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Abstract

In standard models of experimentation, the costs of project development consist of (a) the
direct cost of running trials as well as (b) the implicit opportunity cost of leaving alternative
projects idle. Another natural type of experimentation cost, the cost of holding on to the
option of developing a currently inactive project, has not been studied. In a multi-armed ban-
dit model of experimentation in which inactive projects have explicit maintenance costs and
can be irreversibly discarded, I show that the decision-maker’s incentive to actively manage
its options has important implications for the order of project development. In the model,
an experimenter searches for a success among a number of projects by choosing both those
to develop now and those to maintain for (potential) future development. In the absence of
maintenance costs, optimal experimentation policies have a ‘stay-with-the-winner’ property:
the projects that are more likely to succeed are developed first. Maintenance costs provide
incentives to bring the option value of less promising projects forward, and under optimal
experimentation policies, ‘going with the loser’ can be optimal: projects that are less likely
to succeed are sometimes developed first.
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1 Introduction

When experimentation is costly, decision-makers must choose which alternatives to actively in-

vestigate and which to leave ‘on the back burner’. A firm engaged in research and development

can obtain comparable product innovations through various technologies. Investing in multiple

technologies simultaneously is costly, so how should the firm prioritise its allocation of funds to
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competing alternatives? Academic researchers typically have many ongoing projects of varying

quality, with limited time to devote to research duties. Which projects should receive more of the

researcher’s attention? In standard models of experimentation, putting one alternative to trial

over another entails only an implicit opportunity cost: the foregone chance of learning about the

inactive alternative.1 However, retaining the option to investigate a currently shelved alternative

often involves explicit maintenance costs. Firms engaged in research and development routinely

devote resources to keep open the option of developing low-priority technologies, which involves

the costly upkeep of specialised equipment and paying the salaries of skilled workers or scientists

that can be lost to other firms. For these firms, holding on to the rights to proprietary technology

with outside market value also imposes a cost in foregone revenue. Academic researchers can

bear psychological costs from lingering projects, and efforts to limit these costs may impact their

allocation of time to ongoing projects.

In this paper, I present a multi-armed bandit model of experimentation in which arms

(projects) that are not allocated experimentation effort impose explicit maintenance costs unless

the experimenter chooses to irreversibly discard them. Specifically, I adopt the continuous-time

exponential bandit framework of Keller et al. (2005) and consider a model in which two indepen-

dent risky projects can be either good or bad, with only good projects eventually succeeding if

developed. The experimenter’s belief about a project, its updated probability that the project is

good, decays as the project is put to trial and no success is observed. The experimenter selects

discarding times for the projects and allocates trials among maintained projects to maximise its

discounted expected payoffs: the benefits from obtaining a success on either project less total

experimentation costs, which include the direct trial costs of active projects and the maintenance

costs of inactive projects. Successes are perfect substitutes and a success on either project ends

experimentation. As opposed to standard problems, at any time at which some project is main-

tained but inactive, the experimenter faces a choice between paying to keep that option open or

discarding it (irreversibly) altogether. Discarding an inactive project liquidates its option value,

which is realised in the event that the currently active project is deemed unpromising. To avoid

destroying this option value or paying to maintain it, the experimenter has an incentive to bring

it forward by altering the order of project development.

I show that optimal experimentation policies with maintenance costs entail significant de-

partures from standard results. In the corresponding environment without maintenance costs,

optimal experimentation policies are characterised by the well-known Gittins index policy.2 In

the exponential framework, this policy has the ‘stay-with-the-winner’ property: at any time, the

project with the highest updated probability of being good (the winner) is put to trial. In the

presence of maintenance costs, I show that ‘going with the loser’ is a robust feature of optimal

experimentation: the project with the lowest updated probability of being good (the loser) can

1Bergemann and Välimäki (2008) survey the multi-armed bandits literature with applications to economics.
2To each arm is assigned an index number that depends only on the ex ante characteristics and accumulated

observations of that project. The optimal experimentation selects a project among those with maximal indices.
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be put to trial first. Specifically, either (a) maintenance costs are so high that the losing project

is always discarded immediately for all initial beliefs about its quality, or (b) under the optimal

experimentation policy the loser will be put to trial before the winning project for a non-negligible

set of initial beliefs.

Under the stay-with-the-winner rule, the experimenter can avoid accumulating maintenance

costs on the inactive losing project only by discarding this project. Since abandoning a project

is irreversible, this involves an opportunity cost attached to the eventuality in which the losing

project becomes valuable following repeated failures by the current winner. This tension generates

an incentive to reverse the order of experimentation. When the experimenter prioritises the

losing project, she does so through a simple culling rule. This project is granted a ‘last chance’

to succeed in a period of experimentation in which it is put to trial exclusively while the winner

is maintained, after which it is permanently discarded. In other words, if the losing project is

ever put to trial, the experimenter returns to the winning project only after the losing project

has been discarded.

An outside observer that fails to take maintenance costs for inactive projects into account

would conclude that the experimenter is sometimes prioritising the wrong project. Furthermore,

during a culling phase the experimenter appears to not ‘know when to pull the plug’ and to

cling to projects that have repeatedly failed to achieve results.3 However, when inactive projects’

option values are attached to a stream of maintenance costs, the experimenter ‘throws good

money after bad’ precisely in order to convince itself that the initial investments were indeed a

bad idea, thus ensuring a quicker extrication of resources from a hopeless project towards more

promising ones.

1.1 Literature

The Gittins index representation of optimal policies in discounted bandit problems with inde-

pendent arms is not robust to perturbations of the standard model such as correlated arms,

non-geometric discounting and the simultaneous pulling of multiple arms. In particular, Banks

and Sundaram (1994) show that index policies are not optimal in the presence of switching costs

between arms.4 Switching costs are attributed to an inactive arm only when experimentation

transitions to it and are always accompanied by an observation from that arm. Maintenance

costs, on the other hand, are incurred whenever an inactive arm is not pulled in experimenta-

tion.5 Nevertheless, optimal experimentation policies in bandit problems with maintenance costs

fail to admit a Gittins index representation for the reason found by Banks and Sundaram (1994):

3This is reminiscent of the literature on escalation and the sunk cost fallacy. See Staw (1981), Staw and Ross
(1987) and Garland (1990). McAfee et al. (2010) have expressed misgivings about interpreting such phenomena
solely from a non-rational perspective.

4General characterisations of optimal experimentation policies with switching costs are not known. For details,
see Jun (2004). An exception is Bergemann and Välimäki (2001), who exploit results of Banks and Sundaram
(1992b) on bandits with a countably infinite set of ex ante identical arms.

5See the Conclusion for more discussion of the relationship between switching and maintenance costs.
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the index of a given maintained arm would have to be a function of the maintenance cost, and

this relationship would depend nontrivially on the characteristics of outside arms, breaking the

independence required for an index characterisation.6

The exponential bandit framework of Keller et al. (2005) has proved useful in applications

due to its tractability.7 Keller et al. (2005), following Bolton and Harris (1999), study strategic

experimentation and the free-riding incentives of multiple agents facing a single risky arm. Keller

and Rady (2010) generalise the model to Poisson bandits that allow for bad arms to also generate

successes. Klein and Rady (2011) allow for negative correlation in the types of two experimenters’

risky arms. Strulovici (2010) applies the model in a voting framework. In an earlier contribution,

Bergemann and Hege (1998) introduce a discrete-time version of the model to study the moral

hazard problem arising between bankers (principals) and venture capitalists (experimenters). In

this vein, Bonatti and Hörner (2011), Hörner and Samuelson (2013) and Klein (2011) focus on

the provision of incentives to experimenting agents.

Bonatti and Hörner (2011) derive another version of the stay-with-the-winner rule when agents

can experiment with multiple disjunctive projects, i.e., when, as in my model, project successes

are perfect substitutes. They also uncover a go-with-the-loser rule when projects are conjunctive,

i.e., when successes on both projects are perfect complements. In that case, experimenting first

with the losing project is optimal since a success on the winning project is worthless on its

own. My results show that with maintenance costs to inactive projects, going with the loser is

optimal even with disjunctive projects. Also, in Section 6, I show that going with the loser is

still optimal if successes on various projects can be accumulated. Hence, my results are due to

the experimenter’s incentive to economise on maintenance costs by culling losing projects, and

not to the perfect substitutability of project successes.

1.2 Example

The following simple example illustrates the main lessons of the paper by clarifying why experi-

menting with the losing project first can be optimal when maintaining inactive projects is costly.

An experimenter can devote a trial to one of two projects, A and B, in each of three periods, and

can irreversibly discard any project at any time. Projects are risky in that the payoffs they deliver

are unknown. A good project delivers a one-time payoff of 1, termed a success, with probability

λ > 0 in any trial. A bad project never delivers a success. Assume that experimentation ends

once a single trial is successful. Direct experimentation costs are c > 0 per trial, maintenance

costs for a maintained but inactive project are γ ≥ 0 per period and there is no discounting.

A project’s current state is characterised by the experimenter’s belief that it is good and

repeated failures make the experimenter more pessimistic about the project. Let piJ be the

6Furthermore, it is not clear how to define an index policy in the presence of maintenance costs since experi-
mentation policies need to specify both which arm is pulled and which arms are maintained.

7An earlier literature introduced learning about the arrival rate of a Poisson process to model R&D races. See
Choi (1991) and Malueg and Tsutsui (1997).
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probability that project J is good given that it has failed i trials, with i ∈ {0, 1, 2}. By Bayes’

rule, piJ = pi−1(1−λ)/(1−pi−1λ) for i = {1, 2}, and initial beliefs (p0
A, p

0
B) are given. Assume that

p2
Aλ > c, so that in the absence of project B the experimenter would put project A to trial in

all three periods, which also ensures that the experimenter never finds it optimal to discard both

projects. Assume further that p0
B ∈ [p2

A, p
1
A]. This ensures that project A is the better project ex

ante and that in the absence of maintenance costs, that is if γ = 0, the optimal experimentation

sequence is the stay-with-the-winner sequence AAB which allocates the first two trials to project

A and the final trial to project B.

When γ > 0, the optimal experimentation sequence must be one of AA|AB, |BAAA or

B|BAA, where |J represents the discarding of project J . In other words, either the experimenter

sticks with the stay-with-the-winner rule, discards the losing project B prior to the first trial or

she gives project B an early chance to succeed and discards it following a single failure. This

follows since (a) if a project is discarded prior to the first trial, it must be project B, (b) if a

project is discarded after a single trial, it must be project B irrespective of the project first put

to trial, and among such sequences B|BAA yields the highest probability of a success, while (c)

any experimentation sequence that maintains both projects in the first two trials must discard

a project before the final trial, and among such sequences AA|AB yields the highest probability

of a success. Let v(s; p0
A, p

0
B) be the expected payoff to experimentation sequence s given initial

beliefs (p0
A, p

0
B). Then

v(AA|AB; p0
A, p

0
B) = p0

Aλ+ (1− p0
Aλ)p1

Aλ+ (1− p0
Aλ)(1− p1

Aλ)p0
Bλ

−
[
(c+ γ) + (1− p0

Aλ)(c+ γ) + (1− p0
Aλ)(1− p1

Aλ)c
]
,

v(B|BAA; p0
A, p

0
B) = p0

Bλ+ (1− p0
Bλ)p0

Aλ+ (1− p0
Bλ)(1− p0

Aλ)p1
Aλ

−
[
(c+ γ) + (1− p0

Bλ)c+ (1− p0
Bλ)(1− p0

Aλ)c
]
,

v(|BAAA; p0
A, p

0
B) = p0

Aλ+ (1− p0
Aλ)p1

Aλ+ (1− p0
Aλ)(1− p1

Aλ)p2
Aλ

−
[
c+ (1− p0

Aλ)c+ (1− p0
Aλ)(1− p1

Aλ)c
]
.

