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Abstract

In this paper, we explore the finite sample properties of the generalized em-
pirical likelihood for a continuum, applied to a linear model with endogenous
regressors and many discrete moment conditions. In particular, we show that the
estimator from this regularized version of GEL has finite moments. It therefore
solves the issue regarding the no moment problem of empirical likelihood. We
propose a data driven method to select the regularization parameter based on a
cross validation criterion, and show that the method outperforms many existing
methods when the number of instruments exceeds 20.

Classification JEL: C13, C30
Keywords: Many Instruments, Weak Instruments, Regularization, Cross-validation

1 Introduction

When we want to estimate linear models with endogenous regressors for which there
exists many valid instruments, we often rely on the two-stage least squares (2SLS) for
iid observations or the two-step generalized method of moments (GMM) of Hansen
(1982) for more general data generating processes. However, the bad small sample
properties of their estimators when the number of instruments is large or relatively
weak, redirected our attention toward alternative methods such as the continuously
updated GMM (CUE) of Hansen et al. (1996) or the generalized empirical likelihood
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(GEL) of Smith (1997). These alternative methods have the potential to outperform
GMM if we compare their second order asymptotic properties derived by Newey and
Smith (2004). In fact the authors show that the bias of CUE is smaller than the bias of
GMM, and the bias of empirical likelihood (EL), which is a subset of the GEL family
of estimators, exhibits the smallest bias. Also, the bias-corrected version of EL is the
most efficient in terms of the root mean squared error (RMSE).

The issue raised by many is that the theoretical results, especially when we have
many potentially weak instruments, can hardly be reproduced in small samples. It is
now well established that CUE in such cases, as it is also true for the limited informa-
tion maximum likelihood method (LIML), suffers from the no moment problem. In fact,
simulations show that the CUE estimates are sometimes unbounded. The same prob-
lem was detected by Guggenberger (2008) for the case of EL estimators. As a result,
many have suggested modifications in an attempt to solve this no moment problem.
For example, the Jackknife version of 2SLS (J2SLS) of Hahn et al. (2004) is an attempt
to reduce the bias of 2SLS to a level comparable to LIML, without creating unbounded
moments. Also, Hausman et al. (2011) propose to stabilize the CUE (RCUE for regu-
larized CUE) estimates by regularizing both the vector of coefficients and the inverse
of the covariance matrix, a method that relies on the choice of two regularization pa-
rameters. They show, through simulations, that there exists a pair of parameters that
solves the no moment problem, but they do not provide us with a method for selecting
them. Finally, a similar approach is taken by Carrasco and Tchuente (2015) for the
case of LIML. The method is a special case of the GMM for a continuum (CGMM) of
Carrasco and Florens (2000), and relies on only one regularization parameter. They
provide a data driven method for selecting the parameter based on the second order
approximation of the RMSE.

In this paper, we develop a method for the case of GEL which is based on GEL
for a continuum (CGEL) of Chaussé (2011). As it is the case for CGMM or RCUE,
CGEL is a regularized version of GEL. CGEL was first developed to address the ill-
posed issue created by moment conditions defined on a continuum, but we show that
it can also be applied to the case of a finite number of moment conditions. As for
RCUE, CGEL regularizes the first order condition. However, the regularization is only
applied to the vector of Lagrange multipliers, A, associated with the moment conditions.
Therefore, it only relies on one regularization parameter, . Since CUE is a member
of the family of GEL estimators, it is a good alternative to RCUE. We show that our
method approaches the one step GMM with the identity matrix as a increases, which
implies that there is a regularization parameter that solves the no moment problem
of all GEL methods. We then propose a method for selecting « that regularizes the
solution only when it is necessary, and therefore preserves as much as possible the higher
order properties of GEL obtained by Newey and Smith (2004). Finally, we analyze the
finite sample properties of CGEL using Monte Carlo experiments based on the data
generating processes used by Guggenberger (2008) and Hausman et al. (2011).



First, our simulations show that regularizing \ is sufficient to solve the no moment
problem of GEL. Second, we find that CGEL estimators, compared with RCUE and
the two-step GMM, are always the least biased, and have the smallest RMSE when the
number of instruments exceeds 20 and the error term is homoscedastic. Although CGEL
remains the least biased, its RMSE is greater then GMM in presence of heteroscedas-
ticity, when there are few extremely weak instruments (a R? = 0.002 in the first stage
regression). However, as the number of irrelevant instruments increases, holding the
concentration parameter constant, the RMSE of CGEL becomes comparable to GMM.

In the next section, we explain what we mean by “the no moment problem”, and
show why GEL estimates are sometimes unbounded. In Section 3, we explain the
difference between GEL and CGEL, and show why the regularization procedure solves
the no moment problem of GEL. In Section 4, we present our procedure for selecting
a, and show that it solves the issue raised by Guggenberger (2008). In Section 5, we
compare CGEL with the RCUE method of Hausman et al. (2011), and we conclude in
Section 6.

2 The no moment problem of GEL

We first review the results obtained by Guggenberger (2008), who finds that the distri-
bution of the empirical likelihood (EL) estimator, like the one from the limited informa-
tion maximum likelihood estimator (LIML), have extreme heavy tails, which suggests
that their moments don’t exist. Indeed, for some samples the estimates are unbounded.
This finding contradicts the asymptotic results of Newey and Smith (2004) which sug-
gest that EL should outperformed the two-step GMM. In order to see what happens for
those samples, let us look at the shape of the objective function. The model considered
is

Yi = 0x; + &, (1)
with

T; = 2T+ ug, (2)
where the ¢ x 1 vector 7 is equal to {n,n,---,n} and Corr(e;,u;) = p # 0. The

theoretical R? of the first stage regression is:
2

2 qn
R* = . (3)
We can then control the strength of the instruments by selecting a value for n asso-
ciated with the desired R?. Since this is the data generating process (DGP) used by
Guggenberger (2008), we will refer to it as GUG. The generalized empirical likelihood
estimator (GEL) of § is defined as follows:

. , I~
6:argm61n argmfme;p()\gi((s)) ) (4)
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where
9i(0) = (yi — 64)z;,

and p(v) is either log(1—v) for the Empirical Likelihood (EL) of Owen (1988), exp(—v)
for the exponential tilting (ET) of Kitamura and Stutzer (1997), or (—v — v?/2) for
the continuously updated GMM (CUE) or the Euclidean Empirical Likelihood (EEL)
of Antoine et al. (2007). In Equation (4), A is the Lagrange multiplier associated with
the moment conditions (6) in the following primal problem:

n

6 = argmin Y _ hu(pi) (5)

i=1
subject to

n

sz-gi@) =0 (6)

Zpi = 17 (7)

=1

where h,(p;) is a discrepancy function measuring the distance between p; and 1/n (see
Newey and Smith (2004) for more details).
We want to look at the shape of the following function:

PO) == 3 @ 58],

where .
1 /
A(6) = arg max — ; p[Ngi(9)].

