one barrel of bitumen, c1 is a deterministic
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variable cost, vt is a stochastic variable cost, c2 is the fixed cost and τax is the total taxes

consisting of income tax plus royalties.

Since most bitumen is upgraded to crude oil, the bitumen price is assumed to follow the

same dynamics as the price of crude oil. Thus, the dynamic of St is given by the dynamic of

S1,t specified in section 3. This is a simplification made for convenience, and ignores some

factors which affect bitumen prices, such as the availability of pipeline capacity to transport

the bitumen to market.

In the case of the oil sands industry, vt corresponds mainly to the cost of natural gas

purchases in order to produce one unit of bitumen. Thus, vt is governed by the dynamics of

S2,t specified in section 3.

The decision-maker has the option to switch between different modes of operation. When

the price drops low enough, the decision-maker can incur a fixed cost, Koc, and suspend the

operation until the price level goes back up to more profitable levels. During suspension,

the decision-maker incurs a flow of maintenance cost, M. If the price drops dramatically to

very low levels, the decision-maker has the option to abandon the project permanently. On

the other hand, if the project is currently closed and the price recovers to a profitable level,

the decision-maker has the option to reopen the field by paying another fixed cost of Kco.

These options have value and option pricing theory can be used to find their values. The

value of the project is the sum of all expected future cash flows discounted at the risk free

rate, provided that the optimal policy of switching between operation modes is pursued.

For a small time step of ∆t, the value of the project is then governed by the following

two Bellman equations for currently open and closed projects respectively10:

10In continuous time, and given that the prices are modeled without jumps, an open project can not be
abandoned directly without being temporary closed. Thus, in continuous time setting, the third line in
equation 24 should be dropped.

Abdullah/Insley Stochastic Extraction Cost 16



Vopen

(
Yt, Q, t

)
=

max


Πt∆t+ e−(r+τo)∆tEt

[
Vopen(Yt+∆t, Q− q∆t, t+ ∆t)

]
open

−M∆t−Koc + e−(r+τc)∆tEt
[
Vclosed(Yt+∆t, Q, t+ ∆t)

]
close

0 abandon

(24)

Vclosed

(
Yt, Q, t

)
=

max


Πt∆t−Kco + e−(r+τo)∆tEt

[
Vopen(Yt+∆t, Q− q∆t, t+ ∆t)

]
re-open

−M∆t+ e−(r+τc)∆tEt
[
Vclosed(Yt+∆t, Q, t+ ∆t)

]
close

0 abandon,

(25)

where τi , i = o or c, is the property tax rate proportional to project value when it is open and

when it is closed respectively. r is the risk free rate. As mentioned above, the expectations

are taken under the risk-neutral measure.

Analytical solutions to equations (24) and (25) are unavailable, thus numerical methods

must be used. The Least Square Monte Carlo (LSMC) method developed by Longstaff

and Schwartz [2001] has proved to be an efficient and simple tool for such problems (see

Cortazar et al. [2008] and Tsekrekos et al. [2010]). A brief description of the LSMC method

is contained in Appendix B.

5 Data Description for Estimation and Simulation

To estimate the parameters of the two models, we use weekly data of West Texas Intermediate

(WTI) crude oil futures and Henry Hub (HH) natural gas futures. Both contracts are traded

on the New York Mercantile Exchange (NYMEX). The WTI crude oil futures contract is

for delivery at Cushing, Oklahoma and its price is considered a worldwide benchmark for

crude oil prices. The HH natural gas futures contract is for delivery at Henry Hub, a natural
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gas pipeline located in Erath, Louisiana. Natural gas prices at Henry Hub are considered

benchmarks for the entire North American natural gas market. The data consists of weekly

futures prices for the period from the beginning of 1995 to the end of August 2010. The

above data-set was obtained from Datastream.

To construct a continuous series of futures prices, following the literature, futures prices

are sorted each week according to the contract horizon with "first month" contract being

the contract with the earliest delivery date with futures price denoted as F01, the "second

month" contract being the contract with the next earliest delivery date with futures price

denoted as F02, and so on. Since futures contracts have fixed delivery dates11, the time to

maturity changes as the time progresses. However, it remains within narrow range for each

contract. For estimating the two models, the price of five futures contracts are used for both

crude oil and natural gas processes which correspond to 1 month, 4 months, 7 months, 12

months and 15 months futures contracts.

