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Abstract

In this paper, we propose a one step method for estimating the average treatment effect,
when the assignment to treatment is not random. We use a misspecified generalized empirical
likelihood setup in which we constrain the sample to be balanced. We show that the implied
probabilities that we obtain play a similar role as the weights from the weighting methods
based on the propensity score. In Monte Carlo simulations, we show that GEL dominates
many existing methods in terms of bias and root mean squared errors. We then apply our
method to the training program studied by Lalonde (1986).

Classification JEL: C21, C18, J01

1 Introduction

In this paper, we propose a one step method based on the generalized empirical likelihood (GEL),
to estimate the average treatment effect (ATE) or the treatment effect on the treated (ATT). The
method is valid whether the assumption of random assignment is satisfied or not. In the former
case, GEL is correctly specified and its properties are well known. We can therefore easily obtain
standard errors, test hypotheses or build confidence intervals. For the latter case, it is misspecified,
but the properties of some of the GEL methods have also been derived. The method applies to
the case of multiple treatments, and allows outcomes to be either continuous or discrete.

Let the random variable Y (1) be some outcome of interest for individuals when they receive
a given treatment, and Y (0) be the outcome when they receive the control. The problem of
estimating the ATE, defined as E[Y(1)] — E[Y'(0)], comes from the fact that only one of the
outcomes Y (1) and Y'(0) is observed. If we have a sample of n individuals, each of them is either
in the treated group, in which case only Y (1) is observed, or in the control one, in which case we
only observe Y (0). In other words, we only observe Y; = Z;Y;(1) + (1 — Z;)Y;(0), where Z; = 1 if
individual ¢ is treated and 0 otherwise. The way this issue has been approached, is by realizing that
it is a missing value problem. In fact, for each individual, we are missing one of the outcome. The
missing value problem is not an issue when observations are missing completely at random. This
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assumption is satisfied in randomized experiments because the treatment is randomly assigned,
which makes treatment assignments and, as a result, missing values independent of individual
characteristics. This is the ideal situation for which a semi-parametric efficiency bound has been
derived for the ATE estimator (see Robins et al. (1994)). In particular, it was shown that the
difference between the sample mean of the outcome between the treated and the control, although
unbiased and consistent, is not in general semi-parametric efficient. In fact, a method that would
use the information about the independence between the treatment indicator Z and any vector of
individual characteristics X should dominate the difference in sample means. This idea is explored
by Wu and Ying (2011) who incorporate this information in the form of estimating equations and
estimate the ATE by Empirical Likelihood (EL). The authors show that the estimator is semi-
parametric efficient if we let the number of estimating equations grow with the sample size. An
alternative approach is to control for individual characteristics X; in a regression of Y; on Z;. This
method is likely to improve efficiency if X; is correlated with Y;. However, failing to correctly
model the dependence between the outcome and the covariates may bias the estimator of the ATE
as noted by Freedman (2008).

In many cases, which is common in social science, treatment does not come from a controlled
experiment in which assignment to treatment is random. It is true in particular in observational
studies. In those cases, assignment to treatment is potentially endogenous and depends on individ-
ual characteristics. In general, methods to estimate the ATE in observational studies rely on the
propensity score, m(z) = P(Z = 1/X), and are consistent under some identification assumptions
(Rosenbaum and Robin, 1983, see). We can divide the literature in three families of estimators.
In the first, treated individuals are matched to individuals from the control group with similar
propensity scores (see Heckman et al., 1997; Dehejia and Wahba, 1999, 2002, among others). In
the second, the propensity score is used to construct a weighted estimator (see Hirano et al., 2003;
Hahn, 1998, among others). In particular, the usual identification assumptions imply that ATE
can be written as E[ZY /7 (z)] — E[(1 — Z)Y/(1 — w(z))], which leads to a natural estimator once
7(x) has been estimated. In the last family, the ATE estimator does not rely on the propensity
score. Instead, the treated and control groups are balanced using a non-parametric approach (see
Hainmueller, 2012; Zubizarreta, 2014; Chan et al., 2016, among others).

What we propose in this paper belongs to the third family. We use the implied probabilities
of GEL to make a selected set of moments of the covariates identical in both the treated and the
control groups. It is like redefining the distribution used to draw observations from the population
so that our sample behaves as if it was generated by a randomized trial. To illustrate the idea
behind our method, let p; be the implied probability assigned to observation i, and {Y;*, Z} be
obtained by drawing observations from our sample using the distribution {p;}?_, with replacement.
Then, our estimator of the treatment effect is comparable to the estimator of o in the regression
Y = ap+ o1 Z] +wu;, which is the estimator used in randomized trials. We propose a particular set
of estimating equations, so that one of the parameters is either the ATT or the ATE. It is therefore
a one step method for which the asymptotic properties are well known. The GEL method is based
on the Cressie and Read family of discrepancies (see Newey and Smith, 2004). We could have
defined our estimator based on a more general class of discrepancies, but we decided to restrict
ourselves to the ones that belong to the GEL family of estimators.

In the case of randomized trials, we do not need to change our estimating equations. Wu and
Ying (2011) show that if we balance the covariates using Empirical Likelihood (EL), the ATE
estimator is consistent, asymptotically normal and semi-parametric efficient. It must also be true



for GEL, since all members of its family share the same first order asymptotic properties. In
the case of observational data, we are incorrectly forcing the distribution of the covariates to be
the same for the two groups. Our estimating equations are therefore misspecified even in large
samples. However, the properties of GEL have also been studied in the case of misspecification
(see Schennach, 2007; Chen et al., 2007; Lee, 2016, among others). In particular, the Exponential
Tilting estimator (ET) is robust to misspecification, which means that it is root-n consistent and
asymptotically normal even if the population moments are not satisfied. For the other members
of the GEL family, it can also be true if we are willing to make stronger assumptions®.

Notice that our family of methods shares some similarities with the three-step method of
Chan et al. (2016). In the first two steps, they obtain weights for the two groups separately. In
the third step, they construct an estimator of the ATT or ATE using those weights. Then, an
expression for the standard errors is derived using a GMM type argument. We show in Section
2 that we can express their method as a special case of ours, by reformulating our method as a
constrained GEL. In fact we offer a larger set of balancing options. Furthermore, our method is
more flexible in the sense that it allows to control for characteristics that are not included in the
set of balancing covariates. Their argument for not presenting their method as being related to
GEL is that the theoretical results derived for GEL are not applicable to misspecified models, and
that GEL does not allow the number of moment conditions to grow with the sample size (see Chan
et al., 2016, Section 2.2). We showed above that a literature on misspecified GEL does exist, and
the asymptotic theory for GEL with growing number of moment conditions has been derived by
Donald et al. (2003).

In Section 2, we present the estimation method, Sections 3.1 to 3.3 present the simulation
experiments of Frolich (2004), Busso et al. (2014) and Chan et al. (2016) respectively, and we
apply our method to the training program study of Lalonde (1986) in Section 4. In Section 5 we
conclude.

2 Generalized empirical likelihood

2.1 ATE under randomized trials

In randomized trials, the average treatment effect is defined as 7. = E(Y;(1)|Z; = 1)—E(Y;(0)|Z; =
0). The OLS estimator of «; in the following model is a consistent estimator of 7.

Yi=ap+a1Z; +¢; (1)

Although this estimator is unbiased and consistent under weak regularity conditions, it is not
the most efficient estimator of the ATE. In theory, controling for individual characteristics that
are correlated with the outcome Y; can lower the variance of the estimator. However, it may
also increase its bias. There is a debate in the statistics literature with respect to whether we
should control for observed covariates, because some could be tempted to pick the covariates that
would produce the desired results (see Freedman, 2008; Yang and Tsiatis, 2001; Lin, 2013, among

1See Schennach (2007), Assumption 3 for ET, Chen et al. (2007), Assumption 3 for EL and Gospodinov et al.
(2013) Assumption B for CUE. For ET, conditions are not more restrictive than those required for correctly specified
GEL. For the other two methods, we need to assume bounded moment conditions and the existence of an interior
solution with positive implied probabilities.



others). The properties of the ATE estimate from a regression approach that controls for covariates
depend on the form of dependence between the outcome and the covariates, which is unknown.
What is known if the experiment has been properly set, however, is that the distribution of the
vector of covariates X; in the treated and control groups is the same. We can therefore construct
moment conditions that reflect that property. More precisely, random assignment implies that the
indicator of treatment Z; is independent of the vector X;. We can therefore augment the moment
conditions implied by the OLS estimator of Equation (1) with conditions that are compatible with
the independence assumption. In particular, the following moment conditions are valid under
random assignment:

Y, -0, —0:7;
Y, -0, —0:7;)Z;
Bg(0) = | 7 g o @)

(Zi — 03)ur(X;)

where ug(X;) is a k x 1 vector of functions of X;. If we just want to impose the conditions
E(X;|Z; =0) = E(X;|Z; = 1), then ui(X;) = X; and k corresponds to the number of covariates.

Wu and Ying (2011) suggest to use empirical likelihood (EL) to estimate the parameter of
interest, 5. The authors show consistency and asymptotic normality for fixed k, and show that
the estimator is semi-parametric efficient, if we let k grow to infinity at the rate o(n'/?). In fact, this
result can easily be generalized to all methods that belong to the generalized empirical likelihood
family (GEL) and also to any generalized method of moments (GMM) method, which include the
two-step, the iterated and continuously updated GMM (CUE). The asymptotic theory for these
methods when the number of moment conditions is allowed to grow with the sample size is well
developed (see Donald et al., 2003, 2008).

The GEL estimator of § = {61,605, 03} using the moment conditions (2) is defined as

n
| .
arg min ; CR,(pi,1/n)

subject to

Z pigi(0) =0
i=1

Zpi =1
=1

where CR,(p;, 1/n) is a discrepancy function that is a member of the Cressie and Read family
(see Newey and Smith (2004)). In particular, v = —1 corresponds to the Empirical Likelihood
(EL), v = 0 is the Exponential Tilting (ET), v = 1 is the CUE or Euclidean Empirical Likelihood
(EEL), and v = —1/2 is the Hellinger Distance (HD) of Kitamura et al. (2013). Newey and Smith
(2004) show that the GEL estimator is the solution to the following saddle point problem:

minmax ) _ p,(Ngi(6)), (4)

=1

where the subscript 7 indicates that the functional form of p. () depends on the discrepancy function
CR,(). In particular p,(v) = log(1 — v) for EL, p,(v) = —exp(v) for ET, p,(v) = —v —v?/2 for
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EEL or CUE, and p,(v) = —2/(1 — v/2) for HD. The implied probabilities are defined as?

A Ne()
o S Vg, (0))

which is clear from the inner first order condition of problem (4)

Z p/y<)‘/gi(9))gi(0) =0

and the condition ), p; = 1. Once the implied probabilities are obtained, the estimator of 0, é,
satisfies the following system of equations (we omitted the hat on p; for clarity):

Y, — 6, — 0,7;)

(Y; — 0, — é2Zi)Zi
i ~ - 0 6
2 (Z; — by) ©)

(Z; — O3)ur(X)

It follows that the estimator of the ATE is:

n

o (3) a5 ()0

i=1 3

:Z@)Yi‘z(l?ég)”

Zi=1 Z;=0

(7)

Since 3 is the unconditional probability of receiving the treatment, the weights in the first and
second terms are respectively the implied distribution of the observations given Z; = 1 and Z; = 0.
Under some regularity conditions, 6 converges in probability to the true vector 6y, and /n (9 —
0p) — N(0,(G'Q'G)™Y), where G = E(dg;(0y)/90) and € is the asymptotic covariance matrix
of \/ng(fy). A confidence interval for the ATE can therefore be derived from its asymptotic
distribution. Alternatively, we can construct a confidence interval using the Owen (2001) approach.
As shown by Newey and Smith (2004),

" (% > o (Vau(0)) - Mo)) X, ®

where k is the number of over-identifying restrictions in our model. If we define R(6s) as

R(6) = min [max 2 Z pv(Xgi(H))] , (9)

01,05 | A

then [R(f0) —R(62)] = x2. A (1—a) GEL confidence interval is therefore defined as {65|[R(6,) —
R(62)] < Ci_yo}, where Cy_,, is the (1 —a)-quantile of the x? distribution. Although the confidence

2Notice that for EEL, the implied probabilities are not always positive. However, Antoine et al. (2007) provide
a method for dealing with negative probabilities. This issue is more likely to appear when the model is misspecified.
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interval is also based on an asymptotic distribution, Owen (2001) shows, using EL, that it often
produces more accurate coverage. A test that uses [R(63) — R(6)] to test the null hypothesis
Hy : 0y = 03, is a likelihood ratio (LR) test. The confidence interval is therefore obtained by
inverting the LR statistics.

The asymptotic properties of the EL method proposed by Wu and Ying (2011) for estimating
the ATE have been derived, but there are very few studies which have analyzed its behaviour in
small samples. Chaussé et al. (2016) have studied the small sample properties of EL, CUE and
ET using the moment conditions (2), with ugx(X;) = X;. They compare the bias, the root mean
squares errors (RMSE) and the coverage of the confidence intervals. One of the main results is
that the empirical coverage obtained by inverting the likelihood ratio test of CUE and ET is less
sensitive to the distribution of the outcome Y; and more accurate than the one obtained using an
OLS regression, especially when the correlation between the covariates and the outcome is high.

2.2 ATE and ATT for observational studies

When the assignment is not random, we can still use GEL as a re-weighting approach. There
are many re-weighting methods for estimating the ATE and ATT (see Graham et al., 2012; Hain-
mueller, 2012; Chan et al., 2016; Zubizarreta, 2014), but none of them propose a one step procedure
with well known asymptotic properties. Without random assignment, the GEL moment conditions
are no longer valid. According to Schennach (2007), only ET is robust to global misspecification
when the moment conditions have unbounded support. Being robust to misspecification means
that the estimator 6 is root-n consistent and converges to a unique pseudo true value. In our
case, we can see the pseudo true value of 6, as the population treatment effect when the control
and treated groups are perfectly balanced. In fact, the moment conditions (2) will force the two
groups to be perfectly balanced even asymptotically. If we are willing to make stronger assump-
tions on g;(#), all GEL methods become y/n-consistent and an asymptotic variance exists. For
example, Chen et al. (2007) show that EL is /n-consistent if ¢;(0) is uniformly bounded. Also,
Lee (2016) presents a Bootstrap testing procedure for GEL that is robust to misspecification in
case the asymptotic approximation does not perform well.