The benefits of the go-with-the-loser sequence B|BAA are that (a) (relative to sequence

|BAAA) the value of project B gets exploited and the decision to discard B is better informed

while (b) (relative to sequence AA|AB) saving on maintenance costs. However, to the experimen-

tation sequence B|BAA are associated both (a) the maintenance cost (relative to |BAAA) and (b)

the opportunity cost (relative to AA|AB) of leaving the better project A idle while experimenting

with project B.

Simple calculations show that v(AA|AB; p0
A, p

0
B) − v(B|BAA; p0

A, p
0
B) is decreasing in p0

B.

Hence, if B|BAA is preferred to AA|AB for some p0
B ∈ [p2

A, p
1
A], then this is also the case for all

p′0B > p0
B. Note also that v(|BAAA; p0

A, p
0
B) is independent of p0

B and that v(|BAAA; p0
A, p

0
B) −

max{v(AA|AB; p0
A, p

0
B), v(B|BAA; p0

A, p
0
B)} is decreasing in p0

B and is strictly positive at p0
B = p2

A.
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That is, when p0
B = p2

A, all three experimentation sequences AA|AB, B|BAA and |BAAA yield

the same success probabilities, yet |BAAA has strictly lower costs. Hence, for fixed λ, c, γ and

p0
A, the optimal experimentation policy can be represented by beliefs p, p with p2

A ≤ p ≤ p ≤ p1
A,

such that |BAAA is optimal on [p2
A, p], AA|AB is optimal on [p, p] and B|BAA is optimal on

[p, p1
A]. In general, all three intervals can be non-empty. An example has λ = 2/5, c = 6/100,

γ = 3/200 and p0
A = 45/100. Then it can be computed that p1

A ≈ 0.33 and p2
A ≈ .23, while p ≈ 0.29

and p ≈ 0.32. This is depicted in Figure 1.
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Figure 1: Optimal experimentation in a three-period example.
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2 Model

I consider a continuous time three-armed exponential bandit problem with two risky arms, A

and B, and a safe arm Q.8 Risky arms are henceforth referred to as projects, and the safe arm

as the option to quit experimentation. Running trials consists of experimenting with a risky

project for some time interval [t, t+ dt). Trials yield either successes or failures. A risky project

is either good or bad. A good project that is put to trial continuously in time interval [t, t+ dt)

succeeds with probability λdt for some λ > 0, while a bad project fails with probability 1. The

types of risky projects A and B are drawn independently, where (p0
A, p

0
B) are the initial beliefs

of the experimenter about the types of projects A and B, with p0
J the probability that project

J ∈ {A,B} is good. Without loss of generality, I assume that p0
A ≥ p0

B.

A risk-neutral experimenter collects the benefits of successes on risky projects and bears

all experimentation costs. Its objective is to maximise its expected total discounted payoff. A

success on either risky project yields a lump-sum payment of 1 and ends the experimentation

process.9 Quitting experimentation, which for simplicity I assume is irreversible, yields a payoff

of 0. Putting risky project J to trial in time interval [t, t+dt) entails direct experimentation cost

cdt. I assume that λ > c, as otherwise the experimenter strictly prefers to quit experimentation

at time t = 0. I introduce explicit costs to maintaining inactive risky projects. That is, a

risky project that is maintained but not involved in trials in time interval [t, t + dt) imposes

cost γdt. The experimenter can irreversibly discard risky projects without cost and quitting

experimentation also entails no costs. The experimenter discounts future payoffs at rate r > 0.

If at time t the experimenter has not quit experimentation, then in time interval [t, t+dt) she

receives a mass dt of trials to devote to any maintained projects. If both projects are maintained,

the experimenter chooses the fraction αdt of trials to allocate to project A, where α ∈ [0, 1], with

the remaining fraction (1 − α)dt being allocated to project B. Since quitting experimentation

is irreversible, if a single project is maintained, we have that α ∈ {0, 1}. Note that when the

experimentation occurs on both risky projects in time interval [t, t+ dt), the experimenter bears

costs (c + γ)dt irrespective of the allocation of trials received by either project. An allocation

strategy {αt}t≥0 is measurable with respect to the information available at time t. The experi-

menter also chooses stopping times tA and tB such that in the absence of a success project J is

maintained at any time t < tJ , and discarded at tJ . The experimenter quits experimentation at

time max{tA, tB}.
At time t, beliefs (ptA, p

t
B) associated to maintained projects are a natural state variable

capturing all payoff-relevant information about experimentation prior to t. Following Keller

et al. (2005), if the experimenter allocates fraction αdt of trials to project A in time interval

8See the Conclusion for a discussion of results with more than two risky arms.
9See Section 6 for an extension to the case in which successes are accumulated across projects.
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[t, t+ dt), the evolution of beliefs, by Bayes’ rule, satisfies

dptA = −αλptA(1− ptA)dt, and

dptB = −(1− α)λptB(1− ptB)dt.

It is without loss of generality to restrict attention to allocation strategies and discarding times

generating belief processes {(ptA, ptB)}t≥0 such that ptA ≥ ptB for all t. Since the expected arrival

rates of successes depend only on beliefs, which decrease continuously when a project is put to

trial and no success arrives, any strategy could be replaced by a payoff-equivalent strategy in

the specified class through an appropriate relabelling of projects. Henceforth, project A will

always be the ‘winning’ project, with project B the ‘losing’ project. Finally, it is without loss of

generality for optimal experimentation to assume that tA ≥ tB. On the one hand, it would never

be optimal for the experimenter to discard project A if its belief was strictly higher than that of

project B. On the other hand, if the beliefs of the two projects are identical and the experimenter

finds it optimal to discard one of them, then she must be indifferent between discarding either

project, so that in particular discarding project B is optimal.

Given beliefs (p0
A, p

0
B), the experimenter chooses allocation strategy {αt}t≥0 and discarding

times (tA, tB) that maximise its expected total discounted payoff, given by

u(p0
A, p

0
B) = E

[∫ tB

0
e−rt[αtp

t
Aλ+ (1− αt)ptBλ− (c+ γ)]dt+

∫ tA

tB

e−rt[ptAλ− c]dt
]
,

where the expectation is taken with respect to {αt}t≥0 and {(ptA, ptB)}t≥0.

3 The Bellman Equation

Once projectB has been discarded, the experimenter faces a simple stopping problem with project

A, and Keller et al. (2005) derive tractable expressions for its optimal payoff. Specifically, fix

belief pA and suppose that project B has been discarded, then the experimenter’s value function

must satisfy the Bellman equation

u(pA) = max{0, [pAλ− c]dt+ e−rdtE[u(pA + dpA)|pA]}. (1)

The first term in the brackets of (1) corresponds to quitting experimentation, and the second

term corresponds to putting project A to trial. If project A is put to trial in a time interval of

length dt, it succeeds with probability pAλdt, and the payoff to success is 1. The project fails

with complementary probability, in which case the experimenter’ payoff is u(pA) + u′(pA)dpA,

which is equal to u(pA)− λpA(1− pA)u′(pA)dt. Using 1− rdt as an approximation to e−rdt and

cancelling dominated terms, it follows that on any open set of beliefs pA at which continuing

experimentation at pA is uniquely optimal, u satisfies the differential equation

u(pA) =
pAλ

r

[
1− u(pA)− (1− pA)u′(pA)

]
− c

r
.
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Its general solution is

u(pA) = Cz(pA) + pA
λ− c
r + λ

− (1− pA)
c

r
, (2)

where C is a constant of integration and z(pA) = ((1−pA)/pA)
r
λ (1−pA). The setup here is slightly

different than in Keller et al. (2005), but the expression (2) admits a similar interpretation. The

term pA(λ−c)/(r+λ)−(1−pA)c/r is the payoff to risky project A in the absence of the ability to quit

experimentation, while the term Cz(pA) captures the option value of quitting experimentation.

Imposing the value-matching and smooth-pasting conditions u(p∗A) = 0 and u′(p∗A) = 0 yields

the quitting belief p∗A = c/λ and the constant of integration CD = (c/(λ−c))
r
λ λc/r(r+λ). The follow-

ing result, whose proof obtains through a verification argument in the Appendix, characterises

optimal experimentation when project B has been discarded.

Lemma 1. Fix belief pA and suppose that project B has been discarded. If pA ≤ c/λ, then it

is optimal for the experimenter to discard project A. If pA > c/λ, then it is optimal for the

experimenter to put project A to trial. The experimenter’s resulting payoff is

uD(pA) = max

{
CDz(pA) + pA

λ− c
r + λ

− (1− pA)
c

r
, 0

}
.

By manipulations mimicking those above, it follows that given any beliefs (pA, pB) at which no

project has been discarded, the experimenter’s value function must satisfy the Bellman equation10

u(pA, pB) = max

{
max
α∈[0,1]

{
αVA[u](pA, pB) + (1− α)VB[u](pA, pB)− c+ γ

r

}
, uD(pA)

}
,

where

VA[u](pA, pB) =
pAλ

r

[
1− u(pA, pB)− (1− pA)

∂

∂pA
u(pA, pB)

]
, and

VB[u](pA, pB) =
pBλ

r

[
1− u(pA, pB)− (1− pB)

∂

∂pB
u(pA, pB)

]
.

As in Keller et al. (2005), VJ [u](pA, pB) captures the flow value of information generated by trials

on project J ∈ {A,B}. In the Bellman equation, this is set against the flow costs of trials (the

direct cost of project J and the maintenance cost of the other project). As the overall flow value

of information is linear in α, the Bellman equation can be further simplified to

u(pA, pB) = max

{
VA[u](pA, pB)− c+ γ

r
, VB[u](pA, pB)− c+ γ

r
, uD(pA)

}
. (3)

10Note that given an allocation of trials α ∈ [0, 1] to project A that is constant in an interval of length dt, the
probability of a single success on either project in this interval is αpAλdt+ (1− α)pBλdt.
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4 Optimal Experimentation without Maintenance Costs

To highlight the impact of maintenance costs on optimal experimentation, a useful benchmark

is the model without maintenance costs, that is, in which γ = 0. Note that this problem is

a standard three-armed bandit problem with direct experimentation flow cost c, and the next

result shows that optimal experimentation involves staying with the winner.

Proposition 1. Suppose that γ = 0, fix beliefs (pA, pB) with pA ≥ pB, and assume that no

project has been discarded so far. If pA ≤ c/λ, then it is optimal for the experimenter to quit

experimentation. If pA > c/λ and pA > pB, then it is optimal for the experimenter to put project

A to trial. If pA = pB > c/λ, then it is optimal for the experimenter to share trials equally between

both projects (α = 1/2).