Crude oil prices do not show seasonality, which is consistent with the literature on oil

futures, such as Schwartz [1997]. However, natural gas prices are well-documented to have

strong seasonality as can be seen clearly from the forward curve in figure 3 Seasonality

in natural gas prices results primarily from demand fluctuations driven by weather related

factors. Cold winter results in above average consumption since natural gas is the main

residential and commercial heating fuel. Thus, demand for natural gas is typically high in

winter and since storage facilities are limited, winter-maturing futures tend to be higher

than those maturing in summer as is clear from figure 3. Since the seasonality is yearly, f

in equation (5) is set equal to 1. For more details on the seasonal behavior of gas prices, see

Xu [2004].

11For WTI, trading in the current delivery month ceases on the third business day prior to the twenty-
fifth calendar day of the month preceding the delivery month. For natural gas, the trading of any delivery
month ceases three business days prior to the first day of the delivery month. More details can be seen in
http://www.cmegroup.com.
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Figure 3: HH Natural Gas Future Curve at June 7th, 2010

To accomplish the objective of this study, a hypothetical in situ oil sands project with

a capacity of 5 million barrel per year is considered 12. The decision-maker, for simplicity,

is assumed to have four opportunities per year to switch between operating modes13. In the

2009 CERI report 14, variable cost is assumed to be $6.8 per barrel, which is our estimate

for c1. In the same report, for a capacity of 30,000 barrels per day, the report estimated the

annual average of the capital cost (excluding the initial cost of building the facility) to be 36.5

million dollars and the fixed operation costs to be 61.2 million dollars. Dividing the sum by

the capacity assumed in the report and multiplying the result by 5 millions barrels per year,

the capacity assumed in this study, we get $41 million per year of fixed cost, our estimate

for c2. Maintaining the project while closed is assumed to be 10% of the fixed operating

cost which is around $4 million per year. For simplicity, switching costs are assumed to be

zero, i.e. the operator can switch to closed mode without incurring a cost. This implies

12 This choice coincides with some of the existing projects, see the CERI 2008 report [McColl and Slagorsky,
2008]. Higher project capacities also exist, but considering them will be at the cost of the speed of simulation
without much impact on the nature of the results.

13 This assumption is used to make the size of the numerical calculation manageable. Increasing the
switching opportunities frequency will increase the size of the working matrices exponentially. It certainly
makes the values to be more precise but will not change the pattern of the results. This assumption has
shown up in literature as well, for example: Cortazar et al. [2008] assumed only 3 opportunities to switch.

14See Table 3.1 in McColl et al. [2009]
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that the value of the project is the same whether it is open or suspended as is clear from

the two Bellman equations, equations (24) and (25). The impact of switching costs on the

value of a natural resource has been studied in Mason [2001]15. For tax parameters, the

2009 CERI report assumption of constant income tax at nineteen percent (federal) and ten

percent (provincial) is assumed. The royalties system of the oil sand industry relates the

applicable royalties to the price of WTI crude oil and whether the project has reached its

payout. Project payout would be said to have occurred when accumulated revenues first

exceeded accumulated capital and operating expenditures. To avoid adding additional state

variables, we assume that the project is past the payout. The royalty calculation is shown

in Table 1. Property tax is applied to the oil sands project at a rate of 1%.16 Finally, we

follow the CERI report in applying 2.5% rate of inflation. This rate of inflation is applied to

the deterministic variable and fixed costs (c1 and C2) and the maintenance cost (M). Table

1 summarizes these parameter values.

6 Results

Table 2 shows the main descriptive statistics for the (log) returns of different futures prices

of different delivery months for both commodities. It is clear from the table that the natural

gas returns exhibit higher volatility than crude oil returns. The natural gas market is more

sensitive to fluctuating factors such as inventory and weather related factors. The volatility

of both commodities declines with maturity; an observation known in futures literature as

Samuelson’s effect. The table also shows that the distributions of all returns are skewed to

the left and exhibit high kurtosis.

15As Mason [2001] shows, greater switching costs cause firms to be less inclined to change status. However,
non-zero switching costs will not change the way the project value and the optimal switching prices react to
the dynamics of natural gas prices, the main focus of the paper.