To see what happens when the estimate is out of bound, we generated the above
model with § = 0, p = 0.5, ¢ = 20, R? = 0.002 and the sample size n equals to
250 until the estimate of § becomes out of bound. Figure 1 shows the shape of P(J)
when the method diverges (Figures lc and 1d) and when it converges (Figures la
and 1b). It seems that when the instruments are weak, we sometimes end up with a
sample containing so little information that the function is either not convex in the
neighborhood of the true value or the local minimum is not global. When it is the case,
the numerical algorithm may converge to a flat region of the objective function®. Such
flat regions exist because A(J) converges to a constant when § gets far away from its

LGuggenberger (2008) solves the EL model with a grid search to obtain a global minimum. It is
therefore not surprising that he obtains unbounded solutions in such samples



true value, as shown on Figure 2. If our sample behaves like the data used to produce
Figure 1c, we have some hope because there is a local minimum around the true value.
However, the ability for our numerical algorithm to reach that local minimum will
depend heavily on the starting value. Also, in models with more regressors, it could be
a difficult task.

This shape is only present in the GEL case, which includes the EL, the ET, and
the CUE methods. We obtain a well defined objective function with a unique global
minimum in the case of the two-step GMM. Table 1 shows the properties of 5 from
the different methods based on a simulation, and Figure 3 illustrates the no moment
problem of the three GEL methods. Since the coefficient § is a scalar, it is estimated
by the Brent method with upper and lower bounds equal to +1,000. Clearly, the
distribution of all GEL estimators have heavy tails suggesting unbounded moments.

Table 1: Properties ofg for different methods using the Guggenberger model
with R? = 0.002, n = 200, p = 0.5 and k = 20, based on 1,000 replications

Mean-Bias Median-Bias RMSE  S-dev Interquartile range

Two-step 0.4898 0.4933 0.5344 0.2139  0.2832
EL -2.8376 0.3801 47.8746 47.8144 2.1298

ET 2.3704 0.4305 42.1462 42.1006 2.0314

CUE 1.4783 0.4375 35.6503 35.6374 2.2079

There exists no formal proof of the no moment problem for GEL. Formal proofs
would rely on assumptions about the joint distribution of our observations. For ex-
ample, Mariano and Sawa (1972) show that limited information maximum likelihood
estimators (LIML) have no moment, by deriving the extact distribution of the estima-
tor under the normality assumption. Although the proof is informative, researchers
were already aware of the instability of LIML. What matters in our case is that GEL
can produce unreliable estimates in small samples when the instruments are relatively
weak. Whether the instability of GEL is due to estimators having no finite moments
or that they are simply very volatile is irrelevant. What we want to propose is a
way of stabilizing the GEL estimator, while keeping as much as possible its desirable
properties.

We want to argue that the volatility of the estimator of § can be reduced by control-
ling the instability of A. In the GEL method, the moment conditions must be satisfied
exactly for all n. This is done by adjusting the probabilities that are assigned to each
observation. For a given ¢, each of them is defined as

b AO/a()
TS 0 g,0)

and condition (6) must be satisfied. Therefore, A must react to any change in d. If we
can somehow restrict A from being too volatile, we would simultaneously stabilize §.
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One way to smooth A is to use the generalized empirical likelihood for a continuum
(CGEL) of Chaussé (2011). We don’t have a continuum of moments in our model but
the method applies also to discrete moments by defining inner products in Euclidean
space instead of defining them in a functional space. In CGEL, the above definition of
A(9) is replaced by the following:

2
1 n
+al| Al (8)

- Zp’ [N g:(0)] s

Aa(0) = min

with ||z|> = 2’x. The first term is the GEL first order condition (FOC) for A(d).
Therefore, we try to make the FOC as close as possible to zero and impose a penalty
on the volatility of the A. The regularized objective function for ¢ becomes:

P(3:0) = 3" o6/ 5i0)] @

=1

As it is clear from the definition of A\, (9), the moment condition (6) is no longer satisfied.
In fact, the method moves away from GEL as « increases. As we will see in Section
3, increasing o makes the GEL estimator shrinks toward the first-step GMM with
weighting matrix equals to the identity matrix, which explains why the no moment
problem disappears.

Figure (4) shows the effect of a on P(d; ), using the same problematic samples used
to produce Figures 1c and 1d. We can see that as « increases, the shape becomes more
and more compatible with an unbounded solution. The method is therefore potentially
a solution to the no moment problem of GEL. We also see that the required value of «
is different across different samples. We will discuss its impact on the properties of the
estimator in the next section.

Other studies have addressed the issue of the no moment problem of CUE and LIML.
For example, Hahn et al. (2004) propose a Jackknife version of the 2SLS (J2SLS) as an
alternative to LIML. It is defined as:

n
; ; n— 1550
dj2s1s = Ndasrs — - E 951,55
=1

where 552 15 is the 2SLS estimator of § obtained by removing the i observation. The
bias is comparable to LIML and it does not suffer from the no moment problem since
it is a weighted sum of 2SLS estimators, which are known to have finite moments (see
Sawa, 1969). It is also a good alternative to the Bias-corrected 2SLS of Donald and
Newey (2001) (B2SLS), which also suffers from the no moment problem. Hausman
et al. (2011) derive a version of CUE (RCUE) in which the first order condition is
regularized. In the method they propose, there are two regularization parameters:
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one to regularize the inverse of the covariance matrix of the moment conditions, and
one to regularize the vector of coefficients. They show through simulations that the
method seems to solve the no moment problem for a given choice of the regularization
parameters. But they do not provide us with procedures to select them. Also, they
only use an approximation of the first order condition of the CUE which is known to
be invalid in small samples with weak instruments (see Kleibergen (2005)). Finally,
Carrasco and Tchuente (2015) derive a regularized version of LIML with a data driven
method for selecting the regularization parameter.

