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Abstract

Can innovation be motivated by past natural disasters? Despite some recent research, the de-

terminants of disaster-mitigating innovation are not well understood. Starting from a concep-

tual model combining perceived risk theory with the profit motive, this paper investigates the

salience of innovation induced by natural disasters, using a unique dataset that includes U.S.

patent data, and flood, drought, and earthquake damage data for the years 1977 to 2005. To

address the potential endogeneity of disaster damage, I employ the control function approach

with instrumental variables constructed from disaster intensity measurements. The results show

that impact-reducing innovations at the state level respond to national disaster damage in the

U.S. In general, the impact of natural disasters is not localized to a state–that is, disaster damage

in a state also stimulates innovations in more-distant states.The findings in this paper highlight

a policy role for the federal government in channelling and more effectively spurring impact-

reducing innovations nationwide.
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1. Introduction

Natural disasters have a broad range of impacts and cause significant damage every year.

From 1960 to 2014, natural disasters resulted in $15.6 billion in losses, injured 4,354 people, and

killed 582 people per year in the U.S. Moreover, climate scientists suggest that climate change is

likely to increase the hazard probability of natural disasters, such as floods, droughts, heat waves

and cold spells, both in their frequency and intensity (Hallegatte, 2014; IPCC, 2012; Peterson

et al., 2013). How do people reduce the impacts of natural disasters? Many studies argue that

natural disasters are mostly a problem of under-development: less-developed areas may lack

preventative measures and adequate infrastructure, and may thus be more vulnerable to natural

disasters. In general, disaster damages do decrease with economic development and wealth, which

seem to be part of a solution to protecting human lives and property from the increasing threat

of natural disasters (Kahn, 2005; Toya and Skidmore, 2007; Mendelsohn et al., 2012).

However, several recent disasters, like Hurricane Sandy in 2012 in New York City and the

Houston Flooding in 2016, both of which caused extensive losses even in affluent areas, reveal

that economic development is not a panacea for natural disaster response. As shown by Hal-

legatte (2012), higher income does not always translate into better protection from and less

exposure to natural hazards, and adaptive measures that account explicitly for reducing disaster

risks need to be adopted to complement general economic development. Adaptive measures,

including adoption of existing mitigating technologies and innovation of new technologies, can

help reduce the impact of natural disasters and build resilience for future events. For example,

the California droughts in recent years have spurred many innovations aimed at reducing the im-

pact of droughts, such as new technologies related to sea water desalination and water-recycling

systems. Although there appears to be a link between past disaster damage and the emergence

of mitigating technologies, to date innovation as an adaptive response to natural disasters is not

well understood.

This paper empirically examines the response of impact-reducing technological innovations

to natural disasters, based on a conceptual model combining perceived risk theory and profit

motivation. Natural disaster damage increases perceived risks and raises demand for impact-

reducing technology, to which inventors may respond by increasing their relevant innovation

output. Using a unique state-level dataset constructed from U.S. patent data and natural disaster
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data for the years 1977-2005, I explore the following questions: is impact-reducing innovation

affected by the shock of past natural disasters and what is the magnitude of this response?

Additionally, what is the scope of this response; is it nationwide or localized? Lastly, since

innovation creates positive externalities, could policies be developed in order to stimulate impact-

reducing innovations more effectively?

In the U.S., response to natural disasters is primarily the responsibility of local governments

and the private sector, with a minor role for the federal government.1 The Federal Emergency

Management Agency (FEMA) is in charge of assessing a state’s disaster declaration ex-post and

for disbursing money to the state government for recovery assistance. Impact-reducing innovation

as an adaptive measure is mostly conducted by the private sector, and there is no program at the

federal level targeted specifically at impact-reducing innovations. As many papers in the literature

suggest, innovation generates many substantial positive externalities, and hence reliance on the

private sector will result in under-investment in innovation (Martin and Scott, 2000). This study

offers some insights into the determinants of impact-reducing innovation as adaptation to natural

disasters, and the findings have direct implications for policy.

The existing body of research on the impact of extreme weather and natural disasters focuses

mainly on short-run and long-run economic growth.2 There has been an increasing recognition of

the fact that weather shocks and technological progress form an important channel of the climate-

economy interface. Surprisingly, this link has been the subject of few studies. Crespo Cuaresma

et al. (2008) examine how catastrophic risks affect technology transfer and capital updating, and

find that the degree of catastrophic risk is negatively related to knowledge spillovers between

industrialized and developing countries. Rodima-Taylor et al. (2012) and Chhetri and Easterling

(2010) conduct case studies showing that weather realizations can stimulate impact-reducing in-

novation in agriculture. Taking a cross-country view, a study by Miao and Popp (2014) is the

first attempt to examine risk-mitigating innovations induced by natural disasters. For domestic

patent applications, they find positive responses to a country’s past natural disaster damage,

and no response to other countries’ disaster damage for droughts and earthquakes. Hence, risk-

1 More details about the disaster management system in the U.S. can be found in Mener (2007) and Kousky
et al. (2016).

2 For a survey of the climate-economy literature, see Dell et al. (2014).
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mitigating innovation responds only to local disaster events, which seems to confirm the old

saying that “necessity is the mother of invention.” However, their results are likely to be deter-

mined by heterogeneity across countries (with respect to patent systems and overall innovation

capacity), making it difficult to identify the mechanism and driving force of innovation aimed at

reducing disaster impact. For instance, foreign innovators are less likely to respond to disasters

in a country with poor patent protection (especially of foreign innovations) as their innovation

may be appropriated easily, and hence this poor protection reduces the potential profitability of

the research enterprise. In contrast, this study analyzes the response of innovation to national

disasters at a subnational level, where crucial confounding factors affecting innovation (e.g., in-

stitutional quality and income) are significantly more homogeneous across sections. One would

expect this approach to reveal a more accurate assessment of the interaction between disaster

damages and the location of innovations.

In this paper, I propose a framework in which disaster damage increases perceived risks

and self-protection needs of local communities, and profit motivates potential innovators in

both nearby and more-distant regions to develop impact-reducing technologies. Using specific

U.S. patent data and natural disaster damage data from the Spatial Hazard Events and Losses

Database for the United States (SHELDUS) for the period of 1977-2005, this subnational em-

pirical study on floods, droughts, and earthquakes reveals that impact-reducing innovations do

occur in response to damages caused by natural disasters, with some variation in scope across

disaster type. For floods and droughts, disaster damage in a state spurs impact-reducing inno-

vations in other states; that is, the response seems to be national in scope. Nevertheless, the

response of disaster impact-reducing innovations to past earthquakes tends to be more localized:

earthquake damage stimulates a significant amount of impact-reducing innovations in local and

nearby states. In summary, impact-reducing innovations at the state level respond to national

disaster damage in the U.S., and it is likely that profitability is the direct drive force of such

innovations, especially for floods and droughts.

The results of this study provide important implications for how to respond to natural disas-

ters. Due to the existing positive external effects, an exclusive reliance on markets to provide the

correct incentives for disaster-related innovation is not likely to be efficient, how to effectively

spur impact-reducing innovations is an important question for the public sector. Innovation as
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adaptation to natural disasters should be encouraged as part of a federal-level policy responding

to natural disasters. According to the findings of this study, support for impact-reducing tech-

nology should be channeled to both disaster-prone and more-distant institutions and innovators,

based on expected successful research potential. In the case of earthquakes, a case can be made

for more directly supporting potential innovators in areas that are at elevated risk of such natural

disasters.

Concerns about feedback effects of past innovations and disaster damage, as well as the pos-

sible endogeneity of disaster damage due to unobserved factors that affect impact-reducing inno-

vations, are addressed using the control function approach. According to the climate-economy

literature, natural disaster damage is mostly determined by the physical intensity of disasters.

Hence, instrumental variables measuring disaster intensity are constructed from meteorological

and geophysical data for floods, droughts, and earthquakes, respectively. I find robust evidence

that innovation responds to disaster damages regardless of distance for floods and droughts,

whereas the response is more localized for earthquakes. This study contributes to the empirical

climate-economy literature by leveraging econometric methods that have been used in recent

research in health economics and the economics of innovation.

This paper is structured as follows. Section 2 introduces the mechanism through which natural

disasters spur innovation at a local and a national level. Section 3 presents the empirical model,

followed by data description in Section 4. Section 5 discusses potential endogeneity of disaster

damage, and reports estimation results. Innovation in response to regional disaster damage as a

robustness check is explored in Section 6. Section 7 concludes the paper and discusses the policy

implications of the main findings.

2. Natural Disasters and Innovation: a Framework for Analysis

This section provides a theoretical mechanism of how disaster damage impacts innovation.

The elemental part of this mechanism is built on the theory of protection motivation from psy-

chology. Individuals’ risk perception (perceived severity and probability of events) has positive

effects on self-protective behavior (Rogers, 1983; Maddux and Rogers, 1983). This theory of

protection motivation has been applied to understand preparedness for climate change and nat-

ural disasters. O’Connor et al. (1999) examine the relationship between risk perceptions and
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willingness to address climate change and show that risk perceptions lead to changes in one’s be-

havioral intentions. Looking more specifically at natural disasters, a number of studies find that

an individual’s risk perception of natural disasters can affect risk reduction behaviors and pre-

paredness (Martin et al., 2009; Miceli et al., 2008; Mulilis and Lippa, 1990). Furthermore, prior

experiences of disaster events increase risk perception of the future disaster and have positive

impact on self-protection decisions (Cameron and Shah, 2015; Mishra and Suar, 2007; Greening

and Dollinger, 1992; Weinstein, 1989). In summary, experiences and awareness of past natural

disasters raise the perceived risks, which stimulate self-protection behavior.

Miao and Popp (2014) applied the above theory to a mechanism of innovation responding

to natural disasters: a disaster shock increases the perceived risks and raises the demand for

adaptive technologies, which motivates the private sector to invent newer and more cost-effective

technologies for reducing future impacts of natural disasters. However, their framework and

results do not recognize a crucial link in this process: why and how the private sector responds

to the rising demand for adaptive innovation. Understanding this link is essential to reveal the

geographical scope of impact-reducing innovation and to design potential public policy.

Essentially, profitability is the link between the rising demand and the response of innovation.

The rising demand for impact-reducing technologies provides profit incentives, which motivate

the private sector to develop more effective products and technologies that reduce impacts of

future disasters. Hence, a natural disaster event in a single location provides profit incentives

to the private sector, and potential innovators in different locations, regardless of the distance,

may respond and innovate. One would expect such innovative responses to take place in the

intranational market of the U.S., where production factors are highly mobile, and barriers among

regional markets are generally low. Innovation of new technologies can be done in other locations,

and products with new technologies can be traded to and adopted by disaster-prone areas. In

addition, information required in the research and development (R&D) process (e.g. natural

disaster events and previous patents) is often publicly available. As a result, disasters happening

in one place may spur innovations anywhere in the country, and hence, innovation as a response

to natural disaster is not localized to where disasters occur. In other words, innovations in a

location should respond to natural disasters nationwide. This leads us to formulate the following:

Hypothesis 1: Disaster impact-reducing innovation in a state responds to nationally aggre-
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gated disaster damages.

Nonetheless, if a disaster type is highly concentrated in certain states, the national aggregated

disaster is primarily determined by the disaster damage in those states. For example, earthquake

events mostly happen in the west coast of the U.S., and the earthquake damage from those states,

such as California and Oregon, makes up a large portion of the earthquake damage in the U.S. In

this case, Hypothesis 1 would not be rejected even if the impact-reducing innovation is localized

to those high-risk states. Therefore, in order to further unveil the geographical scope of impact-

reducing innovations, national disaster damage is divided into disaster damage in a given state,

and in the rest of the U.S. If disasters happening in one place stimulate innovations anywhere in

the country, impact-reducing innovation in a state should respond to disaster damage from the

rest of the country. This is stated in Hypothesis 2, which will be examined in Section 6:

Hypothesis 2: Disaster impact-reducing innovation in a state responds to disaster damages

in other states.