16 More details on taxes paid by oil sands projects can be found on the Alberta Government website
(http://www.energy.alberta.ca).
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Table 1: Hypothetical Oil Sands Project Characteristics

Parameter Value

Maximum Project Life (T ) 50 years

Deterministic variable Cost (c2) $6.8 per barrel

Deterministic Fixed Cost (c1) $41 million per year

Maintenance Cost (M) $6 million per year

Production Rate (q) 5 million barrels per year

Income Tax and Royalties (τax) Income Tax : 29%

Royalties: maximum of (a) 1% if WTI ≤ $55,
9% if WTI ≥ $120 and linear interpolation in
between of gross revenue and (b)25% if WTI
≤ $55, 40% if WTI ≥ $120 and linear inter-
polation in between of net revenue

Switching Costs (Koc and kco) Assumed 0 for simplicity

Property Taxes (τo and τc) 1%

Inflation Rate 2.5%

6.1 Estimation Results

Table 3 shows the results of the Kalman filter quasi maximum likelihood estimation. Most of

the parameters in the two models are significant. In particular, the parameters of the long-

run relationship in Model II, α and χ, are highly significant. By having one more parameter

in Model II, the likelihood has increased by 185 units. In terms of the fitting error, Table 4

shows the mean error (ME) and the root squared mean error (RSME) of the five contracts

used in estimation. For crude oil, the errors are almost the same for both models because

the crude oil process has the same dynamics in both models. For natural gas, Model II does

slightly better than Model I.

In Model I both markets have same long-run component volatility, σ1 and σ2, but volatil-

ity of the short-run component in gas market, γ2, is almost double that of the oil market,

γ1. This is to due the fact that the natural gas market is known to be very sensitive to

weather-related and inventories factors. Moreover, higher κ2 indicates that a shock to the
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Table 2: Descriptive Statistics of Crude Oil and Natural Gas Log Returns

(Weekly data from January of 1995 to August of 2010 have been used)

Crude Oil Natural Gas

F01 F04 F07 F12 F15 F01 F04 F07 F12 F15

Mean 0.009 0.010 0.010 0.010 0.010 0.007 0.007 0.007 0.006 0.007
Std. Dev. 0.211 0.172 0.151 0.133 0.126 0.330 0.229 0.183 0.145 0.139
Skewness -0.482 -0.510 -0.494 -0.417 -0.360 0.183 -0.104 -0.296 -0.207 -0.507
Kurtosis 5.149 5.025 5.128 5.374 5.501 4.844 3.543 4.296 4.671 4.983
Observations 813 813 813 813 813 813 813 813 813 813

gas market will disappear faster than would be the case in the oil market. The correlation

between the long-run components of the two markets, ρw1w2 , is 0.48 indicating a significant

co-movement in the two markets.

In Model II, both α and χ are significant. Given the values of χQ and χ, the equilibrium

ratio of the price of natural gas to the price of crude oil is 1 to eχ
Q

= e2.359 = 10.581

in the risk neutral measure and 1 to eχ = e1.853 = 6.400 in the true measure. That is,

market participants in the natural gas market adjust for risk by setting the equilibrium ratio

to be higher than what is seen historically. The speed at which the gas price reverts to

this equilibrium ratio from oil is quite slow, α = 0.2257. This might explain the difficulty

of rejecting the null hypothesis of no co-integration between the two markets as shown in

section 2.

The volatility of the long-run component of the natural gas price, σ2, is higher in Model

II at 0.23 than in Model I at 0.18. This is mainly because the movement of the gas price

is more restricted in Model II than in Model I, which increases the estimated volatility

Model II. Moreover, in Model II, the correlation between the long-run components of the two

commodities, ρw1w2 , has dropped to almost half its value in Model I. This is due to the fact

that the link in the expected values in the Model II has captured some of the co-movement.