We can also generalize our family of methods to multiple treatments. Let Z; be a [ x 1 vector
of treatment indicators. Then Z;; = 1 if individual ¢ is assigned to treatment j for j = 1,...,[.
Then 65 and 63 are [ x 1 vectors, and the moment conditions that balance the [ treated groups
with the control one are

Y, — 6, — 0,2,
‘ - Yi—6,—-0,Z)Z; |

(Zi — 03) @ ug(X;)

where ® is the Kronecker product operator. Furthermore, if we have the information about the
population value of E(ux(X;)) = ug, from a census for example, we can use that information to
target a specific group for the treatment effect. We would then augment the vector of moment



conditions to include that information:

Y — 6, — 0,7
(Y, =01 — 052,)Z;
E(gi(0)) = E (Zi — 05) =0, (11)
ug(X;) — up

If u, is the population moments of X;, 65 is the vector of ATE. On the other hand, if wu; is the
moments of X; for a subsample of the population targeted by the treatments, #, becomes the
average treatment effect of the treated (ATT). For this general model, the number of coefficients
to estimate is (20 +1) and the number of moment conditions is (1+2{+k({+1)). The specification
test (8), that we can use to test the null hypothesis of random assignment, would be asymptotically
X3; for the model (10) and Xi(lJrl) for model (11). The same method as the one described above
can also be use to construct GEL confidence intervals.

It is also worth noticing that the method can also be applied to cases in which Y; is a binary
response. Since the method is just a way to estimate the model Y; = 6, + 6,7Z; + ¢;, with Z; being
a vector of orthogonal dummy variables, we are simply measuring differences in proportions.

2.3 Inference

We saw in Section 2.1 that GEL confidence intervals for 65 can be constructed without using any
estimate of the standard error, by inverting the LR statistics. It turns out that this approach is
also valid under misspecification. Even if the specification test (8) converges to a non-central 2,
the LR statistics [R(65) —R(f;)], where 63 is the pseudo true 6y, converges to a x2, if the regularity
conditions that are required for GEL to be y/n-consistent are satisfied®. For confidence intervals
based on the asymptotic distribution, we need standard errors that are robust to misspecification.

In order to derive the asymptotic variance for misspecified GEL, we need to write the FOC
of problem (4) as a just-identified GMM. Following Lee (2016), we can define 3 = {#/, X'}’ as the
solution to the following system of equations:

=S ws) =0, (12)

where

_ (m(Ngi(0))Gi(0)'A
1/’1(5) - < pl()\/gi(e))gi(e) ) (1?’)

where pi(v) = dp(v)/Ov. Notice that the subscript v is omitted from p,(v) for clarity. Let
B3 = {6*, )} be the pseudo true value, which is the unique solution to E(¢;(3)) = 0. If we

assume some regularity conditions, which are basically the conditions for just identified GMM
based on E(;(3)) = 0 (see Hansen, 1982) 4, we have the following results:

V(B — %) 5% NO, T

3See Schennach (2007), Assumption 3 for ET, Chen et al. (2007), Assumption 3 for EL and Gospodinov et al.
(2013) Assumption B for CUE.

4Tt is not obvious to link the assumptions on 1;(3) to the ones that are required for g;(). For the latter, we
refer the reader to the literature on misspecified GEL that we described above.




where I' = E[(0/08)¢:(6%)] and Q = E[;(5*)¢:(8*)']. More precisely, we have
D =B [V g:(0) (I @ )G (07) + pa(A gu(0) G (0"Y X' X Gi(0")]

where I, is the p x p identity matrix, p = dim(f), G;(9)® = (9/00)Vec(G,(#)) and pa(v) =
(02/00v%)p(v),

Do = I, = B [ o1 (A 0u(6)Gi(8") + pa(A 0u(6) G(6") X 0u(6°) |

Do = B | po(\"9:(6)9:(6)9u(6) |
" OYNNG7) Gl X7
/ Gi(0*)Y NN G;(0%) Gi(0%) X g;(0*
O=FE )\* 29* 2( 7 L 1* 7 a z* ):|
o (S oty
All matrices can be estimated using sample means and by replacing * by B If the model is
correctly specified, A* = 0 and p;(0) = p2(0) = —1 (see Newey and Smith (2004)), which implies

N 0 Gi(0o)
b=-k (Gi(ew gi<90>9i<90>’)

Q1=E (8 gi(eo)gi(eoy>

where 0 stands for a matrix of zeros with the appropriate dimension. It follows that the partition
associated with 0 reduces to the GEL covariance matrix
[E(Gi(0%)) E(g:(6%)g:(0*)) " E(G;(6))]~'. If we use the set of moment conditions (10), we have

~1 —Z! 0
—7; —diag(Z; 0

Gi(0)= | 4 Og< ) 1 , (14)
0 0 —Il®uk(Xi)

where diag(z) is a diagonal matrix with the main diagonal being equal to z, and if we use the
conditions (11), we have

-1 -z 0
—7Z; —diag(Z;) 0

a@ =1 o 0 s . (15)
0 0 0

Notice that for both cases, G;(f) does not depend on 6, which implies that G () = 0. The
expression of I'1; can therefore be written as:

Ty = E [ pa(\ g:(60%)Gi(0°) NN G(67)] .



If we do not have access to a large survey to measure E(ug(X;)), it is possible to replace wuy by
up = Y i, up(X;)/n in order to compute the ATE, or by the sample mean of the treated group
to obtain the ATT. Using this approach would produce estimates that are identical to what we
would get by using the method proposed by Chan et al. (2016). Although the estimates of # and
A are not affected by whether wu; is obtained from the population or the sample, the standard
errors are. In fact, the GEL standard errors, whether it is robust or not to misspecification, will
underestimate the true standard errors because the derivation of the asymptotic variance assumes
that u; i1s not random.

If instead we estimate uy using our current sample, the above estimator of the GEL covariance
matrix is biased and inconsistent. If we rewrite the moment conditions for ATE or ATT by
replacing the sample mean by a vector of coefficients 6,4, we obtain

Y; =6 — 052,
(Yi— 01— 0:2:) Z;
9i(0) = (Zi = 03) (16)
(Z; — 03)ug(X;)
uk(Xl) — ‘94

where 6, is either F(uy(X;)) for ATE or E(ux(X;)|Z; = 1) for ATT. Notice that we don’t need to
multiply (ug(X;) — 04) by Z; since the fourth set of conditions balance the moments between the
treated and control groups. Let Z;; be an indicator that individual ¢ belongs to group j. Then,
we can define 6, as the vector that satisfies the sample moment condition:

IR
i=1

For ATE, group j is the whole sample, which implies that we set Z;; = 1 for all ¢, and for ATT,
group j is the treated, which implies that we set =;; = Z;. For the latter case, we only consider
a single treatment so that [ = 1. Clearly, 6, = L3 uk(X;) for the ATE, and it is equal to
n—ll > z.—1 uk(X;) for the ATT, where ny = Y 7" | Z;.

We can think of the problem as being the following constrained GEL estimator:

=1

- _ ,
0 = arg min { [arg m;itxz; p(Ngi(0))
The first order conditions for A\; and 61y = {61, 6, 603} are

> p1(Xg:(6))gu(6) = 0

Zpl(/\llgi(e))Gil(e)/)\l =0

where G () is given by Equation (15). If we replace 6, by 64 = > Zijug(X;)/nj, where n; =
> Zij, we get the same moment conditions as given by Equation (13). We are, however, missing



the first order condition with respect to 64 and Ay. For Ay, we have

n

> Eilun(Xi) — 64) =0,

i=1
and for 6, we get

> p1(Ngi(0))Gia(8) Ay — mde = 0

where

Gi2(0) = (0(1+l(k+2)) Xk)

I
It follows that

1 - / !
Ay = n_ Zﬂl(A1gi(9))Gi2(‘9) A1
J =1

The extra vector Ay is therefore directly linked to A;. If the assignment is random, A} = 0, which
also implies A5 = 0. If we combine the additional first order conditions, A\; and 6 solves the sample

moments:
. p1(A19i(6)) G (0) M
3 P (X1gi(0)Gia(0)' M — AZij |
P p1(X1gi(0))g:(0)
Zij(un(Xi) — ba)
It follows that the augmented () is

pr(A ((l)g)l( ))( )Z'lx(m Ao

19:(0 1— A2Zyj

p1(A19i(6))g:(0) ’ (18)
Zij(ue(X;) — 64)

Let g ={0', N}, where 0 = {61,0,,05,0,}, A = {\}, \}}) and G;(0) = {G1:(0), G2;(0)}. Then, the
augmented I" becomes

¢aug,i (ﬁ) =

Laugr = B (p2(A] g:(07)Gi(07) AT Gi(67)

! *! * *\/ */ * PAYAY *\/ 0
Laugaz = Laugn = B ( p1(AT 9i(07))Gi(07) + p2 (AT 9:(67))Gi(67) Agi(67) = ) )

‘—ijlk
and )
g (P(A9i(07))g:i(607)gi(67)" O
aug,22 — .
0 0
The asymptotic covariance matrix is FaquaugFaulg, and its first [ 4+ 1 diagonal elements are the

asymptotic variances of {91, 9'2}’ . Note that the standard errors obtained from this method are
identical to the ones obtained by Chan et al. (2016), but we provide a constrained GEL formulation.
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Table 1: Different DGP’s used in the simulations

0.15+ 0.7z
0.1+ x/2 + exp(—200(z — 0.7)?)/2
(e — | 08— 2 =09 —5(x — 0.0 ~ 10(z ~ 0.6)"°

0.2+ I =7 —0.6(0.9 — )2
0.2+ +v1—1x2—0.6(0.9—2)%— 0.1z cos (30z)
0.4+ 0.25sin (8 — 5 + 0.4 exp (—16(4z — 2.5)?)
{0,1}
{0.15,0.7}

{a, 8} = | {0.3,0.4}
{0,0.4}
{0.6,0.4}

3 Numerical Study

3.1 First Study

The first numerical experiment we consider is based on Frolich (2004) who analyzes the finite
sample properties of several matching and re-weighting estimators. Busso et al. (2014) update the
results by considering more recent methods. The model is

}/Z(O) = m(WZ) + gg;,

Zzzl{Oé—FBVVZ—UZ>O},

where X; ~ N(0,1), W; = A(v/2X;), where A() is the CDF of the logistic distribution, and both
g; and U; are iid and distributed as a U(—+/3,v/3). Also, Y;(1) = Y;(0), so that the true ATE is
0. Frolich (2004) considers six different functions m() and five different sets of parameters {a, f}'.
Table 1 shows the details of the 30 different specifications. The sample size is set to n = 100,
o = 0.01 and the number of iterations is 10,000. All estimations are done using the function
ATEgel() from the R package gmm of Chaussé (2010). For EL, the algorithm proposed by Wu
(2005) is used to compute the vector A.

In order to have results comparable with those from Busso et al. (2014), Tables 2 to 5 show
respectively 1,000 times the bias, 100 times the variance, 100 times the MSE and the coverage of
95% confidence intervals, on average across all functions m(z), for each set of parameters. For
detailed results for each m(z), see Appendix A.° In the tables, we refer to METI, for i=1,2,3, to
up(X;) = X, up(X;) = {X;, X2} and wi(X;) = {X;, X2, X} respectively, with MET = ET or
EL. Although we have also applied the CUE method in our simulations, we do not present the
results because for a large proportion of the iterations, it fails to balance the groups with strictly
positive implied probabilities. If we use the approach proposed by Antoine et al. (2007) to trans-
form the negative probabilities, the resulting set of implied probabilities do not balance the groups.
Since it is not clear how to interpret the GEL estimate of the treatment effect when the balancing

5Notice that some EL estimations failed. They failed when the time to estimate the model was over a certain
threshold. The number of failures depends on the model and the choice of ug(X;). It is, however, negligible.
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probabilities are negative, we can hardly compare the results with the other methods®. For each
method, we consider unconstrained moment balancing using moment conditions (2) (MET1), bal-
ancing based on the sample moments (METi Bal Sample), based on known population moments
of the treated (MET1i Bal Pop), or based on the sample moments of the treated (METi ATT). We
present the properties for both the ATE and ATT, but we can only compare the results reported
by Busso et al. (2014) with our two ATT methods (METi Bal Pop and METi ATT), because the
authors only considered the ATT estimation.