We will denote the regularized version of GEL as CGEL to be consistent with the
notation of Chaussé (2011). The case in which p(v) is quadratic will be referred as
CEEL?, and CEL and CET will denote the regularized empirical likelihood and expo-
nential tilting respectively. Table 2 shows the result® of a simulation using the same
datasets used to produce Table 1. For now, we just set the regularization parameter
a arbitrarily to 1.7, to illustrate the potential of CGEL even for fixed a. We com-
pare the different CGEL to GMM, J2SLS and B2SLS. We can see that CGEL reduces
considerably the dispersion of 5. All the CGEL are comparable to GMM in terms of
RMSE, with CEL being the best. Also, they dominate the B2SLS method, and perform
marginally better than J2SLS. Therefore, the modification we propose seems to solve
the issue raised by Guggenberger (2008). The fixed «, however, is likely to affect the
properties of 5. The main reason for selecting a large o was to avoid having too many
unnstable estimates. In practice, we want to regularize only when it is necessary, be-
cause we want to preserve as much as possible the propoerties of GEL. We will present
a data driven method for selecting av in Section 4.

Table 2: Properties ofg for different methods using the Guggenberger model
with R? = 0.002, n = 200, p = 0.5 and k = 20, based on 1,000 replications.
For the regularized methods, o is fixed and equal to 1.7.

Mean-Bias Median-Bias RMSE  S-dev Interquartile range

Two-step 0.4898 0.4933 0.5344 0.2139  0.2832
CEEL 0.4589 0.4724 0.5845  0.3622  0.2941
CET 0.4729 0.4748 0.5498  0.2806  0.2698
CEL 0.4819 0.4786 0.5312  0.2238  0.2664
B2SLS -0.2192 0.4907 25.7137 25.7257 1.1548
J2SLS  0.4632 0.4606 0.6301  0.4274  0.4941

2Chaussé (2011) shows that CGEL is not CCUE when p(v) is quadratic. It is a result that holds
only when we have a finite number of moment conditions and when we do not regularize the first order
condition (see Newey and Smith (2004)).

3All estimations are performed in R using the gmm package of Chaussé (2010). By setting the
argument alpha of the gel() function to a non-null value, the function estimates the model using the
CGEL method.



3 CGEL vs GEL

Before proposing a method for selecting the regularization parameter, «, we analyze in
this section its impact on the 5. In large samples, Chaussé (2011) shows that all CGEL
methods are equivalent to the CGMM of Carrasco and Florens (2000), if o converges
to zero at a certain speed. We are not interested in asymptotic results here because the
no moment problem occurs in small and fixed samples. We rather want to see what
happens when « increases for a given sample size. We will consider CUE versus CEEL
because in the case of CUE, A(§) has a close form representation. Explicitly, the CUE
estimator of the model represented by Equations (1) and (2), in the context of the GEL,
is defined as:

. . —1 - ! 1 1\ \2
d= arg min [argmiix - Z <€lzz-)\+ 2(51%)‘) >] :

i=1
The FOC for A(9) is:

n

1
0=— i< iZA)Ei %
”;:1 (eizi + (eiz;N\)€iz;)
Z's  [Z'D-7)
= A ———
n n

A,

where Z is the n x ¢ matrix with the i row equals to z;, € is the n x 1 vector of ¢;’s,
and D2 is an n x n diagonal matrix with [D.z]; = €2. It follows that:

MN0) = —[Z'D22Z) ' Z¢.

If we substitute in the objective function for § we obtain:

n

1 1
P(0) = > <g'Z[Z’D€zZ]1[€izi] — iafs'Z[Z’DgzZ]1ziz§[Z’DEzZ]1Z’5)

i=1
S22 DaZ M e 1 Z|Z' D) 2/ DaZ|Z' D Z) 2
B n 2 n
1Z[Z'DaZ) 2

"2 n

1z 7.

R

where Q = [Z'D.2Z]. We can see that P(0) is indeed the objective function of CUE
with the assumption that the error terms ¢;’s are uncorrelated.



For the CGEL case, \,(0) is defined as:

2

7' 7'D.27
Aa(0) = arg min €+@A + al[Al?
n
26' 717" D22\ N[Z'D2Z)[Z'D.2 Z|\
= arg min 217 D 2] + (2’ D2 2]|Z'Der 7] +aXNA|.
A n? n?
The FOC and solution are:
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n n
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n n
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AZDZZE | (WD o))
n n

Aa(d) = — ([Mr + a1> B [Z’D@Z} [Z'g]

n n n
=— (@ +al)" 0z,
where & = an?. The objective function for § is therefore defined has:

P5:a) EZQR2 +al) 2 182002 +al) Q2 +al) T Q2
o) = 1
’ n 2 n

L dZO e 120100 7
B n 2 n ’

where Q ' is the regularized inverse of Q. It is almost the CUE with a regularized
inverse of Q. The extra term results front the fact that Q'Q) # I. The equality is
obtained only if & = 0. Therefore P(9) is just a special case of P(d;«) with o = 0.