A clearer picture of the two models can be seen in their implied forward curves as shown

in Figure 4. The forward curve is the graph of the futures prices as a function of their
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Table 3: The Kalman Filter Quasi Maximum Likelihood Estimation

Model I Model II

Parameter Value SE Value SE

µ1 0.0882 0.0547 0.0978 0.0550

µ2 0.0564 0.0501

µQ1 -0.0501 0.0091 -0.0479 0.0094

µQ2 -0.0660 0.0026

λx1 -0.0229 0.0443 -0.0154 0.0475

λx2 -0.2215 0.1057 -0.1300 0.1104

κ1 1.3075 0.0859 1.1802 0.0708

κ2 2.0084 0.0235 2.4984 0.0326

σ1 0.1796 0.0058 0.1758 0.0060

σ2 0.1797 0.0064 0.2302 0.0076

γ1 0.2359 0.0130 0.2466 0.0133

γ2 0.5001 0.0151 0.4915 0.0151

ρw1w2 0.4797 0.0687 0.2991 0.0776

ρw1z1 0.3507 0.0839 0.2969 0.0879

ρw1z2 0.1784 0.0740 0.2369 0.0800

ρw2z1 0.2785 0.0787 0.2711 0.0747

ρw2z2 0.3086 0.0588 0.3068 0.0582

ρz1z2 0.2556 0.0777 0.2073 0.0789

v 0.030 0.0005 0.0292 0.0005

A2 0.0647 0.0006 0.0650 0.0006

B2 0.0219 0.0005 0.0223 0.0005

α 0.2257 0.0038

χ 1.853 0.2850

χQ 2.359 0.0364

No. of Obs. 812 812

LL 14643 14828

Data from January of 1995 to August of 2010 have been used. The price of
1 month, 4 months, 7 months, 12 months and 15 months futures contracts
have been used from both markets in estimation. LL is the logarithm of the
likelihood evaluated at the estimated values of the parameters.
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Table 4: Fitting Error of Model I and Model II

Mean Error(ME) Root Mean Squared Error (RMSE)

Crude Oil Natural Gas Crude Oil Natural Gas

Model I Model II Model I Model II Model I Model II Model I Model II

F1 -0.0003 -0.0004 -0.0010 -0.0009 0.0183 0.0184 0.0285 0.0238
F4 0.0018 0.0018 0.0027 0.0018 0.0124 0.0123 0.0446 0.0432
F7 -0.0002 -0.0002 -0.0012 -0.0010 0.0099 0.0098 0.0393 0.0380
F12 -0.0013 -0.0013 -0.0013 -0.0006 0.0085 0.0087 0.0320 0.0316
F15 0.0003 0.0002 0.0007 0.0006 0.0124 0.0125 0.0294 0.0293

All 0.0003 0.0003 0.0000 -0.0001 0.0615 0.0616 0.1739 0.1659

maturities. In the figure, the initial values of the long-run components, X1,0 and X2,0 are set

to be log(60) and log(6) respectively and the short-run components of the two prices are set

to zero. This means that two the prices are at their equilibrium ratio under the risk neutral

measure. Note that crude oil curve in the graph is scaled down by factor of 10 to facilitate

the comparison.

The slope of the natural gas forward curve in Model I is more negative than that in

Model II. This is because the slope of the forward curve in Model II converges to that of the

crude oil forward curve which is flatter than the slope of natural gas in Model I given the

estimated parameters. To see that, differentiate equations (18) and (19) with respect to τ

and set τ to ∞. In Model I, the slope of natural gas curve in the long-run is then given by:

µQ2 +
1

2
σ2

2, (26)

while in Model II it is:

µQ1 +
1

2
σ2

1. (27)

That is, in Model II, the slope of the forward curve of the natural price converges to that of

the crude oil as one moves further along the forward curve.

Moreover, in Model II the futures price of natural gas is a function of the deviation
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Figure 4: Implied Forward Curves

between natural gas and crude oil long-run components, X2,t − X1,t, as one can see from

equation (19). If this deviation is higher (lower) than χ, the gas price is expected to move

upward (downward) in the risk neutral measure. This has a significant impact on valuation,

as shown in the next section, given the slow rate of convergence of the long-run component

of the gas price to the equilibrium ratio from the long-run component of the oil price.

6.2 Valuation Results

Figure 5 shows the value of the hypothetical oil sands project as a function of the remaining

reserves. The initial values of the long-run components are set to be $30 for bitumen (around

$60 WTI) and $6 for natural gas, which gives the equilibrium ratio under the risk neutral

measure. The short-run components are set to zero. Moreover, we plot the value of the

project under the pure 10:1 rule of thumb (ROT) commonly used by industry along with
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Figure 5: Oil Sand Project Value Under the Three Models

the value of the project under the two models17. It is clear from the graph that the rule of

thumb significantly overestimates the value of the project. The reason is that the natural

gas forward curve is much lower under the 10:1 rule of thumb than it is under both models

as is clear from Figure 4.