To proceed quickly to the more interesting case in which γ > 0, I leave all details concerning

the construction of the value function when γ = 0, as well as the verification that it satisfies

the Bellman equation (3), to the Appendix. In the absence of maintenance costs, no project

is discarded while experimentation is ongoing and the project with the highest belief is put to

trial. This mimics the Gittins index representation of the optimal experimentation policy if a

project’s belief is taken to be the index.11 Continuing experimentation is optimal as long as one

project’s belief is above the cutoff c/λ, which, since pA ≥ pB, holds as long as pA > c/λ. Figure 2

illustrates belief dynamics consistent with optimal experimentation. Given belief (p′A, p
′
B) with

p′A > c/λ > p′B, only project A is ever put to trial, until pA = c/λ, at which both projects are

discarded. From initial belief (p′′A, p
′′
B) with p′′A > p′′B > c/λ, it is optimal to experiment with

project A, followed by shared experimentation, until the beliefs of both projects reach c/λ.

5 Optimal Experimentation with Maintenance Costs

I characterise the optimal experimentation policy with maintenance costs in a number of steps.

The main results of the paper are detailed in Section 5.1, where I describe the optimal discarding

decision for the losing project B, conditional on putting it to trial ahead of the winning project A.

As a byproduct of these results, I derive a simple necessary and sufficient condition for going with

the loser to feature in the optimal experimentation policy. I also show that going with the loser

must involve a simple culling rule: project B is given priority only if the experimenter expects

to discard it before returning to project A. In Section 5.2, I tackle the experimenter’s choice

between staying with the winner, which may involve shared experimentation, and putting the

losing project through a culling phase. While characterising this decision fully is not tractable, I

build on the results of Section 5.1 to provide sufficient conditions for the experimenter to put the

11Exponential bandit problems belong to a class of problems for which the myopically optimal allocation is also
dynamically optimal. This was first shown for discrete time Bernoulli bandits by Berry and Fristedt (1985). Their
result was generalised to a class of two-type symmetric bandit problems by Banks and Sundaram (1992a).
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Figure 2: Optimal experimentation without maintenance costs.

winning project to trial in an open set of beliefs at which both projects are maintained. Proceeding

in this way also illustrates the surprisingly complex switching of trials between projects under

the optimal experimentation policy under maintenance costs. In Section 5.3, I discuss how to

use the results of the two previous sections to complete the description of the optimal policy.

5.1 Discarding vs. Going with the Loser

If (pA, pB) lie in an open set of beliefs in which it is strictly optimal to put project B to trial,

the experimenter’s payoff satisfies

u(pA, pB) = VB[u](pA, pB)− c+ γ

r
> max

{
VA[u](pA, pB)− c+ γ

r
, uD(pA)

}
.

11



The ordinary differential equation appearing here has the general solution

u(pA, pB) = Cz(pB) + pB
λ− [c+ γ]

r + λ
− (1− pB)

c+ γ

r
,

where C is a constant of integration. If project B is discarded at beliefs (pA, p
∗
B) with p∗B <

pB, then the experimenter’s payoff will satisfy the relevant value-matching and smooth-pasting

conditions

u(pA, p
∗
B) = uD(pA), and (4)

∂

∂pB
u(pA, p

∗
B) =

∂

∂pB
uD(pA) = 0, (5)

which, when imposed on the above differential equation, yields

p∗B =
ruD(pA) + c+ γ

λ[1− uD(pA)]
≡ f(pA), and (6)

CL(pA) =
uD(pA)−

[
f(pA)λ−[c+γ]

r+λ − (1− f(pA)) c+γr

]
z(f(pA))

.

Finally, define the payoff function

uL(pA, pB) = CL(pA)z(pB) + pB
λ− [c+ γ]

r + λ
− (1− pB)

c+ γ

r
.

Note that for a fixed pA ∈ [c/λ, 1], there exists some belief pB such that pB > f(pA) only if

pA > f(pA). Also, since u′′D(pA) > 0 for all pA ∈ [c/λ, 1], we have that f ′′(pA) > 0, and hence it

follows that there exist beliefs (pA, pB) with pA ≥ pB > f(pA) if and only if

F (λ, r, c, γ) ≡ max
pA∈[c/λ,1]

pA − f(pA)

> 0,

in which case there exist p < p such that p−f(p) = p−f(p) = 0 and pA > f(pA) for all pA ∈ (p, p).

Since ∂/∂γf(pA) > 0, the envelope theorem implies that ∂/∂γF (λ, r, c, γ) < 0, yielding the following

claim: given (λ, r, c), there exists a cutoff maintenance cost γ̃ such that pA ≥ pB > f(pA) for

some beliefs (pA, pB) if and only if γ < γ̃. Furthermore, since F (λ, r, c, 0) > 0, it follows that

γ̃ > 0. Given beliefs (pA, pB) with pA ≥ pB, the belief f(pA) < pB dictates when the experimenter

should optimally discard project B, conditional on putting it to trial. The previous claim ensures

that there is a non-negligible set of maintenance costs (i.e., γ < γ̃) for which some beliefs (pA, pB)

admit candidate discarding beliefs (pA, f(pA)). As illustrated in Figure 3, this condition requires

that the graph of f has a section that lies above the 45-degree line. The following result, whose

proof follows from a verification argument in the Appendix, shows that for γ ≥ γ̃, having multiple

projects available yields no additional value.
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Proposition 2. Fix beliefs (pA, pB) with pA ≥ pB, and assume that no project has been discarded

so far. If γ ≥ γ̃, then it is optimal to discard project B.

The graph of f when γ ∈ (0, γ̃) can be characterised further (refer again to Figure 3 for

an illustration). First, since uD(1) = (λ−c)/(r+λ), it follows that 1 − f(1) = −γ[r+λ]/λ[r+c] < 0:

the experimenter cannot be given the incentive to experiment with project B when project A

is almost sure to be good. Second, since uD(c/λ) = 0, it follows that c/λ − f(c/λ) = −γ/λ < 0:

the experimenter does not have the incentive to experiment with project B when the beliefs of

both projects are close to the discarding cutoff in the absence of maintenance costs. Third, that

u′D(pA) > 0 for all pA ∈ (c/λ, 1] implies that f ′(pA) > 0: the experimenter discards project B

earlier when she is more optimistic about the quality of project A. Fourth, as noted above, f(pA)

is increasing in the maintenance cost γ: conditional on putting the losing project to trial, the

experimenter discards it earlier when the cost of maintaining the winning project is higher. The

comparative statics of the discarding belief f(pA) in the discount rate r, the success rate for good

projects λ and the direct experimentation cost c are ambiguous in general: intuitively, the payoffs

to retaining or discarding project B are both decreasing in r and c and increasing in λ.

The preceding results do not address whether putting project B to trial at beliefs (pA, pB)

with pA > pB is ever optimal. I now show that the condition that γ ∈ (0, γ̃) is not only necessary

but also sufficient for going with the loser to be optimal at some beliefs. To start, recall that if

beliefs (pA, pB) with pA ≥ pB > f(pA) are such that going with the loser is strictly optimal, we

have that VB[uL](pA, pB)− (c+γ)/r > VA[uL](pA, pB)− (c+γ)/r, which, when it is also the case that

pA = pB, reduces to ∂/∂pBuL(pB, pB) < ∂/∂pAuL(pB, pB). Next, define the belief

p̌ = max

{
p ∈ [p, p] :

∂

∂pA
uL(p′, p′) ≥ ∂

∂pB
uL(p′, p′) for all p′ ∈ [p, p]

}
,

and note that, since (5) ensures that

∂

∂pA
uL(p, p) = u′D(p)

> 0

=
∂

∂pB
uL(p, p),

the continuous differentiability of uL implies that p̌ > p. Finally, p̌ = p if and only if ∂/∂pAuL(p, p) ≥
∂/∂pBuL(p, p) for all p ∈ [p, p]. The next result uses the cutoff belief p̌ to identify an open set

of beliefs at which putting project B to trial when pA > pB is optimal, a stark reversal of the

optimal experimentation policy relative to the case without maintenance costs.

Proposition 3. Suppose that γ ∈ (0, γ̃), fix beliefs (pA, pB) with p̌ ≥ pA ≥ pB, and assume that

no project has been discarded so far.
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1. If pA > c/λ and pB > f(pA), then it is optimal for the experimenter to maintain both

projects and put project B to trial.

2. If pA > c/λ and pB ≤ f(pA), then it is optimal for the experimenter to discard project B

and put project A to trial.

3. If pA ≤ c/λ, then it is optimal for the experimenter to discard both projects.

The result of Proposition 3, whose proof follows from a verification argument in the Appendix,

is illustrated in Figure 3. Going with the loser is optimal at beliefs (p′A, p
′
B): in the absence of

a success, the experimenter’s belief that project B is good drops to f(p′A), after which project

B is discarded and the experimenter puts project A to trial until its belief drops to c/λ. Beliefs

(p′A, p
′′
B) are such that p′′B < f(p′A), so that discarding project B and putting project A to trial is

optimal.

An interesting feature of the optimal policy described in Proposition 3 is that putting project

B to trial ahead of project A involves a simple culling rule: a losing project can be given priority

only in the form of a ‘last chance’ to produce a success, with continued failure in this period

of reprieve leading to the abandonment of the project. In fact, this is a general feature of the

optimal experimentation policy: given beliefs (pA, pB) with pA > pB, any optimal policy that

allocates some trials to project B can never allocate subsequent trials to project A without first

discarding project B.12 Intuitively, Proposition 1 ensures that, conditional on maintaining both

projects, going with the winner is optimal, so that any period of experimentation that fails to

follow this rule must end with the discarding of project B

5.2 Staying with the Winner vs. Going with the Loser

If p̌ = p, then putting project A to trial while maintaining project B is never optimal. In that

case, Proposition 3 describes the optimal policy for all beliefs (pA, pB) with p ≥ pA ≥ pB, while

for all beliefs (pA, pB) with pA ≥ pB and pA > p, discarding project B is optimal.13 Accordingly,

for the remainder of this section, I assume that p̌ < p. As I show in Proposition 4 below, this

condition is not only necessary, but also sufficient for staying with the winner to be optimal in

an open set of beliefs in which both projects are maintained.

Staying with the winner at beliefs (pA, pB) can take two forms: either pA = pB and trials

are shared equally between both projects, or pA > pB and project A is put to trial exclusively.

To start, suppose that (pB, pB) with pB > p̌ lie in an open set of beliefs in which it is strictly

12It can be shown independently that this property is necessary for optimality, although my results in Propo-
sitions 3 and 4 verify directly that uL is the only payoff function satisfying the Bellman equation (3) for beliefs
(pA, pB) with pA > pB at which project B is put to trial.

13Verifying that the associated payoff function solves the Bellman equation (3) would follow from arguments
in the proof of Proposition 3. In particular, note that given any pB ≤ p, u(p, pB) = uD(p), where u is the value
function from Proposition 3. Hence, the value-matching property holds at the boundary of the set of beliefs
{(pA, pB) : pA ≥ pB ≥ p}.
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Figure 3: The graph of f when γ ∈ (0, γ̃). Going with the loser is optimal at beliefs (p′A, p
′
B),

while discarding project B is optimal at beliefs (p′A, p
′′
B).

optimal to share experimentation until the belief that each project is good drops to p̌ at which

point, as is shown to be optimal in Proposition 3, the experimenter goes with the loser. Then

the experimenter’s payoff satisfies

u(pB, pB) = VA[u](pB, pB)− c+ γ

r
= VB[u](pB, pB)− c+ γ

r
> uD(pB).