Note that some disaster events strike two or more states. Moreover, geographic proximity

leads neighboring states to share similar environmental characteristics. Therefore, it is possible

that the response of impact-reducing patents is localized at a larger regional level. An extension

of Hypothesis 2 at a regional level that groups a state and its neighboring states is examined in

Appendix E.

3. Empirical Analysis

From the framework linking natural disasters and innovation, prior disasters affect one’s risk

perception, which increases the demand for adaptive technology pertaining to natural disasters.

While the perceived risk itself is unobserved, it is closely determined by past disaster shocks

Djit−1, ..., Djit−n, the current adaptive capacity Cit, and the local environmental profiles. Thus

one can write,

Rjit = f (Djit−1, ..., Djit−n, Cit, ηi) , (1)

where ηi is the state fixed effects that account for the environmental profile and natural hazards

in state i.

The adaptive capacity, which represents the preparedness to respond to natural disasters, is

unobserved. A line of empirical research explores characteristics that affect the capacity to cope
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with natural disasters in human systems. Income level is widely confirmed to have an influence

on a region’s capacity to adapt to natural disasters (Kahn, 2005; Toya and Skidmore, 2007;

Mendelsohn et al., 2012).3 Second, innovation capacity is an important factor in measuring the

adaptive capacity (DARA International, 2012). Moreover, disaster impact-reducing innovations

in a state is directly influenced by the state’s innovation capacity. Thus, the overall innovation

capacity is a crucial variable and is captured carefully from both the output and the input of

the innovation process. The output of innovation in a state is measured by its total patent

counts. The input side is measured by the higher education research and development (R&D)

expenditure and R&D tax credit rate, which is shown to provide financial incentives to invest in

R&D (Bloom et al., 2002; Wilson, 2009).

Disaster impact reducing innovation responds to the growing demand of such innovation raised

by past disaster damages. Therefore, innovation aimed at reducing the impact of disaster type j

in state i in year t, Vjit, is constructed as a function of past disaster damages Djit−1, ..., Djit−n,

and controlling for other possible determinants in Xit,t−1,

Vjit = f (Djit−1, ..., Djit−n, Xit,t−1, ηi) . (2)

Notice that disaster damage in year t is omitted since disaster events in the same year may

happen after a patent application is filed in year t, and this introduces significant noise in the

contemporaneous disaster damage. Lags of disaster damages are included for two reasons: first,

perceived risks of natural disasters are affected by the current and past experiences. Second,

the innovation process may take years before a patent application is filed. A patent application

filed in year t may be the outcome of an R&D investment prompted by disasters that occurred

several years before. Xit,t−1 includes four variables: the state-level per capita GDP in year t,

total patent counts in state i in year t, the higher education R&D expenditure in year t− 1 and

the R&D tax credit rate in year t − 1. Total patent counts in a state i in year t represent the

overall innovation capacity and also control for potential changes in the patent system in year t

3 Other factors such as institution quality, corruption and governance may also influence adaptive capacity
in a country (Anbarci et al., 2005; Toya and Skidmore, 2007). However, heterogeneity of institution quality and
governance within a country is much lower than that cross countries, which is one of the reasons for the state-level
analysis in this paper.
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as a change in the patent system should affect patent counts in general. Innovation is a gradual

process and may take months to years of research. As a result, one-year lagged higher education

R&D expenditure and R&D tax credit rate are used in the empirical analysis, and the regression

results are robust to different time lags.

As the dependent variable is a non-negative count measure with no upper bound, count data

models which rely on the exponential mean function are adopted for estimation. The basic

model given in Eq. (2) can be modified to test the two hypotheses formulated in Section 2. The

estimating equation employed to test Hypothesis 1 is,

E [Vjit|D,X] = exp

(
m∑
k=1

βkDjt−k + µXit,t−1µXit,t−1µXit,t−1 + ηi

)
, (3)

where Djt−k represents damages of disaster type j in year t aggregated at the national level, and

ηi are state fixed effects. This model tests whether impact-reducing innovations on disaster type

j in state i should respond to aggregate damages of disaster type j in the country.

As discussed in Section 2, in order to further unveil the geographical scope of impact-reducing

innovation, Hypothesis 2 is tested using the following equation. Impact-reducing innovations of

disaster type j in state i in year t are modeled as a function of the damage from disaster type j

in the rest of the U.S. (Dj,−it−1, ..., Dj,−it−k), controlling for state i’s past damage from disaster

type j (Djit−1, ..., Djit−k) and other variables Xit,t−1Xit,t−1Xit,t−1:

E [Vjit|D,X] = exp

(
m∑
k=1

βkDjit−k +
m∑
k=1

γkDj,−it−k + µXit,t−1µXit,t−1µXit,t−1 + ηi

)
. (4)

4. Data

4.1. Patent Data

The dependent variable in our analysis is the total count of patents aiming at reducing impacts

of a type of disasters (i.e. floods, droughts, or earthquakes). This data was constructed through

an extensive identifying and matching process from the United States Patent and Trademark

Office (USPTO) Patent Grant Bibliographic Text, which contains detailed patent information,

such as titles, abstracts, patent classes, and inventors’ addresses, of all granted patents since

1976.
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First, patents aiming at reducing the impact of a particular type of disasters are identified for

floods, droughts and earthquakes, respectively. In the patent literature, search criteria including

both keywords and classes are the most common method to filter targeted patents. Miao and

Popp (2014) use keywords and/or classes and subclasses to identify patents related to a type of

disaster. However, their criteria are quite restrictive, which yield a very small subset of all patents

aiming at reducing the impact of a certain type of disasters. Here I augmented their criteria by

adding other related classes and subclasses containing disaster names and other keywords. For

example, the search criteria for flood involves more than 20 keywords (e.g. “flood control” and

“flood prevention”) in seven classes (e.g. Class 405 “Hydraulic and earth engineering” and Class

52 “Static structures (e.g., buildings)”). According to such criteria, more expansive and yet

accurate lists of patents for flood, droughts, and earthquakes are extracted. The search criteria

generate 113 domestic patents pertaining to flood impact-reducing technologies, 69 patents for

droughts, and 387 patents for earthquakes. A complete list of search criteria for floods, droughts

and earthquakes related patents is given in Appendix A. To ensure robustness of results to the

various search methods, different criteria are employed and the results can be found in A.12 in

the Appendix.

With the identified patents, the next step is to match patents to states according to inventors’

addresses. A main issue in this process is that co-inventorship exists in patents on disaster

impact-reducing technology. Given that the dependent variable in this model measures innovative

activities at the state level, all inventors should be considered instead of only the first inventor.

Hence, one patent count is assigned to each inventor’s residential state.4 Nevertheless, for the

case where a patent has multiple co-inventors from the same state, repeated counts of inventors

to a state can potentially cause a biased measurement of innovative activities. To avoid this

problem, only one patent count is assigned to the state if a patent has more than one inventor

from the same state.5 For example, if a patent has three inventors, two of whom reside in New

York and one resides in Texas, one count is assigned to New York and one to Texas. Patent

counts pertaining to floods, droughts, and earthquakes at the state level are given in Table A.13,

4 Having co-inventors from different states is rare (e.g. about 2% in flood impact-reducing patents) in the
samples from all search criteria. Thus, inflation of patent counts across state is unlikely to happen here.

5 Another way is to assign 1/n to each inventor’s residence state, as done in Hovhannisyan and Keller (2015).
The empirical results are very close despite of different counting approaches.
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and maps of those patents at the state level are plotted in Figure B.2, B.4, and B.6.

The total count of patents pertaining to a type of disaster is computed according to the

above rules for each state, and sorted by application years. Since the average patent processing

time by USPTO is about 28-35 months, the number of granted patent drop dramatically in

the final years of the sample period (many patents are still being processed and hence they are

not published in the granted patent database). Taking a conservative approach, which is also

a prevalent procedure in the literature, the analysis in this paper is limited to five years before

the ending year 2010.6 Thus, granted patent information is collected from USPTO for the years

from 1977-2010, but the empirical analysis is limited to the years from 1977-2005.

Another way to measure innovation is to count patent applications (both granted and de-

clined). Patent applications have been published in the USPTO Patent Application Full-Text

and Image Database (AppFT) since March 2001. However, patent application data are not

quality-controlled and have three additional drawbacks which make it a less accurate measure

than granted patent data. First, there are several exceptions to the publication rule of patent ap-

plications, under which whether to publish an application is subject to the applicant’s preference

and status.7 For example, inventors of high-quality innovations tend to decline the publication

of their patent applications to keep certain details confidential. Thus, published applications are

only a subset of all patent applications, and this subset is not likely to be a random selection.

From a cross matching of the granted patent data and patent application data, more than one

third of the granted patents are not published in the patent application database in my final

sample of patents pertaining to floods, droughts and earthquakes. Second, information carried

in patent applications is less accurate than that of granted patents. Classes are self-identified by

applicants in patent applications, whereas they are scrutinized and usually modified by patent

examiners during the review process. As a result, patent applications filtered by search criteria,

which are based on patent classes related to natural disasters, contain a large number of biased

and irrelevant applications. Additionally, the location information of inventors may be missing

or misreported in the patent application data, making it difficult to calculate patent counts at

the state level.

6 About 95% of granted patents were processed within five years in data sample.
7 For further details, please check USPTO Manual of Patent Examining Procedure (MPEP) 1120.
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4.2. Disaster Damage Data

Disaster data is retrieved from the Spatial Hazard Event and Losses Database for the US

(SHELDUSTM) developed by the Hazards & Vulnerability and Research Institute at the Uni-

versity of South Carolina. SHELDUSTM contains economic losses (property damages and crop

damages), fatalities and injuries for 18 types of natural hazard events.8 The impact of disasters,

which is the key explanatory variable in the model, is measured as economic losses from disas-

ter events. A map of economic losses at the state level is plotted for each type of disaster, as

shown in Figure B.1, B.3, and B.5. Generally speaking, economic losses are more representative

than fatalities and injuries in measuring damage from natural disasters. Many disaster events,

especially for droughts and floods, cause few fatalities in developed countries like the U.S. As for

injuries, the number of total injuries cannot paint the full picture of disaster damage since the

severity of injuries is difficult to rate and is usually not reported. In addition, economic losses

from natural disasters represent the potential value of the impact-reducing technology market,

which provides profit incentives for potential innovators.

Nevertheless, models with fatalities as main explanatory variables are also examined to explore

the response of innovation to different measure of disaster impacts. The results are reported in

Appendix D.

4.3. Instrumental Variables

The goal of this study is to identify the impact of natural disasters on innovations, however

they both may be affected by unobserved time-varying elements, such as institution quality and

overall technology level. For instance, efficiency of the local institution is associated with lower

disaster damage and a higher level of innovation. In this case, the estimated effect on impact-

reducing innovation pertaining to a type of disaster is negatively biased. To correct for this

endogeneity, variables that contribute to explain disaster intensity are employed as instrumental

variables (IVs), and the control function approach is applied in Section 5.2. Note that the impact

of disaster damage is examined at both the national and the state level. Thus, disaster damage is

aggregated at the national level and the state level, and two sets of IVs are calculated respectively.

8 The 18 types are drought, earthquake, flooding, fog, hail, heat, hurricane/tropical storm, landslide, lightning,
severe storm/thunder storm, tornado, tsunami/seiche, volcano, wildfire, wind, winter weather, avalanche, and
coastal. This provides potential to extend this preliminary study to other disasters.
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Instrumental variables used for flood, drought, and earthquake damage are summarized in Table

1.

Table 1: Summary of instrumental variables

Disaster type Damage in an area Instrumental variables

Floods National maxUSPalmerZ, USPalmerZ2.5
State-level maxPalmerZ, PalmerZ2.5

Droughts National minUSPDSI, USPDSI-3
State-level minPDSI, PDSI-3

Earthquakes National maxUSmag, USmag4.5
State-level maxmag, mag4.5

As suggested by the climate-economy literature, the impact of natural disasters is mostly

determined by the intensity of disasters. Hence, a number of variables measuring the physical

intensity of floods, droughts and earthquakes are used as IVs for disaster damage. The IVs

for flood and drought damages are constructed from the Palmer indices retrieved from the Na-

tional Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration

(NOAA).9 The Palmer indices (e.g. the Palmer Z-index and the Palmer Drought Severity In-

dex) are widely used in climatology and climate-economy studies to measure drought or wetness

conditions across the U.S.