We can rewrite P(d;«) in terms of the singular value decomposition of Q. Let p;
and ¢; be respectively the i** eigenvalue and eigenvector of Q. Then,

1~ IR
P(5;a) =~ L g 2N g e 2

1 L0503 + G
i=1

1 q
== § Wi, a) < ¢, Z'e >*
n
=1

We can think of the above expression as being a generalization of the GMM objective
function. For W (u;, ) = 1, it is the objective function of the first-step GMM with
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the weighting matrix equals to the identity matrix, W (u;, 0) generates the objective
function of CUE, and W(fi;,0) the objective function of the two-step GMM, where fi;
is the i cigenvalue of the first-step estimate of . W (u;, @) controls the efficiency of
by putting small weights on more volatile linear combinations of the moment conditions.
Figure 5 shows what happens to W (u;, @) when ¢ moves away from the first-step GMM
solution. It only shows the ones associated with the highest and lowest eigenvalues
because all others lie between them. In a bad sample, the peaks of W (y;, ) are so high
that it offsets the well-behaved U-shape of || Z’¢||?, which results in an objective function
without global minimum. Figures 5c¢ and 5d presents the same curves when a = 2. We
see that a higher « implies less sensitive W (u;, ) to variations of the parameter 9,
and a global minimum for P(J, @) comparable to the one-step GMM. Therefore, the
regularisation solves the no moment problems for CUE. However, if « is too high, we
no longer penalize highly volatile linear combinations of the moment conditions, which
will likely result in less efficient estimators. It must therefore be carefully selected.

It is more difficult to generalize the analysis to all CGEL methods, because in
general A(0) does not have a closed form expression and must be obtained numerically.
However, we can easily show that if we use the Newton method, the first iteration
for A(9) and A, (0), using the starting value A\g = 0, corresponds to CUE and CEEL
respectively. We should therefore expect similar results regarding the effect of @ on the
objective function.

4 Selecting a

Selecting the regularization parameter is comparable to selecting the number of in-
struments or the number of regressors in linear regression models. In most cases, the
selection is based on a large sample approximation of the RMSE. For example, Donald
and Newey (2001) derive a second order approximation of the RMSE for 2SLS, and
Donald et al. (2008) provide the second order approximation for GEL. In both cases,
the optimal number of instruments, assuming that they are correctly ordered, is the one
that minimizes the RMSE. Other methods control the number of instruments through a
regularization parameter similar to CGEL, and therefore don’t require any instruments
ordering. Once again, the parameter selection is based on the asymptotic RMSE. For
example, Carrasco (2012) proposes a data driven procedure for selecting the parameter
in the case of instrumental variable with either many or a continuum of instruments,
while Carrasco and Tchuente (2015) proceed similarly for LIML.

The above methods may eventually be valid as the sample size increases, but they
cannot necessarily solve the no moment problem that we observe in small and fixed
samples. Indeed, simulations such as the ones performed by Guggenberger (2008) con-
tradict the second order properties of GMM and GEL derived by Newey and Smith
(2004). It is therefore reasonable to assume that something is lost when we let the
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sample size grows to infinity.

The first thing we want to do is to analyze the relationship between the RMSE and
the value of the regularization parameter. This experiment will tell us whether there
exists an optimal one or not. Figure 6 presents the case of CEL using the same model
as in the previous section, and 500 iterations. We clearly see that the model cannot be
estimated without regularization. The RMSE for EL (a = 0) is much higher than the
RMSE of CGEL with a = 0.2, say. Unfortunately, we do not see a shape that would
suggest us to look for one optimal a. We even have a few spikes for a > 0.6.

The above result suggests that a fixed « for a given DGP cannot be the solution. We
need a data driven method capable of detecting bad samples. Carrasco and Kotchoni
(2017) use a bootstrapping method to estimate the RMSE, and they apply it to CGMM.
The method is as follows. Let 6 () be the estimated value of ¢ using the original sample
for a given . Also, let 5]-(04) be the estimated & from the j** resample for a given a.
Then, the estimated MSE is defined as:

MSE(a Z — do(a)]?,

where B is the number of resamples. Figure 7 plots M SE(«) for B = 200, using the
samples from Figures 1c and la. The method do find an optimal a (=1.9) for the bad
sample, but fails to select one for the good sample because the function in that case
is mostly decreasing. We cannot therefore rely on that bootstrapping method because
it would over-regularized good samples. We want a selection method that sets a to
zero when regularization is not necessary, so that the properties of GEL are preserved.
We have to notice also that bootstrapping methods are not valid when moments don’t
exist, which is a problem when « is too small.

Since we only want to stabilize the solution, we can check the stability by using a
leave-one-out cross validation method (CV). Let 0;(cr) be the estimated § obtained by
removing the i'* observation. The cross validation criterion is define as:

1 N
¥ i = i (@)ziw)*,
k:l

where (k) is a subsequence that is chosen randomly, and N is the number of observa-
tions used to compute the criterion. This is a general way of defining C'V(«). Since
it may be computationally intensive to compute CV («) for several «, it may be rea-
sonable to use a subset of the sample. Of course, we don’t want to arbitrarily choose
the subsample, so a random choice is preferable. C'V () measures the ability of the
model to predict out of sample observations, but it also measures the stability of the
solution. Figure 8 shows C'V(«a) for the same good and bad samples used above for
the bootstrap method. For both cases, we chose N = 50, which represents 25% of
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the sample. We tried larger values for N, and the results were similar. For the bad
sample, C'V(«a) stabilizes around o« = 0.6. From « > 0.6, the benefit of increasing
a in terms of stability becomes relatively small: from 0.5 to 0.6, C'V(«) decreases by
6.77 and from 0.6 to 0.7 it decreases by 0.0016. The variations are similar if we keep
increasing «. For the good sample, C'V(«) is upward sloping, but quite stable since
CV (1) —CV(0) ~ 0.0043. Therefore, based of the stability of the solution, that sample
does not require regularization.

The above results suggest the following procedure: We first determine a sequence
of o, {a, a1, s, ....}, with ay = 0. Then, we sequentially compute CV (¢y) for | =
0,1,2,..., and stop whenever |CV(oy) — CV(ay_1)| < &, for some tolerance level &.
We finally set the regularization parameter o to ;1. Alternatively, we may choose a
stopping rule that is independent of the scale of C'V(«). For example, we could stop
whenever, |CV(a;) — CV(ay—1)| < ECV(ay-1). Of course, we don’t want £ to be too
small. The objective is not to have a constant criterion. We just want to stop whenever
CV(«) becomes relatively stable. We applied the procedure to the same model used
to produce Table 2 above (n = 200, R? = 0.002, and 20 instruments) and also to a
model with R? equals to 0.1 to see if the need for regularization decreases with the
strenght of the instruments. For each model, we applied the procedure with N = 50,
a sequence {0,0.1,0.2, ...} for a, a stopping rule |CV (o) — CV (y_1)| < 0.1, and 1,000
iterations. Table 3 compares the properties of three different CGEL’s, and Figure 9
plots the distribution of the selected o’s for CEL.