The two differential equations appearing here can be combined to yield

u(pB, pB) =
1

2
[VA[u](pB, pB) + VB[u](pB, pB)]− c+ γ

r
.

If we let uE(pB) denote the particular solution to this differential equation expressed solely as a
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function of the common belief pB, we have that

u′E(pB) =
∂

∂pA
u(pB, pB) +

∂

∂pB
u(pB, pB),

and so it follows that

uE(pB) = CEz(pB)2 + p2
B

λ− [c+ γ]

r + λ
+ 2pB(1− pB)

λ
2 − [c+ γ]

r + λ
2

− (1− pB)2 c+ γ

r
,

where the constant of integration

CE =

uL(p̌, p̌)−
[
p̌2 λ−[c+γ]

r+λ + 2p̌(1− p̌)
λ
2
−[c+γ]

r+λ
2

− (1− p̌)2 c+γ
r

]
z(p̌)2

,

is obtained by imposing the value-matching condition

uE(p̌) = uL(p̌, p̌). (7)

The expression for uE captures the fact that while the belief pB is common to both projects,

a success can arrive on either project, and that furthermore this belief decays at a slower rate

than when a single project is put to trial, as each project receives only half the experimentation

resources in any time interval.

Now suppose that (pA, pB) lie in an open set of beliefs in which it is strictly optimal to put

project A to trial. The experimenter’s payoff at (pA, pB) satisfies

u(pA, pB) = VA[u](pA, pB)− c+ γ

r
> max

{
VB[u](pA, pB)− c+ γ

r
, uD(pA)

}
. (8)

The ordinary differential equation appearing here has the general solution

u(pA, pB) = Cz(pA) + pA
λ− [c+ γ]

r + λ
− (1− pA)

c+ γ

r
,

where C is a constant of integration.

For beliefs (pA, pB) with pA ≥ pB ≥ p̌, let uW (pA, pB) be the particular solution to the

differential equation in (8) where the constant of integration

CW (pB) =
uE(pB)−

[
pB

λ−[c+γ]
r+λ − (1− pB) c+γr

]
z(pB)

,

is obtained by imposing the value-matching condition

uW (pB, pB) = uE(pB). (9)
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That is, for such beliefs, uW (pA, pB) describes the payoff from putting project A to trial until its

belief drops to pB ≥ p̌, after which trials are shared until the common belief reaches p̌ and the

experimenter, as is shown to be optimal in Proposition 3, goes with the loser.

Now fix beliefs (pA, pB) with pB ∈ [p, p̌). Proposition 3 implies that it cannot be optimal to put

project A to trial until beliefs (pB, pB), since going with the loser is optimal at (p̌, pB). Instead,

as I will verify in Proposition 4 below, conditional on putting project A to trial, the experimenter

will go with the loser at beliefs (p∗A, pB) with p∗A > p̌. To construct the payoff function associated

to staying with the winner at (pA, pB), a first step is to identify this switching belief (p∗A, pB). To

this end, note that if VA[uL](pA, pB) > VB[uL](pA, pB), then the experimenter strictly prefers (a)

putting project A to trial and delaying going with the loser for a small time interval dt at beliefs

(pA, pB) to (b) going with the loser immediately, whereas if VA[uL](pA, pB) < VB[uL](pA, pB), then

the experimenter strictly prefers option (b) to option (a). At an optimal cutoff belief, it must be

that VA[uL](p∗A, pB) = VB[uL](p∗A, pB). In particular, note that VA[uL](p̌, p̌) = VB[uL](p̌, p̌), since
∂/∂pAuL(p̌, p̌) = ∂/∂pBuL(p̌, p̌).

Applying the implicit function theorem, we obtain a differentiable function g such that g(p̌) =

p̌ and VA[uL](g(pB), pB) = VB[uL](g(pB), pB) for all pB ≤ p̌; see Lemma 2 in the Appendix for

details. This lemma also shows that g is decreasing on a domain [p̃, p̌] with p̃ ∈ (p, p̌), and that

furthermore the graphs of f and g never cross. This is illustrated in Figure 4. Finally, for beliefs

(pA, pB) with pA ≥ pB and pB < p̌ at which g(pB) is defined, let uW (pA, pB) be the particular

solution to the differential equation in (8) where the constant of integration

CW (pB) =
uL(g(pB), pB)−

[
g(pB)λ−[c+γ]

r+λ − (1− g(pB)) c+γr

]
z(g(pB))

,

is obtained by imposing the value-matching condition

uW (g(pB), pB) = uL(g(pB), pB). (10)

That is, for such beliefs, uW (pA, pB) describes the payoff from putting project A to trial until its

belief drops to g(pB) > p̌, after which the experimenter goes with the loser.

Define the function h(pB) such that, for beliefs pB ∈ [p̌, p̂],

h(pB) = min{pA ≥ pB : uW (p′A, pB) ≥ max{uL(p′A, pB), uD(p′A)} for all p′A ∈ [pB, pA]},

while for beliefs pB < p̌ at which g(pB) is defined,

h(pB) = min{pA ≥ g(pB) : uW (p′A, pB) ≥ max{uL(p′A, pB), uD(p′A)} for all p′A ∈ [g(pB), pA]}.

In words, h(pB) describes the first belief pA for which, working backward in time starting from

beliefs (pB, pB) when pB ≥ p̌ and from beliefs (g(pB), pB) when pB < p̌, the experimenter
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weakly prefers the best option from (a) going with the loser and (b) discarding project B and

experimenting with project A only, to staying with the winner. Finally, define the belief

p̂ = min

{
p ≥ p̌ :

∂

∂pA
uL(p′, p′) ≤ ∂

∂pB
uL(p′, p′) for all p′ ∈ [p̌, p]

}
.

Note that p̌ < p implies that p̌ < p̂ < p. First, (5) ensures that

∂

∂pA
uL(p, p) = u′D(p)

> 0

=
∂

∂pB
uL(p, p),

so that the continuous differentiability of uL implies that p̂ < p. Second, since p̌ < p only

if ∂/∂pAuL(p, p) < ∂/∂pBuL(p, p) for all p > p̌ close to p̌, it follows that p̂ > p̌. As I show in

Proposition 4 below, (p̂, p̂) are the highest beliefs at which shared experimentation until the

common belief reaches p̌ is optimal. Figure 4 illustrates the graph of h, and Lemma 2 in the

Appendix shows that h is increasing on [p̃, p̂], with h(p̃) = g(p̃), h(p̂) = p̂, h(pB) > g(pB) for all

pB ∈ (p̃, p̌) and h(pB) > pB for all pB ∈ [p̌, p̂). A final note, also illustrated in Figure 4, is that

the graphs of f and h may cross. In Section 5.3 below, I discuss a numerical example in which

this is indeed the case.

Define the stay-with-the-winner region

PW =
{

(pA, pB) : pB ∈ (p̃, p̌), g(pB) < pA < h(pB)
}

∪
{

(pA, pB) : pB ∈ [p̌, p̂), pB ≤ pA < h(pB)
}
,

and the belief

p̊ = max

{
p ∈ [p̂, p] :

∂

∂pA
uL(p′, p′) ≥ ∂

∂pB
uL(p′, p′) for all p′ ∈ [p̂, p]

}
.

Together with Proposition 3, the following result characterises the optimal experimentation policy

for beliefs (pA, pB) with p̊ > pA ≥ pB.

Proposition 4. Suppose that γ ∈ (0, γ̃) and p̌ < p, fix beliefs (pA, pB) with pA ≥ pB and

pA ∈ (p̌, p̊), and assume that no project has been discarded so far.

1. If (pA, pB) ∈ PW , then it is optimal for the experimenter to maintain both projects, to

put project A to trial when pA > pB, and to allocate experimentation equally between both

projects when pA = pB.

2. If (pA, pB) /∈ PW and pB > f(pA), then it is optimal for the experimenter to maintain both

projects and put project B to trial.
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3. If (pA, pB) /∈ PW and pB ≤ f(pA), then it is optimal for the experimenter to discard project

B and put project A to trial.

A downside of this characterisation is that it involves the graphs of g and h, along with their

relationships with the graph of f , which are not tractable. However, irrespective of the global

properties of these graphs, the condition p̌ < p ensures the existence of an open set of beliefs from

which the optimal experimentation policy with maintenance costs involves substantial switching

back and forth between both projects, with patterns that differ strikingly from the optimal

policy without maintenance costs. In particular, while Proposition 3 shows that going with the

loser must be followed by the discarding of project B, Propositon 4 shows that staying with the

winner must be followed by a culling phase for project B in which project A, while no longer

put to trial, is nevertheless maintained. Figure 4 illustrates these rich experimentation dynamics.

Staying with the winner is optimal at beliefs (p′A, p
′
B) and (p′′A, p

′′
B). From beliefs (p′A, p

′
B), the

experimenter first puts project A to trial until, in the absence of a success, its belief drops to p′B,

after which experimentation is shared until the common belief reaches p̌, after which project B

enters a culling phase. From beliefs (p′′A, p
′′
B), the experimenter puts project A to trial but, in

the absence of a success, going with the loser is optimal at beliefs (g(p′′B), p′′B), before the belief

of project A reaches that of project B.

5.3 Completing the Characterisation of the Optimal Policy

In one case, the results of Propositions 3 and 4 are enough to characterise the optimal exper-

imentation policy for all beliefs. Specifically, if p̊ = p, then discarding project B is optimal at

all beliefs (pA, pB) with pA ≥ pB ≥ p at which both projects are maintained.14 For example, if

λ = r = 1, c = 1/2 and γ = 1/100, then it can be computed that p ≈ 0.510, p ≈ 0.986, p̌ ≈ 0.582,

p̃ ≈ 0.566, p̂ ≈ 0.961, and that p̊ = p.15 In fact, other than depicting the case of p̊ < p, Figure 4

is drawn to reflect the properties of this numerical example. In particular, it can be verified that

the graph of h lies above the graph of f for all pB in a sub-interval of [p̃, p̂].

If instead p̊ < p, then the results of Propositions 3 and 4 can still be exploited to describe

the optimal experimentation policy. Consider a belief p̌′ ∈ [p̊, p] such that ∂/∂pAuL(p̌′, p̌′) =
∂/∂pBuL(p̌′, p̌′) and going with the loser is optimal at (p̌′, p̌′), along with a belief p̂′ ∈ (p̌′, p) such

that ∂/∂pAuL(p̂′, p̂′) = ∂/∂pBuL(p̂′, p̂′) and ∂/∂pAuL(p′, p′) < ∂/∂pBuL(p′, p′) for all p′ ∈ (p̌′, p̂′). Such

beliefs must exist if p̊ < p (e.g., p̌′ = p̊ identifies one candidate). But then p̌′ can be substituted for

p̌ and p̂′ can be substituted for p̂ in the results of Section 5.2, and a version of Proposition 4 then

14Verifying that the associated payoff function solves the Bellman equation (3) at these beliefs would follow
from arguments contained in the proofs of Propositions 3 and 4. In that case, f(p) = h(p) and, given any pB < p,
limpA→p u(pA, pB) = uD(p), where u is the value function from Proposition 4. Hence, the value-matching property
holds at the boundary of the set of beliefs {(pA, pB) : pA ≥ pB ≥ p}.