The Palmer Z-index measures monthly moisture conditions and abnormality in an area. Two

instruments for flood damage are created based on the Palmer Z-index: the maximum Palmer

Z-index in the given year in an area (i.e. a state or the U.S.), and the number of months with

Palmer Z-Index greater than 2.5 in a given area.10 Since flood damage is aggregated at the

national level and the state level in Eq. (3) and (4), two sets of these IVs are calculated from

national and state-level Palmer Indices respectively

IVs for drought damage are constructed from the Palmer Drought Severity Index (PDSI),

which is calculated from precipitation, temperature, and soil moisture data and has been widely

used to recognize abnormality of drought conditions in a region.11 In a similar fashion to IVs

9 NOAA is recently reformed as National Centers for Environmental Information (NCEI). The Palmer Indices
are available at a division, state, regional and national levels. For further information about the Palmer Indices,
please check http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp

10 A value more than 2.5 indicates above severe wetness condition.
11 There are other Palmer indices that also measure drought conditions. One advantage of using the PDSI is

that it provides insulation from the dependent variable, i.e. innovations pertaining to droughts. The PDSI is more
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for flood damage, the minimum value of the PDSI in the given year and area (i.e. a state or the

U.S.) and the number of months with PDSI smaller than −3 are generated as IVs for drought

damage in a given area.12

Last, information on the magnitude of earthquakes is gathered from the Advanced National

Seismic System (ANSS) Comprehensive Earthquake Catalog (ComCat) sponsored by the United

States Geological Survey (USGS). Note that this catalog is event-based rather than location-

based. Nevertheless, it also provides information on the nearest populated places.13 This infor-

mation of nearby communities is retrieved to locate each earthquake to one or more states. The

maximum magnitude in the given year and the number of earthquakes with magnitudes greater

than 4.5 are calculated at the national and the state level as IVs for national and state-level

earthquake damage, respectively.

4.4. Other Controls

Disaster impact-reducing innovation is likely to correlate with the state’s overall innovation

activities. Three variables are used to measure the overall innovation activities in a state: total

patent counts, R&D expenditures for Science and Engineering in higher education, and R&D tax

credits as financial incentives to research investment. Total patents in a state are extracted from

the same source (USPTO Patent Grant Bibliographic Text) and are assigned to each state using

the same algorithm as the patents pertaining to impact-reducing technology. Higher education

R&D expenditures for Science and Engineering from all sources (e.g. federal, state government,

and private sources) are publicly available from the Higher Education Research and Development

Survey (HERD) conducted by the National Science Foundation (NSF). Wilson (2009) calculates

the effective state R&D tax credit rate for each state since 1982, when state R&D tax credits

were implemented for the first time in history. Another control variable is state-level per capita

GDP, which comes from the Bureau of Economic Analysis (BEA) for 1977-2013. The state-level

GDP accounting method was changed in 1997, and there is a notable upward shift of GDP after

1997. Thus, a dummy variable indicating years post 1997 is added together with per capita GDP

exogenous and is expect to affect the dependent variable only through drought damage since man-made changes
(e.g. increased irrigation and new reservoirs) that contain new technologies are not considered in its calculation

12 A value of PDSI less than −3.0 indicates above severe drought conditions.
13 For details, check documentation of the ANSS http://earthquake.usgs.gov/data/comcat/

data-eventterms.php#place
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in regression analysis.

Table 2 reports the summary statistics of main variables in the empirical analysis. After

merging the various data sets, our sample has 1,479 observations of 50 states and the Washington

D.C. in the U.S. A summary for patent counts and disaster damage by state can be found in

A.13.

Table 2: Descriptive Statistics

Variables Mean Max Min Variance

Floods
Patents 0.0764 5 0 0.1166
Total damage 0.0541 4.9469 0 0.0702

Droughts
Patents 0.0467 3 0 0.0540
Total damage 0.0222 5.8092 0 0.0376

Earthquakes
Patents 0.2542 17 0 1.4982
Total damage 0.0354 31.4382 0 0.7774

Other Variables
Total patents 1.5205 30.933 0.015 7.4911
Per capita real GDP 27.2351 163.965 9.7039 263.0889
Effective state tax credit rate -0.0117 0.2 -37.9457 0.9755
Higher edu R&D expenditure 0.5148 6.8104 0.0155 0.5054

Number of observations for all variables is 1,479 for 50 states and one district
in the U.S. Total patents are in thousand counts. Total damage and higher edu
R&D expenditure is in billion dollars, and per capita real GDP is in thousand
dollars. All dollar terms are adjusted to 2013.

5. Empirical Discussion and Results

Since the dependent variable is the number of granted patents on impact-reducing technology

(of floods, droughts, and earthquakes respectively), count data models are applied to estimate

Eq. (3) and (4). A conditional Poisson distribution of the dependent variable has been the most

common assumption in the count data literature, given the attractive properties of its maximum

likelihood estimators (Cameron and Trivedi, 2013). The Poisson quasi-maximum likelihood es-

timator (Poisson QMLE) is also robust to distributional misspecification, i.e. when the outcome

variable conditional on the explanatory variables does not have a Poisson distribution (e.g.,

equidispersion is not satisfied), provided the conditional mean is correctly specified. Moreover,

the pooled Poisson QMLE does not require strict exogeneity of regressors (E[ut|Ds] = 0, for ∀s)
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for consistency (Cameron and Trivedi, 2013; Wooldridge, 2010). In the empirical models, Eq.

(3) and (4), innovations at time t may reduce disaster damage in future years, implying that

previous disaster damage is weakly exogenous to innovations (E[ut|Ds] = 0, for s ≤ t). In this

case, the pool Poisson QMLE still provides consistent estimates. Therefore, to begin with, Eq.

(3) and (4) are estimated by the pooled Poisson QMLE with robust standard errors clustered

on state to account for serial correlation. Nevertheless, the Poisson distributional assumption of

equidispersion is often rejected in the data. In the case of overdispersion, standard errors tend to

be conservative and cause inflation of the t-stat in Poisson estimates. For comparison, negative

binomial (NB) models are also estimated, and in general they provide similar results with the

Poisson QMLE for floods and droughts.

However, a weakness of the pooled Poisson or NB model is that coefficient estimates are

biased in the presence of heterogeneity across groups. In terms of natural disasters, there is

a significant diversity of environmental profiles and disaster risks across states. For example,

floods happen mostly in the south, while droughts are more concentrated in the western part of

the U.S. Hence it is necessary to control for a state’s intrinsic characteristics, which are crucial

for disaster types and damage. The Poisson fixed effect (Poisson FE) with multiplicative fixed

effects, which control for states’ time-invariant characteristics, provides consistent estimates if

strict exogeneity of regressors is assumed. Eq. (3) and (4) are estimated with the Poisson FE

model with robust standard errors that fix serial correlation (Cameron and Trivedi, 2005). From

the summary in Table 2, patents pertaining to floods and droughts have unconditional variances

less than twice that of the unconditional means, and hence overdispersion is not likely to be

a concern (Cameron and Trivedi, 2013). Although the variance of patents is much larger than

the mean for earthquakes, the large variance is mostly attributed to heterogeneity across states,

and overdispersion can be significantly reduced after controlling state fixed effects. In case that

overdispersion still exhibits with the Poisson FE model, a conditional likelihood method for NB

fixed effect (NB FE) proposed by Hausman et al. (1984) is applied for comparison.14

14 Note that Allison and Waterman (2002) explains that the NB FE method proposed by Hausman et al. (1984)
is not qualified as a true FE model due to the incidental parameters problem. However, the impact of this problem
in practice is still unclear.
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5.1. Results

The above four approaches are applied to Eq. (3) and (4) for floods, droughts and earthquakes.

The response of innovation in a state to the national damage is reported in Tables 3, 4, and 5

for floods, droughts, and earthquakes, respectively. The individual coefficient of disaster damage

lags is the short term (yearly) effect of an increase in disaster damage, while the cumulative

effect, which is a linear combination of coefficients of all the disaster damage lags, estimates the

long term change of innovation. Five-year distributed lags are selected for the reported models

based on the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

Table 3: Patent counts in response to national flood damage

Floods (1) (2) (3) (4)
Pooled Poisson Pooled NB Poisson FE NB FE

Dt−1 0.0965∗ 0.0665 0.0827∗ 0.0877∗

(0.0458) (0.0385) (0.0405) (0.0349)

Dt−2 0.142∗∗∗ 0.123∗∗∗ 0.128∗∗∗ 0.134∗∗∗

(0.0286) (0.0326) (0.0268) (0.0312)

Dt−3 0.0679∗ 0.0596 0.0522∗ 0.0570
(0.0271) (0.0329) (0.0259) (0.0392)

Dt−4 -0.000894 0.00118 -0.0168 -0.0104
(0.0482) (0.0439) (0.0480) (0.0474)

Dt−5 0.0622 0.0665∗ 0.0513 0.0532
(0.0350) (0.0326) (0.0317) (0.0353)

Cumulative Effect 0.367∗∗∗ 0.317∗∗∗ 0.297∗∗∗ 0.322∗∗

(0.0844) (0.0989) (0.0763) (0.110)
GDP per capita -0.00220 -0.000291 0.00308 -0.00161

(0.0108) (0.0104) (0.0270) (0.0265)

Total patents 0.0180 0.0251 0.0435 0.0345
(0.0559) (0.0772) (0.0411) (0.0569)

R&D tax credits 0.0310 0.0449 5.730 4.879
(0.0341) (0.0393) (4.937) (4.942)

Higher edu R&D exp 0.584 0.674 -0.0852 -0.00131
(0.328) (0.381) (0.282) (0.337)

post 1997 -0.0971 -0.144 0.0581 0.131
(0.305) (0.316) (0.652) (0.664)

N 1479 1479 899 899
States 51 51 31 31
Time period 1977-2005 1977-2005 1977-2005 1977-2005

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Across floods, droughts, and earthquakes, the long term impacts of natural disasters are

generally significant and provocative on patents pertaining to a type of disaster. The short

term effect, however, is less consistent across time due to the nature of disaster events and the
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Table 4: Patent counts in response to national drought damage

Floods (1) (2) (3) (4)
Pooled Poisson Pooled NB Poisson FE NB FE

Dt−1 0.299∗∗∗ 0.301∗∗∗ 0.285∗∗∗ 0.298∗∗∗

(0.0637) (0.0643) (0.0661) (0.0783)

Dt−2 0.0942 0.0954 0.0791 0.0927
(0.102) (0.101) (0.0960) (0.109)

Dt−3 0.247∗∗∗ 0.250∗∗∗ 0.234∗∗∗ 0.245∗∗

(0.0674) (0.0688) (0.0678) (0.0754)

Dt−4 0.219∗∗∗ 0.218∗∗∗ 0.189∗∗ 0.218∗∗

(0.0607) (0.0613) (0.0644) (0.0769)

Dt−5 0.235∗∗ 0.236∗∗ 0.217∗∗ 0.234∗∗∗

(0.0718) (0.0719) (0.0747) (0.0645)

Cumulative Effect 1.093∗∗∗ 1.099∗∗∗ 1.004∗∗∗ 1.089∗∗∗

(0.191) (0.194) (0.199) (0.244)

GDP per capita 0.00292 0.00295 0.151∗∗ 0.00412
(0.00901) (0.00921) (0.0585) (0.0106)

Total patents -0.0237 -0.0224 0.00643 -0.0163
(0.0253) (0.0265) (0.0381) (0.0554)

R&D tax credits 1.348 1.312 2.372 1.708
(2.390) (2.408) (6.019) (3.149)