Table 2: Average (1000xBias) across all functions m(z)

{a,B}1  {o,B}2 {o,B8}3 {a,B}s {a,B}s Average

ET1 2.524 3.563 1.391 4.298 3.818 3.119
ET2 6.028 0.9677 0.68 3.366 7.54 3.716
ET3 4.657 1.888 0.523 1.559 2.267 2.179

ET1 Bal Sample 4.853 2.375 1.134 4.47 4.467 3.46
ET2 Bal Sample 22.81 3.563 0.4635 4.059 6.016 7.382
ET3 Bal Sample 13.98 5.38 1.186 2.731 6.41 5.937
ET1 ATT 10.88 0.9921 1.013 3.705 5.968 4.513
ET2 ATT 11.72 3.49 1.42 0.842 5.342 4.562
ET3 ATT 14.17 5.5 1.636 0.7723 7.154 5.846

ET1 Bal Pop 11.36 0.9653 1.057 4.081 5.933 4.68
ET2 Bal Pop 14.17 4.022 0.9876 1.661 5.453 5.258
ET3 Bal Pop 16.05 5.987 1.129 2.822 8.759 6.949
EL1 1.861 6.236 1.784 3.026 2.866 3.155
EL2 7.637 1.622 0.8379 3.644 6.496 4.047
EL3 13.35 4.259 0.9416 2.212 3.452 4.842
EL1 Bal Sample 3.774 3.964 1.359 3.35 2.862 3.062
EL2 Bal Sample 7.862 1.809 0.5885 4.716 3.614 3.718
EL3 Bal Sample 15.69 6.439 1.389 4.875 6.365 6.952
EL1 ATT 21.66 7.55 2.463 8.715 4.205 8.919

EL2 ATT 12.45 4.751 1.598 2.676 6.174 5.53
EL3 ATT 17.37 6.587 1.236 2.207 8.482 7177
EL1 Bal Pop 22.41 6.813 2.155 8.328 4.09 8.758
EL2 Bal Pop 14.29 4.579 1.393 4.409 6.6 6.254
EL3 Bal Pop 20.19 7.942 1.37 5.487 9.483 8.893

Table 3: Average (nxVariance) across all functions m(x)

{a,8}1 {a,B}2 {a,B}3 {a,B}4 {a,B}5 Average

ET1 0.1482 0.09925 0.06443 0.103 0.1226 0.1075
ET2 0.1228 0.09287 0.05728 0.1268 0.1656 0.1131
ET3 0.09766 0.07527 0.05187 0.1109 0.131 0.09334
ET1 Bal Sample 0.1498 0.09908 0.06451 0.1025 0.1228 0.1077
ET2 Bal Sample 0.2248 0.1218 0.06216 0.125 0.1503 0.1368
ET3 Bal Sample 0.1813 0.1129 0.06404 0.1165 0.1391 0.1228
ET1 ATT 0.2181 0.1355 0.06936 0.08001 0.141 0.1288
ET2 ATT 0.2038 0.1457 0.07474 0.07553 0.1591 0.1318
ET3 ATT 0.1803 0.1226 0.06881 0.07785 0.1501 0.1199
ET1 Bal Pop 0.222 0.1335 0.06871 0.08247 0.1395 0.1292
ET2 Bal Pop 0.2142 0.1534 0.0762 0.0851 0.1609 0.138
ET3 Bal Pop 0.1927 0.1167 0.06958 0.09558 0.1489 0.1247
EL1 0.2043 0.114 0.0669 0.1085 0.1271 0.1242
EL2 0.1612 0.1075 0.06031 0.1308 0.1648 0.1249
EL3 0.1517 0.09076 0.05538 0.1318 0.1594 0.1178
EL1 Bal Sample 0.1789 0.1074 0.06483 0.1129 0.1246 0.1177
EL2 Bal Sample 0.1974 0.1116 0.0614 0.1156 0.1138 0.12
EL3 Bal Sample 0.168 0.1086 0.06252 0.09435 0.09425 0.1056
EL1 ATT 0.285 0.1793 0.07704 0.09229 0.1417 0.1551
EL2 ATT 0.1928 0.1281 0.07168 0.0758 0.1213 0.1179
EL3 ATT 0.1868 0.1261 0.06857 0.07771 0.09644 0.1111
EL1 Bal Pop 0.2834 0.1804 0.07425 0.0901 0.1417 0.1539
EL2 Bal Pop 0.1957 0.1241 0.0724 0.08071 0.1254 0.1197
EL3 Bal Pop 0.1924 0.1211 0.06749 0.08802 0.1003 0.1139

Notice that for the sets of parameters 1 and 5, the strict overlap assumption is violated, and
for the sets 2 to 4 it is not violated”. One of the conclusion of Busso et al. (2014) is that weighting
methods are much more biased in designs 1 and 5, but outperform the matching methods when

5The results for CUE are available upon request
"The overlap assumption implies that the probability of being treated, conditional on the covariates, is strictly
between 0 and 1. For strict overlap, it has to be between ¢ and (1 — ¢) for some strictly positive constant c.
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Table 4: Average (nxMSE) across all functions m/(x)

{a,8}1  {«,B8}2 {a,B}3 {a,B}4 {a,B}s  Average

ET1 0.1492 0.1015 0.06492 0.1073 0.1255 0.1097
ET2 0.1286 0.09303 0.05734 0.129 0.1766 0.1169

ET3 0.1022 0.07611 0.0519 0.1114 0.1317 0.09466
ET1 Bal Sample 0.1536 0.1001 0.06483 0.1067 0.1261 0.1103
ET2 Bal Sample 0.3033 0.1239 0.06219 0.1287 0.1562 0.1549
ET3 Bal Sample 0.2172 0.1193 0.06425 0.1177 0.1496 0.1336
ET1 ATT 0.2345 0.1357 0.06958 0.0825 0.146 0.1337
ET2 ATT 0.2309 0.1473 0.07511 0.07575 0.1633 0.1385
ET3 ATT 0.2163 0.1293 0.0694 0.07794 0.1626 0.1311
ET1 Bal Pop 0.2398 0.1336 0.06895 0.08535 0.1447 0.1345
ET2 Bal Pop 0.2506 0.1557 0.07639 0.08587 0.1654 0.1468
ET3 Bal Pop 0.2348 0.1242 0.06981 0.09713 0.1674 0.1387
EL1 0.2049 0.121 0.06771 0.1102 0.1284 0.1265
EL2 0.1697 0.1082 0.06041 0.1334 0.1721 0.1287
EL3 0.1881 0.09519 0.0555 0.1331 0.1615 0.1267
EL1 Bal Sample 0.1808 0.1103 0.0653 0.115 0.1256 0.1194
EL2 Bal Sample 0.2059 0.1123 0.06144 0.1191 0.1156 0.1229
EL3 Bal Sample 0.2156 0.1177 0.06283 0.09774 0.1027 0.1193
EL1 ATT 0.3484 0.1889 0.07884 0.1039 0.1437 0.1727
EL2 ATT 0.2167 0.1316 0.07215 0.0775 0.1264 0.1249
EL3 ATT 0.2223 0.1338 0.06891 0.07877 0.1079 0.1223
EL1 Bal Pop 0.3503 0.1879 0.0757 0.1008 0.1436 0.1717
EL2 Bal Pop 0.225 0.1271 0.07274 0.08521 0.1314 0.1283
EL3 Bal Pop 0.2386 0.1326 0.06782 0.09344 0.1157 0.1296

Table 5: Average coverage of 95% confidence intervals across all functions
m(x)

{a,B8}1  {e,B}2 {8}z {oB}a  {a,B}s
ET1 0.9166 0.9324 0.9397 0.8801 0.885
ET2 0.9139 0.9284 0.9367 0.8271 0.8192
ET3 0.9153 0.9288 0.9351 0.8272 0.8252

ET1 Bal Sample 0.9107 0.9307 0.9392 0.876 0.8802
ET2 Bal Sample 0.8056 0.9041 0.9311 0.8059 0.81

ET3 Bal Sample 0.8233 0.8969 0.9253 0.8347 0.8391

ET1 ATT 0.866 0.9135 0.9372 0.9275 0.8565

ET2 ATT 0.847 0.9011 0.9272 0.9352 0.7973

ET3 ATT 0.8734 0.9053 0.9285 0.9363 0.8379

ET1 Bal Pop 0.8452 0.9042 0.9342 0.9142 0.8429

ET2 Bal Pop 0.7901 0.8759 0.9105 0.8915 0.7606

ET3 Bal Pop 0.7157 0.8308 0.8882 0.8526 0.7095

EL1 0.8664 0.9173 0.9373 0.8617 0.8719
EL2 0.8742 0.9112 0.9328 0.8052 0.8085
EL3 0.8478 0.9043 0.9289 0.7993 0.8012

EL1 Bal Sample 0.8814 0.9199 0.9393 0.849 0.8731

EL2 Bal Sample 0.8196 0.9029 0.9299 0.8041 0.8634

EL3 Bal Sample 0.7763 0.8787 0.9221 0.8535 0.89
EL1 ATT 0.6953 0.839 0.9241 0.9022 0.84

EL2 ATT 0.8413 0.9023 0.9245 0.9361 0.8524
EL3 ATT 0.8066 0.8754 0.9203 0.9344 0.8881
EL1 Bal Pop 0.6774 0.8339 0.9243 0.8954 0.8313
EL2 Bal Pop 0.7922 0.8849 0.9102 0.8947 0.8238
EL3 Bal Pop 0.7174 0.8196 0.8874 0.8626 0.8293

overlap is satisfied. Our method seems to behave in the same way. Overall, it is less biased than
any methods that are not bias-corrected, and if we only consider designs 2 to 4, the bias of GEL
is only slightly higher than the bias-corrected methods, with ET being less biased than EL. It is
not clear, however, whether it is better to balance 1, 2 or 3 moments. For example, ET1 ATT is
better for the second design and ET3 ATT is the least biased for the fourth one.

For the variance, our method is comparable to best methods studied by Busso et al. (2014) if
we balance more than one moment. In fact, the effect of balancing more moments on efficiency
is more stable than it is on the bias. Also, ET seems better than EL in terms of the variance for
most DGP’s. Table 4 shows that it is also the case with the MSE. Finally, Table 5 shows that the
coverage of the confidence intervals are close to 95% when overlap is good, which is a good sign
given the small sample size.
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3.2 Second Study

The previous DGP’s represent the ideal cases because they imply that the propensity score methods
are correctly specified. Since our method does not rely on the propensity score, it should be robust
to misspecification. To compare its properties with the ones studied by Busso et al. (2014), we
consider the following set of DGP’s used by the authors:

DGP: — Y Xji+e
Yi(0) = ¢ DGP, and DGPFPy: 0.65 + Z#l XX + &
DGPs: — 0.5 X;i +0.5(0.65 + 3, X Xp:) + &

DGP1 and DGP4Z Z?:l in - Uz
ZF = DGPQI 065+Z]¢1ijXlz_Uz
DGPs: 05371 Xji+0.5(0.65+ Y, X;iXy) — Ui
where U; has a logistic distribution with location and scale parameters equal to 0 and 1 respectively,

gi ~ N(0,1), and {X;, Xy, X3, X4} are jointly uniform with zero mean and covariance matrix
equals to

1 -1 0 0
1{-1 2 0 o0
Ex_§ 0 0 1 -1
0 0 -1 2

The treatment indicator is Z; = 1{ZF > 0} and Y;(1) = Z;+Y;(0), which implies that the ATE and
ATT are equal to one. For each method, we balance the groups with respect to the vector of four
moments uy(X) = { X7, Xo, X3, X4}, the vector of 8 moments ug(X) = {us(X), X2, X3, X3, X7},
the vector of 10 moments u;o(X) = {ug, X7 Xo, X1 X5, X7 X4, Xo X3, Xo Xy, X3X4}, and the vector
of 14 moments u4(X) = {u1o(X)’, X2, X2, X2, X7}'. The sample size is set to 400, and the number
of iterations to 10,000. The properties of the different methods are presented in Tables 6 and 7.

For all DGP, ET and EL are less biased when the number of moments that we balance is greater
than four. It is especially true for DG P, and DGP;. Also, ET outperforms EL both in terms of
bias and variance. If we only focus on u14(X) and the ATT, ET is less biased than most methods
studied by Busso et al. (2014) (see Table 3 on page 894) and more efficient. Table 7 shows once
more that our inference method produces accurate confidence intervals, ET being better than EL
in that category as well.

3.3 Third Study

In the last study, we want to reproduce the experiment of Chan et al. (2016) to compare our
method with theirs, and analyze the properties of both the ATE and ATT estimators. The
DGP is: Y(1) ~ N(210 + b¥'W,1), Y(0) ~ N(200 — 0.50'W, 1) with b = {27.4,13.7,13.7,13.7}
and W ~ N(0,I). Also, the treatment assignment Z is such that P(Z = 1|W) = A(n'W)
with n = {—1,0.5,—0.25, —0.1}, where A() is the CDF of the logistic distribution. We observe
Y =2Y(1)+ (1 - 2)Y(0), the treatment indicator Z and the four covariates {X7, Xo, X3, X4},
where X; = exp(W1/2), Xy = Wy /(1+exp(W1)), X3 = (W1W3/25+0.6)% and X = (Wo+WW,+20)>.
Given this setup, the true ATE is 10 and the ATT is -5.
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Table 6: 1000xBias and nxVariance for each misspecified DGP

1000xBias nxVariance
DG Py DG P> DGPs3 DG Py DG Py DGPy DGPs3 DGPy
ET4 0.5126 450.6 123.1 1.148 4.779 5.941 4.75 7.181
ET8 0.4522 142.1 36.49 0.6646 4.845 5.045 4.513 5.603
ET10 0.3588 1.527 0.7549 0.3593 4.866 4.665 4.414 4.866
ET14 0.3309 1.493 0.7443 0.3302 4.93 4.712 4.465 4.93
ET4 Bal Sample 0.4619 450.6 123.2 1.052 4.778 5.942 4.751 7.195
ET8 Bal Sample 0.3068 143.8 36.65 0.51 4.862 5.129 4.537 5.664
ET10 Bal Sample 0.4571 1.492 0.6554 0.4583 5.014 4.749 4.445 5.014
ET14 Bal Sample 0.327 1.322 0.5659 0.3274 5.185 4.85 4.524 5.185
ET4 ATT -0.129 449.8 121.8 2.053 5.838 5.969 5.016 8.488
ET8 ATT 0.008443 132.4 35.15 8.735 6.042 5.252 4.899 6.919
ET10 ATT 0.172 1.113 0.3454 0.1697 6.21 5.329 5.033 6.21
ET14 ATT 0.1916 0.9663 0.1598 0.2589 6.524 5.53 5.216 6.532
ET4 Bal Pop -0.1233 451.5 122.4 2.1 5.838 6.007 5.056 8.479
ETS8 Bal Pop -0.1823 132.6 35.1 8.143 5.996 5.283 4.934 6.868
ET10 Bal Pop 0.2607 1.608 0.6004 0.2608 6.134 5.28 5.045 6.135
ET14 Bal Pop -0.08746 1.741 0.4038 -0.09051 6.433 5.481 5.212 6.435
EL4 0.505 451.2 124.2 0.9455 5.081 5.946 4.776 7.977
EL8 0.4321 144.4 38.45 0.71 5.174 5.282 4.628 6.42
EL10 0.4526 1.274 0.5468 0.4549 5.226 4.953 4.537 5.226
EL14 0.4803 1.475 0.5772 0.4808 5.318 4.994 4.599 5.318
EL4 Bal Sample 0.4448 449.6 121.7 0.9235 5.051 5.933 4.756 7.421
EL8 Bal Sample 0.2816 143.4 36.23 0.5111 5.146 5.256 4.604 5.955
EL10 Bal Sample 0.3423 1.325 0.5536 0.3416 5.244 4.954 4.535 5.244
EL14 Bal Sample 0.2158 1.265 0.463 0.2149 5.401 5.04 4.618 5.401
EL4 ATT -1.157 450.2 107.1 -87.77 9.263 5.96 5.353 13.04
EL8 ATT -0.6647 132.3 17.8 -92.73 8.658 5.664 5.532 9.79
EL10 ATT 0.14 0.02852 0.2163 0.1378 7.635 6.807 5.991 7.635
EL14 ATT 0.8783 0.4378 0.3396 1.015 7.616 6.74 6.007 7.629
EL4 Bal Pop -1.191 451.1 106.7 -92.46 9 6.008 5.297 12.58
ELS8 Bal Pop -1.085 134.9 18.22 -95.68 8.262 5.543 5.376 9.325
EL10 Bal Pop -0.0409 0.8392 0.3317 -0.04085 7.206 6.43 5.8 7.207
EL14 Bal Pop -0.02165 1.55 0.2281 0.06255 7.127 6.383 5.788 7.143

We want to compare ET and EL for the estimation of the ATE using unconditional balancing,
balancing based on the sample moments and on the population ones. The latter is estimated using a
sample size of 10 millions. Also, we want to estimate the ATT using balancing based on the sample
moments and the population ones, which is also estimated using the same large simulated sample.
For each case, we consider uy(X) = {X1, Xo, X3, Xy V, ug(X) = {us(X), X2, X2 X2 X2}, and
u4(X) = {us(X), X1 Xo, X1 X3, X1 X4, Xo X3, Xo Xy, X3X4}'. To compare our results with Chan
et al. (2016), we set the sample size to 200 and 1,000, and the number of iterations to 5,000.