15Although this last property holds in all numerical examples I have computed, I cannot prove that it must be
satisfied in general.
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Figure 4: The graphs of g and h when γ ∈ (0, γ̃) and p̌ < p. Staying with the winner is optimal

at beliefs (p′A, p
′
B) and (p′′A, p

′′
B), while going with the loser is optimal at beliefs (p′′′A , p

′′′
B).
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describes the optimal experimentation policy for beliefs (pA, pB) with pA ≥ pB and pA ∈ (p̌′, p̊′),

for some p̊′ ∈ (p̌′, p].

Since, as noted in Section 5.2, ∂/∂pAuL(p, p) > ∂/∂pBuL(p, p) for all p close to p, this extension

of Proposition 4 implies that it must be optimal to go with the loser for beliefs (pA, pB) with

pB > f(pA) close to (p, p). Since, by Proposition 3, the same holds for beliefs close to (p, p), and

furthermore by Proposition 4 staying with the winner is optimal for some beliefs (p, p) with p ∈
(p, p) (if p̌ < p), this highlights a noteworthy non-monotonicity in the optimal experimentation

policy with maintenance costs. Intuitively, for both these sets of beliefs, it is as though the

experimenter has decided not to maintain both projects in the long run. It remains that if a single

project is to be maintained it should be project A. Yet, for beliefs (pA, pB) with pA ≥ pB > f(pA),

putting project B to trial yields strictly higher payoffs than discarding it immediately. There is

an interesting difference in the experimenter’s incentives in these two regions. For beliefs around

(p, p), the experimenter maintains a single project in the long run because she is optimistic about

the quality of both projects. Since both projects are likely to eventually yield a success, she

puts the losing project B to trial in the hope of a quick success and then discards it if these

trials fail and moves on to the winning project A. For beliefs around (p, p), the experimenter

maintains a single project in the long run because she is pessimistic about the quality of both

projects. Neither project is likely to yield a success, so that exploiting some of the residual

value of project B and pinning its hopes on developing project A at a reduced cost is optimal.

This difference in interpretation turns out to be important in Section 6 where I consider the

case in which project successes can be accumulated. In that case, going with the loser when the

experimenter is optimistic about both projects need not be optimal, but it remains optimal when

the experimenter is pessimistic about both projects.

6 Additive Project Successes

I have assumed that the outcomes of the projects are perfect substitutes in that the experimenter

searches for a single success on either project. An alternative assumption is that a successful

project is retired but the experimenter obtains a payoff of 1 from all remaining projects that

succeed. In this section, I do not fully characterise optimal experimentation with additive project

successes, but instead show that if the set of beliefs at which maintaining both projects is optimal

is nonempty, then it must contain beliefs at which putting project B to trial is optimal. Hence,

the optimality of going with the loser is not due solely to the experimenter having an inelastic

demand for successes. Rather, it is a key feature of minimising total project development costs

in the presence of maintenance costs.

If (pA, pB) lie in an open set of beliefs in which it is strictly optimal to put project B to trial
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while project A is maintained, the experimenter’s payoff satisfies the differential equation

u(pA, pB) =
pBλ[1 + uD(pA)]− [c+ γ]

pBλ+ r
− λpB(1− pB)

pBλ+ r

∂

∂pB
u(pA, pB).

The difference with similar expressions from previous sections is that when successes can be

accumulated, the success of project B leads to continued experimentation with project A, so

that the experimenter’s payoff to a success on B is 1 + uD(pA). If project B is discarded at

beliefs (pA, p
∗
B) with p∗B ≤ pB, then value-matching and smooth-pasting conditions

u(pA, p
∗
B) = uD(pA) and

∂

∂pB
u(pA, p

∗
B) = 0,

when imposed on the differential equation above, yield the following version of (6):

p∗B =
ruD(pA) + c+ γ

λ
≡ f̃(pA). (11)

Since 1 − uD(pA) ∈ [0, 1], it follows that f̃(pA) ≤ f(pA). That is, when successes can be

accumulated, the experimenter allocates additional trials to project B before discarding it. As

in Section 5.1, there exists some belief pB such that pB > f̃(pA) if and only if, for some pA,

pA − f̃(pA) > 0. However, since uD(1) = (λ−c)/(r+λ), it need not be the case that 1 − f̃(1) < 0,

which, recalling Section 5.1, means that beliefs (p, p) such that p = f̃(p) need not exist. However,

since uD(c/λ) = 0, it follows that c/λ− f̃(c/λ) = −γ/λ < 0. That is, beliefs (p, p) such that p = f̃(p)

with p > c/λ must exist.

Suppose, towards a contradiction, that staying with the winner is optimal in a neighbourhood

of (p, p), so that the experimenter’s payoff satisfies the differential equation

u(p, p) =
pλ[1 + uD(p)]− [c+ γ]

pλ+ r
−
λp(1− p)
pλ+ r

∂

∂pA
u(p, p).

Evaluated at p = f̃(p), (11) can be rewritten as

uD(p) =
pλ[1 + uD(p)]− [c+ γ]

pλ+ r
.

Hence,

u(p, p)− uD(p) = −
λp(1− p)
pλ+ r

∂

∂pA
u(p, p)

< 0,

so that u cannot satisfy the Bellman equation of the problem with additive successes, yielding

the desired contradiction. Intuitively, at beliefs close to (p, p), the experimenter strictly prefers
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discarding project B immediately to going with the winner, but for beliefs (pA, pB) with pB >

f(pA), she strictly prefers going with the loser to discarding project B immediately.

When successes can be accumulated, the experimenter has no incentive to go with the loser

in order to maintain a single project in the long run when she is optimistic about both projects.

This contrasts with the case of substitutable projects, in which a quick success on the winning

project A when B is maintained kills the value of project B and sinks the expended maintenance

costs. When successes are additive, a quick success on project A allows the experimenter to

exploit project B’s value promptly. However, when the experimenter is pessimistic about both

projects, the likelihood of obtaining two successes is small and the experimenter has an incentive

to economise on maintenance costs by going with the loser in order to quickly focus the brunt of

its research efforts on the winning project.

7 Conclusion

The standard approach to experimentation assumes that keeping the option of researching

projects that are not currently being put to trial is costless. However, that keeping options

open can involve maintenance costs is natural in many settings. This paper shows that such

costs generate new trade-offs for experimenters by giving them incentives to manage the timing

of the realisation of inactive projects’ option values and have important implications for optimal

experimentation policies. In particular, my results provide a rationale for project development

in which less promising alternatives receive priority over more promising ones.

While investigating the effects of maintenance costs on optimal experimentation in more gen-

eral bandit settings is an interesting avenue for future work, the simple and tractable exponential

bandit framework also allows for additional generalisations of my results. In particular, the culling

rule for losing projects is key for characterising optimal experimentation with maintenance costs

and it takes a more general form in the case in which the experimenter has more than two risky

projects. When the experimenter has three risky projects ranked by their beliefs that they are

good, it can be shown that if it is ever optimal to experiment with the middle-ranked project,

then experimentation can proceed to the top-ranked project only when both the middle-ranked

and the lowest-ranked projects have been discarded.16 In other words, experimenting with a

middle-ranked project grants a ‘last chance’ to all projects of a lower or equal rank.

A unified treatment of experimentation with both maintenance and switching costs also

presents interesting possibilities. In an environment in which an experimenter can acquire new

projects at a cost at any time, it is plausible that start-up costs for inactive projects are higher for

those projects that have not been maintained. In that case, the experimenter would trade off (a)

acquiring multiple projects early and paying to maintain inactive projects and (b) acquiring one

16This was shown in an earlier draft of the paper, and details are available upon request. The argument is easily
extended to more than three projects.
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project at a time and bearing switching costs whenever project development priorities change.

A model along these lines could shed light on when a portfolio approach to experimentation

is preferred to a more focused sequential approach. Experimentation dynamics would vary in

these approaches, as an experimenter with a portfolio of projects purchases through maintenance

costs the flexibility of re-prioritising between them easily, whereas an experimenter acquiring new

projects as needed saves on maintenance costs by facing higher switching costs, and so should

delay transitions between projects.
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A Appendix

Proof of Lemma 1. Using the arguments from the text, the Bellman equation (1) can be rewritten

as

u(pA) = max

{
0,
pAλ

r

[
1− u(pA)− (1− pA)u′(pA)

]
− c

r

}
. (12)

Lemma 1 follows if I show that uD satisfies (12). Suppose that pA ≤ c/λ. Hence, we have that

uD(pA) = 0 and u′D(pA) = 0, and that

pAλ

r

[
1− uD(pA)− (1− pA)u′D(pA)

]
− c

r
=
pAλ− c

r

≤ 0,
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so that (12) is satisfied. Now suppose that pA > c/λ. We have that

pAλ

r

[
1− uD(pA)− (1− pA)u′D(pA)

]
− c

r
= uD(pA)

> 0,

so that (12) is satisfied. The inequality follows since uD(c/λ) = 0 and u′D(pA) > 0 for pA > c/λ.

Proof of Proposition 1. Fix beliefs (pA, pB) with pA ≥ pB, and assume that no project has been

discarded so far.

Step 1. A candidate value function, which I will show satisfies the Bellman equation (3), needs

to be defined. Given p ≥ c/λ, define the function

ũE(p) = C̃Ez(p)
2 + p2 λ− c

r + λ
+ 2p(1− p)

λ
2 − c
r + λ

2

− (1− p)2 c

r
,

where

C̃E =
c(r + λ− c)(λ− c)
z( cλ)r(r + λ)(r + λ

2 )
.

Now given beliefs pA ≥ pB ≥ c/λ, define the function

uA(pA, pB) = CA(pB)z(pA) + pA
λ− c
r + λ

− (1− pA)
c

r
,

where

CA(pB) =
ũE(p)−

[
pB

λ−c
r+λ − (1− pB) cr

]
z(pB)

.

Intuitively, ũE(p) describes the experimenter’s payoff from beliefs (p, p) to sharing experimen-

tation between both projects until beliefs drop to (c/λ, c/λ) when both projects are discarded,

while uA(pA, pB) describes the experimenter’s payoff from beliefs (pA, pB) to allocating all trials

to project A until its belief drops to pB, following which experimentation is shared until beliefs

(c/λ, c/λ).17 Hence, these payoffs are constructed to satisfy the value-matching and smooth-pasting

conditions

ũE(c/λ) = 0,

ũ′E(c/λ) = 0,

uA(pB, pB) = ũE(pB), and (13)

∂

∂pA
uA(pB, pB) =

1

2
ũ′E(pB). (14)

17An exhausive derivation of closely related payoff functions is presented in Section 5.2.
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Finally, for all pA ≥ pB, define

u(pA, pB) =

uA(pA, pB) if pA > c/λ,

0 if pA ≤ c/λ.

Step 2. It needs to be verified that u(pA, pB) = 0 is a solution to the Bellman equation (3) when
c/λ ≥ pA ≥ pB. Note that since ∂

∂pA
u(pA, pB) = 0 and ∂

∂pB
u(pA, pB) = 0, we have that

VB(pA, pB)− c

r
=
pBλ− c

r

≤ VA(pA, pB)− c

r

=
pAλ− c

r

≤ 0

= uD(pA),

so that (3) is satisfied.