Higher edu R&D exp 0.531∗∗∗ 0.538∗∗∗ -0.225 0.512∗

(0.123) (0.135) (0.282) (0.248)

post 1997 1.450∗∗ 1.446∗∗ -1.892 1.401∗∗

(0.487) (0.486) (1.190) (0.427)
N 1479 1479 928 928
States 51 51 32 32
Time period 1977-2005 1977-2005 1977-2005 1977-2005

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

innovation process. The occurrence of natural disasters is inconsistent across years, for example,

a significant disaster event in one year and several small disaster events in another year). The

impact of a significant disaster can be much larger than that of several small events. Moreover,

the innovation process is also less predictable, and patents, as an outcome of this process, may

not be generated every year. Thus, it is expected that the individual yearly effect is not all

positive and significant. Nevertheless, the long-term cumulative effect presents a more accurate

impact of natural disasters.15

Patents aimed at reducing the impact of floods respond positively to past national flood

damage. One billion dollars of flood damage in the U.S. can lead to a 35% increase in impact-

15 Another possibility is substantial collinearity as a result of the multiple lags in the model. The individual
coefficient of disaster damage may not be properly estimated, but the linear combination of the entire bundle of
collinear variables is well-estimated in general (Wooldridge, 2009).
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Table 5: Patent counts in response to national earthquake damage

(1) (2) (3) (4)
Pooled Poisson Pooled NB Poisson FE NB FE

Dt−1 0.0176∗∗ 0.00211 0.0327∗∗∗ 0.0316∗∗∗

(0.00599) (0.0145) (0.00703) (0.00951)

Dt−2 0.0101 -0.0154 0.0260∗∗ 0.0229∗

(0.00718) (0.0219) (0.00931) (0.0112)

Dt−3 0.0546∗ -0.00168 0.0174 0.0113
(0.0215) (0.0154) (0.0110) (0.0106)

Dt−4 0.0592∗∗∗ 0.0188 0.0246∗∗∗ 0.0229∗∗

(0.0139) (0.0116) (0.00710) (0.00868)

Dt−5 0.0478∗∗∗ 0.00942 0.0210∗∗ 0.0176
(0.0137) (0.0113) (0.00648) (0.00915)

Cumulative Effect 0.189∗∗∗ 0.0132 0.122∗∗∗ 0.106∗∗∗

(0.0501) (0.0453) (0.0272) (0.0274)

GDP per capita -0.0409 -0.0111 -0.0424 -0.0437
(0.0475) (0.0130) (0.0435) (0.0320)

Total patents 0.00578 0.156 -0.0682∗∗ -0.0583∗

(0.0179) (0.239) (0.0227) (0.0270)

R&D tax credits 0.0135 4.784 7.574∗ 6.307∗

(0.0897) (6.835) (3.292) (2.460)

Higher edu R&D exp 1.132∗∗∗ 0.997 0.0364 0.0167
(0.191) (0.783) (0.149) (0.193)

post 1997 -0.817 -0.152 1.487 1.640∗

(0.572) (0.421) (1.125) (0.832)

N 1479 1479 986 986
States 51 51 34 34
Time period 1977-2005 1977-2005 1977-2005 1977-2005

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

reducing patents in a state in the next five years on average, with small variations across methods

used in (1)-(4) in Table 3. The Louisiana Flooding in August in 2016, which caused a $10 billion

loss, would spur flood impact-reducing patents across states by 350% in the next five years.

Compared to floods, there is a longer stimulating effect on impact-reducing innovations per-

taining to droughts. Across all of the models presented in Table 4, there is evidence of a sig-

nificant and positive short-term and long-term effect of drought damage on patents pertaining

to droughts. In 2015, drought conditions plagued western states (e.g., California, Nevada and

Oregon) for more than six months and caused $4.6 billion in losses. The size of the cumulative

effect suggests that, at the state level, patents aimed at reducing the impact of droughts would

increase by 790% on average in the next five years.

The results for earthquakes vary from methods (1) to (4) in Table 5. Compared to pooled
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Poisson and pooled NB, the results are very close for Poisson FE and NB FE: the cumulative

effect and most yearly effects are positive and significant. This implies that a state’s intrinsic

characteristics (e.g. natural hazard profiles) are crucial in analyzing the impact of earthquake

damages. Since earthquakes are geographically concentrated in several states where plates motion

is active (e.g., California, Oregon, and South Carolina), the intrinsic characteristics of states, such

as locations, should be controlled by state fixed effects. Thus, the estimates by pooled Poisson

and pooled NB are less likely to be consistent.16 The cumulative effects in (3) and (4) of Table 5

reveal that $1 billion losses from earthquakes in the U.S. would spur about 11-13% more patents

on earthquake impact-reducing technology in a state in the next five years.

5.2. Endogeneous Disaster Damages

In previous regression analysis, disaster damages are assumed to be exogenous. However, if

disaster impact-reducing innovations affect the disaster outcome in later years, disaster damage

is only weakly exogenous (E(uit|Dis) = 0, s ≤ t). In that case, the Poisson FE model, which

requires strict exogeneity (E(uit|Dis) = 0, ∀s), cannot provide consistent estimates. Furthermore,

weakly exogenous disaster damage may become endogenous if innovation and disaster damage

respond simultaneously to some unobserved exogenous shocks. Miao and Popp (2014) suggest

that in their cross-country study, both innovation activities and disaster damages in a country

may be influenced by unobservable time-varying elements, such technology level and institution

quality of that country.

However, since the focus of this paper is intentionally sub-national, endogeneity of disaster

damage should be inspected according to the level of analysis. As stated in Hypothesis 1, in-

novation in a state may respond to aggregate disaster damage at the national level. In this

case, unobserved factors affecting disaster damage in the wider U.S., such as federal institution

quality and technology level, are not likely to account for disparities in innovation across states.

Additionally, as explained in Section 1, the federal government performs a minor role in disaster

response and does not have any program explicitly supporting innovation pertaining to natural

disasters. Thus, endogeneity of national disaster damage in Eq. (3) seems to be substantially

reduced. Nevertheless, for the suspected endogeneity of disaster damage, instrumental variables

16 In addition, the dependent variable, patents pertaining to earthquakes, exhibits strong overdispersion without
conditional on state fixed effects. Estimates by pooled Poisson is likely to vary from pooled NB.
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(IVs) and the control function (CF) approach can be used to correct the potential endogeneity

bias.

As noted by Wooldridge (2010) and Cameron and Trivedi (2005), one way to address endo-

geneity in panel count data is the control function (CF) approach (also called two-stage residual

inclusion (2SRI)), which has been widely applied in recent literature such as health, crime, and

innovation economics (Terza et al., 2008; Cameron and Trivedi, 2013; Hovhannisyan and Keller,

2015).17 This method was initially suggested by Hausman et al. (1984), and consistent CF

methods have been developed for many specific non-linear models (Rivers and Vuong, 1988;

Wooldridge, 1997; Blundell and Powell, 2004).

The application of the CF approach is quite straightforward: endogeneous regressors are

regressed on all exogenous variables in the first stage (regression on the control function); in the

second stage, first-stage residuals (instead of first-stage predictors) are included as additional

regressors. The CF approach has several advantages such as consistent estimates with nonlinear

models and computational simplicity, though a stronger assumption of IVs is required.18 As

described in Section 4, variables that measure disaster intensity are employed as instrumental

variables (IVs). The main identification assumption is that disaster intensity affect impact-

reducing innovations only by being correlated with disaster damage. Also, disaster intensity

cannot be correlated with other factors affecting patents pertaining to natural disasters.

The control function proposed for Eq. (3) is the residual of a regression of national disaster

damage on the all exogenous variables:

Djt = θ1θ1θ1ZZZjt + θ2θ2θ2XXX it,t−1 + ηi + ωjit, (5)

where Zjt is the set of two IVs for national disaster damage of disaster type j, and ωjit is the

residual to be estimated. In the first stage, the reduced form Eq. (5) is estimated with an

ordinary least squares regression to obtain the residual ω̂jit. In the second stage, one-year lag of

17 Several moment-based methods have been developed for count data to deal with weakly exogeneity and
endogeneity. However, one major drawback of generalized method of moments (GMM) estimators is computational
complexity, and availability of estimates is subject to variation in the data and model complexity (e.g., convergent
problem with estimators), which is the case in this study. Nonetheless, GMM IV methods are discussed in
Appendix F

18 IVs need to be statistically independent , rather than mean independent as assumed in GMM IV estimation,
of other factors that affect the dependent variable
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Table 6: Patent counts in response to national disaster damage with the control function

(1) (2) (3)
Floods Droughts Earthquakes

Dt−1 0.0874∗ 0.262∗ 0.0902
(0.0407) (0.129) (0.0553)

Dt−2 0.129∗∗∗ 0.0862 0.0274
(0.0310) (0.123) (0.0209)

Dt−3 0.0594 0.246∗∗ 0.0195
(0.0368) (0.0781) (0.0186)

Dt−4 -0.00416 0.185∗ 0.0265∗

(0.0587) (0.0793) (0.0129)

Dt−5 0.0458 0.219∗ 0.0260
(0.0367) (0.0917) (0.0135)

Cumulative Effect 0.317∗∗ 0.998∗∗∗ 0.189∗

(0.106) (0.258) (0.0940)

GDP per capita 0.00154 0.148∗ -0.0354
(0.0492) (0.0680) (0.0718)

Total patents 0.0403 0.00530 -0.0656
(0.152) (0.232) (0.203)

R&D tax credits 5.202 2.382 9.025
(5.192) (10.90) (4.781)

Higher edu R&D exp -0.0993 -0.212 -0.0954
(0.703) (0.882) (0.561)

post 1997 0.0987 -1.805 1.458
(1.048) (1.460) (1.767)

Control function -0.0950 0.0384 -0.0605
(0.0982) (0.156) (0.0522)

N 1392 1392 1479
States 48 48 51

Column 1 and 2 list results for 48 contiguous states since NCDC does
not provide Palmer indices for Alaska, Hawaii and Washington D.C.;
standard errors are presented in parentheses; ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001

the residual, ω̂jit−1, is included in the Poisson MLE regression of Eq. (3) with state fixed effect.

Although Eq. (3) consists of multiple distributed lags of disaster damage, including multiple

control functions (i.e. ω̂jit−1, ..., ω̂jit−n) is redundant and lead biased estimates of disaster damage.

The intuition is that one control function can account for the unobserved variables that affect

both innovation and disaster damage.19 ω̂jit−1 is selected since it contains most information of

all past shocks, and is the best control for the endogeneity of disaster damage. Shocks that

affect disaster damage usually are not transient. For instance, a reform of the national disaster

response system would have long term effect on disaster damages; innovations, such as reinforced

19 See Wooldridge (2007) for an example of multiple endogenous variables and one control function.
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concrete structure, have lasting effects on reducing disaster damage once being constructed or

installed. Moreover, including multiple lags of residual is not recommended in the second stage

due to multicollinearity (with each other and with lags of disaster damage).

Table 6 presents estimates using the CF approach for national aggregated disaster damage.20

Compared to those in Table 3, 4, and 5, where national disaster damage is treated as an exogenous

variable, the long-term cumulative effects are positive and similar in magnitude. These results

confirm the previous finding that, for all three types of disasters, impact-reducing innovation in a

state is stimulated by nationally aggregate disaster damage. In addition, the endogeneity seems

to be minimal in the context of national disaster damage, especially for floods and droughts. One

billion dollars in losses would spur 37% and 171% more impact-reducing innovations pertaining

to floods and droughts respectively, and the results are similar to those without IVs in Table

3 and 4. Nevertheless, for earthquakes, the cumulative effect of damage is larger than those in

columns (3) and (4) of Table 5, which verifies the conjecture that endogeneity of disaster damage

leads to a negative bias of the coefficient. Earthquake damage of $1 billion would result in a 21%

increase in innovations pertaining to earthquakes, while the number is 11-13% without IVs. A

possible reason is that both earthquake events and impact-reducing innovations are concentrated

in the high-risk area, e.g., California. The national earthquake damage is highly correlated

with the disaster damage in the high-risk states, and hence is less exogenous to impact-reducing

innovation, of which a substantial portion also locates in the high-risk states.