Table 3: Properties of CGEL with automatic selection of a (The last
column is the proportion of « =0)

Means Bias Median Bias RMSE  S-dev Interquartile Range Not regul.

GMM (R? = 0.002) 0.4922 0.4910 0.5384 0.2185 0.2829
CEL (R? = 0.002) 0.4756 0.4717 0.7132 0.5317 0.5273 0.4384
CET (R? = 0.002) 0.4599 0.4701  0.7667 0.6137 0.5568 0.4224
CEEL (R? = 0.002) 0.5253 0.4707 1.4588 1.3616 0.6071 0.5265

GMM (R? =0.1) 0.1310 0.1354 0.1822 0.1267 0.1726
CEL (R? =0.1) 0.0113 0.0223  0.1867 0.1865 0.2438 0.8130
CET (R?=0.1) 0.0108 0.0198 0.1806 0.1804 0.2462 0.8150
CEEL (R? =0.1) -0.0081 0.0118 0.2260 0.2260 0.2716 0.9100

The last column presents the proportion of the samples that do not need to be
regularized. In general, the proportions are similar between the different methods.
Also, the number of samples that need regularization is reduced substantially as R?
increases; only 10% are regularized when R? = (.1, while about half need regularization
with R? = 0.002. Furthermore, the value of « for the regularized samples are on average
smaller when R? is higher. We should therefore expect the properties of CGEL to be
similar to GEL as R? increases.

In terms of the properties of the estimators, CGEL with automatic selection of
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« does not produce extreme values anymore. Also, the bias is smaller than GMM
estimators as it is predicted by Newey and Smith (2004). For a very low R?, however,
CGEL falls behind GMM in terms of RMSE, but as R? increases to a more reasonable
value, GMM and CGEL are comparable in terms of RMSE and all CGEL estimators
are less biased.

5 CGEL versus RCUE

In this section, we want to compare CGEL with the regularized CUE (RCUE) method
proposed by Hausman et al. (2011). They show that the no moment problem of CUE
can be solved by regularizing both the weighting matrix and the vector of coefficients.
They do not propose procedures for selecting the two regularization parameters, but
they show by mean of Monte Carlo experiments that there exist values that solve the no
moment problem. In order to compare the properties of CGEL with those of RCUE, we
consider simulations based on the same data generating processes used by the authors
(HLMN) 4, which includes the possibility of having heteroskedastic errors. The authors
want to show that RCUE is still valid in presence of heteroskedasticity, as opposed to
LIML, when the number of instruments becomes large. The model is:

yi = xif + e, (10)

T, =z T+ Vi, (11)

& = pvi + /1 — p? (Cb@u + 021/ 1 — ¢2) ; (12)

where v; ~ N(0,1), 61; ~ N(0,2%), 214 ~ N(0,1), and 6y; ~ N(0,1). The set of K
instruments is: Z; = {1, z1;, 23, 23, 21 D1i1i, -, Di—5)iz1: ', where Dy; has a Bernoulli
distribution with probability of success equals to 0.5. The endogeneity is controlled by
p, the heteroskedasticity by ¢, and the strength of the instruments by 7. If we define
the concentration parameter as p?, then 7 is related to it by the following expression:
m = p/y/n. A part from the presence of heteroskedastic errors, the model is different
from the one analyzed in the previous section in the sense that in the latter, all in-
struments are equally weak, but also equally important. In the HLMN model, zy; is
the optimal instrument, and the other instruments are just functions of zy;. Therefore,
it includes cases in which some instruments are irrelevant. We know from the second
order asymptotic properties of GMM and GEL derived by Newey and Smith (2004)
that adding irrelevant instruments is likely to increase the bias of GMM estimators
more than the bias of GEL estimators.

and

4The model was introduced by Hausman et al. (2007). Therefore, they provide a more detailed
explanation of its specification.
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First, we consider a fixed o so that we can compare the results with the RCUE
of Hausman et al. (2011). Table 4 shows the properties of GMM, CUE, CEL, CEEL,
B2SLS, and J2SLS, for a = 0.9, n = 400, ¢ = 0, u> = 8, and p = 0.3, using 1,000
replications. It is therefore a case of homoscedasticity with both weak identification,
because of the small concentration parameter p?, and weak endogeneity.

Table 4: Simulation based on the HLMN model: o = 0.9, n = 400, pu? = 8,
K =10, ¢=0, and p=10.3

Mean-Bias Median-Bias RMSE  S-dev Interquartile range

2Step 0.1660 0.1652 0.3163 0.2694 0.3375
CUE 0.2070 0.0262 7.2247 7.2254 0.7983
CEEL 0.0737 0.0671 0.4480 0.4422 0.4629
CEL 0.0810 0.0843 0.4774 0.4707 0.4858
B2SLS -0.1292 0.0684 6.8403 6.8425 0.6553
J2SLS 0.0876 0.1098 0.4682 0.4601 0.4780

Clearly, CUE and B2SLS should be avoided®. As for the previous model, the dis-
persion of the estimates is extremely high. CEEL is less biased and less volatile than
both CEL and J2SLS, the latter being slighly better than CEL in terms of the RMSE.
If we compare our results to the ones obtained by Hausman et al. (2011) (Table 4)
for RCUE, the mean bias of CEEL and CEL is very close to RCUE; to RCUE,®. In
terms of the variance, CEEL and CEL are comparable to their best RCUE;, but they
dominate all RCUE’s in terms of interquartile range. We have to notice, however, that
the relative performance of any CGEL and RCUE depends on the choice of the regular-
ization parameters. Table 4 only shows that CGEL can solve the no moment problem
of CUE or EL as well as RCUE does.