Step 3. It needs to be verified that uA is a solution to the Bellman equation (3) when

pA > c/λ. First, we have that

VA(pA, pB)− c

r
− uD(pA) = z(pA)[CA(pB)− CD]

≥ 0.

Second, if pB ≤ c/λ, we can impose further that uA(pA, pB) = uD(pA). Hence, since ∂
∂pB

uD(pA) =

0, we have that

VA(pA, pB)− c

r
−
[
VB(pA, pB)− c

r

]
= uD(pA)− 1

r
[pBλ[1− uD(pA)]− c]

= uD(pA)

[
1 +

pBλ

r

]
−
[
pBλ− c

r

]
> 0,

where the first equality uses the fact that VA(pA, pB) − c/λ = uD(pA). Third, suppose that
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pA > pB > c/λ. Note that

VA(pA, pB)− c

r
−
[
VB(pA, pB)− c

r

]
= uA(pA, pB)−

[
VB(pA, pB)− c

r

]
=
pBλ+ r

r

[
uA(pA, pB)−

[
pBλ− c
pBλ+ r

− λpB(1− pB)

pBλ+ r

∂

∂pB
uA(pA, pB)

]]
=
pBλ+ r

r

[
uA(pA, pB)−

[
pBλ− c
pBλ+ r

− λpB(1− pB)

pBλ+ r
C ′A(pB)z(pA)

]]
=
pBλ+ r

r

[
uA(pA, pB)− pBλ− c

pBλ+ r
− CA(pB)z(pA)− z(pA)

z′(pB)

λ[r + c]

r[r + λ]

]
=
pBλ+ r

r

[[
pA −

z(pA)

z′(pB)

]
λ[r + c]

r[r + λ]
− c

λ
− pBλ− c
pBλ+ r

]
, (15)

where the fourth equality follows since z(p)/z′(p) = −λp(1−p)/(pλ+r) and

C ′A(pB)z(pB) =
∂

∂pB
uA(pB, pB)

=
1

2
ũ′E(pB)

=
∂

∂pA
uA(pB, pB)

= CA(pB)z′(pB) +
λ[r + c]

r[r + λ]
,

where the second equality follows from evaluating the total derivative of (13) and using (14).

Using (15), we have that

∂

∂pA

[
VA(pA, pB)− c

λ
−
[
VB(pA, pB)− c

λ

] ]
> 0,

if and only if z′(pA)/z′(pB) < 1, which holds since pA > pB and it can be verified that, for all p,

z′(p) < 0 and z′′(p) > 0. Hence, since

VA(pB, pB)− c

λ
−
[
VB(pB, pB)− c

λ

]
= 0,

it follows that, for pA > pB,

VA(pA, pB)− c

λ
−
[
VB(pA, pB)− c

λ

]
> 0.

The three steps above establish that uA(pA, pB) satisfies (3) at all beliefs (pA, pB) with pA ≥ pB
and pA > c/λ.
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Proof of Proposition 2. If γ ≥ γ̃, then, by definition, given any beliefs (pA, pB) with pA ≥ pB

at which no project has been discarded so far, we also have that f(pA) ≥ pA. Hence, the proof

verifies that uD is a solution to the Bellman equation (3) at all such beliefs. First, note that

VB[uD](pA, pB)− c+ γ

r
=
pBλ

r
[1− uD(pA)− (c+ γ)]

≤ uD(pA),

where the inequality follows from the fact that pB ≤ f(pA). Second, it follows from Lemma 1

that

VA[uD](pA, pB)− c+ γ

r
= uD(pA)− γ

r

< uD(pA),

so that (3) is satisfied.

Proof of Propsition 3. Suppose that γ ∈ (0, γ̃), fix beliefs (pA, pB) with p̌ ≥ pA ≥ pB, and assume

that no project has been discarded so far.

Step 1. It needs to be verified that uD is a solution to the Bellman equation (3) when pB ≤ f(pA).

First, note that

VA[uD](pA, pB)− c+ γ

r
= uD(pA)− γ

r

< uD(pA).

Second, using ∂/∂pBuD(pA) = 0, we have that

VA[uD](pA, pB)− c+ γ

r
−
[
VB[uD](pA, pB)− c+ γ

r

]
= uD(pA)− γ

r
− 1

r
[pBλ[1− uD(pA)]− [c+ γ]]

= uD(pA)

[
1 +

pBλ

r

]
−
[
pBλ− c

r

]
> 0,

so that (3) is satisfied.

Step 2. It needs to be verified that uL is a solution to the Bellman equation (3) when pB > f(pA).

First, since uL(pA, f(pA)) = uD(pA) and uL(pA, pB) is increasing in pB, it follows that

VB[uL](pA, pB)− c+ γ

r
= uL(pA, pB)

> uD(pA).
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Second, we have that

VB[uL](pA, f(pA))−c+ γ

r
−
[
VA[uL](pA, f(pA))− c+ γ

r

]
=
pAλ+ r

r

[
uD(pA)−

[
pAλ− [c+ γ]

pAλ+ r
− λpA(1− pA)

pAλ+ r

∂

∂pA
uL(pA, f(pA))

]]
=
pAλ+ r

r

[
uD(pA)−

[
pAλ− [c+ γ]

pAλ+ r
− λpA(1− pA)

pAλ+ r
u′D(pA)

]]
=
γ

r

> 0. (16)

The second equality follows since the value-matching and smooth-pasting conditions (4) and (5)

at beliefs (pA, f(pA)) also implies that a smooth-pasting condition holds with respect to belief

pA, or that

∂

∂pA
uL(pA, f(pA)) = u′D(pA).

To see this, differentiate the identity (4) with respect to pA to obtain

u′D(pA) =
∂

∂pA
uL(pA, f(pA)) + f ′(pA)

∂

∂pB
uL(pA, f(pA)),

with the result following from (5). Third, we have that

VB[uL](pA, pA)−c+ γ

r
−
[
VA[uL](pA, pA)− c+ γ

r

]
=
pAλ+ r

r

[
uL(pA, pA)−

[
pAλ− [c+ γ]

pAλ+ r
− λpA(1− pA)

pAλ+ r

∂

∂pA
uL(pA, pA)

]]
=
λpA(1− pA)

r

[
∂

∂pA
uL(pA, pA)− ∂

∂pB
uL(pA, pA)

]
≥ 0, (17)

where the inequality follows since pA ≤ p̌. Note that equations (16) and (17) ensure that the

Bellman equation (3) is satisfied at beliefs (pA, f(pA)) and (pA, pA). Fourth, to verify that (3)

is also satisfied at beliefs (pA, pB) with pB ∈ (f(pA), pA), first note that the function y(pB; pA)

defined as

y(pB; pA) =
r

pAλ+ r

[
VB[uL](pA, pB)− c+ γ

r
−
[
VA[uL](pA, pB)− c+ γ

r

]]
= CL(pA)z(pB) + pB

λ− [c+ γ]

r + λ
− (1− pB)

c+ γ

r

−
[
pAλ− [c+ γ]

pAλ+ r
− λpA(1− pA)

pAλ+ r
C ′L(pA)z(pB)

]
,
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is convex since z(·) is convex. Furthermore, by the above we have that y(f(pA); pA) > 0

and y(pA; pA) ≥ 0. Hence, if y′(pA; pA) ≤ 0, it must be that y(pB; pA) ≥ 0, and hence that

VB[uL](pA, pB)− (c+γ)/r − [VA[uL](pA, pB)− (c+γ)/r] ≥ 0, for all pB ∈ (f(pA), pA). Finally,

y′(pA; pA) =
∂

∂pB
uL(pA, pA) +

λpA(1− pA)

pAλ+ r
C ′L(pA)z′(pA)

=
∂

∂pB
uL(pA, pA)− C ′L(pA)z(pA)

=
∂

∂pB
uL(pA, pA)− ∂

∂pA
uL(pA, pA)

≤ 0,

as desired, with the second equality following from the fact that z(p)/z′(p) = −λp(1−p)/(pλ+r).

Step 3. It remains to be shown that uL satisfying (3) when pB > f(pA) and uD satisfying (3)

when pB ≤ f(pA) is sufficient to ensure that going with the loser and discarding project B, are,

respectively, optimal for those regions of beliefs. Note that given any beliefs in P̌ = {(pA, pB) :

p̌ ≥ pA ≥ pB}, all feasible experimentation policies lead to belief paths that remain in this set,

so that the Bellman equation (3) is indeed a necessary and sufficient condition for optimality in

the problem with a belief space restricted to P̌ .

I make a few remarks before proceeding with the proofs of the results of Section 5.2. For a

start, to characterise the mapping g, it will be useful to work with a simple monotone transfor-

mation of the difference VA[uL](pA, pB)− VB[uL](pA, pB). To this end, define the mapping

w(pA, pB) =
r

pAλ+ r
[VA[uL](pA, pB)− VB[uL](pA, pB)]

=
pAλ− [c+ γ]

pAλ+ r
− λpA(1− pA)

pAλ+ r

∂

∂pA
uL(pA, pB)− uL(pA, pB).

It is also useful to state some smooth-pasting properties that the payoff functions uE and uW

must satisfy. First, note that

uW (pB, pB) =
λpB − [c+ γ]

pBλ+ r
− λpB(1− pB)

pBλ+ r

∂

∂pA
uW (pB, pB)

= uE(pB)

=
λpB − [c+ γ]

pBλ+ r
− λpB(1− pB)

pBλ+ r

1

2
u′E(pB),

where the second equality follows from the value-matching condition (7), implies the smooth-

pasting condition

∂

∂pA
uW (pB, pB) =

1

2
u′E(pB), (18)
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which in turn, since u′E(pB) = ∂/∂pAuW (pB, pB) + ∂/∂pBuW (pB, pB), also implies that

∂

∂pB
uW (pB, pB) =

1

2
u′E(pB). (19)

Second, note that

0 = w(g(pB), pB)

=
g(pB)λ− [c+ γ]

g(pB)λ+ r
− λg(pB)(1− g(pB))

g(pB)λ+ r

∂

∂pA
uL(g(pB), pB)− uL(g(pB), pB)

=
g(pB)λ− [c+ γ]

g(pB)λ+ r
− λg(pB)(1− g(pB))

g(pB)λ+ r

∂

∂pA
uL(g(pB), pB)− uW (g(pB), pB)

=
λg(pB)(1− g(pB))

g(pB)λ+ r

[
∂

∂pA
uW (g(pB), pB)− ∂

∂pA
uL(g(pB), pB)

]
,

where the second equality follows from the value-matching condition (10), implies the smooth-

pasting condition

∂

∂pA
uW (g(pB), pB) =

∂

∂pA
uL(g(pB), pB). (20)

The following lemma establishes the key properties of the mappings g and h, as discussed in

Section 5.2 and illustrated in Figure 4.

Lemma 2. If p < p̌ < p̂ < p, then the mappings g and h have the following properties:

1. h(p) > p for all p ∈ [p̌, p̂) and h(p̂) = p̂.

2. g(pB) is decreasing in pB.

3. There exists a belief p̃ < p̌ such that g(p̃) = h(p̃). Furthermore, p̃ > f(g(p̃)).

4. h(pB) is increasing in pB.