Tables 8 and 9 present the results for ATE, and Tables 10 and 11 for ATT. The tables present
the same properties as for the first two studies, with the standard error bias. The standard error
bias is presented so that we can see how accurate the robust-to-misspecification standard error is.
It compares the estimated standard errors on average with the standard error of the coefficient
over the 5,000 iterations. We can see that the bias is small, which implies that the inaccuracy of
the confidence intervals is mostly due to the bias.

The meaning of the labels are as for the first two simulation studies, with the exception that
METi for i = 4,8, 14 refers to the three different u;(X) described above. Notice that METi Bal
Sample refers to the Chan et al. (2016) method. The bold entries refer to the best methods. For
ATE, EL4 is the least biased for n=200, and ET4 Bal Pop is the least biased when n=1000%.
For both sample sizes, balancing using the population moments dominates in terms of RMSE.
This result is mainly driven by the fact that using the population moments reduces the standard
error substantially. For coverage, the Bal. Sample seems the most accurate. However, it is
meaningless to compare coverage when the estimators are biased. If we omit the methods that
rely on population moments, which will often be unfeasible, ELi, for i = 4,8, 14, perform very well
to compute the ATE. The RMSE is small and the coverage is close to 95%. For ATT, EL with

8CUE14 Bal Sample and CUE 14Bal Pop are even less biased but as we explained above, most balancing is
done with negative implied probabilities which does not constitute a proper balancing
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Table 7: nxMSE and Coverage of 95% confidence intrervals for each
misspecified DGP

nxMSE Coverage

DGP; DG P> DGPs3 DGPy DGP; DGPy DGPs3 DGPy

ET4 4.778 87.14 10.81 7.181 0.9467 0.0405 0.7903 0.9441
ETS8 4.844 13.12 5.045 5.603 0.9437 0.7403 0.9308 0.9419
ET10 4.866 4.665 4.414 4.866 0.9429 0.9435 0.9426 0.9428
ET14 4.93 4.712 4.465 4.93 0.9401 0.9418 0.9417 0.9402
ET4 Bal Sample 4.778 87.15 10.82 7.195 0.9466 0.0405 0.7898 0.9434
ET8 Bal Sample 4.861 13.4 5.074 5.663 0.9427 0.7317 0.9295 0.9388
ET10 Bal Sample 5.014 4.749 4.445 5.014 0.9404 0.9408 0.9409 0.9404
ET14 Bal Sample 5.185 4.85 4.523 5.185 0.9316 0.9369 0.9384 0.9315
ET4 ATT 5.837 86.89 10.95 8.489 0.94 0.0432 0.8014 0.9365
ET8 ATT 6.041 12.26 5.393 6.949 0.9361 0.7837 0.9329 0.9337
ET10 ATT 6.21 5.329 5.033 6.21 0.9327 0.9408 0.9387 0.9326
ET14 ATT 6.523 5.53 5.215 6.531 0.9224 0.9336 0.9369 0.9222
ET4 Bal Pop 5.838 87.53 11.04 8.48 0.9367 0.0407 0.7931 0.9352
ET8 Bal Pop 5.995 12.32 5.426 6.894 0.9299 0.7728 0.9269 0.9253
ET10 Bal Pop 6.134 5.28 5.045 6.135 0.9266 0.9328 0.9326 0.9266
ET14 Bal Pop 6.432 5.482 5.212 6.434 0.9116 0.9238 0.9258 0.9115
EL4 5.081 87.37 10.94 7.977 0.9435 0.0394 0.7874 0.9397
EL8 5.174 13.62 5.218 6.42 0.9419 0.7336 0.9275 0.9367
EL10 5.226 4.954 4.536 5.226 0.9385 0.939 0.9401 0.9384
EL14 5.318 4.995 4.598 5.318 0.9337 0.9361 0.9384 0.9337
EL4 Bal Sample 5.05 86.78 10.68 7.42 0.9437 0.0411 0.795 0.9458
EL8 Bal Sample 5.146 13.48 5.128 5.954 0.9387 0.7312 0.9274 0.9396
EL10 Bal Sample 5.243 4.954 4.535 5.243 0.9351 0.9376 0.9384 0.9352
EL14 Bal Sample 5.401 5.041 4.617 5.401 0.9252 0.9324 0.9363 0.9252

EL4 ATT 9.262 87.03 9.943 16.12 0.8953 0.0428 0.8347 0.879

EL8 ATT 8.657 12.67 5.658 13.23 0.8901 0.789 0.9326 0.8441
EL10 ATT 7.635 6.806 5.991 7.635 0.9034 0.9137 0.9217 0.9034

EL14 ATT 7.616 6.74 6.006 7.629 0.9021 0.912 0.9214 0.902
EL4 Bal Pop 9 87.41 9.852 16 0.8933 0.04 0.8295 0.8767
ELS8 Bal Pop 8.262 12.82 5.508 12.99 0.8871 0.7712 0.9309 0.8337
EL10 Bal Pop 7.205 6.43 5.8 7.206 0.901 0.9144 0.917 0.9011
EL14 Bal Pop 7.126 6.383 5.788 7.142 0.8953 0.907 0.9126 0.8947

population moments performs in general better than the other methods. When we don’t have the
population moments, EL is still the method with the smallest RMSE and better coverage.

4 Training Program

To illustrate the methods, we consider the experiment analyzed first by Lalonde (1986) and used
later by Dehejia and Wahba (1999, 2002) to illustrate how to use the matching methods in non-
experimental studies. The objective of the original paper was to measure the effect of a training
program on the real income. The dependent variable is the real income in 1978 and the covariates
used for matching the treated group to the control are age, education, 1974 real income, 1975
real income and dummy variables for race, marital status, and academic achievement. The 1974
income was added by Dehejia and Wahba (1999), which resulted in a smaller sample size than the
one used by Lalonde (1986), because that year income was not available for all participants. In the
original sample, the treatment has been randomly assigned and Dehejia and Wahba (1999) argue
that the missing observations did not affect the randomization. Table 12 compares the sample
means of the covariates, where the income variables re75 and re74 are expressed in thousands of
dollars of 1982. None of them are statistically different at 5% except “nodegree”.

Because of random assignment, the difference in the average 1978 income between the two
groups is a consistent estimate of the ATT. There is no need to set the moments to the ones
from the treated group, but assuming perfect balancing (moment conditions (2)) may result in
more efficient estimates. Table 13 presents the results”. The first column is OLS regression

9The treatment effect is expressed in thousands, so we need to multiply it by one thousand to compare our
estimates with Lalonde (1986) or Dehejia and Wahba (2002).
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Table 8: Properties of ATE estimation in the third study, n=200

Bias RMSE SD Coverage Bias.sd
ET4  -1.7300 4.7947 1.4722 0.9052 -0.3480
ET8  -0.9562 4.7974 4.7017 0.9092 -0.5204
ET14  -0.7247 4.9385 4.8856 0.8926 -0.8036
ET4 Bal Sample  0.4659% 4.3363 4.3116 0.9364 -0.2374
ETS8 Bal Sample  -1.2680 4.3781 4.1909 0.9090 -0.3597
ET14 Bal Sample -0.3856%  4.1812 4.1638 0.93952 -0.1113
ET4 Bal Pop  0.6245 2.5371%  2.4592 0.8692 -0.4659
ETS8 Bal Pop  -1.5028 2.8254 2.3929%  0.7269 -0.7909
ET14 Bal Pop  -0.5289 2.2954%  2.23382  0.6524 -1.1239
EL4  0.3478! 4.5754 4.5627 0.9386% -0.08943
EL8  0.38547 4.5588 4.5430 0.9408" -0.07652
EL14  0.6389 4.6130 4.5690 0.93943 -0.07211
EL4 Bal Sample  -0.7884 4.3777 4.3065 0.9292 -0.2254
EL8 Bal Sample  -1.2821 4.3126 4.1180 0.9124 -0.2796
EL14 Bal Sample  -0.5376 3.9591 3.9228 0.9386 0.0958*
EL4 Bal Pop  -0.6590 2.5909*  2.5059 0.8880 -0.4121
EL8 Bal Pop  -1.5017 2.7666 2.3238%  0.7384 -0.7043
EL14 Bal Pop  -0.6516 2.2920'  2.1976'  0.6526 -1.1188

Bold numbers are the best methods and the superscripts represent their rank

Table 9: Properties of ATE estimation in the third study, n=1000

Bias RMSE SD Coverage Bias.sd

ET4  -1.5500 2.5112 1.9760 0.8670 ~0.0619

ET8  -0.9111 2.2328 2.0387 0.9174 -0.0622

ET14  -0.6934 2.2072 2.0957 0.9264 -0.1060

ET4 Bal Sample  -0.09612  1.9479 1.9457 0.9372° -0.0814

ETS8 Bal Sample  -0.7894 1.9822 1.8184 0.9164 -0.0656
ET14 Bal Sample -0.2615%  1.8586 1.8403 0.94102 -0.0579%4

ET4 Bal Pop  -0.0570'  1.2000°  1.1988 0.9090 -0.1817

ET8 Bal Pop  -0.8431 1.2463%  0.9180%*  0.7848 -0.1245

ET14 Bal Pop  -0.2940 0.9361'  0.88893  0.8146 -0.2423

EL4  1.1426 2.4420 2.1584 0.9538" 0.2432

EL8  0.24873 2.0160 2.0008 0.9684 0.2576

EL14  0.6233 2.0270 1.9290 0.9790 0.4580

EL4 Bal Sample  -2.1600 2.9673 2.0346 0.8008 -0.0752
EL8 Bal Sample  -1.0029 2.0358 1.7718 0.9134 -0.0001'
EL14 Bal Sample  -0.6764 1.9071 1.7833 0.9330% -0.00972

EL4 Bal Pop  -2.1306 2.5348 1.3733 0.6256 -0.1317
EL8 Bal Pop  -1.0522 1.3196 0.79652  0.7666 0.0392°

EL14 Bal Pop  -0.7060 1.05102  0.7787'  0.7424 -0.1386

Bold numbers are the best methods and the superscripts represent their rank

of re78 on the treatment indicator and the second is OLS in which the covariates from Tables
12 are controlled for. The columns 3 to 5 are the results for EL, ET and CUE with u, =
{age, educ, black, hispan, married, nodegree, re74, re75} (e.g. ET8 stands for ET with 8 balancing
moments) and the last three are the results when u;, = {age, age?, educ, educ?, black, hispan, married,
nodegree, re74, re74® re7s, re75%}. The coefficients of the covariates in the second column have
been omitted. We can see that balancing using more moments reduces the standard errors of the
estimated ATT. EL seems to be the most efficient, but the difference is small. We also obtain a
lower ATT when balancing the groups. It is possible that removing observations to introduce the
1974 income had an impact on the randomization of the experiment, and that forcing the covariates
to be perfectly balanced produces a more accurate estimate. The p-values of the overidentification
test are between 0.06 and 0.12, which does suggest that the groups may not be well balanced.