6. Robustness Checks

As discussed in Section 2, if a disaster type is highly concentrated in certain states, such as

earthquakes in the U.S., the national aggregate disaster is primarily determined by the disaster

damage in those states. In this case, impact-reducing innovation in a state seems to respond

to national disaster damage even if the impact-reducing innovation is actually localized to the

high-risk states. Therefore, Eq. 4 is estimated to further investigate the geographical scope of

impact-reducing innovation-more specifically, whether impact-reducing innovation as a response

to natural disasters is indeed nationwide.

20 The results of first stage regressions, given in Eq. (5), are reported in column 1 in Table C.14 and C.15.
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Table 7: Patent counts in response to flood damage at the state level

(1) (2) (3) (4)
Pooled Poisson Pooled NB Poisson FE NB FE

D−it−1 0.0710∗ 0.0549 0.0632∗ 0.0699
(0.0358) (0.0320) (0.0295) (0.0366)

D−it−2 0.139∗∗∗ 0.125∗∗∗ 0.133∗∗∗ 0.140∗∗∗

(0.0302) (0.0342) (0.0269) (0.0314)

D−it−3 0.0500 0.0479 0.0460 0.0510
(0.0307) (0.0335) (0.0279) (0.0394)

D−it−4 -0.00293 -0.000101 -0.0126 -0.00590
(0.0464) (0.0445) (0.0465) (0.0467)

D−it−5 0.0585 0.0591 0.0542 0.0574
(0.0338) (0.0325) (0.0317) (0.0356)

Cumulative Effect 0.316∗∗∗ 0.287∗∗ 0.283∗∗∗ 0.312∗∗

(0.0811) (0.0920) (0.0775) (0.108)

Dit−1 0.479∗∗ 0.444∗ 0.474 0.476
(0.158) (0.226) (0.253) (0.255)

Dit−2 0.137 0.109 -0.109 -0.0823
(0.144) (0.177) (0.251) (0.356)

Dit−3 0.457∗∗ 0.438∗ 0.333 0.381
(0.155) (0.216) (0.212) (0.254)

Dit−4 0.289 0.122 0.0629 0.0731
(0.224) (0.277) (0.236) (0.304)

Dit−5 0.229 0.335 0.0290 0.00687
(0.276) (0.236) (0.302) (0.274)

Cumulative Effect 1.591∗∗ 1.448∗ 0.791 0.855
(0.616) (0.664) (0.588) (0.705)

Real GDP per capita 0.000460 0.00151 0.00553 0.00269
(0.00997) (0.00998) (0.00828) (0.0118)

Total patents -0.0163 0.00145 0.0288 0.0208
(0.0597) (0.0869) (0.0516) (0.0625)

R&D tax credits 0.0337 0.0461 5.137 4.296
(0.0342) (0.0382) (5.016) (4.973)

Higher edu R&D exp 0.693∗ 0.701 0.00463 0.105
(0.320) (0.371) (0.244) (0.352)

post 1997 -0.124 -0.139
(0.299) (0.303)

N 1479 1479 899 899
States 51 51 31 31
Time period 1977-2005 1977-2005 1977-2005 1977-2005

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8: Patent counts in response to drought damage at the state level

(1) (2) (3) (4)
Pooled Poisson Pooled NB Poisson FE NB FE

D−it−1 0.267∗∗∗ 0.268∗∗∗ 0.262∗∗∗ 0.262∗∗

(0.0681) (0.0685) (0.0720) (0.0833)

D−it−2 0.0729 0.0745 0.0771 0.0771
(0.128) (0.127) (0.105) (0.114)

D−it−3 0.262∗∗∗ 0.264∗∗∗ 0.252∗∗∗ 0.252∗∗

(0.0680) (0.0694) (0.0683) (0.0771)

D−it−4 0.215∗∗ 0.215∗∗ 0.193∗∗ 0.193∗

(0.0678) (0.0682) (0.0682) (0.0855)

D−it−5 0.245∗∗ 0.246∗∗ 0.234∗∗ 0.234∗∗∗

(0.0748) (0.0749) (0.0776) (0.0695)

Cumulative Effect 1.0625∗∗∗ 1.0669∗∗∗ 1.0711∗∗∗ 1.0184∗∗∗

(0.209) (0.212) (0.194) (0.259)

Dit−1 0.826∗∗∗ 0.827∗∗∗ 0.522∗∗∗ 0.522∗

(0.0917) (0.0942) (0.0862) (0.223)

Dit−2 0.478 0.488 0.140 0.140
(0.319) (0.316) (0.203) (0.507)

Dit−3 -1.055 -1.080 -1.710 -1.710
(0.687) (0.698) (1.000) (1.465)

Dit−4 0.465∗∗ 0.477∗∗ 0.291∗∗ 0.291
(0.168) (0.175) (0.107) (0.305)

Dit−5 -0.00775 -0.00243 -0.203 -0.203
(0.434) (0.428) (0.262) (0.713)

Cumulative Effect 0.707 0.710 -0.681 -0.960
( 1.056) (1.059) (0.821) (1.947)

Real GDP per capita 0.00308 0.00311 0.158∗ 0.158∗

(0.00899) (0.00912) (0.0658) (0.0619)

Total patents -0.0227 -0.0217 0.00556 0.00556
(0.0228) (0.0236) (0.0395) (0.0729)

R&D tax credits 1.255 1.223 3.262 3.262
(2.409) (2.422) (6.930) (6.368)

Higher edu R&D exp 0.527∗∗∗ 0.532∗∗∗ -0.310 -0.310
(0.129) (0.138) (0.312) (0.466)

post 1997 1.525∗∗ 1.522∗∗ -1.963 -1.963
(0.529) (0.528) (1.302) (1.424)

N 1479 1479 928 928
States 51 51 32 32
Time period 1977-2005 1977-2005 1977-2005 1977-2005

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Patent counts in response to earthquake damage at the state level

(1) (2) (3) (4)
Pooled Poisson Pooled NB Poisson FE NB FE

D−it−1 -0.0120 0.00104 0.0204 0.0222
(0.0173) (0.0152) (0.0136) (0.0126)

D−it−2 -0.0334 -0.0155 0.00260 0.00503
(0.0283) (0.0236) (0.0252) (0.0160)

D−it−3 0.0115 -0.000630 0.00608 0.00421
(0.0197) (0.0159) (0.0141) (0.0126)

D−it−4 0.0308 0.0214 0.0255∗ 0.0241∗

(0.0179) (0.0118) (0.0113) (0.0100)

D−it−5 0.0234 0.0114 0.0177 0.0170
(0.0135) (0.0115) (0.00944) (0.0106)

Cumulative Effect 0.0203 0.178 0.0723 0.0726∗

(0.0661) (0.465) (0.0406) (0.0331)

Dit−1 0.0633∗∗∗ -0.0198 0.0414∗∗∗ 0.0427∗∗∗

(0.0192) (0.0236) (0.00448) (0.0120)

Dit−2 0.0593∗∗ -0.0436 0.0392∗∗∗ 0.0410∗∗∗

(0.0191) (0.0270) (0.00455) (0.0124)

Dit−3 0.0915∗∗∗ -0.0767 0.0304∗∗∗ 0.0284∗

(0.00565) (0.0450) (0.00664) (0.0141)

Dit−4 0.0822∗∗∗ -0.105 0.0259∗∗∗ 0.0246
(0.00506) (0.0573) (0.00605) (0.0137)

Dit−5 0.0704∗∗∗ -0.131∗ 0.0256∗∗∗ 0.0214
(0.00622) (0.0600) (0.00370) (0.0154)

Cumulative Effect 0.367∗∗∗ -0.376 0.163∗∗∗ 0.158∗∗∗

(0.0437) (0.192) (0.0150) (0.0422)

Real GDP per capita -0.0198 -0.0140 0.0152 -0.0304
(0.0284) (0.0140) (0.0116) (0.0316)

Total patents -0.0748∗ 0.228 -0.0652∗∗∗ -0.0683∗

(0.0307) (0.187) (0.0174) (0.0285)

R&D tax credits 0.0428 5.896 7.534∗ 6.389∗∗

(0.109) (6.657) (3.520) (2.354)

Higher edu R&D exp 1.266∗∗∗ 0.888 -0.0916 0.0243
(0.159) (0.627) (0.118) (0.189)

post 1997 -0.660 -0.174 1.148 1.302
(0.507) (0.422) (1.130) (0.825)

N 1479 1479 986 986
States 51 51 34 34
Time period 1977-2005 1977-2005 1977-2005 1977-2005

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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The empirical strategy is the same with that in Section 5. The regression results of innovation

on disaster damage at the state level are presented in Table 7, 8, and 9 for floods, droughts, and

earthquakes. For floods, the cumulative effects of disaster damage from the rest of the U.S.

are positive and significant, as shown in the first cumulative effective from column (1) to (4) of

Table 7. This indicates that flood impact-reducing innovation in a state is positively affected

by disaster damage from other states. Also, the estimates for droughts across different methods

show similar consistency: the cumulative effects of disaster damage from other states are positive

and significant. Therefore, for floods and drought, disaster damage does not necessarily spur

patents in local areas. Rather, disaster damage can stimulate patents somewhere more distant

in other states. Combining the results from model (3), where innovation is stimulated by the

national disaster damage, the response of impact-reducing innovation seems to be national rather

than localized to where floods and droughts occur.

The results for earthquakes vary from methods (1) to (4) in Table 9. As discussed in Section

5.1, states’ intrinsic characteristics, such as location and earthquake hazard, are crucial in ana-

lyzing the impact of earthquake damages. Therefore, models with state fixed effects in (3) and

(4) of Table 9 provide consistent estimates compared to pooled models in (1) and (2). More-

over, the variance of patents pertaining to earthquake impact-reducing technology is much larger

than its mean. Although the large variance is mostly attributed to heterogeneity across states,

overdispersion may still exhibit even if state fixed effects are controlled. In this case, NB FE is

preferred to Poisson FE.

In contrast to the results for floods and droughts, there is mixed evidence that innovation is

stimulated by earthquake damage in other states: the cumulative effects of earthquake damages

in other states are positive but only significant with NB FE. However, impact-reducing patents

pertaining to earthquakes respond positively to local earthquakes. Therefore, it seems that the

response of innovations to earthquake damage comes from many states nationwide, but also

substantially localized. A possible explanation is that the expected market of impact-reducing

technology is smaller than that of floods or droughts. Earthquakes are highly geographically

concentrated, and disastrous earthquake events are rare and less predictable compared to floods

and droughts. Thus, the expected market size and market value of earthquake impact-reducing

technology is relatively small and hence cannot provide sufficient profit incentives to potential in-
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novators across states. In addition, first-hand information and experience in earthquakes may be

an important input in the innovation process. Local innovators have the advantages of obtaining

such information at a lower cost, which lead to prosperity of local innovations.

6.1. Endogenous Disaster Damage

The model in Eq. (4) examines whether impact-reducing innovation in a state responds to

disaster damage in other states, controlling for the disaster damage in the given state. In this

model, unobserved factors that affect innovation, such as efficiency and transparency of the local

government, may also impact the disaster outcome in this region given that local governments

share a major role in natural disaster management. In this case, disaster damage in a state

may be endogenous, but the estimated effect on impact-reducing innovation is negatively biased,

which is favourable to our findings.21 Nevertheless, for the suspected endogeneity of disaster

damage in Eq. (4), instrumental variables (IVs) and the control function (CF) approach can be

used to correct the potential endogeneity bias.