Comparing the value of the oil sands project under the two models, Model II gives

slightly lower value than Model I. This is because the estimated value of σ2 is higher in

Model II (0.230) than its value in Model I (0.179) and this higher volatility lifts up the

natural gas forward curve in Model II , as can be seen from equation (19). This shift in the

forward curve reduces the expected cash flows and, in turn, the project value.

Figures 6 shows the impact of the long-run component volatility of the natural gas price

on the value of the project in both models which is also shown in Table 5 at Q = 60. The

17CERI has applied this rule of thumb in their 200 report of 2009, [McColl et al., 2009].
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Figure 6: The Impact of N. Gas Long Term Component Volatility.
X1,0 = Log(60), X2,0 = Log(6) and x1,0 = x2,0 = 0
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Table 5: Oil Sands Project Value (Values in Millions)

S0 = $30 ($60 WTI), v0 = $6 and Q = 60 barrels.
σ̂2 and ρ̂w1w2 are the estimated values in table 3.

Model I Model II

(1) (2) (3) (2)-(3) (4) (5) (6) (5)-(6)

σ̂2 σ2 = 0.3 σ2 = 0.1 σ̂2 σ2 = 0.3 σ2 = 0.1

ρ̂w1w2
160.16 144.52 168.26 23.74 143.65 139.37 150.46 11.09

0.2 165.74 155.52 170.96 15.44 145.41 141.71 151.22 9.52
0 169.58 162.41 172.96 10.55 148.82 146.41 152.68 6.27
−0.2 173.15 168.49 174.82 6.33 152.27 150.80 154.08 3.28

graph and the table show that volatility has a higher impact under Model I than it has under

Model II. The reason is that in Model II the natural gas price reverts after a shock to a mean

value based on the price of crude oil. This restriction reduces the sensitivity of the gas price

to volatility. As shown in equation (27), what matters for the forward curve of natural gas

in the long-run is the volatility of the long-run component of crude oil, σ1, not the volatility

of the natural gas long-run component, σ2. Moreover, the same table shows that the value

will drop by relatively more when volatility increases if the correlation between oil and gas is

high. This is due the fact that higher correlation makes the gas price (and the cost) and oil

price (and the revenue) move more closely together which reduces the expected cash flows

and then the current value.

Figure 7 shows the impact of different starting values for the price of natural gas price.

The oil price is set at $30 ($60 WTI). At a gas price of $6, which is around the equilibrium

ratio under Model II, the two models give same values. When the gas price is higher than

$6, the value under Model II is higher because gas price needs to adjust downward to the

equilibrium ratio which makes future costs lower and project value higher. On the other

hand, when gas prices are below $6, Model II gives lower value than Model I because, in this

case, gas price needs to adjust upward to its equilibrium ratio from oil price which makes

future costs higher and project value lower.
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Figure 7: Value of the Project as a Function of N. Gas Long Term component.
X1,0 = Log(60) and x1,0 = x2,0 = Log(0)

Also of interest are critical prices at which it is optimal for the owner to switch from

being open to closed (i.e shutting down production), from closed to open (i.e resuming the

production after a temporary shutdown) or abandoning the project. Figures from 8 to 11

shows these critical prices for different values of the remaining reserve. These prices are

determined using the Bellman equations (equations 24 and 25) as follows: the Bellman

equations are solved for different values of the current price of oil. The prices that equate

the value of the project in two adjacent modes (i.e from open to closed or from closed to

abandon) will give the prices at which it is optimal to switch between these two modes.

Figures 8 and 9 show that the critical switching prices are almost the same for different

scenarios of the natural gas long-run component volatility, σ2, and the correlation between

the long-run components of the two commodities, ρw1w2 . The figures show that there is

almost no impact of the dynamics of the natural gas long-run component on the switching

prices. The reason behind this absence is that, given the estimated parameters, crude oil
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Figure 8: Impact of N. Gas Process on the Switching Prices Under Model I :
Backwardation Case

σ̂2 and ρ̂w1w2 are the estimated values in Table 3

(a) σ2 = 1.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(b) σ2 = 1.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

(c) σ2 = 0.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(d) σ2 = 0.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

prices are expected to fall in the risk neutral measure and since the natural gas price is a

small component of the total average cost, Ct, the impact of gas prices on the switching

prices is dominating by the falling oil prices.