In Table 5, we present the results when the number of instruments increases to 50.
In that case, both CEEL and CEL outperform all other methods, including GMM, in
terms of the bias and the RMSE. This is consistent with the theoretical results of Newey
and Smith (2004); because the bias of GMM estimators increases with the number of
instruments, the RMSE eventually falls behind GEL. To our knowledge, it is the first
time this property is shown numerically. Compare to RCUE, CEEL and CEL have
similar biases, but their variance and interquartile range are much smaller. In fact,
CEEL is six time less volatile that the least volatile RCUE".

5We actually under-estimated the standard deviation of the CUE estimator because the Brent
algorithm used to obtain the estimate has hit the boundaries +100 in several occasions

6The authors report a mean bias for CUE in the order of 10''. It is much lower in our case because
we have restricted the search interval.

"The smallest standard error among the four RCUE’s is 0.52, and the smallest interquartile range
is 0.774
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Table 5: Simulation based on the HLMN model: o = 0.9, n = 400, u? = 8,
K =50,9=0, and p=10.3

Mean-Bias Median-Bias RMSE S-dev Interquartile range

2Step 0.2574 0.2597  0.2956  0.1455 0.1875
CUE -0.2158 0.0988 13.6473 13.6524 2.1673
CEEL 0.1749 0.1685  0.2735  0.2104 0.2737
CEL 0.1505 0.1477  0.2846  0.2417 0.3092
B2SLS 0.1367 0.1534 4.6111 4.6113 0.9915
J2SLS 0.2252 0.2217  0.3382  0.2525 0.3137

Table 6: Simulation based on the HLMN model: o € {0.9,0.4,0.2,0.02},
n =400, u> =8, K =50, ¢ = 0.88, and p = 0.3

Mean-Bias Median-Bias RMSE S-dev Interquartile range

2Step 0.2580 0.2613  0.3159  0.1823 0.2277

CUE -0.6577 -0.1062 19.6724 19.6713 4.2870
CEEL(a = 0 9) 0.1859 0.1837  0.3280  0.2704 0.3545
CEEL(a = 0.4) 0.1994 0.1986  0.3351  0.2695 0.3425
CEEL(a = 0. 2) 0.2007 0.2085 0.3760  0.3181 0.3466
CEEL(a = 0.02) 0.1285 0.2146  1.2246  1.2185 0.5757
CEL(a = 0.9) 0.1555 0.1623  0.3541  0.3183 0.3905
CEL(a=0.4) 0.1704 0.1743  0.3454  0.3006 0.3733
CEL(a = 0.2) 0.1815 0.1804 0.3445  0.2930 0.3573
CEL(a = 0.02) 0.1358 0.1955 0.9931 0.9844 0.4461
B2SLS -0.1723 0.1394 10.4527 10.4565 1.3254

J2SLS 0.2127 0.2153  0.4387  0.3839 0.4701

The heteroscedasticity case (¢ = 0.88) is presented in Table 6 with different choices
for a. Notice that both CEL and CEEL become unstable when « is too small, a result
that can be avoided by using our data driven selection method. If we ignore the unstable
case a = 0.02, we can see that the bias of CEL and CEEL increases as « decreases. The
effect of a on the variance is, however, less monotonic. For CEEL, the variance decreases
when « goes from 0.9 to 0.4 and gets larger when «a keeps decreasing. For CEL, the
variance and the RMSE decrease when « goes from 0.9 to 0.2. Intuitively, we can think
of a small v as being equivalent to having a large number of instruments, which results
in a higher bias and smaller variance. Because the effect of the number of instruments
on the bias of the EL estimator is smaller, we observe a negative relationship between «
and RMSE as long as the solution remains stable. Overall for those selected a’s, when
heteroscedasticity is present CEL and CEEL dominate all methods in terms of the bias
(we do not consider B2SLS here because of its instability), but GMM dominates in
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terms of the RMSE.

In order to analyze the properties of CGEL when « is based on our data driven
method, and compare them with the RCUE method of Hausman et al. (2011), we follow
the authors and consider the three different concentration parameters u? = 8,16, 32,
the four different number of instruments K = 5,10,30,50, ¢ = 0 and 0.88, p = 0.3,
and a sample size of 400. To select o, we set N to 50, the tolerance level to 0.05, and
the step to 0.1. Finally, the number of iteration is set to 1,000. Tables 7 to 10 present
different properties for all DGP’s using CET, CEL, CEEL and GMM. To facilitate the
comparison between our method the RCUE, we report the MSE and variance instead
of the RMSE and standard deviation. We do not report the median bias because it is
very similar to the mean bias for all DPG’s

First, we find that CGEL with automatic selection of a solves the no moment
problem. CEL is the least biased of all four methods considered, but GMM has the
smallest standard error for all DGP’s. In terms of the MSE, however, CEL outperforms
all other methods including GMM when K is above 30 and the error is homoscedastic.
For DPG’s with heteroscedasticity, GMM remains the method with the smallest MSE
but CEL follows closely behind. In all cases, CEL is the least biased estimator. Compare
to the RCU E; and RCU E2; of Hausman et al. (2011), all CGEL have a smaller variance,
MSE and interquartile range when K > 10, but are often more biased. Those CGEL
properties, however, are likely to be affected by the stopping rule used for the selection
of a. For example, reducing the tolerance level for a given step size will result in a
higher o on average. Table 11 shows some summary statistics of the selected a using
the stopping rule described above. We can see that the proportion of samples that need
regularization increases with the number of instruments, but the maximum « is higher
when K is small. Therefore, adding many irrelevant instruments seems to improve
the shape of the objective function when the relevant ones are weak. It is, however,
less likely to get badly-shaped objective functions when K is small as the proportion
of regularized samples is much smaller with few instruments. Finally, the need for
reglarization is reduced when the relevant instruments become stronger.

6 conclusion

We proposed a regularized version of GEL based on the CGEL of Chaussé (2011), for
which the regularization parameter, «, is selected on the basis of the stability of a
cross validation criterion. In the procedure, we gradually increase v until the criterion
stabilizes. As a result, the estimator of CGEL stays as close as possible to GEL. Such
proximity is important because theoretical results, such as the ones demonstrated by
Newey and Smith (2004), suggest that GEL should outperform GMM.