In Eq. (4), disaster damage is disaggregated to a state level and the rest of the U.S. The

results in Section 5.2 suggest endogeneity between national disaster damage and innovation in a

state is less of a concern. Thus, it is plausible that disaster damage from the rest of the U.S. tends

to be exogenous to impact-reducing innovation in a given state. Still, state-level disaster damage

appears to be endogenous to unobserved factors that also affect innovation in a state. Therefore,

disaster damage from state i, Djit, is assumed to be endogenous, and the control function for Eq.

(4) is the residual from

Djit = θ1θ1θ1ZZZjit + θ2θ2θ2XXX it,t−1 + ηi + ωjit, (6)

where Zjit is the set of two IVs for state-level damage of disaster type j, and ωjit is the residual

to be estimated. To obtain the residual ω̂jit, Eq. (6) is estimated using the ordinary least squares

regression with state fixed effects in the first stage.22 In the second stage, a one-year lag of the

residual, ω̂jit−1, is included in the Poisson regression of model (4) with state fixed effect.

The estimated effects with the CF approach are presented in Table 10. The first cumulative

21 Within a country, progress in adaptation technology (e.g., air conditioning and irrigation system) may be
associated with migration and population expansion to areas with harsh climate (e.g., arid areas in Arizona and
California). These demographic changes in turn causes larger population exposed to natural disasters and hence
increase disaster damages. If this effect is sufficiently large, the overall impact of endogeneity may be ambiguous.

22 The results of first stage regressions, given in Eq. (6), are reported in column 2 of Table C.14 and C.15.
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Table 10: Patent counts in response to disaster damage in a state with the control function

(1) (2) (3)
Floods Droughts Earthquakes

D−it−1 0.0588 0.206∗∗ 0.0179
(0.0347) (0.0684) (0.0127)

D−it−2 0.130∗∗∗ 0.0623 0.000270
(0.0324) (0.107) (0.0157)

D−it−3 0.0392 0.227∗∗∗ 0.00796
(0.0453) (0.0686) (0.0127)

D−it−4 0.0124 0.180∗ 0.0269∗∗

(0.0473) (0.0773) (0.0102)

D−it−5 0.0701 0.224∗∗ 0.0178
(0.0423) (0.0803) (0.0108)

Cumulative Effect 0.311∗∗ 0.900 ∗∗∗ 0.0708∗

(0.120) (0.208) (0.0346)

Dit−1 5.221 5.832 0.0406∗∗∗

(3.669) (4.408) (0.00986)

Dit−2 -0.152 0.104 0.0373∗∗∗

(0.634) (0.179) (0.0103)

Dit−3 0.351 -1.780 0.0257
(0.377) (0.990) (0.0177)

Dit−4 -0.0420 0.270∗∗ 0.0271∗

(0.998) (0.104) (0.0116)

Dit−5 0.0768 -0.264 0.0851
(0.578) (0.296) (0.106)

Cumulative Effect 5.455 4.161 0.216∗

(4.513) (4.475) (0.0994)

Real GDP per capita 0.0707 0.148∗ -0.00741
(0.0562) (0.0616) (0.0356)

Total patents 0.0278 -0.00297 -0.0711∗∗

(0.254) (0.0410) (0.0244)

R&D tax credits 4.507 11.93 7.969∗∗∗

(6.329) (10.18) (2.215)

Higher edu R&D exp -0.303 -0.627 -0.0353
(0.901) (0.386) (0.184)

post 1997 -1.597 -1.717 0.605
(1.142) (1.246) (0.899)

Control function -4.932 -5.321 -0.0619
(2.581) (4.439) (0.110)

N 1392 1392 1479
States 48 48 51

Column 1 and 2 list results for 48 contiguous states since NCDC does
not provide Palmer indices for Alaska, Hawaii and Washington D.C.;
standard errors are presented in parentheses; ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001
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effects are positive and significant for all three types of disasters, and this suggests that innovation

in a state is stimulated by disaster damage in the rest of the country. In other words, impact-

reducing innovation is not localized to where disasters occur. The second cumulative effects

presents the impact of local disaster damage on innovation in the next five years. The impact of

local disaster damage on patents in a given state are all positive, but only significant in the case

of earthquakes. In summary, for all three types of disasters, the response of innovation appears to

be national, despite earthquake impact-reducing innovation tends to be more localized compared

to innovation pertaining to floods and droughts.

7. Conclusion

Natural disasters cause significant casualties and damage worldwide every year. Moreover,

climate change is expected to dramatically increase the frequency and intensity of natural disas-

ters in the future. This paper presents a conceptual model where perceived risk theory and profit

motive are combined to account for innovation activities induced by natural disasters. Using

the U.S. patent data and natural disasters data from SHELDUSTM for the years 1977-2005, the

state-level empirical analysis on floods, droughts, and earthquakes reveals that impact-reducing

innovation as a responds to natural disasters is not localized to where disasters occur, that is,

disaster damage spurs innovation in both nearby and distant states. According to the empirical

analysis, $1 billion losses from flood events in the U.S. is predicted to stimulate a 35% increase in

flood impact-reducing innovation in a state in the next five years. For droughts and earthquakes,

$1 billion losses is predicted to spur 173% and 20% more innovations respectively. Although dis-

aster damage spurs innovation anywhere in the country, there is variation across disaster types:

flood or drought damage in a state does not necessarily spur innovation in local areas, whereas in

the case of earthquakes, there is a notable response of state-level innovation to local earthquake

damage.

According to the framework introduced in this paper, disaster events raise self-protection

needs of local communities and the demand for impact-reducing technology. As a result, prof-

itability should motivate potential innovators across different states to develop impact-reducing

technologies. Such innovation would be incentivized by profit and conducted by research groups

with adequate research capacity. This explains the findings that innovation is not localized to
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where disasters occur. Nonetheless, for natural disasters like earthquakes, the expected market

size and market value of impact-reducing technology is limited due to the nature of the disaster.

Plus, local innovators have the advantage of obtaining first-hand information. All of these factors

may contribute to an active response to local disaster events.

Impact-reducing innovations as proactive measures to adapt to natural disasters have poten-

tially more profound impacts than reactive measures: they build adaptive capacity to disasters

and reduce future disaster damage. However, historically, most government involvement in coping

with natural disasters in the U.S. has been reactive, such as disaster relief fund and infrastructure

rebuild. Recently, FEMA suggests a reform to promote investment in proactive measures and re-

duce disaster costs in the long-term. The proposed reform targets on its disaster spending on the

Public Assistance (PA) funds: a disaster deductible will be established so that a state is required

to spend up to its deductible before it is qualified to receive the PA funds. The deductible could

be lowered for states that adopt certain impact-reducing practices. FEMA’s proposal highlights

the important role of the federal government in promoting proactive measures to adapt to natural

disasters.

The findings presented in this paper have important implications for the public sector on how

to motivate proactive measures such as disaster impact-reducing innovation. First, as natural

disasters can result in impact-reducing innovations across states, R&D on impact-reducing tech-

nology should be distributed to both local and remote institutions and innovators with research

capacity. The findings in this paper emphasize a proactive role for the federal government as the

key to channelling and effectively spurring impact-reducing innovations nationwide. Second, the

result that innovation is not localized to where disaster occur implies that profit is likely to be the

main driver behind such innovations. The market for impact-reducing technologies, which relies

on the private sector, is likely to be inefficient in providing disaster impact-reducing innovations.

With positive externalities of innovations, private and social benefits diverge, and hence public

support, such as R&D subsidy on impact-reducing technology, is crucial for achieving efficiency.
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APPENDIX:

Appendix A. Patent Search Criteria

“Flood” is a commonly used words in many disciplines and industries other than the natural disaster
“flood” (e.g., printing, radiation imagery chemistry, and information security). Irrelevant patents can
be excluded by restricting classes to search. Therefore, all search criteria for flood impact-reducing
patents consist keywords and classes. Three criteria are established for flood (Table Appendix A): the
main criterion for patents pertaining to floods, and also criterion 1 and 2. The use of ”drought” and
”earthquake” is much more specific to natural disasters, and hence restricting classes is not necessary.
Patent counts calculated from each criteria are applied to Eq. (3) and (4) with Poisson FE model
to check robustness, and results are reported in Table A.12. The results from criterion 1 and 2 are
consistent with the finds using the main criteria. Patents pertaining to flood positively respond to
national flood damage in the U.S. Additionally, there is no evidence that flood impact-reducing patents
respond to local floods.

Table A.11: Patent Search Criteria for Floods, Droughts and Earthquakes
Disaster type Classes Keywords
Droughts all drought and one word in (tolerant tolerance resistant

resisting resistance combat fight relief)

Earthquakes all earthquake

Floods
Main criterion 52 flood

114 (subclasses 230.15- 230.19, 263) flood

405 (subclasses 15-35, 73, 79, 80, 87-
107, 109-117, 212-215, 218-221)

flood

137, 206, 340, 702 flood control, flood detector, flood detection, flood
preventer, flood prevention, flood preventing, prevents
flood, prevent flood, prevention of flood, flood protec-
tion, flood damage, flood damages, flood relief, flood
pump, flood alarm, flood warning, flood level, flood
zone, flood risk, flood risks, flood free, flood bar-
rier, flood disaster, flood resistant, flood water bar-
rier, flood shield, flood threat, protecting structures
from flooding water, prevent flooding water, prevent
flood water

Criterion 1 52 flood

114 (subclasses 230.15- 230.19, 263) flood

405 (subclasses 15- 35, 73, 79, 80, 87-
107, 109-117, 212-215, 218-221)

flood

Criterion 2 52, 114, 405, 137, 206, 340, 702 flood control, flood detector, flood detection, flood
preventer, flood prevention, flood preventing, prevents
flood, prevent flood, prevention of flood, flood protec-
tion, flood damage, flood damages, flood relief, flood
pump, flood alarm, flood warning, flood level, flood
zone, flood risk, flood risks, flood free, flood bar-
rier, flood disaster, flood resistant, flood water bar-
rier, flood shield, flood threat, protecting structures
from flooding water, prevent flooding water, prevent
flood water

i



T
ab

le
A

.1
2:

P
a
te

n
t

co
u

n
ts

in
re

sp
o
n

se
to

n
a
ti

o
n

a
l

a
n

d
st

a
te

-l
ev

el
fl

o
o
d

d
a
m

a
g
e

(1
)

(2
)

(3
)

C
ri

te
ri

o
n

1
C

ri
te

ri
o
n

2
M

a
in

D
t−

1
0
.1

1
6
∗∗

0
.0

7
5
6

0
.0

8
2
7
∗

(0
.0

4
4
4
)

(0
.0

4
4
8
)

(0
.0

4
0
5
)

D
t−

2
0
.1

5
2
∗∗

∗
0
.0

9
7
1
∗∗

0
.1

2
8
∗∗

∗

(0
.0

3
6
0
)

(0
.0

3
3
4
)

(0
.0

2
6
8
)

D
t−

3
0
.0

0
5
1
8

0
.0

5
4
6

0
.0

5
2
2
∗

(0
.0

2
8
7
)

(0
.0

2
9
7
)

(0
.0

2
5
9
)

D
t−

4
-0

.0
0
1
8
2

0
.0

1
1
3

-0
.0

1
6
8

(0
.0

5
6
5
)

(0
.0

4
8
4
)

(0
.0

4
8
0
)

D
t−

5
0
.0

2
9
6

0
.0

6
5
3
∗

0
.0

5
1
3

(0
.0

4
5
2
)

(0
.0

3
1
8
)

(0
.0

3
1
7
)

C
u

m
u

la
ti

v
e

E
ff

ec
t

0
.3

0
1
∗

0
.3

0
4
∗∗

0
.2

9
7
∗∗

∗

(0
.1

3
5
)

(0
.0

8
9
7
)

(0
.0

7
6
2
)

G
D

P
p

er
ca

p
it

a
0
.0

0
1
2
1

-0
.0

3
1
3

0
.0

0
3
0
8

(0
.0

3
1
9
)

(0
.0

3
5
5
)

(0
.0

2
7
0
)

T
o
ta

l
p
a
te

n
ts

0
.0

2
6
1

0
.0

1
5
4

0
.0

4
3
5

(0
.0

6
3
0
)

(0
.0

2
4
8
)

(0
.0

4
1
1
)

R
&

D
ta

x
cr

ed
it

s
8
.0

8
3

0
.0

9
2
8

5
.7

3
0

(5
.9

7
8
)

(0
.2

0
1
)

(4
.9

3
7
)

H
ig

h
er

ed
u

R
&

D
ex

p
-0

.3
5
4

0
.5

2
1
∗∗

∗
-0

.0
8
5
2

(0
.4

7
4
)

(0
.1

5
5
)

(0
.2

8
2
)

p
o
st

1
9
9
7

0
.5

2
0

0
.4

3
5

0
.0

5
8
1

(0
.8

0
6
)

(0
.8

6
4
)

(0
.6

5
2
)

N
6
9
6

8
4
1

8
9
9

S
ta

te
s

2
4

2
9

3
1

T
h

e
d

ep
en

d
en

t
v
a
ri

a
b

le
s

in
co

lu
m

n
(1

)-
(3

)
a
re

p
a
te

n
ts

p
er

ta
in

in
g

to
fl

o
o
d

s
se

a
rc

h
ed

b
y

cr
it

er
io

n
1
,

2
a
n

d
th

e
m

a
in

cr
it

er
io

n
.