Proof of Lemma 2. For Part 1, I first show that h(p̌) > p̌. To see this, note that while uW (p̌, p̌) =

uL(p̌, p̌) by (10), we have that uW (pA, p̌) > uL(pA, p̌) for all pA > p̌ close to p̌. Indeed, since

CW (p̌) = CL(p̌), we have that

∂

∂pA
uW (p̌, p̌) =

∂

∂pB
uL(p̌, p̌)

=
∂

∂pA
uL(p̌, p̌),

where the second equality follows from the definition of p̌, but also that

∂2

∂p2
A

uW (p̌, p̌) =
∂2

∂p2
B

uL(p̌, p̌)

>
∂2

∂p2
A

uL(p̌, p̌),
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as desired. The inequality follows from the fact that ∂/∂pBuL(p, p) ≤ ∂/∂pAuL(p, p) for all p < p̌

close to p̌ and ∂/∂pBuL(p, p) > ∂/∂pAuL(p, p) for all p > p̌ close to p̌. Fourth, a very similar argu-

ment establishes that h(p̂) = p̂. In this case, we also have that uW (p̂, p̂) = uL(p̂, p̂), that CW (p̂) =

CL(p̂) and that ∂/∂pAuW (p̂, p̂) = ∂/∂pAuL(p̂, p̂). However, since ∂/∂pBuL(p, p) > ∂/∂pAuL(p, p) for

all p ≤ p̂ close to p̂ and ∂/∂pBuL(p, p) ≤ ∂/∂pAuL(p, p) for all p > p̂ close to p̂, it follows that
∂2/∂p2AuW (p̂, p̂) < ∂2/∂p2AuL(p̂, p̂), so that uW (pA, p̂) < uL(pA, p̂) for all pA > p̂ close to p̂. Finally,

to show that h(p) > p for all p ∈ (p̌, p̂), it suffices to show that uW (p, p) > uL(p, p) for all such

p, given that p > f(p) and hence uL(p, p) > uD(p). To see this, fix any p∗ ∈ [p̌, p], and, given

any belief p′ ∈ [p∗, p], let u∗E(p′) denote the payoff to sharing experimentation from beliefs (p′, p′)

until beliefs (p∗, p∗), after which the experimenter goes with the loser. By the same arguments

that accompanied the construction of uE in Section 5.2, it follows that

u∗E(p′) = C∗Ez(p
′)2 + p′

2λ− [c+ γ]

r + λ
+ 2p′(1− p′)

λ
2 − [c+ γ]

r + λ
2

− (1− p′)2 c+ γ

r
,

where the constant of integration

C∗E =

uL(p∗, p∗)−
[
p∗2 λ−[c+γ]

r+λ + 2p∗(1− p∗)
λ
2
−[c+γ]

r+λ
2

− (1− p∗)2 c+γ
r

]
z(p∗)2

,

is obtained by imposing the value-matching condition

u∗E(p∗) = uL(p∗, p∗). (21)

Note that ∂/∂p∗C∗E ≤ 0 if and only if

0 ≥
[
∂

∂pA
uL(p∗, p∗) +

∂

∂pB
uL(p∗, p∗)−

[
u∗E
′(p∗)− 2C∗Ez

′(p∗)z(p∗)
] ]
z(p∗)2

− 2z′(p∗)z(p∗)

[
uL(p∗, p∗)−

[
u∗E(p∗)− C∗Ez(p∗)2

] ]
=

[
∂

∂pA
uL(p∗, p∗) +

∂

∂pB
uL(p∗, p∗)− u∗E

′(p∗)

]
z(p∗)2,

which holds since ∂/∂pAuL(p∗, p∗) ≤ ∂/∂pBuL(p∗, p∗) = u∗E
′(p∗)/2, with the inequality strict if p∗ > p̌.

This last inequality follows by definition since p∗ ∈ [p̌, p̂), and the last equality reflects a smooth-

pasting property, which can be verified by noting that

uL(p∗, p∗) =
λp∗ − [c+ γ]

p∗λ+ r
− λp∗(1− p∗)

p∗λ+ r

∂

∂pB
uL(p∗, p∗)

= u∗E(p∗)

=
λp∗ − [c+ γ]

p∗λ+ r
− λp∗(1− p∗)

p∗λ+ r

1

2
u∗E
′(p∗),
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where the second equality follows from (21). Finally, since u∗E is increasing in C∗E and p > p̌, it

follows that

uW (p, p) = u∗E(p)
∣∣
p∗=p̌

> u∗E(p)
∣∣
p∗=p

= uL(p, p),

as desired.

For Part 2, first suppose that w(g(pB), pB) = 0 in a neighbourhood of pB. Applying the

implicit function theorem and differentiating this identity with respect to pB yields that

∂

∂pA
w(g(pB), pB)g′(pB) +

∂

∂pB
w(g(pB), pB) = 0,

so that g is differentiable whenever ∂/∂pAw(g(pB), pB) 6= 0. Second, note that

∂

∂pB
w(g(pB), pB) = −

[
λg(pB)(1− g(pB))

g(pB)λ+ r

∂2

∂pA∂pB
uL(g(pB), pB) +

∂

∂pB
uL(g(pB), pB)

]
= −

[
λg(pB)(1− g(pB))

g(pB)λ+ r

∂

∂pA

[
pBλ+ r

λpB(1− pB)

[
pBλ− [c+ γ]

pBλ+ r
− uL(g(pB), pB)

]]
+

∂

∂pB
uL(g(pB), pB)

]
=

pBλ+ r

λpB(1− pB)

λg(pB)(1− g(pB))

g(pB)λ+ r

∂

∂pA
uL(g(pB), pB)− ∂

∂pB
uL(g(pB), pB)

=
pBλ+ r

λpB(1− pB)

[
g(pB)λ− [c+ γ]

g(pB)λ+ r
− pBλ− [c+ γ]

pBλ+ r

+
λpB(1− pB)

pBλ+ r

∂

∂pB
uL(g(pB), pB)

]
− ∂

∂pB
uL(g(pB), pB)

=
pBλ+ r

λpB(1− pB)

[
g(pB)λ− [c+ γ]

g(pB)λ+ r
− pBλ− [c+ γ]

pBλ+ r

]
≥ 0,

with the inequality strict if g(pB) > pB. The second and fourth equalities follow from (10), and

the inequality follows since (pλ−[c+γ])/(pλ+r) is strictly increasing in p. Third, note that when g is

differentiable we have that

w(g(pB), pB) =
g(pB)λ− [c+ γ]

g(pB) + r
− λg(pB)(1− g(pB))

g(pB)λ+ r

∂

∂pA
uL(g(pB), pB)

−
[
pBλ− [c+ γ]

pBλ+ r
− λpB(1− pB)

pBλ+ r

∂

∂pB
uL(g(pB), pB)

]
= uW (g(pB), pB)−

[
pBλ− [c+ γ]

pBλ+ r
− λpB(1− pB)

pBλ+ r

∂

∂pB
uW (g(pB), pB)

]
,
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where the second equality follows by the smooth-pasting properties (20) and

∂

∂pB
uW (g(pB), pB) =

∂

∂pB
uL(g(pB), pB). (22)

The latter follows by differentiating (10) with respect to pB to obtain

∂

∂pB
uW (g(pB), pB)− ∂

∂pB
uL(g(pB), pB) = g′(pB)

[
∂

∂pA
uL(g(pB), pB)− ∂

∂pA
uW (g(pB), pB)

]
,

where (22) follows from (20). Finally, when g is differentiable

∂

∂pA
w(g(pB), pB) =

∂

∂pA
uW (g(pB), pB) +

λpB(1− pB)

pBλ+ r

∂2

∂pB∂pA
uW (g(pB), pB)

≥ 0,

with the inequality strict if g(pB) > pB. The inequality follows from an argument almost identical

to that establishing the related inequality in the second point of this paragraph. Hence, it follows

that g′(pB) < 0 whenever g(pB) > pB and ∂/∂pAw(g(pB), pB) 6= 0.

For Part 3, first note that ∂/∂pAw(p̌, p̌) > 0. To see this suppose, towards a contradiction,

that there exists some pA > p̌ such that w(p′A, p̌) ≤ 0 for all p′A ∈ [p̌, pA]. For any such p′A, let

u∗W (p′A, p̌) denote the payoff to experimenting with project A until its belief drops to p∗A ∈ [p̌, p′A],

after which the experimenter goes with the loser. By the same arguments that accompanied the

construction of uW in Section 5.2, it follows that

u∗W (p′A, p̌) = C∗W z(p
′
A) + p′A

λ− [c+ γ]

r + λ
− (1− p′A)

c+ γ

r
,

where the constant of integration

C∗W =
uL(p∗A, p̌)−

[
p∗A

λ−[c+γ]
r+λ − (1− p∗A) c+γr

]
z(p∗A)

,

is obtained by imposing the value-matching condition

u∗W (p∗A, p̌) = uL(p∗A, p̌). (23)

Note that ∂/∂p∗AC
∗
W ≥ 0 if and only if

0 ≤
[
∂

∂pA
uL(p∗A, p̌)−

[
∂

∂pA
u∗W (p∗A, p̌)− C∗W z′(p∗A)

] ]
z(p∗A)

− z′(p∗A)

[
uL(p∗A, p̌)− [u∗W (p∗A, p̌)− C∗W z(p∗A)]

]
=

[
∂

∂pA
uL(p∗A, p̌)−

∂

∂pA
u∗W (p∗A, p̌)

]
z(p∗A),
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which holds since, by assumption,

0 ≥ w(p∗A, p̌)

=
p∗Aλ− [c+ γ]

p∗Aλ+ r
−
λp∗A(1− p∗A)

p∗Aλ+ r

∂

∂p∗A
uL(p∗A, p̌)− uW (p∗A, p̌)

=
λp∗A(1− p∗A)

p∗Aλ+ r

[
∂

∂p∗A
uW (p∗A, p̌)−

∂

∂p∗A
uL(p∗A, p̌)

]
,

where the first equality follows from (23). Finally, since u∗W is increasing in C∗W , it follows that

uW (pA, p̌) = u∗W (pA, p̌)
∣∣
p∗A=p̌

≤ u∗W (pA, p̌)
∣∣
p∗A=pA

= uL(pA, p̌),

which contradicts the fact, established in Part 1, that uW (pA, p̌) > uL(pA, p̌) for all pA > p̌ close

to p̌. Second, given that ∂/∂pAw(p̌, p̌) > 0, it follows from Part 2 that g is differentiable and strictly

decreasing at all beliefs p ∈ (p̃, p̌], where p̃ < p̌ is such that w(pA, p̃) ≤ 0 for all pA > g(p̃) close to

p̃. Third, note that g(p̃) = h(p̃). To see this, suppose, towards a contradiction, that h(p̃) > g(p̃).

This implies that there exists a belief pA close to g(p̃) such that uW (p′A, g(p̃)) > uL(p′A, g(p̃)) and

w(p′A, p̃) ≤ 0 for all p′A ∈ (g(p̃), pA]. But then, by the argument in the first point of this paragraph,

it follows that uW (pA, g(p̃)) ≤ uL(pA, g(p̃)), yielding the desired contradiction. Finally, to see

that p̃ > f(g(p̃)), note that, given any beliefs (pA, f(pA)),

w(pA, f(pA)) =
pAλ− [c+ γ]

pAλ+ r
− λpA(1− pA)

pAλ+ r

∂

∂pA
uL(pA, f(pA))− uL(pA, f(pA))

=
pAλ− c
pAλ+ r

− λpA(1− pA)

pAλ+ r
u′D(pA)− uD(pA)− γ

pAλ+ r

= − γ

pAλ+ r

< 0,

where the second equality follows from (4) and (5), and the final equality follows since uD(pA) =
(pAλ−c)/(pAλ+r)− λpA(1−pA)/(pAλ+r)u′D(pA). Hence, it cannot be that pA = f(g(pB)).