We first investigated the properties of CGEL using the DGP used by Guggenberger
(2008), and showed that the regularization approach solves the no moment problem
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raised by the author. We find that the CGEL estimators are less biased than GMM in all
cases, and have a smaller RMSE when the instruments are not too weak (R* > 0.002).

In another simulation experiment, we compare CGEL with the regularized CUE
of Hausman et al. (2011). We find that CGEL estimators can outperform all other
methods when heteroscedasticity is not present and the number of instruments exceeds
20. In presence of heteroscedasticity, CGEL is less volatile than RCUE and GMM, but
more biased then RCUE. In terms of the MSE, CGEL is comparable to GMM when
the number of instruments exceeds 30.

We have shown that our regularized GEL does not suffer from the no moment
problem and can be a good alternative to GMM in the case of many instruments.
Since we are addressing a small sample issue, however, inference should not be based
on the asymptotic theory derived by Chaussé (2011) for CGEL, because it relies on
the convergence of a to zero as the sample size increases. Instead, inference should
be based on fixed « using some kind of sandwich matrix. Alternatively, a bootstrap
method should generate reliable standard errors because we have shown that CGEL
estimators have finite moments. We leave these questions to future research.

Table 7: Mean Bias for different methods and model specifications

GMM CEL CET CEEL
0.0810 0.0155 0.0053 0.0116

2 _q 0 || 0.1700  0.1282  0.1124  0.1235
ne = 0 || 0.2342  0.1668  0.1621  0.1874
o || 0.2614 02000 0.2131  0.2204

0.0418  -0.0030 -0.0146  0.0008

6—0 2 _ 16 o || 0.1124  0.0623  0.0426  0.0662
ne = o || 0.1930 01192  0.1181  0.1380
0 || 0.2202 01492  0.1493  0.1800

0.0226  -0.0016 -0.0461  -0.0004

9 0 || 0.0659 00263 -0.0505  0.0275
ne =32 0 || 0.1425  0.0745  0.0345  0.0946
0 || 0.1835  0.0994  0.0808  0.1309

0.0785  0.0074 _ 0.0236 _ -0.0003

e, 0.1360  0.0678  0.0745  0.0681

0.2407 0.1736 0.1814 0.1872
0.2639 0.2083 0.2108 0.2167
0.0399 -0.0015 -0.0074 -0.0113
0.0828 0.0293 0.0379 0.0266
0.1957 0.1204 0.1248 0.1360
0.2324 0.1551 0.1622 0.1751
0.0227 -0.0072 -0.0028 -0.0069
0.0437 0.0064 0.0049 0.0000
0.1419 0.0715 0.0732 0.0755
0.1873 0.1020 0.1118 0.1287

o oo

¢=0.88 | p?2 =16

o oo

QLW = GOt W = Ut W= ot wrofotw-=ofgtw= o

oo o

AARRARARRNRARRARRANRARRANR R R
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Table 8: MSE for different methods and model specifications

CMM CEL CET  CEEL

R=75 0.1383 02046  0.2802  0.2575

s —10 || 0.1074 0.1917 0.1945  0.1740

po=8 —30 || 0.0869 0.0970 0.1288  0.0962

—50 || 0.0891 0.0844 0.0938  0.0949

== 0.0717 0.1171 0.1301 _ 0.1018

o= 0 2 _ 16 —10 || 0.0629 00921 0.1355 0.0870
= # K=30 || 0.0633 0.0677 0.0866 0.0671
K= 50 || 0.0705 0.0580 0.0901  0.0693

K=35 0.0358 0.048] 0.1235 0.0458

5 . K= 10 || 0.0331 0.0451 0.1801  0.0411

B =32 | K—30 || 0.0396 0.0400 0.1384  0.0430

K=50 || 0.0479 0.0373 0.1156  0.0475

K=75 02887 0.6940  0.5785  0.4959

u2_g | K=10 [ 01946 04518 03700  0.3409

K= 30 0.1153 0.1820 0.1643 0.1557
K= 50 0.1040 0.1403 0.1258 0.1345
K=5 0.1255 0.2699 0.2278 0.1976
K= 10 0.1068 0.2237 0.1808 0.1675
K= 30 0.0849 0.1237 0.1076 0.1098
K= 50 0.0848 0.0973 0.1052 0.1035

=5 0.0557 0.0913 0.0725 0.0670
K= 10 0.0546 0.0852 0.0844 0.0708

= 30 0.0540 0.0694 0.0650 0.0627

= 50 0.0605 0.0619 0.0739 0.0683

¢ =0.88 | u?2=16

u? =32

Table 9: Variance for different methods and model specifications

G MM CEL CET  CEEL

K=5 0.1310  0.2046  0.2804  0.2577

. K= 10 || 0.0786 0.1754 0.1820  0.1589
=8 | g_30 || 0.0821 0.0693 0.1027  0.0612
K= 50 || 0.0208 0.0444 0.0485  0.0423

K=35 0.0700 0.1172 0.1300 0.1019

o= 0 > _ 16 | K=10 || 00503 0.0883 01338  0.0827
ne = K=30 || 0.0261 0.0535 0.0727  0.0481
K=50 || 0.0180 0.0358 0.0679  0.0369

K=5 0.0353 0.0482 0.1215  0.0450

) =10 || 0.0288 0.0444 0.1777  0.0404
pe =32 =30 || 0.0193 0.0344 0.1373  0.0341
=50 || 0.0143 0.0275 0.1092  0.0304

K=5 02820 0.6047  0.5785  0.4964

u2_g | K=10 || 01763 04477 03648 03366

K= 30 0.0574 0.1520 0.1315 0.1208
= 50 0.0344 0.0970 0.0814 0.0876
=5 0.1240 0.2702 0.2280 0.1976
=10 0.1001 0.2231 0.1796 0.1670
= 30 0.0466 0.1093 0.0922 0.0914
= 50 0.0309 0.0733 0.0790 0.0729
=5 0.0553 0.0914 0.0726 0.0670
=10 0.0527 0.0853 0.0844 0.0709
= 30 0.0339 0.0643 0.0597 0.0571
= 50 0.0254 0.0516 0.0615 0.0518