To follow Dehejia and Wahba (2002), we drop the control group from the National Supported
Work (NSW) and use either the Population Survey of Income Dynamics (PSID) or Current Pop-
ulation Survey (CPS) sample as the control group and use GEL to balance the covariates with
the treated group. Since the method that matches the moments to the treated is the same as
the method proposed by Chan et al. (2016), we also look at the PSID2, CPS2, PSID3 and CPS3,
which are subsamples built by Lalonde (1986) in an attempt to build samples with individuals
who experience similar economic conditions as the ones from the treated groups. The same two
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Table 10: Properties of ATT estimation in the third study, n=200

Bias RMSE SD Coverage Bias.sd
ET4 Bal Sample  2.4917 5.7173 5.1463 0.9170 -0.00087
ETS8 Bal Sample  2.7697 5.5505 4.8106 0.9177% 0.2808
ET14 Bal Sample  3.8605 5.8275 4.3665 0.9149 0.8457
ET4 Bal Pop  2.5486 3.1087 1.7802%  0.6396 -0.14913
ET8 Bal Pop  1.9487 2.7735 1.9737 0.6832 -0.4785
ET14 Bal Pop  1.0101%  2.00722  1.7349%2  0.7365 -0.5885
EL4 Bal Sample  1.2001%*  5.4129 5.2787 0.92423 -0.2951
EL8 Bal Sample  2.3105 5.2906 4.7598 0.92562 0.2571
EL14 Bal Sample  1.5186 3.6463 3.3154 0.9636' 1.6649
EL4 Bal Pop  1.1024% 2.1154% 1.8056%  0.8846 -0.06732
EL8 Bal Pop  1.6468 2.5869%  1.9952 0.7310 -0.4981
EL14 Bal Pop  0.4573'  1.4718" 1.3991' 0.8578 -0.1785%

Bold numbers are the best methods and the superscripts represent their rank

Table 11: Properties of ATT estimation in the third study, n=1000

Bias RMSE SD Coverage Bias.sd
ET4 Bal Sample  2.1923 3.1796 2.3031 0.8416 0.0136
ETS8 Bal Sample  1.8540 2.9442 2.2873 0.8694 0.0103
ET14 Bal Sample  1.1463 2.5956 2.3290 0.9216% 0.00742
ET4 Bal Pop  2.1837 2.3104 0.7547 0.1734 -0.0004!
ETS8 Bal Pop  1.7425 1.8888 0.7290%  0.2960 -0.0402
ET14 Bal Pop  1.0736 1.2619°  0.6633!  0.5658 -0.0720
EL4 Bal Sample  0.29982  2.4552 2.4371 0.93742 -0.1143
EL8 Bal Sample  1.3029 2.6451 2.3021 0.9120 -0.00823
EL14 Bal Sample 0.9566*  2.5010 2.3111 0.93143 0.0091%
EL4 Bal Pop  0.2624!  0.9189'  0.8807 0.95221 0.0902
EL8 Bal Pop  1.1913 1.3745* 0.6856%  0.6110 0.0219
EL14 Bal Pop  0.87832  1.10812 0.67562  0.6690 -0.0828

Bold numbers are the best methods and the superscripts represent their rank

sets of covariates are used (8 and 12). Tables 14 to 16 present the results for ET, EL and CUE
with 8 balancing moments and Tables 17 to 19 show the results with 12 balancing moments.

The coefficient estimates ; to 05 are the ones from the moment conditions (16). Therefore, 0
is the treatment effect estimate and 65 is the estimated probability of being assigned to treatment
using the implied probabilities as probability distribution function. Notice that the ET and CUE
estimates of #3 are much higher then the actual proportions of treated, which are respectively
7.07%, 42.24% and 59.11% for the PSID, PSID2 and PSID3, and 1.14%, 7.24% and 30.13% for
the CPS, CPS2 and CPS3. Figure 1 shows how the implied probabilities are estimated by ET
and EL in order to match the moments of the treated. Although both ET and EL balance the
moments perfectly, they assign probabilities in a very different way. For ET, many observations
that belong to the control group have probabilities lower than 1/n, and the assigned probabilities
for the treated are constant and much higher than 1/n. On the other hand, the probabilities
assigned by EL on the treated is much closer to 1/n, which explains why EL estimates of 63 are
much closer to the proportions of treated.

If we consider the treatment effect estimates, CUE and EL seem much more unstable than ET
as we change the control group. As we saw in Section 3, the CUE implied probabilities need to be
transformed in order to avoid negative values, and these transformed implied probabilities do not
balance the moments perfectly. This property may explain the instability that we observe here.
With respect to EL, its instability may come from the fact that it is not a method that is robust
to misspecification. The method that produces the best results is clearly ET with the full PSID as
control group. In fact, it produces an estimate of the ATT that is very close to the experimental
estimate, with standard errors smaller than any method analyzed by Dehejia and Wahba (2002).
All three methods, however, underestimate the ATT when the CPS is used as the control group.
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Table 12: Sample mean of the covariates for each group

N age educ black hispan married nodegree re74  re75
Control 260 25.054 10.088 0.827  0.108 0.154 0.835 2.107 1.267
Treated 185 25.816 10.346 0.843  0.059 0.189 0.708 2.096 1.532

Table 13: Estimated ATT using OLS, OLS with control variables, EL, ET

and CUE with unconditional balancing

OLS OLScont ELS ETS CUES EL12 ET12 CUE12
61 4.5548***  0.7851  4.5519%**  4.5368***  4.5230***  4.5607***  4.5397***  4.5253***
(0.3407)  (3.3546)  (0.3375) (0.3363) (0.3356) (0.3382) (0.3386) (0.3389)
6 1.7943** 1.6763* 1.6374* 1.6294* 1.6266* 1.6279* 1.6033* 1.5835*
(0.6727)  (0.6853)  (0.6710) (0.6730) (0.6761) (0.6642) (0.6643) (0.6677)
03 0.4157***  0.4127***  0.4085***  0.4157***  0.4112***  0.4050***
(0.0243) (0.0243) (0.0242) (0.0248) (0.0247) (0.0244)
R? 0.0178 0.0548
Adj. R? 0.0156 0.0353
Num. obs. 445 445 445 445 445 445 445 445
RMSE 6.5795 6.5135
LR test 17.2582 17.3217 16.7238 24.1274 23.7643 22.0489
LR test p-value 0.1005 0.0987 0.1163 0.0630 0.0692 0.1065

***p < 0.001, **p < 0.01, *p < 0.05. For OLS methods, the standard errors are robust to heteroscedasticity.

Table 14: Estimated ATT by ET using the three different PSID and CPS
as control groups and 8 covariates

ET-PSID  ET-PSID2 ET-PSID3 ET-CPS ET-CPS2 ET-CPS3

01 4.2886**  3.8401***  3.9599***  50808***  5.2049***  5.0730***
(0.6267) (0.6971) (0.8671) (0.3272) (0.3894)  (0.5597)
02 2.0612* 2.5095** 2.3897* 1.2675* 1.1427 1.2750
(0.8249) (0.8833) (1.0254) (0.6449) (0.6782)  (0.7894)
63 0.6500%**  0.7855***  0.8208***  0.1789***  (0.3203***  (0.5648***
(0.0506) (0.0398) (0.0350) (0.0229) (0.0321)  (0.0370)
LR test 4780.8155  404.9884  180.1020  30285.3152 3984.6115  572.8247
LR test p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Num. obs. 2675 438 313 16177 2554 614

***p < 0.001, **p < 0.01, *p < 0.05

Table 15: Estimated ATT by CUE using the three different PSID and CPS
as control groups and 8 covariates

CUE-PSID CUE-PSID2 CUE-PSID3  CUE-CPS CUE-CPS2 CUE-CPS3

0, 5.5623%%* 4.2318%* 5.1145%%* 5.6658***  5.1427***  4.7004***
(0.6780) (1.0611) (1.0435) (0.2634) (0.4002) (0.8687)
bo 0.7858 2.1175 1.2345 0.6847 1.2063 1.6484
(0.8956) (1.2018) (1.1934) (0.6213) (0.6852) (1.0174)
03 0.3567%* 0.7320*** 0.8318***  0.1176***  0.3496***  0.6174***
(0.0217) (0.0282) (0.0253) (0.0086) (0.0217) (0.0288)
LR test 2156.3921 185.2555 90.5904 14603.4424  2024.9106  314.3652
LR test p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Num. obs. 2675 438 313 16177 2554 614

***p < 0.001, **p < 0.01, *p < 0.05
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Table 16: Estimated ATT by EL using the three different PSID and CPS

as control groups and 8 covariates

EL-PSID  EL-PSID2 EL-PSID3  EL-CPS _ EL-CPS2 EL-CPS3
6, 3.3314%**  2.8754***  25785"**  4.9415***  5.0369***  5.0362***
(0.3730) (0.3885) (0.6361) (0.4770) (0.4414)  (0.5509)
fo 3.0177*%*  3.4T37***  3.7706%** 1.4077 1.3123 1.3130
(0.6498) (0.6626) (0.8402) (0.7347) (0.7097)  (0.7836)
05 0.0692* 0.4224***  0.5910***  0.0114***  0.0724***  0.3013***
(0.0302) (0.0838) (0.0736) (0.0020) (0.0135)  (0.0414)
LR test 10500.4382  715.9930  272.3546  63046.2390  7610.4213  973.1549
LR test p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Num. obs. 2675 438 313 16177 2554 614

***p < 0.001, **p < 0.01, *p < 0.05

Table 17: Estimated ATT by ET using the three different PSID and CPS

as control groups and 12 covariates

ET-PSID BI-PSID2 BI-PSID3  ET-CPS  ET-CPS2  ET-CPS3
61 4.5858%**  4.3368***  4.7357***  50036"**  4.8370***  5.2799***
(0.6752) (0.7302) (0.7893) (0.4445) (0.5476)  (0.6325)
0o 1.7611* 2.0122* 1.6136 1.3449 1.5134* 1.0702
(0.8564) (0.9160) (0.9499) (0.7108) (0.7679)  (0.8178)
03 0.6735***  0.8142***  0.8677***  0.2770***  0.5006***  0.6866"**
(0.0488) (0.0370) (0.0340) (0.0375) (0.0517)  (0.0486)
LR test 48005340  421.5520  199.5875  31018.3559 4368.8791  689.0368
LR test p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Num. obs. 2675 438 313 16177 2554 614

***p < 0.001, **p < 0.01, *p < 0.05

Table 18: Estimated ATT by CUE using the three different PSID and CPS

as control groups and 12 covariates

CUE-PSID CUE-DPSID2  CUE-DPSID3 _ CUE-CPS _ CUE-CPS2  CUE-CDPS3

6 4.8098*** 3.6592* 4.0007** 5.3230*** 5.4828 4.9784%*

(0.6939) (1.4888) (1.3665) (0.2796) (24.4489) (0.6620)
bo 1.5380 2.6895 2.3485 1.0269 0.8657 1.3714

(0.8725) (1.6263) (1.4635) (0.6287) (24.4668) (0.8393)
b3 0.3897*** 0.7558*** 0.8490***  0.1316***  0.3963***  0.6637"**

(0.0229) (0.0278) (0.0246) (0.0094) (0.0235) (0.0290)
LR test 2200.2249 193.2103 95.1032 147715064  2087.1901  335.2450
LR test p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Num. obs. 2675 438 313 16177 2554 614

***p < 0.001, **p < 0.01, *p < 0.05
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Table 19: Estimated ATT by EL using the three different PSID and CPS
as control groups and 12 covariates

EL-PSID EL-PSID2 EL-PSID3  EL-CPS  BL-CPS2 EL-CPS3
0, 3.8445%**  4.8756***  5.6087***  3.8795"**  5.6018***  6.1149***
(0.5309) (0.7809) (0.6920) (0.4548) (0.6550)  (0.6549)
0y 2.5047* 1.4736 0.7404 2.4697*** 0.7474 0.2342
(0.7689) (0.9515) (0.8671) (0.6978) (0.8600)  (0.8323)
03 0.0692* 0.4224***  0.5910***  0.0114**  0.0724**  0.3013***
(0.0292) (0.0854) (0.1099) (0.0044) (0.0247)  (0.0786)
LR test 14377.8726  868.4966  422.1832  75096.6112  8152.4060  1056.4872
LR test p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Num. obs. 2675 438 313 16177 2554 614

***p < 0.001, **p < 0.01, *p < 0.05
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5 Conclusion and potential extensions

We presented a GEL method to estimate treatment effects that is valid in both randomized trials
and observational studies. By selecting the appropriate estimating equations, we are able to exactly
balance the treated and control groups with respect to observed characteristics. The balancing is
non-parametric and does not rely on the estimation of a propensity score. Also, being part of the
GEL family of estimators, we can use tools for inference and re-sampling that have been developed
and tested for GEL.

We studied the small sample properties of our family of methods using three sets of simulation
experiments. The first two sets are used by Frolich (2004) and Busso et al. (2014) to compare
the properties of different ATT estimation methods. The first set is based on DGP’s that imply
correctly specified propensity score models, which are likely to favor any methods that rely on its
estimation. For this set of DGP’s, ET is the best GEL method in terms of bias and variance,
for most DGP’s. In comparison with the methods analyzed by Busso et al. (2014), ET has a
bias comparable to the methods that are not bias-corrected when the strict overlap assumption
is violated, and is comparable to the bias-corrected methods when overlap is good. Also, ET
competes well with the best methods studied in terms of efficiency. In the second set of DPG’s
in which the propensity score models are misspecified, ET performs as well as the best methods
in terms of both the bias and variance, when the number of balancing moments is high enough.
In a final simulation study, we considered the DPG’s from Chan et al. (2016). This experiment
is used to compare all of our proposed methods applied to the estimation of both the ATT and
ATE. Overall, ET and EL are comparable, but ET seems to have properties that are more stable
across different DGP’s. It is worth noticing that CUE failed to balance the moments with strictly
positive implied probabilities in a large proportion of the iterations for most DGP’s studied. We
therefore suggest to avoid it.