For Part 4, first suppose that uW (h(pB), pB) = uD(h(pB)) in a neighbourhood of pB. Differ-

entiating this identity yields that

h′(pB)

[
u′D(h(pB))− ∂

∂pA
uW (h(pB), pB)

]
=

∂

∂pB
uW (h(pB), pB),

where ∂/∂pBuW (h(pB), pB) > 0. By rearranging the identity uW (h(pB), pB) = uD(h(pB)), we

obtain that

CW (pB)− CD =
γ

z(h(pB))

r + λ(1− h(pB))

r(r + λ)
,
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and so

u′D(h(pB))− ∂

∂pA
uW (h(pB), pB) = z′(h(pB)) [CD − CW (pB)]− λγ

r(r + λ)

=
γ

r(r + λ)

[
[h(pB)λ+ r][r + λ(1− h(pB))]

λh(pB)(1− h(pB))
− λ

]
> 0,

so that h is differentiable, and h′(pB) > 0, as desired. The second equality follows since z(p)/z′(p) =

−λp(1−p)/(pλ+r). Second, suppose that uW (h(pB), pB) = uL(h(pB), pB) in a neighbourhood of pB.

Differentiating this identity yields that

h′(pB)

[
∂

∂pA
uL(h(pB), pB)− ∂

∂pA
uW (h(pB), pB)

]
=

∂

∂pB
uW (h(pB), pB)− ∂

∂pB
uL(h(pB), pB).

Third, the inequality (25), which I establish in Step 2 of the proof of Proposition 4, shows

that ∂/∂pAuL(h(pB), pB) ≥ ∂/∂pAuW (h(pB), pB). Fourth, I also establish in Step 3 of the proof

of Proposition 4 that VA[uW ](h(pB), pB) − (c+γ)/r ≥ VB[uW ](h(pB), pB) − (c+γ)/r, which implies

that ∂/∂pBuW (h(pB), pB) ≥ ∂/∂pBuL(h(pB), pB), with the inequality strict if h(pB) > pB. Fifth,

remember that by Part 1, we have that h(pB) > pB for all pB ∈ [p̌, p̂), while by Parts 2 and 3

we have that h(pB) ≥ g(pB) > pB for all pB ∈ [p̃, p̌). Hence, restricting attention to pB ∈ [p̃, p̂),

if ∂/∂pAuW (h(pB), pB) > ∂/∂pAuL(h(pB), pB), then h(pB) is differentiable and h′(pB) > 0, as

desired. Suppose instead that ∂/∂pAuW (h(pB), pB) = ∂/∂pAuL(h(pB), pB). In that case, we have

both that ∂/∂pBuW (g(pB), pB) > ∂/∂pBuL(g(pB), pB), as well as uW (pA, pB) > uL(pA, pB) for all

pA < h(pB). Since h(pB) is continuous, it must be that h(p′B) > h(pB) for all p′B > pB close to

pB, as desired.

Proof of Proposition 4. Suppose that γ ∈ (0, γ̃), fix beliefs (pA, pB) with pA ≥ pB and pA ∈ (p̌, p̂],

and assume that no project has been discarded so far.

Step 1. It needs to be verified that for all (pA, pB) /∈ PW with pB ≤ f(pA), uD is a solution to

the Bellman equation (3). This is the same as Step 1 in the proof of Proposition 3.

Step 2. It needs to be verified that for all (pA, pB) /∈ PW with pB > f(pA), uL is a solution to the

Bellman equation (3). First, as noted in Step 2 of the proof of Proposition 3, VB[uL](pA, pB) −
(c+γ)/r > uD(pA) follows from pB > f(pA). Second, as noted in Step 2 of the proof of Proposition

3, VB[uL](pA, f(pA))−(c+γ)/r > VA[uL](pA, f(pA))−(c+γ)/r. Third, there are three cases, either (i)

pA ∈ [p̂, p̊), in which case (pA, pA) /∈ PW and pA > f(pA), (ii) there exist (pA, p
′
B) with p′B > pB

and pA = g(p′B), or (iii) there exist (pA, p
′
B) with p′B > pB and pA = h(p′B). As noted in Step

2 of the proof of Proposition 3, for case (i) VB[uL](pA, pA) − (c+γ)/r ≥ VA[uL](pA, pA) − (c+γ)/r

follows from the fact that pA ∈ [p̂, p̊) and hence that ∂/∂pAuL(pA, pA) ≥ ∂/∂pBuL(pA, pA). For case
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(ii), note that

VB[uL](g(p′B), p′B)− c+ γ

r
−
[
VA[uL](g(p′B), p′B)− c+ γ

r

]
=
g(p′B)λ+ r

r

[
uL(g(p′B), p′B)−

[
g(p′B)λ− [c+ γ]

g(p′B)λ+ r

−
λg(p′B)(1− g(p′B))

g(p′B)λ+ r

∂

∂pA
uL(g(p′B), p′B)

]]
= 0, (24)

which follows from (10) and (20). For case (iii), note that

VB[uL](h(p′B), p′B)− c+ γ

r
−
[
VA[uL](h(p′B), p′B)− c+ γ

r

]
=
h(p′B)λ+ r

r

[
uW (h(p′B), p′B)−

[
h(p′B)λ− [c+ γ]

h(p′B)λ+ r

−
λh(p′B)(1− h(p′B))

h(p′B)λ+ r

∂

∂pA
uL(h(p′B), p′B)

]]
=
λh(p′B)(1− h(p′B))

r

[
∂

∂pA
uL(h(p′B), p′B)− ∂

∂pA
uW (h(p′B), p′B)

]
≥ 0. (25)

The inequality follows from the fact, by the definition of h(p′B), uL(p′A, p
′
B) < uW (p′A, p

′
B) for all

p′A < h(p′B) close to h(p′B). Fourth, as argued in Step 2 of the proof of Proposition 3, to show

that VB[uL](pA, p
′′
B) − (c+γ)/r ≥ VB[uL](pA, p

′′
B) − (c+γ)/r for all p′′B ∈ [pB, p

′
B), it is sufficient to

show that, in cases (ii) and (iii), y′(p′B; pA) ≤ 0 (as the corresponding claim for case (i) is dealt

with there). Note that

y′(p′B; pA) =
∂

∂pB
uL(pA, p

′
B) +

λpA(1− pA)

pAλ+ r

∂2

∂pA∂pB
uL(pA, p

′
B)

= −
p′Bλ+ r

λp′B(1− p′B)

[
pAλ− [c+ γ]

pAλ+ r
−
p′Bλ− [c+ γ]

p′Bλ+ r

]
≤ 0,

which follows from the same manipulations as in the proof of Part 2 of Lemma 2, since in case

(ii) we have that pA = g(p′B) and uW (g(p′B), p′B) = uL(g(p′B), p′B), and in case (iii) we have that

pA = h(p′B) and uW (h(p′B), p′B) = uL(h(p′B), p′B). Hence, (3) is satisfied.

Step 3. It needs to be verified that for all (pA, pB) ∈ PW , uW is a solution to the Bellman

equation (3). First, since uW (pA, pB) ≥ max{uL(pA, pB), uD(pA)} by definition, it follows that

VA(pA, pB)− c+ γ

r
= uW (pA, pB)

≥ uD(pA).
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Second, there are two cases, either (i) (pB, pB) ∈ PW , in which case pB ∈ [p̌, p̂), or (ii) there

exist beliefs (g(pB), pB), in which case pB < p̌. In case (i), we have that

VA[uW ](pB, pB)− c+ γ

r
−
[
VB[uW ](pB, pB)− c+ γ

r

]
= −λpB(1− pB)

r

[
∂

∂pA
uW (pB, pB)− ∂

∂pB
uW (pB, pB)

]
= 0, (26)

where the second equality follows from (18) and (19). In case (ii), we have that

VA[uW ](g(pB), pB)− c+ γ

r
−
[
VB[uW ](g(pB), pB)− c+ γ

r

]
=
λpB + r

r

[
uW (g(pB), pB)−

[
pBλ− [c+ γ]

pBλ+ r

− λpB(1− pB)

pBλ+ r

∂

∂pB
uW (g(pB), pB)

]]
=
λpB + r

r
[uW (g(pB), pB)− uL(g(pB), pB)]

= 0,

where the second equality follows the smooth-pasting property (22) established in the proof of

Part 2 of Lemma 2. Third, in case (i), we have that

r

λpB + r
· ∂

∂pA

[
VA[uW ](pB, pB)− c+ γ

r
−
[
VB[uW ](pB, pB)− c+ γ

r

]]
=

∂

∂pA

[
uE(pB)−

[
pBλ− [c+ γ]

pBλ+ r
− λpB(1− pB)

λpB + r

1

2
u′E(pB)

]]
=

∂

∂pA
[uE(pB)− uE(pB)]

= 0,

where the first equality follows from the value-matching and smooth-pasting conditions (9), (18)

and (19), while in case (ii), we have that

r

λpB + r
· ∂

∂pA

[
VA[uW ](g(pB), pB)− c+ γ

r
−
[
VB[uW ](g(pB), pB)− c+ γ

r

]]
=

∂

∂pA

[
uW (g(pB), pB)−

[
pBλ− [c+ γ]

pBλ+ r
− λpB(1− pB)

λpB + r

∂

∂pB
uW (g(pB), pB)

]]
≥ 0,
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with the inequality strict if pA > pB, where the inequality follows from the argument that
∂/∂pAw(g(pB), pB) ≥ 0 in the proof of Part 2 of Lemma 2. Fourth, note that the mapping

pA 7→ VA[uW ](pA, pB)− c+ γ

r
−
[
VB[uW ](pA, pB)− c+ γ

r

]
=
λpA + r

r

[
CW z(pA) + pA

λ− [c+ γ]

r + λ
− (1− pA)

c+ γ

r

−
[
pBλ− [c+ γ]

pBλ+ r
− λpB(1− pB)

λpB + r
C ′W (pB)z(pA)

]]
is convex since z is convex. Hence, together with the second and third points, this implies

that VA[uW ](pA, pB) − (c+γ)/r ≥ VB[uW ](pA, pB) − (c+γ)/r for all pA ≥ pB in case (i) and for all

pA ≥ g(pB) in case (ii), with the inequality strict if pA > pB, so that (3) is satisfied.

Step 4. It remains to be shown that Steps 1-3 above, along with the results of Proposition 3, are

sufficient to ensure that the payoff function constructed on the belief space P̊ = {(pA, pB) : p̊ >

pA ≥ pB} is indeed the value function. But this is the same argument as in the proof of Step 3

of Proposition 3: given any beliefs in P̊ , all feasible experimentation policies lead to belief paths

that remain in this set, so that the Bellman equation (3) is indeed a necessary and sufficient

condition for optimality in the problem with a belief space restricted to P̊ .
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