To gain more insight into the impact of stochastic cost on the switching prices and the

optimal policy, we let the market for oil to be in contango, i.e the forward curve to be upward

sloping. A forward curve in contango has been observed in oil markets in 336 out of 820

weeks throughout the sample. Within the modeling of this paper, contango in the forward

curve can be achieved by having higher µ1 or higher σ1. Since the estimated value for σ1 is

already high, we increase the value of µ1. We apply the same increase in the rate of return

to the gas long-run component in Model I.

Figures 10 and 11 show the impact of stochastic cost on the optimal policy in this
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Figure 9: Impact of N. Gas Process on the Switching Prices Under Model II :
Backwardation Case

σ̂2 and ρ̂w1w2 are the estimated values in Table 3

(a) σ2 = 1.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(b) σ2 = 1.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

(c) σ2 = 0.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(d) σ2 = 0.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

contango case as a function of the oil price for different scenarios of the natural gas long-run

component volatility, σ2, and the correlation between the long-run components of the two

commodities, ρw1w2 . For Model I, as shown in figure 10, a higher σ2 increases the slope of the

forward curve of natural gas and then reduces the expected future profit flows. The reverse

is true too, a lower σ2 decreases the slope of the forward curve and increases the expected

future profit flows. Therefore, it is optimal to switch to from closed to open mode at lower

prices when σ2 is high, figures 10(a) and figures 10(b), than the case when it is low, 10(c)

and figures 10(d).

Turning to the impact of ρw1w2, the correlation between the long-run components of the

two commodities, a higher ρw1w2 reduces future profit flows and project value. The reverse

is also true, a lower ρw1w2 makes the two prices move less together and this increases the
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Figure 10: Impact of N. Gas Process on the Switching Prices Under Model I :
Contango Case

σ̂2 and ρ̂w1w2 are the estimated values in Table 3

(a) σ2 = 1.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(b) σ2 = 1.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

(c) σ2 = 0.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(d) σ2 = 0.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

future cash flows and then the project value. Therefore, it is optimal to switch to open mode

at lower prices when ρw1w2 is high than the case when it is low.

However, the case is different under Model II as shown in figure 11. The impact of the

dynamics of natural gas is almost gone. The optimal switching prices are almost same under

the four scenarios. This is due the fact that, under this model, the natural gas price is tied

to follow the crude oil price and this link makes the value of the project and the optimal

policy less sensitive to the dynamics of natural gas prices.
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Figure 11: Impact of N. Gas Process on the Switching Prices Under Model II :
Contango Case

σ̂2 and ρ̂w1w2 are the estimated values in Table 3

(a) σ2 = 1.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(b) σ2 = 1.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

(c) σ2 = 0.5σ̂2, ρw1w2
= 1.5ρ̂w1w2

(d) σ2 = 0.5σ̂2, ρw1w2
= 0.5ρ̂w1w2

7 Concluding Remarks

In this paper, we study the impact of stochastic extraction costs for a non-renewable resource

for the case of a prototype oil sands project which uses natural gas as an input. The prices

of oil and natural gas are modelled as correlated Ito processes. The value of the project with

stochastic costs is shown to be very different from the simple 10:1 rule of thumb sometimes

used in the industry for the relationship between oil and natural gas prices. We show that

a higher natural gas price volatility reduces the value of the project, which is contrary to

the usual options result that volatility increases project value. The paper also demonstrates

that not only are the dynamics of oil and natural gas prices important, but the co-movement

of the two prices are also an important factor in valuation and optimal operation. While the
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economic links between the two markets, i.e being substitutes energy sources, suggests the

existence of a long-run relationship between the two prices, the empirical evidence is weak

especially if one incorporates the recent divergence in the two price series. The results show

that incorporating a long-run relationship between the two markets reduces the sensitivity

of project value and optimal decisions to the dynamics of natural gas prices.
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Appendices

A Evidence on the relationship of oil and natural gas

prices

Table 6 shows Johansen’s maximum-likelihood tests of co-integration18. The results fail to

reject the null hypothesis of no co-integration in futures prices for different maturities except

the results of the trace statistic in the first month futures prices. However, the results for

the long-term futures suggest no long-run relationship.