In the case of observational studies, the estimating equations are misspecified. Although some
have studied the properties of GEL in misspecified models, we do not know what happens in such
models if we let the number of estimating equations grow with the sample size. This extension
would be of interest since the semi-parametric efficiency bound can only be reached when k grows
with n. Another extension would be to derive specification tests for constrained GEL. We do have
a mean to test hypotheses on coefficients using the asymptotic distribution, but it would be a
good contribution to derive a non-parametric confidence interval like the one we can construct by
inverting the LR test of GEL.
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A Detailed tables

Table 20: 1000x Bias for all models and ux(X;) = X;
ET EL
Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop
{a, B}1 -1.678 -2.676 -5.283 -5.721 -1.162 -3.665 6.918 6.337
{a, B}2 1.963 1.372 0.5761 0.6332 3.216 1.917 4.322 3.913
my (x) {a, B}3 0.9221 0.7769 0.7129 0.7281 1.152 0.8963 1.503 1.33
{a, B}s -0.2022 -0.2902 1.745 2.035 -0.5872 -0.568 5.133 5.006
{a, B}5 -0.2776 -1.1 -2.38 -2.46 -2.165 -2.83 -3.224 -3.501
{a, B}1 -4.028 -8.152 -14.75 -15.65 3.413 -4.694 47.26 48.3
{a, B}2 7.512 5.076 1.49 1.471 13.17 7.823 20.51 17.61
mao(x) {a, B}3 -0.4059 -0.353 -0.5081 -0.6972 -0.5614 -0.5391 -10.18 -9.142
{a, B}4 0.1954 0.1013 1.549 1.849 -0.06534 -0.4766 3.924 3.915
{a, B}5 1.147 3.972 8.827 9.477 0.2474 1.005 -2.144 -1.196
{a, B} -3.639 -7.059 -14.74 -15.39 -0.1439 -7.795 -13.2 -15.68
{a, B}2 3.601 2.417 0.695 0.7367 6.127 3.632 0.4245 0.01486
msa(x) {a, B}3 1.283 1.036 0.8819 0.8183 1.642 1.247 1.118 0.8249
{a,B}s -13.99 -13.04 -11.13 -11.8 -7.33 -3.423 -22.46 -21.61
{a, B}5 -10.2 -10.71 -12.03 -12.05 -6.842 -5.185 -3.07 -3.423
{a, B} -0.36 -0.2861 -6.529 -6.562 -0.3573 -0.1667 18.3 18.78
{a, B}2 -0.3933 -0.199 -0.03093 0.01627 -0.6408 -0.2624 7.045 7.233
ma(x) {a,B}3 -0.3894 -0.3434 -0.326 -0.2898 -0.4737 -0.3975 0.4523 0.4289
{a,B}a 2.383 2.563 2.471 2.772 1.388 2.151 5.693 5.743
{a, B}5 -7.735 -7.55 -7.765 -7.578 -4.597 -3.345 -4.727 -4.549
{a, B} 0.5589 0.766 -2.21 -2.337 1.567 2.304 26.15 25.92
{a, B}2 -0.09461 -0.06491 -0.6103 -0.4352 -0.1585 -0.341 7.002 6.909
ms(x) {a,B}3 -0.1674 -0.1135 -0.1306 -0.1608 -0.2064 -0.03529 1.004 1.041
{a,B}a 1.897 2.072 3.126 3.466 2.066 3.945 8.776 8.559
{a, B}5 -3.197 -1.919 -0.7615 0.1104 -2.079 -1.232 -6.23 -5.776
{a, B} -4.882 -10.18 -21.79 -22.51 4.522 -4.016 -18.16 -19.41
{a,B}2 7.815 5.122 2.55 2.499 14.1 9.809 5.999 5.201
meg(x) {a,B}3 5.18 4.181 3.519 3.65 6.667 5.039 0.5197 0.1647
{a,B}a 7.123 8.753 -2.209 -2.564 6.719 9.538 -6.298 -5.142
{a, B}5 -0.349 -1.557 -4.046 -3.919 -1.266 -3.573 -5.832 -6.096
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Table 21: nx Variance for all models and ug(X;) = X;
ET EL

Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop

{a, B} 0.06773 0.0659 0.1114 0.1116 0.09343 0.08799 0.1918 0.1959
{a, B}2 0.05063 0.05038 0.06657 0.06504 0.05715 0.05548 0.09562 0.09227

m1(z) {a,B}3 0.04428 0.04427 0.04789 0.04777 0.04503 0.04492 0.05291 0.05111
{a,B}a 0.09748 0.09701 0.07429 0.07663 0.1042 0.1134 0.08896 0.08712

{a, B}s5 0.09814 0.09868 0.119 0.1172 0.09757 0.09974 0.1298 0.1273

{a, B} 0.2009 0.1978 0.4211 0.4382 0.249 0.2578 0.3426 0.3076

{a, B}a 0.1494 0.1463 0.3093 0.3046 0.1814 0.1744 0.4436 0.4628

ma(x) {a,B}3 0.06973 0.06988 0.07781 0.07879 0.07464 0.06947 0.08378 0.08106
{a,B}a 0.09527 0.09446 0.07514 0.07695 0.1006 0.1119 0.08954 0.08692

{a, B}s5 0.194 0.1895 0.2012 0.199 0.2005 0.1866 0.186 0.1843

{a, B} 0.1323 0.1282 0.1637 0.161 0.2198 0.1756 0.2671 0.2736

{a, B}2 0.06655 0.06598 0.07654 0.0744 0.0792 0.0733 0.1104 0.1068

ms3(x) {a,B}3 0.04482 0.04484 0.04785 0.04733 0.04594 0.04567 0.05309 0.05119
{a,B}a 0.1198 0.1166 0.0915 0.09474 0.1246 0.12 0.1024 0.0995

{a, B}s5 0.1087 0.1121 0.1341 0.1326 0.1136 0.113 0.1381 0.1399

{a, B} 0.08753 0.09153 0.1338 0.1346 0.1439 0.1109 0.2394 0.2418

{a,B}2 0.05452 0.05491 0.06533 0.0643 0.06176 0.05806 0.08809 0.08549

my(x) {a,B}3 0.04347 0.04351 0.04693 0.04629 0.04391 0.04389 0.05028 0.04879
{a, B}a 0.09447 0.09442 0.07384 0.07661 0.09907 0.09906 0.08687 0.08451

{a,B}5 0.1046 0.1053 0.1231 0.1204 0.1106 0.1077 0.1248 0.1272

{a, B} 0.09403 0.09828 0.1608 0.1632 0.145 0.1212 0.284 0.2915

{a, B}2 0.06084 0.06111 0.07734 0.07636 0.07162 0.06634 0.1138 0.1098

mg(z) {a,B}3 0.04861 0.04869 0.05249 0.05247 0.04909 0.04893 0.05727 0.05569
{a, B}a 0.09811 0.09752 0.07821 0.08031 0.1025 0.1003 0.09325 0.08916

{a, B}s5 0.1262 0.126 0.142 0.1428 0.1308 0.1304 0.1374 0.137

{a, B} 0.307 0.3172 0.3179 0.3236 0.3745 0.3197 0.3851 0.3898

{a, B}2 0.2135 0.2157 0.218 0.2163 0.233 0.2166 0.2244 0.225

me(z) {a,B}3 0.1357 0.1358 0.1432 0.1396 0.1428 0.1361 0.1649 0.1576
{a, B}4 0.1129 0.1147 0.08708 0.08961 0.1201 0.1329 0.09277 0.09338

{a, B}5 0.1041 0.1055 0.1264 0.1251 0.1098 0.1099 0.134 0.1344

Table 22: nxMSE for all models and u(X;) = X;
ET EL

Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop

{a, B} 0.06801 0.06661 0.1142 0.1149 0.09355 0.08932 0.1965 0.1999

{a, B}2 0.05101 0.05056 0.0666 0.06507 0.05817 0.05585 0.09748 0.09379

mi(z) {a,B}3 0.04436 0.04433 0.04794 0.04781 0.04516 0.04499 0.05313 0.05128
{a,B}a 0.09748 0.09701 0.07459 0.07704 0.1042 0.1134 0.09159 0.08961

{a, B}5 0.09814 0.09879 0.1195 0.1178 0.09803 0.1005 0.1308 0.1285

{a, B} 0.2025 0.2044 0.4428 0.4626 0.2501 0.26 0.5659 0.5409

{a,B}2 0.1551 0.1489 0.3095 0.3048 0.1987 0.1805 0.4856 0.4937

ma(x) {a,B}3 0.06974 0.06989 0.07783 0.07883 0.07466 0.0695 0.09413 0.08941
{a,B}a 0.09527 0.09445 0.07537 0.07728 0.1006 0.1119 0.09107 0.08844

{a, B}5 0.1941 0.191 0.209 0.2079 0.2004 0.1867 0.1865 0.1845

{a, B} 0.1336 0.1332 0.1854 0.1847 0.2198 0.1817 0.2845 0.2981

{a, B}2 0.06784 0.06656 0.07659 0.07444 0.08294 0.07461 0.1104 0.1068

msz(x) {a,B}3 0.04498 0.04494 0.04792 0.04739 0.0462 0.04582 0.05321 0.05126
{a,B}a 0.1394 0.1336 0.1039 0.1087 0.1299 0.1211 0.1528 0.1462

{a, B}5 0.1191 0.1235 0.1485 0.1471 0.1182 0.1157 0.139 0.141

{a, B} 0.08753 0.09153 0.1381 0.1389 0.1439 0.1109 0.2728 0.277

{a, B}2 0.05453 0.05491 0.06533 0.06429 0.0618 0.05806 0.09305 0.09071

may(x) {a,B}3 0.04348 0.04352 0.04694 0.04629 0.04393 0.0439 0.0503 0.0488
{a,B}a 0.09503 0.09506 0.07444 0.07737 0.09925 0.09951 0.0901 0.0878

{a, B}5 0.1106 0.111 0.1291 0.1261 0.1127 0.1088 0.127 0.1292

{a, B} 0.09405 0.09833 0.1613 0.1637 0.1452 0.1218 0.3523 0.3587

{a,B}2 0.06083 0.06111 0.07737 0.07637 0.07162 0.06634 0.1187 0.1145

mg(x) {a,B}3 0.04861 0.04869 0.05249 0.05247 0.04909 0.04892 0.05737 0.05579
{a,B}a 0.09846 0.09794 0.07918 0.0815 0.1029 0.1019 0.1009 0.09647

{a, B}5 0.1272 0.1264 0.142 0.1428 0.1312 0.1305 0.1413 0.1403

{a, B} 0.3094 0.3275 0.3654 0.3742 0.3765 0.3213 0.418 0.4275

{a,B}2 0.2196 0.2183 0.2186 0.2169 0.2528 0.2262 0.2279 0.2277

me(x) {a,B}3 0.1384 0.1376 0.1444 0.1409 0.1472 0.1386 0.1649 0.1576
{a,B}a 0.118 0.1224 0.08756 0.09026 0.1246 0.142 0.09672 0.09601

{a, B}s5 0.1041 0.1057 0.128 0.1266 0.1099 0.1112 0.1373 0.1381
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Table 23: Coverage of 95% confidence intervals for all models and
ET EL
Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop
{oz, B}l 0.9173 0.9163 0.8688 0.847 0.8682 0.8666 0.6768 0.6559
{oc, [3}2 0.9355 0.9346 0.9139 0.9094 0.9248 0.9236 0.8404 0.8404
'rnl(ac) {oc, B}g 0.9359 0.9353 0.9357 0.9303 0.9349 0.9339 0.9224 0.9218
{a, B}4 0.8847 0.8814 0.9321 0.9193 0.8587 0.835 0.9098 0.8998
{a, ﬁ}s 0.884 0.8793 0.8501 0.837 0.8765 0.8694 0.8184 0.8103
{a, 5}1 0.9235 0.9163 0.8995 0.8875 0.8838 0.8728 0.7175 0.7288
{oz, 5}2 0.9253 0.9236 0.8909 0.8692 0.9047 0.9014 0.7722 0.7509
ma(x) {oc, [3}3 0.9403 0.9397 0.9366 0.9335 0.9363 0.9436 0.9243 0.9271
{oc, B}4 0.8878 0.8848 0.9267 0.9162 0.8619 0.832 0.9046 0.8998
{a, 6}5 0.9057 0.9019 0.8775 0.8561 0.8948 0.8947 0.8738 0.87
{(1, [3}1 0.9043 0.8945 0.8398 0.8052 0.8362 0.851 0.6786 0.6434
{a, 5}2 0.9315 0.9302 0.915 0.9062 0.9138 0.9164 0.8368 0.8374
ms(x) {oz, [3}3 0.9416 0.9414 0.9389 0.9362 0.9384 0.9392 0.9253 0.925
{a, ﬁ}4 0.8505 0.8553 0.9097 0.8948 0.8562 0.8661 0.8612 0.8632
{a, B}5 0.8678 0.8605 0.8337 0.8217 0.8542 0.86 0.8244 0.8129
{a, B]l 0.9177 0.9137 0.8565 0.8395 0.8596 0.9018 0.6884 0.6577
{a, [3}2 0.932 0.9299 0.9183 0.913 0.9201 0.9223 0.8551 0.8506
my(z) {oz, B}g 0.9423 0.9423 0.9371 0.9374 0.9421 0.9406 0.9279 0.9288
{a, [3}4 0.8885 0.8831 0.9332 0.9209 0.8669 0.8648 0.9093 0.902
{a, ﬁ}g; 0.8721 0.8689 0.8492 0.8422 0.8598 0.8723 0.8409 0.8313
{a, B} 0.9217 0.915 0.8674 0.8513 0.8694 0.8968 0.6606 0.6427
{Oz, B}z 0.9353 0.9339 0.9173 0.9107 0.9174 0.9259 0.8407 0.8404
ms(z) | {a,B}s | 0.9416 0.9401 0.941 0.9352 | 0.9395 0.9384 0.9285 | 0.9267
{oz, 5}4 0.8852 0.8805 0.9272 0.9147 0.8639 0.8657 0.8982 0.8892
{a, [3}5 0.8888 0.8853 0.868 0.8521 0.8732 0.8725 0.8506 0.8449
{a, B} 0.9153 0.9084 0.8638 0.8407 0.8811 0.8998 0.7501 0.736
{a, ﬁ}z 0.9348 0.9321 0.9255 0.9166 0.9231 0.9298 0.8888 0.8839
me(z) {a, B}g 0.9367 0.9366 0.9339 0.9326 0.9328 0.9399 0.9163 0.9163
{a, [3}4 0.8837 0.8711 0.9361 0.9194 0.8627 0.8301 0.93 0.9182
{oz, 5}5 0.8918 0.8854 0.8603 0.8482 0.8727 0.8699 0.832 0.8182
Table 24: 1000 Bias for all models and ug(X;) = {X;, X2}
ET EL
Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop
{oz7 6}1 -3.504 -15.59 -3.439 -4.241 -6.083 -8.757 3.687 4.179
{oz7 6}2 0.4563 -1.992 -1.627 -2.009 0.3753 -0.4242 -1.213 -1.546
ml(z) {oz, 6}3 0.355 -0.08948 -0.2331 -0.1901 0.357 0.1303 -0.3697 -0.2472
{oz, 6}4 -2.762 -1.478 -0.5864 -0.9853 -2.942 0.1762 -1.619 -2.505
{a, 5}5 -3.206 -6.016 -6.046 -6.404 -4.838 -4.314 -3.416 -3.689
{oz7 5}1 -9.81 -36.08 -1.924 -5.863 -10.66 -7.955 11.67 15.54
{oz7 6}2 0.6323 -9.128 -7.065 -8.352 0.9951 -2.561 -10.94 -9.947
mg(z) {oz7 6}3 -0.6622 -0.7169 -2.439 -1.208 -1.061 -1.254 -3.135 -2.487
{oz, 6}4 -1.765 -0.9709 0.08242 -0.2733 -1.862 0.1811 -0.7315 -1.421
{oz, 6}5 22.95 15.98 11.71 12.5 18.34 -2.052 -5.572 -6.63
{a, 5}1 -9.568 -38.38 -22.62 -26.29 -14.64 -16.51 -16.77 -17.96
{a, 6}2 0.9057 -3.567 -3.782 -4.289 1.013 -0.3191 -4.299 -4.524
mg(z) {oz7 6}3 0.634 -0.0673 -0.4607 -0.3675 0.7078 0.3469 -0.6083 -0.4628
{oz7 6}4 3.018 7.079 -0.2438 1.708 5.567 8.877 1.675 4.461
{oz, 6}5 -2.037 -3.592 -3.686 -3.652 -1.386 -2.07 -1.864 -1.996
{a, 5}1 0.05923 1.059 1.455 1.914 0.1358 0.533 -2.662 -2.332
{a, B}Q -0.1293 0.5051 1.431 1.211 -0.06621 0.0929 0.5889 0.8287
m4(cc) {a, 6}5 -0.1565 -0.003957 0.1864 0.1151 -0.1583 -0.09748 -0.0247 0.08342
{oz7 6}4 -0.9858 0.9771 0.008446 0.2129 -0.7846 4.884 0.3742 0.8518
{oz7 6}5 2.449 1.413 -0.9037 -0.9582 3.045 -2.044 -7.394 -7.381
{a, 5}1 1.037 4.904 8.968 10.15 2.638 4.451 9.995 15.05
{a, 5}2 -0.8599 -1.173 -2.376 -2.464 -1.337 -1.957 -4.589 -5.275
ms(z) {a, B}3 0.4631 0.7666 1.514 1.089 0.6548 0.972 1.499 1.674
{oz7 6}4 -1.159 0.8583 -0.5265 -0.2743 -0.2432 5.484 -2.048 -1.761
{oz7 6}5 9.478 2.721 -2.086 -1.699 6.566 -8.292 -13.32 -14.68
{a, ﬂ}l -12.19 -40.83 -31.9 -36.53 -11.67 -8.966 -29.91 -30.67
{a, B}Q 2.822 -5.013 -4.658 -5.806 5.944 5.498 -6.876 -5.352
TFL()(‘L) {a, 5}3 1.809 -1.137 -3.686 -2.955 2.089 0.73 -3.951 -3.405
{oz7 B}4 10.51 12.99 3.604 6.513 10.47 8.696 9.611 15.45
{oz7 6}5 -5.121 -6.377 -7.617 -7.5 -4.802 -2.914 -5.48 -5.218
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Table 25: nx Variance for all models and uz(X;) = {X;, X2}