S
ta

n
d

a
rd

er
ro

rs
in

p
a
re

n
-

th
es

es
;
∗
p
<

0
.0

5
,
∗∗

p
<

0
.0

1
,
∗∗

∗
p
<

0
.0

0
1

(1
)

(2
)

(3
)

C
ri

te
ri

o
n

1
C

ri
te

ri
o
n

2
M

a
in

D
it
−
1

0
.5

3
8

0
.4

2
3

0
.4

7
4

(0
.2

9
1
)

(0
.2

2
6
)

(0
.2

5
4
)

D
it
−
2

-0
.2

8
2

-0
.0

2
4
0

-0
.1

1
0

(0
.5

1
3
)

(0
.3

2
0
)

(0
.2

5
3
)

D
it
−
3

0
.2

7
1

0
.3

7
8

0
.3

3
3

(0
.2

7
3
)

(0
.2

1
7
)

(0
.2

1
3
)

D
it
−
4

0
.2

3
6

-0
.1

9
9

0
.0

6
2
9

(0
.2

6
8
)

(0
.2

1
8
)

(0
.2

3
6
)

D
it
−
5

0
.2

3
8

0
.0

4
9
1

0
.0

2
9
8

(0
.3

0
8
)

(0
.3

4
1
)

(0
.3

0
1
)

C
u

m
u
la

ti
v
e

E
ff

ec
t

1
.0

0
1

0
.6

2
6

0
.7

8
9

(0
.9

5
8
)

(0
.5

7
2
)

(0
.5

8
8
)

D
−
it
−
1

0
.0

9
8
6
∗

0
.0

6
1
2

0
.0

6
2
7
∗

(0
.0

3
9
0
)

(0
.0

3
5
9
)

(0
.0

2
9
3
)

D
−
it
−
2

0
.1

5
5
∗∗

∗
0
.1

0
4
∗∗

0
.1

3
3
∗∗

∗

(0
.0

3
6
8
)

(0
.0

3
4
9
)

(0
.0

2
6
8
)

D
−
it
−
3

0
.0

0
1
8
3

0
.0

4
3
4

0
.0

4
5
9

(0
.0

2
7
8
)

(0
.0

3
2
6
)

(0
.0

2
7
8
)

D
−
it
−
4

-0
.0

0
1
3
3

0
.0

2
2
7

-0
.0

1
3
3

(0
.0

5
7
3
)

(0
.0

4
5
2
)

(0
.0

4
7
1
)

D
−
it
−
5

0
.0

3
1
4

0
.0

6
4
0

0
.0

5
3
6

(0
.0

4
3
8
)

(0
.0

3
3
4
)

(0
.0

3
2
0
)

C
u

m
u

la
ti

v
e

E
ff

ec
t

0
.2

8
5
∗

0
.2

9
5
∗∗

0
.2

8
1
∗∗

∗

(0
.1

3
5
)

(0
.0

9
0
9
)

(0
.0

7
5
9
)

R
ea

l
G

D
P

p
er

ca
p

it
a

0
.0

0
0
5
6
4

-0
.0

3
0
2

0
.0

0
3
4
6

(0
.0

3
1
4
)

(0
.0

3
3
8
)

(0
.0

2
6
6
)

T
o
ta

l
p

a
te

n
ts

0
.0

0
2
6
2

0
.0

0
4
2
3

0
.0

2
8
4

(0
.0

7
8
4
)

(0
.0

3
2
6
)

(0
.0

5
1
9
)

R
&

D
ta

x
cr

ed
it

s
7
.4

2
0

0
.0

9
0
4

5
.1

5
4

(6
.0

4
8
)

(0
.1

6
2
)

(5
.0

2
3
)

H
ig

h
er

ed
u

R
&

D
ex

p
-0

.2
9
0

0
.6

0
3
∗∗

∗
0
.0

0
7
9
0

(0
.4

3
7
)

(0
.1

4
9
)

(0
.2

5
1
)

p
o
st

1
9
9
7

0
.5

9
5

0
.3

9
0

0
.0

5
8
8

(0
.7

8
5
)

(0
.8

1
3
)

(0
.6

3
7
)

N
6
9
6

8
4
1

8
9
9

S
ta

te
s

2
4

2
9

3
1

T
h

e
d

ep
en

d
en

t
v
a
ri

a
b

le
s

in
co

lu
m

n
(1

)-
(3

)
a
re

p
a
te

n
ts

p
er

ta
in

in
g

to
fl

o
o
d

s
se

a
rc

h
ed

b
y

cr
it

er
io

n
1
,

2
a
n

d
th

e
m

a
in

cr
it

er
io

n
.

S
ta

n
d

a
rd

er
ro

rs
in

p
a
re

n
-

th
es

es
;
∗
p
<

0
.0

5
,
∗∗

p
<

0
.0

1
,
∗∗

∗
p
<

0
.0

0
1

ii



Table A.13: Summary of variables at the state level
Floods Droughts Earthquakes

States Patents Damage Patents Damage Patents Damage Total
patents

Real
GDP
per
capita

R&D
tax
credits

Higher
edu
R&D
expen-
diture

Alabama 0 2.576 0 0.343 1 0 0.382 21.441 0 0.361
Alaska 0 0.116 0 0.006 1 0.028 0.045 45.512 0 0.103
Arizona 0 0.858 1 0 3 0 1.287 22.236 0.075 0.399
Arkansas 0 0.502 1 1.122 0 0 0.158 19.887 0 0.107
California 17 4.708 7 0.004 210 43.968 14.089 28.12 0.057 3.428
Colorado 1 0.713 0 0.122 2 0 1.509 27.825 0 0.46
Connecticut 2 0.244 2 0 6 0 1.975 36.382 0.016 0.451
Delaware 0 0.051 2 0.041 0 0 0.523 37.511 0.002 0.068
District of Columbia 1 0.024 0 0 0 0 0.096 85.286 0 0.204
Florida 10 3.09 2 0.132 7 0 2.351 23.293 0 0.708
Georgia 2 0.768 0 0.568 4 0 1.157 26.365 0.028 0.747
Hawaii 0 0.283 1 0.001 12 0.015 0.083 31.226 0.041 0.133
Idaho 0 0.19 0 0.605 2 0.029 0.751 18.894 0.009 0.068
Illinois 6 5.473 4 0.37 8 0 3.714 30.751 0.003 1.045
Indiana 1 1.361 0 0.091 0 0 1.451 25.36 -1.277 0.442
Iowa 0 6.043 6 10.126 0 0 0.576 24.127 0.037 0.364
Kansas 0 1.172 3 0.187 0 0 0.406 25.376 0.003 0.209
Kentucky 4 1.604 0 0.306 1 0.003 0.457 23.588 0 0.207
Louisiana 11 1.341 1 0.811 0 0 0.487 27.589 0.008 0.347
Maine 1 1.108 0 0 1 0 0.15 22.647 0.001 0.048
Maryland 1 0.225 2 0.369 3 0 1.41 27.093 0.002 1.401
Massachusetts 2 0.239 2 0 5 0 3.39 31.617 0.052 1.416
Michigan 3 2.739 1 0 1 0 3.42 30.199 0 0.889
Minnesota 1 2.19 1 0.014 3 0 2.174 28.472 0.024 0.415
Mississippi 2 4.97 0 0.74 0 0 0.16 18.935 0 0.172
Missouri 1 3.153 5 0.025 3 0 0.893 26.443 0.002 0.495
Montana 0 0.065 1 0 0 0.001 0.114 20.112 0.012 0.08
Nebraska 1 0.803 1 1.01 0 0 0.201 25.423 0 0.187
Nevada 0 1.068 0 0 2 0 0.278 29.366 0 0.089
New Hampshire 1 0.066 0 0 3 0 0.622 25.438 0.008 0.128
New Jersey 6 2.018 3 0.122 9 0 4.154 33.002 0.041 0.481
New Mexico 0 0.125 0 0.024 1 0 0.3 22.917 0 0.236
New York 4 1.452 5 0.197 26 0 5.937 33.058 0 2.191
North Carolina 3 0.696 4 0.143 1 0 1.558 24.474 0.016 0.825
North Dakota 0 5.654 0 1.979 0 0 0.069 20.623 0.034 0.073
Ohio 1 1.379 2 0.28 11 0 3.28 27.784 0 0.789
Oklahoma 1 0.862 1 1.592 0 0 0.649 21.643 0 0.214
Oregon 0 0.312 2 0.032 4 0.012 1.216 21.162 0.028 0.302
Pennsylvania 3 2.109 1 1.967 12 0 3.678 26.075 0.003 1.337
Rhode Island 1 0.009 1 0 0 0 0.312 25.796 0.061 0.129
South Carolina 0 0.176 1 0.668 1 0 0.553 22.032 0.008 0.241
South Dakota 0 0.309 1 0.05 0 0 0.06 20.186 0 0.03
Tennessee 3 0.762 1 0 6 0 0.764 24.369 0 0.362
Texas 16 6.735 1 7.165 10 0 4.872 25.868 0.008 1.77
Utah 0 0.689 0 0 3 0 0.569 21.324 0.014 0.266
Vermont 0 0.414 0 0 0 0 0.315 22.374 0.001 0.068
Virginia 0 2.916 1 0.735 3 0 1.152 27.238 0 0.49
Washington 3 0.563 2 0.014 8 8.285 1.891 28.968 0 0.562
West Virginia 1 2.379 0 0.047 0 0 0.186 20.004 0.062 0.071
Wisconsin 3 2.588 0 0.821 3 0 1.658 25.767 0.026 0.602
Wyoming 0 0.1 0 0 0 0 0.057 27.816 0 0.043

The table reports sum for damage and patent counts for floods, droughts, and earthquakes. Total patents, Real GDP per capita,
R&D tax credits, and Higher edu R&D expenditure are reported as mean from 1977 to 2005 for each state. Total patents is in
thousand counts. Higher edu R&D expenditure is in billion dollars, and per capita real GDP is in thousand dollars. All dollar terms
are adjusted to 2013.
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Appendix B. Maps of Patents and Disaster Damage

Figure B.1: Map of flood damage across states from 1977-2005

Figure B.2: Map of flood impact-reducing patents across states from 1977-2005
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Figure B.3: Map of drought damage across states from 1977-2005

Figure B.4: Map of drought impact-reducing patents across states from 1977-2005
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Figure B.5: Map of earthquake damage across states from 1977-2005

Figure B.6: Map of earthquake impact-reducing patents across states from 1977-2005
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Appendix C. IV Tests and the Control Function Approach

Table C.14: Control functions for flood damage

(1) (2)
National damage State damage

us palmerz2 5 0.355∗∗∗

(0.0551)

us maxpalmerz 0.534∗∗∗

(0.0497)

palmerz2 5 0.0218 ∗

(0.0099)

maxpalmerz 0.0150 ∗

(0.0077)

GDP per capita -0.0112 -0.00141
(0.0101) (0.00251)

Total patents 0.0814 0.00882∗

(0.0660) (0.00421)

R&D tax credits 0.0542∗∗∗ 0.00216∗∗

(0.0127) (0.000748)

Higher edu R&D exp -0.254 -0.00636
(0.311) (0.0277)

post 1997 1.736∗∗∗ 0.0446
(0.335) (0.0767)

N 1479 1392

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Appendix D. Fatalities as a Measure of Disaster Damage

Impact-reducing patent applications respond to national aggregated fatalities. The results are re-
ported in TableD.17. There is strong evidence that impact-reducing patent applications positively
respond to national aggregate fatalities for floods and earthquakes. However, patents pertaining to
droughts do not positively respond to drought fatalities due to a small number of fatalities from drought
in the U.S.