Moreover, Table 7, shows that more than 25% of time, the long-run slope of the forward

curves of both oil and gas futures, measured by the difference between the one year or the

two years futures price and the first month futures price, have different signs which indicates

that the two markets lack a strong long-run relationship.

Casassus et al. [2010] shows that commodities with economic links exhibit an upward-

sloping curve in their correlation term structure, i.e. the correlation coefficient between

futures price returns increases as a function of maturities. Figure 12 shows the correlation

term structure between natural gas and crude oil prices and it is clear that the upward-sloping

is absent indicating a lack of long-run relationship.

B The Least Squares Monte Carlo Solution Method

This section contains a brief description of the Least Squares Monte Carlo (LSMC) proce-

dure used determine project value and optimal decisions. The LSMC procedure starts by

simulating a large number of paths of Yt from the current time to time T when the project

18Using the Augmented Dickey-Fuller test, the null hypothesis of non-stationarity could not be rejected in
the levels but can be in the first difference for all futures prices of both commodities. This result is standard
in the literature and it is not shown here.
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Table 6: Johansen’s Maximum-Likelihood Tests of Co-Integration

Null Alternative Statistic Prob.**
(r ≡ No. of Co-integrations)

F01

Trace r = 0 r > 1 28.272 0.025
r ≤ 1 r > 1 10.466 0.108

Max-Eigen r = 0 r = 1 17.807 0.084
r = 1 r = 2 10.466 0.108

F04

Trace r = 0 r > 1 24.159 0.081
r ≤ 1 r > 1 8.203 0.236

Max-Eigen r = 0 r = 1 15.955 0.147
r = 1 r = 2 8.203 0.236

F07

Trace r = 0 r > 1 20.4042 0.2062
r ≤ 1 r > 1 5.0447 0.5900

Max-Eigen r = 0 r = 1 15.359 0.175
r = 1 r = 2 5.045 0.590

F10

Trace r = 0 r > 1 19.130 0.273
r ≤ 1 r > 1 3.226 0.849

Max-Eigen r = 0 r = 1 15.904 0.149
r = 1 r = 2 3.226 0.849

F15

Trace r = 0 r > 1 17.866 0.353
r ≤ 1 r > 1 4.119 0.725

Max-Eigen r = 0 r = 1 13.747 0.272
r = 1 r = 2 4.119 0.725

The sample is from 3/20/1995 to 8/02/2010 (803 observations). A linear de-
terministic trend is included in the VAR system with maximum lag interval
of 10 and the optimal lag is chosen by AIC.
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Table 7: The Long-run Slope of Crude Oil and Natural Gas

Number of Weeks

WTI Crude oil HH N.Gas F12-F01 F24-F01

Positive Negative 53 42
Negative Positive 211 160

total 814 761

crude oil and natural gas futures prices from January 1995 to
August 2010 was used

Figure 12: The Correlation Term Structure of HH N. Gas and
WTI Crude Oil Futures

is over. Then, backward recursion is carried out starting from time T up to the current time

using the two Bellman equations stated above. The essence of the LSMC method is in the

way it calculates the expectation of the project values in each simulated path at each time

step. It achieves this task by path-wise regression of the project value at each node, on a

linear combination of basis functions of the state variables at the same node across all paths.

That is, the following regression is estimated at each time step for open and closed projects:

Vi,t+∆t(ω) =
N∑
j=1

ajΨj

(
Yt(ω)

)
+ error(ω), (28)
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where i = open or closed, ω is a simulated path, Ψj(·) is a set of N basis functions and aj

are their corresponding coefficients. Note that Vi,t+∆t(ω) is known at time step t since we

are moving backward.

The expectation of the project value at each ω is then approximated using the estimated

parameters of aj as follows:

Et[Vi,t+∆](ω) =
N∑
j=1

âjΨj(Yt(ω)). (29)

Although the choice of the basis functions is arbitrary, Tsekrekos et al. [2010] shows that

the procedure is robust to different choices and that simple power functions are enough for

reasonable results.
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