ET EL

Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop

{a, B} 0.06476 0.1076 0.1129 0.1174 0.08625 0.1234 0.1279 0.1334
{a,B}2 0.05142 0.06052 0.07297 0.07334 0.05757 0.06268 0.0797 0.07904
my(x) {a,B}3 0.04341 0.04497 0.0496 0.04904 0.04462 0.04558 0.0521 0.05085
{a,B}a 0.1211 0.1148 0.0738 0.08341 0.1283 0.1191 0.0774 0.08517

{a, B}s5 0.1249 0.1273 0.1453 0.1476 0.1235 0.1029 0.1226 0.1268

{a, B} 0.185 0.363 0.2919 0.293 0.2497 0.2933 0.3315 0.2985

{a, B}2 0.1473 0.2216 0.3009 0.3255 0.1874 0.2072 0.2347 0.2175
mao(x) {a,B}3 0.04966 0.05241 0.06148 0.06023 0.05161 0.05283 0.06484 0.06217
{a,B}a 0.1209 0.1117 0.07355 0.08249 0.1267 0.1202 0.07684 0.08412

{a, B}s5 0.3063 0.2439 0.2306 0.2371 0.2934 0.1684 0.1649 0.1646

{a, B} 0.09931 0.243 0.1877 0.2029 0.151 0.193 0.1423 0.1489
{a, B}2 0.06116 0.07882 0.09133 0.09455 0.07174 0.0751 0.08601 0.08768
ms3(x) {a,B}3 0.04547 0.04747 0.05214 0.05186 0.04698 0.04782 0.0542 0.05338
{a,B}a 0.126 0.1273 0.07583 0.0835 0.1272 0.1223 0.07273 0.0776

{a, B}s5 0.1264 0.1286 0.1398 0.1435 0.1295 0.0987 0.1098 0.1165

{a, B} 0.06438 0.09518 0.1211 0.1254 0.08205 0.1129 0.1336 0.1422
{a, B}2 0.04816 0.05409 0.06825 0.06838 0.05287 0.05752 0.07201 0.07135
my(x) {a,B}3 0.04298 0.04425 0.04853 0.04877 0.04404 0.045 0.0499 0.05017
{a, B}a 0.1245 0.1229 0.07632 0.08674 0.1274 0.1018 0.07677 0.0786

{a,B}5 0.1245 0.1186 0.1305 0.1306 0.1285 0.09341 0.09452 0.1031

{a, B} 0.07598 0.1173 0.1669 0.1831 0.1001 0.1443 0.1734 0.195
{a, B}2 0.05467 0.06101 0.08046 0.07905 0.0598 0.06524 0.08978 0.08842
mg(z) {a,B}3 0.04914 0.05044 0.05706 0.05683 0.05009 0.05114 0.05831 0.05779
{a, B}a 0.1254 0.1267 0.07647 0.08805 0.128 0.1003 0.0781 0.08018

{a, B}s5 0.1731 0.1424 0.1498 0.1463 0.1734 0.111 0.1216 0.1246

{a, B} 0.2471 0.4228 0.3419 0.3637 0.2982 0.3173 0.2483 0.2565

{a, B}2 0.1945 0.2549 0.2605 0.2798 0.2157 0.2022 0.2064 0.2006

me(z) {a,B}3 0.113 0.1334 0.1797 0.1905 0.1245 0.126 0.1507 0.1601
{a, B}4 0.1428 0.1463 0.07724 0.08644 0.1472 0.1301 0.07298 0.0786

{a, B}5 0.1384 0.1411 0.1589 0.1602 0.1406 0.1086 0.1146 0.1171

Table 26: nxMSE for all models and u(X;) = {X;, X2}

ET EL

Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop

{a, B} 0.06598 0.1319 0.1141 0.1192 0.08994 0.1311 0.1292 0.1351
{a, B}2 0.05143 0.06091 0.07323 0.07373 0.05758 0.06269 0.07984 0.07927
mi(z) {a,B}3 0.04342 0.04497 0.0496 0.04904 0.04462 0.04558 0.05211 0.05085
{a,B}s 0.1218 0.1151 0.07383 0.08349 0.1292 0.1191 0.07766 0.08578

{a, B}5 0.1259 0.1309 0.1489 0.1517 0.1258 0.1047 0.1238 0.1281

{a, B} 0.1946 0.4931 0.2923 0.2964 0.2611 0.2996 0.3451 0.3226

{a, B}2 0.1473 0.2299 0.3059 0.3325 0.1875 0.2078 0.2466 0.2274
mao(xz) {a,B}3 0.0497 0.05246 0.06207 0.06037 0.05171 0.05298 0.06582 0.06278
{a,B}a 0.1212 0.1117 0.07355 0.08249 0.1271 0.1202 0.07689 0.08431

{a, B}5 0.359 0.2694 0.2443 0.2527 0.327 0.1688 0.168 0.169

{a, B} 0.1085 0.3903 0.2389 0.272 0.1724 0.2203 0.1704 0.1811
{a, B}2 0.06124 0.08009 0.09275 0.09638 0.07183 0.0751 0.08785 0.08972

msa(xz) {a,B}3 0.0455 0.04746 0.05215 0.05187 0.04703 0.04783 0.05423 0.0534
{a, B}a 0.1269 0.1323 0.07582 0.08379 0.1303 0.1301 0.073 0.07958

{a, B}5 0.1268 0.1298 0.1411 0.1448 0.1297 0.09911 0.1101 0.1168

{a, B} 0.06438 0.09529 0.1213 0.1257 0.08204 0.1129 0.1343 0.1427
{a, B}2 0.04816 0.05411 0.06845 0.06852 0.05287 0.05752 0.07203 0.07141
my(x) {a,B}3 0.04298 0.04424 0.04853 0.04877 0.04404 0.045 0.04989 0.05017
{a,B}a 0.1246 0.123 0.07631 0.08674 0.1274 0.1042 0.07677 0.07867

{a, B}5 0.125 0.1188 0.1305 0.1307 0.1294 0.09381 0.09996 0.1086

{a, B} 0.07608 0.1197 0.175 0.1934 0.1008 0.1462 0.1834 0.2176
{a, B}2 0.05474 0.06114 0.08101 0.07965 0.05997 0.06561 0.09188 0.09119
msg () {a,B}3 0.04916 0.05049 0.05728 0.05694 0.05013 0.05123 0.05853 0.05806
{a,B}a 0.1255 0.1268 0.07649 0.08804 0.128 0.1033 0.07851 0.08048

{a, B}5 0.182 0.1431 0.1502 0.1465 0.1777 0.1178 0.1393 0.1461

{a, B} 0.262 0.5895 0.4437 0.4971 0.3118 0.3253 0.3377 0.3505

{a, B}2 0.1953 0.2574 0.2626 0.2832 0.2192 0.2052 0.2111 0.2035

meg(x) {a,B}3 0.1133 0.1335 0.181 0.1913 0.1249 0.1261 0.1523 0.1612
{a,B}a 0.1538 0.1632 0.07853 0.09067 0.1581 0.1376 0.0822 0.1025

{a, B}5 0.141 0.1451 0.1647 0.1659 0.1429 0.1094 0.1175 0.1198
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Table 27: Coverage of 95% confidence intervals for all models and
— 21/
up(Xi) = {X;, X7’}
ET EL

Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop

{a,B}1 0.9205 0.8256 0.8612 0.8153 0.878 0.7873 0.8177 0.7809

{a,B}2 0.932 0.912 0.9038 0.8807 0.9176 0.9007 0.8829 0.8659

m1 (x) {a,B}3 0.9386 0.935 0.9313 0.9212 0.9351 0.932 0.9253 0.9121
{a,B}a 0.8321 0.8176 0.9345 0.8892 0.8048 0.783 0.9315 0.8871

{a, B} 0.8284 0.8015 0.7769 0.7315 0.8154 0.8458 0.8121 0.785

{a,B}1 0.9156 0.8023 0.902 0.8892 0.8782 0.8585 0.8443 0.8367

{a,B}2 0.9182 0.8776 0.8909 0.8502 0.8936 0.886 0.9186 0.9117

mao(x) {a,B}3 0.9388 0.9321 0.9273 0.9126 0.9348 0.9305 0.9183 0.9064
{a,B}a 0.8318 0.8258 0.9359 0.8927 0.8091 0.7798 0.9351 0.8867

{a, B} 0.7796 0.8181 0.8275 0.7881 0.8066 0.9062 0.8994 0.8783

{a, B}1 0.8953 0.7064 0.8159 0.7162 0.8304 0.81 0.8763 0.802

{a,B}2 0.9261 0.898 0.8945 0.8637 0.9063 0.8994 0.8958 0.8637

ms(x) {a,B}3 0.9365 0.9328 0.934 0.9222 0.9333 0.9309 0.9264 0.9164
{a,B}a 0.8298 0.7964 0.9363 0.8968 0.806 0.7854 0.9462 0.9076

{a, B}5 0.8279 0.8046 0.7909 0.7484 0.8067 0.8546 0.8438 0.8096

{a, B}1 0.9234 0.8656 0.8476 0.8006 0.8924 0.8047 0.8159 0.7693

{a, B}2 0.9365 0.922 0.9083 0.8898 0.9251 0.9078 0.9018 0.8815

my(x) {a,B}3 0.9404 0.9369 0.9312 0.921 0.9372 0.9338 0.9267 0.914
{a,B}a 0.8283 0.8049 0.9314 0.8865 0.8051 0.8345 0.9342 0.9071

{a, B}5 0.8275 0.8078 0.7934 0.7601 0.8015 0.8585 0.8643 0.8297

{a, B}1 0.9193 0.8572 0.8393 0.7749 0.8884 0.7878 0.8258 0.7578

{a, B}2 0.9353 0.918 0.9053 0.8899 0.921 0.902 0.8869 0.8663

ms(x) {a, B}3 0.9381 0.934 0.9293 0.9215 0.9345 0.9306 0.9243 0.9169
{a,B}a 0.8289 0.8013 0.935 0.8858 0.8087 0.8408 0.9362 0.9035

{a, B}5 0.8223 0.83 0.8221 0.7987 0.81 0.8678 0.8448 0.8131

{a, B}1 0.9092 0.7766 0.8161 0.7447 0.8776 0.8693 0.8677 0.8064

{a, B}2 0.9226 0.8967 0.9036 0.8813 0.9037 0.9214 0.9279 0.9201

me(x) {a, B}3 0.9276 0.9157 0.9102 0.8644 0.9217 0.9218 0.9262 0.8951
{a, B}4 0.8114 0.7895 0.9384 0.8977 0.7974 0.8014 0.9336 0.8758