Table D.16: Response of patents to national disaster fatalities

(1) (2) (3)
Floods Droughts Earthquakes

Dit−1 0.00777 -0.00192 0.0107∗∗

(0.00427) (0.00950) (0.00382)

Dit−2 0.00610∗∗ -0.586 0.00784∗

(0.00215) (0.388) (0.00394)

Dit−3 0.00408 -0.0688∗ 0.00726
(0.00426) (0.0319) (0.00374)

Dit−4 0.00390 0.00270 0.0134∗∗∗

(0.00396) (0.00517) (0.00339)

Dit−5 0.00304∗∗ 0.00146 0.0181∗∗∗

(0.000940) (0.0131) (0.00351)

Dit−6 0.00328 0.0160∗∗∗

(0.00950) (0.00339)

Dit−7 -0.00195 0.0155∗∗∗

(0.00744) (0.00337)

Dit−8 0.0710∗ 0.0112∗∗

(0.0330) (0.00371)

Dit−9 0.0267∗∗∗ 0.00666
(0.00522) (0.00373)

Cumulative Effect 0.0249∗∗∗ -0.528 0.106∗∗∗

(0.00713) (0.349) (0.0164)

Real GDP per capita 0.0144 0.0859 -0.0383
(0.0324) (0.0460) (0.0297)

Total patents 0.0247 0.0653 -0.110∗∗∗

(0.0378) (0.0712) (0.0261)

R&D tax credits 7.191 1.596 6.658∗∗

(4.840) (6.082) (2.168)

Higher edu R&D exp 0.0900 -0.481 0.291
(0.305) (0.442) (0.186)

post 1997 -0.130 -0.319 1.597∗

(0.769) (1.058) (0.749)
N 899 928 986
States 31 32 34

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table D.17: Response of patents to fatalities from disasters in a state
(1) (2)

Floods Earthquakes
D−it−1 0.00790 0.00522

(0.00431) (0.00525)

D−it−2 0.00649∗ -0.00269
(0.00284) (0.00597)

D−it−3 0.00491 0.00179
(0.00433) (0.00516)

D−it−4 0.00489 0.0155∗∗∗

(0.00413) (0.00451)

D−it−5 0.00279∗∗ 0.0155∗∗∗

(0.000891) (0.00458)

D−it−6 0.0165∗∗∗

(0.00413)

D−it−7 0.0185∗∗∗

(0.00412)

D−it−8 0.0129∗∗

(0.00442)

D−it−9 0.00510
(0.00458)

Cumulative Effect 0.0270∗∗∗ 0.0882∗∗∗

(0.00838) (0.0195)

Dit−1 0.0105 0.0156∗∗∗

(0.0183) (0.00449)

Dit−2 -0.0128 0.0170∗∗∗

(0.0424) (0.00439)

Dit−3 -0.0114 0.0134∗∗

(0.0173) (0.00451)

Dit−4 -0.0247 0.0111∗

(0.0206) (0.00481)

Dit−5 0.0182 0.0213∗∗∗

(0.0136) (0.00471)

Dit−6 0.0137∗∗

(0.00501)

Dit−7 0.00895
(0.00509)

Dit−8 0.00974
(0.00545)

Dit−9 0.00944
(0.00504)

Cumulative Effect -0.0203 0.120∗∗∗

(0.0570) (0.0214)

Real GDP per capita 0.0163 -0.0190
(0.0354) (0.0295)

Total patents 0.0450 -0.0918∗∗

(0.0372) (0.0304)

R&D tax credits 5.480 5.836∗∗

(5.418) (2.182)

Higher edu R&D exp 0.0727 0.150
(0.305) (0.202)

post 1997 -0.175 1.081
(0.826) (0.751)

N 899 986
States 31 34

Estimates for drought damage is not available due to small
variation in the data; standard errors in parentheses; ∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Appendix E. Innovation in Response to the Regional Disaster Damage

This section examines the impact of disaster damage at a regional level that groups neighboring
states. Many disaster events cause damage to multiple states that are geographically close to each other,
and these states share similar disaster profiles and environmental characteristics. Hence, it is possible
that the response of innovation to natural disaster is localized at a regional level. First, a disaster
event in a state may increase perceived risks in nearby states and triggers rising demand of adaptive
technology at the regional level. Moreover, a new impact-reducing technology in a state can be applied
without altering cost to other nearby states as a result of the similar environmental characteristics.
Lastly, if a type of disaster is location-specific, the potential market of adaptive technology is likely to
be localized to nearby states that are vulnerable to the same type of disaster.

Here, the basic model (2) is extended to a region including a state and its neighboring states.
Innovation in a given state is modeled as a function of regional disaster damage, controlling for other
factors:

E [Vjit|D,X] = exp

(
m∑
k=1

βkD
n
jit−k +

m∑
k=1

γkD
o
jit−k + µXit,t−1 + ηi

)
, (E.1)

where Dn
jit−k is damage from disaster type j in state i and its neighbouring states in year t − n, and

Do
jit−k is damage from disaster type j in the rest of the U.S. (excluding the state i and its neighboring

states) in year t− k.
Eq. (E.1) is estimated with the Poisson FE model, and the results for floods, droughts and earth-

quakes are reported in Table E.18. For droughts and floods, there is no evidence that impact-reducing
patents respond to disaster damages in the neighboring states, whereas the cumulative effects of disaster
damage in non-bordering states are positive and significant. This result further enhances the previous
finding that the response of impact-reducing innovations is national in scope for floods and droughts.
For earthquakes, the cumulative effect of aggregate damage from the nearby states is positive and sig-
nificant, in contrast to the insignificant impacts of damage in non-bordering states. Combining previous
findings, the response of earthquake impact-reducing innovations is mostly localized to the nearby region
of an earthquake event.

Appendix F. GMM IV methods

Several moment-based methods have been developed for count data to deal with weakly exogene-
ity and endogeneity. Two-step generalized method of moments (GMM) estimators with instrumental
variables (IVs) are available for cross-section data, depending on whether the error term is additive
(Grogger, 1990), or multiplicative (Mullahy, 1997). Windmeijer and Santos Silva (1997) provide com-
parison the two estimators. For panel count data, the methods of moments in use rely on functional
form assumptions and are quite limited. Chamberlain (1992) and Wooldridge (1997) propose moment
conditions with quasi-differencing transformations, which allow for consistent estimation in panel count
data with weakly exogenous regressors. Windmeijer (2000) shows that their transformation is also ap-
propriate for endogenous regressors, and suggests an alternative transformation where deviation of the
overall mean of covariates is incorporated in the moment condition, so that the moment estimator can
be applied to nonnegative right hand side variables. The above GMM estimators have been applied to
many studies (Blundell et al., 2002; Miao and Popp, 2014; Hovhannisyan and Keller, 2015).

However, one major drawback of GMM estimators is computational complexity, and availability of
estimates is subject to variation in the data and model complexity, which is the case in this study.
First, the relatively large number of zeros in the dependent variable for patents in a state appears to
make it computationally difficult to exploit the moment conditions that this estimator relies on. Second,
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Table E.18: Patent counts in response to regional disaster damage

(1) (2) (3)
Floods Droughts Earthquakes

Dn
it−1 0.236∗∗∗ 0.338∗∗∗ 0.0404∗∗∗

(0.0617) (0.0963) (0.00551)

Dn
it−2 0.114 0.0795 0.0384∗∗∗

(0.0859) (0.164) (0.00528)

Dn
it−3 0.127 0.120 0.0252∗

(0.0827) (0.125) (0.0103)

Dn
it−4 -0.323 0.303∗∗ 0.0284∗∗∗

(0.255) (0.0924) (0.00429)

Dn
it−5 -0.125 -0.249 0.0261∗∗∗

(0.156) (0.275) (0.00491)

Cumulative Effect -0.0490 0.592 0.158∗∗∗

(0.388) (0.374) (0.0210)

Do
it−1 0.0543 0.263∗∗∗ 0.0201

(0.0362) (0.0780) (0.0141)

Do
it−2 0.134∗∗∗ 0.0888 -0.000889

(0.0243) (0.114) (0.0286)

Do
it−3 0.0460 0.235∗∗ 0.00952

(0.0309) (0.0728) (0.0135)

Do
it−4 0.000813 0.152 0.0213

(0.0468) (0.0963) (0.0140)

Do
it−5 0.0736∗ 0.265∗∗∗ 0.0154

(0.0336) (0.0802) (0.0106)

Cumulative Effect 0.306∗∗∗ 1.004∗∗∗ 0.0655
(0.0712) (0.200) (0.0424)

GDP per capita 0.00107 0.153∗ -0.0302
(0.0258) (0.0596) (0.0429)

Total patents 0.0556 0.00732 -0.0765∗∗

(0.0537) (0.0363) (0.0258)

R&D tax credits 5.064 2.461 7.466∗

(4.907) (6.152) (3.436)

Higher edu R&D exp -0.0660 -0.243 0.0328
(0.306) (0.271) (0.145)

post 1997 0.0767 -1.901 1.236
(0.633) (1.196) (1.145)

N 899 928 986
States 31 32 34

All columns are estimates with the Poisson FE method; standard errors in
parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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for a distributed lag model like Eq.(3) and (4), the moment condition contains information of lags of
endogenous variables and lags of all IVs. For instance, five-year lags of flood damage is accompanied
by five-year lags of the two IVs for flood, the total number of ten IVs. This dramatically increase
computational complexity, and more importantly, reduce validity of IVs (disaster intensity in year s
almost have no correlation with disaster damage in year t , for t 6= s). As a result, many of the above
GMM IV estimators are not convergent with Eq.(3) and (4). Table F.19 reports available estimates on
national flood, drought, and earthquake damage. The overall results support the finding that innovation
in a state responds to natural disasters.

Table F.19: Response of patents to national disaster damage

(1) (2) (3)
Floods Droughts Earthquakes

Grogger(1990) Windmeijer(2000) Windmeijer(2000)

Dt−1 0.0568 0.211∗ 0.0439
(0.0624) (0.0955) (0.0435)

Dt−2 0.109∗ 0.162 0.0695∗

(0.0456) (0.105) (0.0340)

Dt−3 0.0931 0.0491 0.00988
(0.0523) (0.111) (0.0347)

Dt−4 -0.0219 0.236
(0.0655) (0.185)

Dt−5 0.0441 0.539
(0.0424) (0.363)

Cumulative Effect 0.345∗ 1.196∗∗ 0.123∗

(0.0163) (0.415) (0.0605)

GDP per capita -0.00206 0.0483∗∗ -0.0489∗

(0.0336) (0.0156) (0.0239)

Total patents 0.0363 -0.0294 0.164
(0.110) (0.0666) (0.120)

R&D tax credits 7.452
(33.53)

Higher edu R&D exp -0.100
(0.411)

post 1997 0.208
(0.712)

N 1479 1479 1479

Column 1 reports estimates for floods with the GMM IV method proposed by Grogger(1990) with
state fixed effects; estimates in column 2 and 3 are based on the GMM IV estimator for panel fixed
effect by Windmeijer (2000); GDP per capita and total patents are control variables n column 2 and
3; standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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