¢ =0.88 | u2=16
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Table 10: Interquartile range for different methods and model specifications

GMM CEL CET CEEL
K=5 04106 0.5380 0.5238  0.5034

- K=10 || 0.3626 0.4830 0.4745  0.4638

=8 | k=30 || 0.2401 0.3362 0.3448  0.3358

K=50 || 0.1968 0.2802  0.2656  0.2875

=5 03174 0.3808 0.3688  0.3698

o—0 > _ 1 | K=10 || 02909 03605 0.3635 03616
ne = K=30 || 0.2136 0.2954 0.2963  0.2921

—50 || 0.1881 0.2521  0.2400  0.2697

=5 0.2430 0.2604 0.2811  0.2705

) K=10 || 0.2283 0.2598 0.2731  0.2629

#no=32 | g_30 || 0.1919 0.2276 0.2333  0.2371

—50 || 0.1666 0.2101  0.2086  0.2311

=35 05723 07571 0.6817  0.6679

- K=10 || 0.5172 0.7235  0.6857  0.6792

HT=8 | K—30 || 0.3146 04716 0.4627  0.4560

—50 || 0.2537 0.3849 0.3595  0.3978

== 0.4055 0.5106  0.4725  0.4500

_ ) K= 10 || 0.4082 0.5542  0.5278  0.5021
¢=088 | p"=16 | p_ 39 || 02802 0.4198 0.4033  0.4004
K= 50 || 0.2422  0.3422  0.3287  0.3578

K=5 0.2838 0.3424 0.3182  0.3052

. K= 10 || 0.3093 0.3885  0.3585  0.3451

H7=32 | K_30 || 0.2453 0.3141 0.2029  0.3011

K=50 || 02204 0.2878 0.2616  0.2966

Table 11: Summary statistics of the reqularization parameter for different
methods and model specifications

CEL CET CEEL
Prop. Median Max Prop. Median Max Prop. Median Max
K=5 0.3230 0.0000 14524.2000 0.3170 0.0000 16613.8500 0.2680 0.0000 18813.8500
2 _ K= 10 0.5660 0.1000 13.5000 0.5810 0.1000 4.2000 0.5810 0.1000 6.5000
no =8 K= 30 0.7780 0.1000 1.0000 0.8260 0.1000 2.1000 0.7850 0.1000 0.7000
K= 50 0.7970 0.1000 0.6000 0.8720 0.1000 2.1000 0.8330 0.1000 0.4000
=5 0.2010 0.0000 11113.8500 0.2150 0.0000 14413.8500 0.1690 0.0000 17713.8500
6=0 2 _ 16 K= 10 0.4330 0.0000 1.7000 0.4670 0.0000 2.1000 0.4270 0.0000 1.4000
Be= K= 30 0.6680 0.1000 0.7000 0.7700 0.1000 2.1000 0.6900 0.1000 0.7000
= 50 0.7650 0.1000 0.4000 0.8580 0.1000 2.1000 0.7750 0.1000 0.7000
=5 0.0980 0.0000 0.4000 0.1330 0.0000 2.1000 0.0850 0.0000 0.4000
P K= 10 0.2760 0.0000 0.6000 0.3580 0.0000 2.1000 0.2770 0.0000 0.4000
ne =32 K= 30 0.5260 0.1000 0.3000 0.7180 0.1000 2.1000 0.5770 0.1000 0.4000
K= 50 0.6500 0.1000 0.3000 0.8150 0.1000 2.1000 0.6870 0.1000 0.4000
=5 0.4130 0.0000 6838655.2500 0.3770 0.0000 10546404103.5000 0.2930 0.0000 12537765.6000
2 K= 10 0.7310 0.1000 20103.5000 0.7030 0.1000 25.6500 0.6320 0.1000 72.8500
no =8 K= 30 0.9040 0.1000 1.7000 0.8910 0.1000 1.1000 0.8050 0.1000 1.5000
= 50 0.9390 0.1000 0.8000 0.9440 0.1000 1.9000 0.8550 0.1000 0.8000
=5 0.3040 0.0000 13324.2000 0.2760 0.0000 3.0000 0.1850 0.0000 1.5000
6 =0.88 2 _ 1 K= 10 0.6080 0.1000 2.1000 0.5720 0.1000 10.8500 0.5020 0.1000 7.7500
: = K= 30 0.8700 0.1000 1.7000 0.8560 0.1000 1.3000 0.7350 0.1000 1.2000
= 50 0.9150 0.1000 1.3000 0.9350 0.1000 2.1000 0.8180 0.1000 0.6000
=5 0.1880 0.0000 1.0000 0.1530 0.0000 1.4000 0.0850 0.0000 0.4000
2 _ K= 10 0.4380 0.0000 0.8000 0.3990 0.0000 2.1000 0.3520 0.0000 1.0000
ne =32 K= 30 0.7550 0.1000 0.8000 0.7740 0.1000 1.3000 0.6180 0.1000 0.9000
K= 50 0.8660 0.1000 0.4000 0.9120 0.1000 2.1000 0.7520 0.1000 0.7000
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Figure 1: EL objective function P(0) for good and bad samples
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Figure 2: The different \;(0) for the Guggenberger model and EL objective
function
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Figure 3: Point estimates from the simulation of Table 1
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Figure 4: The effect of increasing o on P(6; «)
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Figure 5: Weights W (1;(0), o) versus ¢
Bad-1 is from Figure 1c and Bad-2 from Figure 1d, the vertical line is the
first-step estimate
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MSE

Figure 6: RMSE as a function of a fived o. R?> = 0.002, n = 200, p = 0.5,
k =20, and 500 iterations
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Figure 7: Estimated MSFE by Bootstrap
Bad is from Figure 1c and Good from Figure 1a
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Figure 8: Cross-validation with N = 50
Bad is from Figure 1c and Good from Figure 1a
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Figure 9: Distribution of the selected o for CEL in a simulation with 1,000
iterations
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