{a, B}5 0.8292 0.7981 0.7732 0.7367 0.8105 0.8472 0.8502 0.8269

Table 28: 1000 Bias for all models and ug(X;) = {X;, X2, X2}/

ET EL
Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop
{a, B} 0.7751 2.325 5.857 6.301 1.97 2.446 11.95 13.63
{a, B}2 -0.2476 0.7295 0.5258 0.7588 0.2161 0.769 0.9917 1.488
mi(z) {a,B}3 0.287 0.4366 0.464 0.338 0.3755 0.4639 0.2868 0.2739
{a,B}4 -0.3271 0.8798 0.07912 -1.64 -0.4522 2.303 -0.2324 -2.502
{a, B}5 -0.518 -1.675 -1.414 -0.5293 -2.11 -2.773 -1.24 -1.514
{a, B} 8.628 30.01 34.16 33.5 26.37 34.1 31.6 31.47
{a, B}2 2.207 7.389 12.26 11.82 5.043 10.19 14.8 16.89
ma(x) {a,B}3 -0.9937 -2.288 -5.39 -3.108 -1.776 -2.599 -4.186 -3.493
{a,B}a -0.09835 1.779 0.2512 -0.9018 -0.05267 2.27 0.01653 -1.336
{a, B}5 -4.965 -22.15 -23.52 -28.88 -9.523 -19.37 -20.08 -23.98
{a, B} 4.722 14.39 12.94 15.25 12.5 17.25 10.9 12.02
{a, B}2 1.407 3.773 3.266 3.54 3.114 4.489 3.719 4.322
msz(x) {a,B}3 0.3227 0.6111 0.4732 0.5499 0.5376 0.7102 0.5466 0.7067
{a,B}a 4.751 6.969 1.605 5.203 7.603 8.439 5.563 11.24
{a, B}5 2.395 2.298 1.778 1.897 3.331 -1.892 -2.269 -2.937
{a, B} 0.348 0.8804 -2.041 -2.39 0.4385 0.6534 -13.15 -15.52
{a, B}2 -0.4219 -0.4447 0.1804 -0.2407 -0.4752 -0.2762 -2.914 -3.115
may(x) {a,B}3 0.01978 0.02207 0.3242 0.01928 -0.01261 0.07477 -0.4129 -0.4155
{a,B}a -1.03 0.3679 -0.2867 0.2233 -0.9152 6.877 0.1344 1.555
{a, B}5 1.025 0.2621 -2.109 -2.488 1.785 -2.451 -8.773 -9.952
{a, B} 0.2798 4.265 -1.999 -5.817 2.419 2.537 -14.58 -19.84
{a, B}2 -0.4467 -2.468 -1.276 -2.44 -1.588 -2.613 -2.49 -2.653
mg(x) {a,B}3 0.751 1.422 2.386 1.729 1.186 1.475 0.2942 0.8205
{a,B}a 2.65 4.249 1.136 1.107 3.85 8.685 1.817 2.829
{a, B}5 1.48 -11.65 -13.82 -16.18 -0.2491 -10.66 -13.42 -15.1
{a, B} 13.19 32 28.01 33.04 36.38 37.15 22.06 28.63
{a,B}2 6.596 17.48 15.5 17.12 15.12 20.3 14.6 19.18
me(x) {a,B}3 0.7634 2.339 -0.7786 1.028 1.762 3.014 1.69 2.511
{a,B}a 0.501 -2.143 1.276 7.856 0.3987 0.6734 5.477 13.46
{a, B}5 -3.22 0.4294 -0.2893 2.584 -3.716 -1.048 -5.112 -3.414

28




Table 29: nx Variance for all models and uz(X;) = {X;, X2, X3}

ET EL
Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop
{a,B}1 0.05915 0.1234 0.1041 0.1107 0.09155 0.1259 0.1053 0.1106
{a,B}2 0.04955 0.06745 0.0766 0.08225 0.05721 0.07154 0.08098 0.08631
my(x) {a,B}3 0.04421 0.04978 0.05623 0.05725 0.04624 0.05164 0.05911 0.06056
{a,B}a 0.1087 0.1121 0.07719 0.09398 0.131 0.1023 0.08107 0.09456
{a, B}5 0.1111 0.1199 0.13 0.1307 0.1291 0.07597 0.08668 0.08696
{a, B} 0.1445 0.211 0.3435 0.3658 0.2291 0.2205 0.3784 0.3807
{a,B}2 0.1101 0.1956 0.1988 0.159 0.1455 0.171 0.2242 0.1853
mao(x) {a,B}3 0.04836 0.05831 0.06967 0.07137 0.0514 0.05937 0.06879 0.07129
{a,B}a 0.1103 0.1113 0.07773 0.09323 0.1323 0.1057 0.08233 0.09621
{a, B}s5 0.1844 0.2076 0.2288 0.2256 0.2334 0.1487 0.1471 0.1567
{a, B} 0.06736 0.148 0.1347 0.15 0.1048 0.145 0.1248 0.1407
{a,B}2 0.05118 0.07168 0.07916 0.08322 0.05967 0.07524 0.08253 0.08627
m3z(x) {a,B}3 0.04393 0.0493 0.05678 0.0561 0.04572 0.05081 0.05925 0.05866
{a,B}a 0.1092 0.1195 0.07459 0.09158 0.1281 0.09668 0.07188 0.08282
{a, B}s5 0.1111 0.1168 0.124 0.1269 0.1308 0.07328 0.08286 0.08219
{a, B} 0.06292 0.1299 0.102 0.1076 0.09622 0.1054 0.09239 0.08941
{a, B}2 0.04994 0.06793 0.0748 0.07741 0.05738 0.06588 0.06778 0.07093
my(x) {a, B}3 0.04377 0.04911 0.05503 0.05574 0.04535 0.04866 0.05373 0.05441
{a,B}a 0.1093 0.117 0.07924 0.09923 0.1291 0.07971 0.07839 0.08176
{a, B}5 0.1117 0.1158 0.1204 0.1208 0.1328 0.07622 0.07488 0.07988
{a, B} 0.07172 0.1496 0.1213 0.1205 0.1134 0.1186 0.1078 0.1019
{a,B}2 0.05464 0.07569 0.08651 0.09631 0.06316 0.07753 0.08116 0.08849
mg(z) {a, B}3 0.04925 0.05682 0.06329 0.06634 0.05182 0.05526 0.0592 0.05999
{a, B}4 0.1127 0.1216 0.08328 0.09995 0.1324 0.0833 0.0799 0.08328
{a, B}5 0.1461 0.1475 0.1652 0.1686 0.183 0.1056 0.1045 0.1165
{a, B} 0.1803 0.326 0.2763 0.3017 0.2752 0.2929 0.3122 0.3312
{a, B}2 0.1362 0.1994 0.22 0.202 0.1616 0.1907 0.2199 0.2093
me(z) {a, B}3 0.08171 0.1209 0.1118 0.1107 0.09173 0.1094 0.1113 0.1
{a,B}a 0.1153 0.1177 0.07507 0.09551 0.1381 0.09834 0.07268 0.08947
{a, B}5 0.1213 0.1269 0.132 0.1208 0.1474 0.08578 0.08259 0.07951
Table 30: nxMSE for all models and u,(X;) = {X;, X?, X2}
ET EL
Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop
{a, B} 0.0592 0.1239 0.1075 0.1146 0.09193 0.1264 0.1195 0.1292
{a, B}2 0.04955 0.06749 0.07662 0.0823 0.05721 0.0716 0.08107 0.08652
my(z) {a, B}3 0.04421 0.04979 0.05624 0.05725 0.04625 0.05166 0.05912 0.06056
{a,B}s 0.1087 0.1121 0.07718 0.09424 0.131 0.1028 0.08107 0.09518
{a, B}5 0.1111 0.1201 0.1302 0.1307 0.1295 0.0767 0.08679 0.08714
{a, B} 0.1519 0.3011 0.4601 0.478 0.2986 0.3367 0.4781 0.4796
{a, B}2 0.1106 0.201 0.2138 0.1729 0.148 0.1813 0.2461 0.2138
mao(xz) {a, B}3 0.04845 0.05883 0.07257 0.07233 0.05171 0.06004 0.07054 0.0725
{a,B}a 0.1103 0.1115 0.07773 0.0933 0.1323 0.1062 0.08232 0.09638
{a, B}5 0.1868 0.2566 0.2841 0.3089 0.2424 0.1861 0.1874 0.2141
{a, B} 0.06958 0.1687 0.1514 0.1732 0.1204 0.1747 0.1366 0.1551
{a, B}2 0.05137 0.07309 0.08021 0.08447 0.06063 0.07725 0.0839 0.08812
msa(x) {a,B}3 0.04394 0.04933 0.0568 0.05612 0.04574 0.05085 0.05927 0.05871
{a,B}a 0.1114 0.1243 0.07484 0.09428 0.1339 0.1038 0.07497 0.09543
{a, B}5 0.1117 0.1173 0.1243 0.1272 0.1319 0.07361 0.08333 0.08301
{a, B} 0.06292 0.1299 0.1024 0.1081 0.09623 0.1055 0.1096 0.1134
{a, B}2 0.04995 0.06794 0.07479 0.0774 0.0574 0.06588 0.06862 0.07189
my () {a,B}3 0.04376 0.04911 0.05503 0.05574 0.04534 0.04866 0.05374 0.05442
{a,B}a 0.1094 0.117 0.07924 0.09922 0.1292 0.08441 0.07838 0.08199
{a, B}5 0.1118 0.1158 0.1208 0.1213 0.1331 0.07679 0.08253 0.08973
{a, B} 0.07172 0.1514 0.1216 0.1239 0.1139 0.1192 0.129 0.1412
{a, B}2 0.05466 0.07629 0.08667 0.0969 0.06341 0.0782 0.08177 0.08919
mg(x) {a,B}3 0.0493 0.05702 0.06385 0.06663 0.05196 0.05547 0.0592 0.06006
{a,B}a 0.1134 0.1234 0.0834 0.1001 0.1339 0.09081 0.08022 0.08407
{a, B}5 0.1463 0.1611 0.1843 0.1947 0.183 0.1169 0.1225 0.1393
{a, B} 0.1977 0.4284 0.3547 0.4108 0.4075 0.4309 0.3607 0.413
{a, B}2 0.1406 0.2299 0.244 0.2313 0.1845 0.2319 0.2412 0.2461
me(x) {a,B}3 0.08176 0.1214 0.1119 0.1108 0.09203 0.1103 0.1116 0.1007
{a,B}a 0.1153 0.1181 0.07522 0.1017 0.1381 0.09836 0.07566 0.1076
{a, B}5 0.1224 0.1269 0.132 0.1214 0.1488 0.08586 0.08516 0.08063
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Table 31: Coverage of 95% confidence intervals for all models and
_ 2 yv3y
ue(X;) = { X, X7, X7}
ET EL

Bal Sample ATT Bal Pop Bal Sample ATT Bal Pop

{a, B}1 0.9267 0.8272 0.8718 0.7538 0.869 0.7618 0.8167 0.737

{a, B}2 0.9334 0.9019 0.9057 0.8322 0.9136 0.88 0.8755 0.8138

mi(z) | {a,B}s | 0.9327 0.9223 0.9257 0.8912 | 0.9253 0.9143 0.9105 0.8776
{a, B}4 0.8352 0.8438 0.9387 0.85 0.8091 0.8407 0.9318 0.8468

{a, B}5 0.8268 0.8325 0.8259 0.7188 0.8041 0.9052 0.8805 0.8442

{a, B}1 0.9089 0.8258 0.85 0.6508 0.8211 0.7394 0.7359 0.6463

{a, B}2 0.9176 0.8816 0.9002 0.8407 0.8862 0.8806 0.834 0.7933

mao(x) {a, B}3 0.9353 0.928 0.9287 0.8721 0.9296 0.9223 0.9269 0.8669
{a,B}4 0.8243 0.8378 0.9362 0.8538 0.7927 0.8261 0.9288 0.8432

{a, B}5 0.8255 0.8608 0.8614 0.6378 0.8058 0.8705 0.877 0.743

{a, B} 0.9148 0.822 0.8689 0.6867 0.8554 0.7593 0.8142 0.7031

{a, B}2 0.9345 0.9007 0.9075 0.8337 0.9101 0.8751 0.8813 0.8173

ms(z) | {a,B}s | 0.9406 0.9327 0.9296 | 0.8975 0.935 0.9227 0.9158 | 0.8833
{a,B}4 0.8306 0.8351 0.9425 0.864 0.8027 0.8511 0.9421 0.863

{a, B}5 0.8236 0.834 0.8287 0.7204 0.7984 0.9012 0.8864 0.8547

{a, B}1 0.9177 0.8224 0.8677 0.7715 0.8673 0.8057 0.8374 0.7683

{a, B}2 0.9323 0.9026 0.902 0.8421 0.9144 0.8882 0.9 0.8591

ma(z) | {a,B}s | 0.9385 0.9319 0.9304 | 0.8979 | 0.9356 0.928 0.9241 0.8987
{a, B}4 0.8253 0.8313 0.932 0.8429 0.8008 0.8787 0.934 0.8907

{a, B}5 0.8253 0.8283 0.8302 0.7366 0.7964 0.8984 0.9016 0.8596

{a, B} 0.922 0.831 0.8752 0.7657 0.872 0.8191 0.8345 0.7638

{a, B}2 0.9312 0.9017 0.9031 0.8323 0.9138 0.8814 0.9008 0.8408

msg(x) {a, B}3 0.9372 0.9277 0.9279 0.8913 0.9322 0.925 0.9279 0.9044
{a, B}s 0.8253 0.8299 0.9281 0.845 0.7948 0.8729 0.9309 0.8844

{a, B}5 0.8225 0.8393 0.8404 0.6953 0.8023 0.8715 0.8777 0.799

{a, B}1 0.9014 0.8116 0.9069 0.6655 0.8018 0.7728 0.8012 0.686

{a, B}2 0.9236 0.8929 0.9131 0.8036 0.888 0.8671 0.8608 0.7933

meg(x) {a, B}3 0.9261 0.909 0.9285 0.879 0.9157 0.9202 0.9164 0.8937
{a,B}s 0.8225 0.8303 0.9401 0.8597 0.7958 0.8513 0.9385 0.8476

{a, B}5 0.8274 0.8398 0.8405 0.7482 0.8004 0.8933 0.9054 0.8756
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